Jane915126 发表于 2017-4-6 16:55:28

电池的基本知识

一.电池的定义电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间,能将化学能转化成电能的装置。具有正极、负极之分。随着科技的进步,电池泛指能产生电能的小型装置。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。利用电池作为能量来源,可以得到具有稳定电压,稳定电流,长时间稳定供电,受外界影响很小的电流,并且电池结构简单,携带方便,充放电操作简便易行,不受外界气候和温度的影响,性能稳定可靠,在现代社会生活中的各个方面发挥有很大作用。二.电池的原理在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。G为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安•小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。
三.电池的分类电池的种类很多,常用电池主要是干电池、蓄电池,以及体积小的微型电池。此外,还有金属-空气电池、燃料电池以及其他能量转换电池如太阳电池、温差电池、核电池等。1.干电池干电池(Dry cell)是一种以糊状电解液来产生直流电的化学电池(湿电池则为使用液态电解液的化学电池),大致上分为一次电池及二次电池两种,是日常生活之中为普遍使用,以及轻便的电池。它可在实验室内自制的电池们可以使用于很多电器用品上。干电池属于化学电源中的原电池,是一种一次性电池。因为这种化学电源装置其电解质是一种不能流动的糊状物,所以叫做干电池,这是相对于具有可流动电解质的电池说的。干电池不仅适用于手电筒、半导体收音机、收录机、照相机、电子钟、玩具等,而且也适用于国防、科研、电信、航海、航空、医学等国民经济中的各个领域,十分好用。普通干电池大都是锰锌电池,中间是正极碳棒,外包石墨和二氧化锰的混合物,再外是一层纤维网.网上涂有很厚的电解质糊,其构成是氯化铵溶液和淀粉,另有少量防腐剂.最外层是金属锌皮做的筒,也就是负极,电池放电就是氯化氨与锌的电解反应,释放出的电荷由石墨传导给正极碳棒,锌的电解反应是会释放氢气的,这气体是会增加电池内阻的,而和石墨相混的二氧化锰就是用来吸收氢气的.但若电池连续工作或是用的太久,二氧化锰就来不及或已近饱和没能力再吸收了,此时电池就会因内阻太大而输出电流太小而失去作用.但此时若将电池加热,或放置一段时间,它内部的聚集氢气就会受热放出或缓慢放出.二氧化锰也到了还原恢复,那电池就又有活力了!(1)糊式锌-锰干电池
  由锌筒、电糊层、二氧化锰正极、炭棒、铜帽等组成。最外面的一层是锌筒,它既是电池的负极又兼作容器,在放电过程中它要被逐渐溶解;中央是一根起集流作用的碳棒;紧紧环绕着这根碳棒的是一种由深褐色的或黑色的二氧化锰粉与一种导电材料(石墨或乙炔黑)所构成的混合物,它与碳棒一起构成了电池的正极体,也叫炭包。为避免水分的蒸发,干电池的上部用石蜡或沥青密封。锌-锰干电池工作时的电极反应为锌极:Zn→Zn2++2e(2)碳-锌干电池    常用的一种是碳-锌干电池。负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。电极反应是:负极处锌原子成为锌离子,释出电子,正极处铵离子得到电子而成为氨气与氢气。用二氧化锰驱除氢气以消除极化。电动势约为1.5伏。
(3)纸板式锌-锰干电池
  在糊式锌-锰干电池的基础上改进而成。它以厚度为70~100微米的不含金属杂质的优质牛皮纸为基,用调好的糊状物涂敷其表面,再经过烘干制成纸板,以代替糊式锌-锰干电池中的糊状电解质层。纸板式锌-锰干电池的实际放电容量比普通的糊式锌-锰干电池要高出2~3倍。标有“高性能”字样的干电池绝大部分为纸板式。
(4)碱性锌-锰干电池
  其电解质由汞齐化的锌粉、35%的氢氧化钾溶液再加上一些钠羧甲基纤维素经糊化而成。由于氢氧化钾溶液的凝固点较低、内阻小,因此碱性锌-锰干电池能在-20℃温度下工作,并能大电流放电。碱性锌-锰干电池可充放电循环40多次,但充电前不能进行深度放电(保留60%~70%的容量),并需严格控制充电电流和充电期终的电压。
(5)叠层式锌-锰干电池
  由几个结构紧凑的扁平形单体电池叠在一起构成。每一个单体电池均由塑料外壳、锌皮、导电膜以及隔膜纸、炭饼(正极)组成。隔膜纸是一种吸有电解液的表面有淀粉层的浆层纸,它贴在锌皮的上面;隔膜纸上面是炭饼。隔膜纸如同糊式干电池的电糊层,起隔离锌皮负极和炭饼正极的作用。叠层式锌-锰干电池减去了圆筒形糊式干电池串联组合的麻烦,其结构紧凑、体积小、体积比容量大,但贮存寿命短且内阻较大,因而放电电流不宜过大。2.蓄电池蓄电池的种类很多,包括铅蓄电池、铅晶蓄电池、铁镍蓄电池、铁镉蓄电池、银锌蓄电池等,他们的共同的特点是可以经历多次充电、放电循环,反复使用,下面依次介绍:
(1)铅蓄电池
  铅蓄电池最为常用,其极板是用铅合金制成的格栅,电解液为稀硫酸。两极板均覆盖有硫酸铅。但充电后,正极处极板上硫酸铅转变成二氧化铅,负极处硫酸铅转变成金属铅。放电时,则发生反方向的化学反应。铅蓄电池的电动势约为2伏,常用串联方式组成6伏或12伏的蓄电池组。电池放电时硫酸浓度减小,可用测电解液比重的方法来判断蓄电池是否需要充电或者充电过程是否可以结束。
铅蓄电池的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。
  由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH4〕)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。
  铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。采用新型铅合金,可改进铅蓄电池的性能。如用铅钙合金作板栅,能保证铅蓄电池最小的浮充电流、减少添水量和延长其使用寿命;采用铅锂合金铸造正板栅,则可减少自放电和满足密封的需要。此外,开口式铅蓄电池要逐步改为密封式,并发展防酸、防爆式和消氢式铅蓄电池。
(2)铅晶蓄电池
  铅晶蓄电池应用的是专有技术,所采用的高导硅酸盐电解质是传统铅酸电池电解质的复杂性改型,无酸雾内化成工艺是定型工艺的革新。这些技术工艺均属国内外首创,该产品在生产、使用及废弃物中都不存在污染问题,更符合环保要求,由于铅晶蓄电池用硅酸盐取代硫酸液作电解质,从而克服了铅酸电池使用寿命短,不能大电流充放电的一系列缺点,更加符合动力电池的必备条件,铅晶电池也必将对动力电池领域产生巨大的推动作用。
  铅晶蓄电池较铅酸电池具有无可比拟的优越性:a、铅晶电池的使用寿命长,一般铅酸电池循环充放电都在350次左右,而铅晶电池在额定容量放电60%的前提下,循环寿命700多次,相当于铅酸电池寿命的一倍。b、高倍率放电性能好,特殊的工艺使铅晶电池具有高倍率放电的特性,一般铅酸电池放电只有3C,铅晶电池放电最大可以达到10C。c、深度放电性能好,铅晶电池可深度放电到0V,继续充电可恢复全部额定容量,这一特性相对铅酸电池来讲是难以达到的境界。d、耐低温性能好,铅晶电池的温度适应范围比较广,从-20—50℃都能适应,特别是在-20℃的情况下,放电能达到87%。对广大低温地区是不可多得的首选佳品。e、环保性好,铅晶电池所采用的新材料、新工艺和新配方,不存在酸雾等挥发的有害物质,对土地、河流等不会造成污染,更加符合环保要求。
(3)铁镍蓄电池
  铁镍蓄电池也叫爱迪生电池。铅蓄电池是一种酸性蓄电池,与之不同,铁镍蓄电池的电解液是碱性的氢氧化钾溶液,是一种碱性蓄电池。其正极为氧化镍,负极为铁。电动势约为1.3~1.4伏。其优点是轻便、寿命长、易保养,缺点是效率不高。
(4)镍镉蓄电池
  正极为氢氧化镍,负极为镉,电解液是氢氧化钾溶液,其优点是轻便、抗震、寿命长,常用于小型电子设备。
(5)银锌蓄电池
  正极为氧化银,负极为锌,电解液为氢氧化钾溶液。银锌蓄电池的比能量大,能大电流放电,耐震,用作宇宙航行、人造卫星、火箭等的电源。充、放电次数可达约100~150次循环。其缺点是价格昂贵,使用寿命较短。
3.燃料电池一种把燃料在燃烧过程中释放的化学能直接转换成电能的装置。与蓄电池不同之处,是它可以从外部分别向两个电极区域连续地补充燃料和氧化剂而不需要充电。燃料电池由燃料(例如氢、甲烷等)、氧化剂(例如氧和空气等)、电极和电解液等四部分构成。其电极具有催化性能,且是多孔结构的,以保证较大的活性面积。工作时将燃料通入负极,氧化剂通入正极,它们各自在电极的催化下进行电化学反应以获得电能。燃料电池把燃烧反应所放出的能量直接转变为电能,所以它的能量利用率高,约等于热机效率的2倍以上。此外它还有下述优点:a.设备轻巧;b.不发噪音,很少污染;c.可连续运行;d.单位重量输出电能高等。因此,它已在宇宙航行中得到应用,在军用与民用的各个领域中已展现广泛应用的前景。4.太阳能电池
把太阳光的能量转换为电能的装置。当日光照射时,产生端电压,得到电流,用于人造卫星、宇宙飞船中的太阳电池是半导体制成的(常用硅光电池)。日光照射太阳电池表面时,半导体PN结的两侧形成电位差。太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,光生空穴由n区流向p区,光生电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式其效率在百分之十以上,典型的输出功率是5~10毫瓦每平方厘米(结面积)。太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌 (Zn 3 p 2 )等。太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。5.温差电池两种金属接成闭合电路,并在两接头处保持不同温度时,产生电动势,即温差电动势,这叫做塞贝克效应(见温差电现象),这种装置叫做温差电偶或热电偶。金属温差电偶产生的温差电动势较小,常用来测量温度差。但将温差电偶串联成温差电堆时,也可作为小功率的电源,这叫做温差电池。用半导体材料制成的温差电池,温差电效应较强。6.核电池把核能直接转换成电能的装置(目前的核发电装置是利用核裂变能量使蒸汽受热以推动发电机发电,还不能将核裂变过程中释放的核能直接转换成电能)。通常的核电池包括辐射β射线(高速电子流)的放射性源(例如锶-90),收集这些电子的集电器,以及电子由放射性源到集电器所通过的绝缘体三部分。放射性源一端因失去负电成为正极,集电器一端得到负电成为负极。在放射性源与集电器两端的电极之间形成电位差。这种核电池可产生高电压,但电流很小。它用于人造卫星及探测飞船中,可长期使用。7. 纳米电池
纳米电池即用纳米材料(MnO2,LiMn2O4,Ni(OH)2等) 制作的电池,纳米材料具有特殊的微观结构和物理化学性能(如量子尺寸效应,表面效应和隧道量子效应等。目前国内技术成熟的纳米电池是纳米活性碳纤维电池。主要用于电动汽车,电动摩托,电动助力车上。该种电池可充电循环1000次,连续使用达10年左右一次充电只需20分钟左右,平路行程达400km,重量在128kg,已经超越美日等国的电池汽车水平,它们生产的镍氢电池充电约需6-8小时平路行程300km。
8.固体电解质电池固体电解质电池是以固体离子导体为电解质,分高温、常温两类。高温的有钠硫电池,可大电流工作。常温的有银碘电池,电压0.6伏,价格昂贵,尚未获得应用。已使用的是锂碘电池,电压2.7伏。这种电池可靠性很高,可用于心脏起搏器;但这种电池放电电流只能达到微安级。9. 锂电池以锂为负极的电池。它是60年代以后发展起来的新型高能量电池。按所用电解质不同分为:①高温熔融盐锂电池;②有机电解质锂电池;③无机非水电解质锂电池;④固体电解质锂电池;⑤锂水电池。锂电池的优点是单体电池电压高,比能量大,储存寿命长(可达10年),高低温性能好,可在-40~150℃使用。缺点是价格昂贵,安全性不高。另外电压滞后和安全问题尚待改善。近年来大力发展动力电池和新的正极材料的出现,特别是磷酸亚铁锂材料的发展,对锂电发展有很大帮助。10.储备电池有两种激活方式,一种是将电解液和电极分开存放,使用前将电解液注入电池组而激活,如镁海水电池、储备式铬酸电池和锌银电池等。另一种是用熔融盐电解质,常温时电解质不导电,使用前点燃加热剂将电解质迅速熔化而激活,称为热电池。这种电池可用钙、镁或锂合金为负极,KCl和LiCl的低共熔体为电解质,CaCrO4、PbSO4或V2O5等为正极,以锆粉或铁粉为加热剂。采用全密封结构可长期储存(10年以上)。储备电池适于特殊用途。
11.金属-空气电池以空气中的氧气作为正极活性物质,金属作为负极活性物质的一种高能电池。使用的金属一般是镁、铝、锌、镉、铁等;电解质为水溶液。其中锌-空气电池已成为成熟的产品。金属-空气电池具有较高的比能量,这是因为空气不计算在电池的重量之内。锌-空气电池的比能量是现生产的电池中最高的,已达400瓦·小时/千克(Wh/kg),是一种高性能中功率电池,并正向高功率电池的方向发展。锌空气电池以空气中的氧为正极活性物质,因此比容量大。有碱性和中性两种系列,结构上又有湿式和干式两种。湿式电池只有碱性一种,用NaOH为电解液,价格低廉,多制成大容量(100安·小时以上)固定型电池供铁路信号用。干式电池则有碱性和中性两种。中性空气干电池原料丰富、价格低廉,但只能在小电流下工作。碱性空气干电池可大电流放电,比能量大,连续放电比间歇放电性能好。所有的空气干电池都受环境湿度影响,使用期短,可靠性差,不能在密封状态下使用。目前生产的金属-空气电池主要是一次电池;研制中的二次金属-空气电池为采用更换金属电极的机械再充电电池。由于金属-空气电池工作时要不断地供应空气,因此它不能在密封状态或缺少空气的环境中工作。此外,电池中的电解质溶液易受空气湿度的影响而使电池性能下降;空气中的氧会透过空气电极并扩散到金属电极上,形成腐蚀电池引起自放电。整理:材料人Jane915126



页: [1]
查看完整版本: 电池的基本知识