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Fig. 3.11 Stress–strain curves for Fe–0.003% C alloy wire, deformed to increasing

strains by drawing; each curve is started at the strain corresponding to the prior

wire-drawing reduction. (Courtesy of H. J. Rack.)

wire consists of pulling it through a conical die; at each pass, there is

a reduction in cross section. Tensile tests were conducted after differ-

ent degrees of straining (0 to 7.4) by wire drawing; it can be seen that

the wire work-hardens at each step. However, the individual tensile

tests are interrupted by necking and fracture. In wire-drawing, neck-

ing and fracture are inhibited by the state of stress in the deformation

zone (compressive). The individual true-stress--true-strain curves were

corrected for necking by Bridgman’s technique; in each case, the indi-

vidual curve fits fairly well into the overall work-hardening curve. It

may be concluded that the individual tensile test gives only a very



176 PLASTICITY

limited picture of the overall work-hardening response of a metal; for

the wire in Figure 3.11 the total strain exceeded 7.4.

3.2.3 Strain Rate Effects
For many materials, the stress--strain curves are sensitive to the strain

rate ε̇. The lowest range of strain rates corresponds to creep and stress-

relaxation tests. The tensile tests are usually conducted in the range

10−4 s−1 < ε̇ < 10−2 s−1. At strain rates on the order of 102 s−1,

inertial and wave-propagation effects start to become important. The

highest range of strain rates corresponds to the passage of a shock

wave through the material.

More often than not, the flow stress increases with strain rate;

the work-hardening rate is also affected by it. A parameter defined to

describe these effects

m = ∂ ln σ

∂ ln ε̇

∣∣∣∣
ε,T

, (3.21)

is known as the strain rate sensitivity. Equation 3.21 can also be

expressed as

σ = K ε̇m. (3.22)

where K is a constant. Note that this K is different from the Ludwik--

Hollomon parameter.

Materials can be tested over a wide range of strain rates; however,

standardized tensile tests require well-characterized strain rates that

do not exceed a critical value. High-strain-rate tests are often used to

obtain information on the performance of materials under dynamic

impact conditions. The cam plastometer is one of the instruments

used. In certain industrial applications, metals are also deformed at

high strain rates. Rolling mills generate bar velocities of 180 km/h;

the attendant strain rates are extremely high. In wire-drawing, the

situation is similar.

Figure 3.12(a) shows the effect of different strain rates on the ten-

sile response of AISI 1040 steel. The yield stress and flow stresses at dif-

ferent values of strain increase with strain rate. The work-hardening

rate, on the other hand, is not as sensitive to strain rate. This illus-

trates the importance of correctly specifying the strain rate when

giving the yield stress of a metal. Not all metals exhibit a high strain

rate sensitivity: Aluminum and some of its alloys have either zero

or negative m. In general, m varies between 0.02 and 0.2 for homolo-

gous temperatures between 0 and 0.9 (90% of the melting point in K).

Hence, one would have, at the most, an increase of 15% in the yield

stress by doubling the strain rate. It is possible to determine m from

tensile tests by changing the strain rate suddenly and by measuring

the instantaneous change in stress. This technique is illustrated in
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Fig. 3.12 (a) Effect of strain rate

on the stress–strain curves for

AISI 1040 steel. (b) Strain-rate

changes during tensile test. Four

strain rates are shown: 10−1,

10−2, 10−3, and 10−4 s−1.

Figure 3.12(b). Applying Equation 3.22 to two strain rates and elimin-

ating K, we have

m = ln (σ2/σ1)

ln (ε̇2/ε̇1)
(3.23)

The reader can easily obtain m from the strain-rate changes in the

figure.

Some alloys show a peculiar plastic behavior and are called super-

plastic. When necking starts, the deformation concentrates itself at

the neck. Since the velocity of deformation is constant, and the effec-

tive length of the specimen is reduced during necking, the strain

rate increases (ε̇ = ν/L). If a material exhibits a positive strain-rate

sensitivity, the flow stress in the neck region will increase due to the

increased strain rate; hence, necking is inhibited. This topic is treated
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in greater detail in Section 15.8 -- Superplasticity; it is what takes place

in superplastic alloys, which can undergo uniform plastic strains of

up to 5,000%.

Example 3.2

Can the necking phenomenon be observed in any kind of mechanical

test? Point out some of the problems that this phenomenon can cause

during tensile testing.

Solution: No, necking is an artifact of the tensile test only. A reduction

in cross-sectional area at any irregularities along the length of the speci-

men occurs in the tension mode only, and therefore, the phenomenon

of necking occurs in tension only. In compression, the specimen bulges

out.

After necking starts, the plastic deformation is concentrated in a

very narrow region of the sample. Thus, one must not compare the

total deformation corresponding to failure for two specimens that have

different gage lengths. In order to avoid such complications, one should

only compare the uniform elongation or use the reduction in area, i.e.,

the true-strain definition of the final strain. Strain gages and clip-on

extensometers will not function properly or give accurate results after

necking has begun.

Example 3.3

Tensile testing of brittle materials such as ceramics is not very common,

but is being resorted to in many laboratories. Why? Comment on the

problems of doing tensile testing on ceramics.

Solution: Direct tensile testing of a sample results in a simple stress

state over the whole volume of the sample gage length. All the volume

and surface flaws in the gage length of the specimen are called into

play and lead to a true measure of the material strength. Hence, there

is increasing interest in tensile testing of ceramics. One major problem,

however, is that of alignment of the sample. Any offcenter application

of the load or loading at an angle can result in a combined state of

bending and tension in the specimen. Stresses induced in such a state

are called parasitic bending stresses and can lead to errors in the computed

tensile strength values or even fracture the sample while it is being

aligned in the machine. Some self-aligning grips have been designed to

take care of these problems. This leads to rather long specimens and

rather complex machining of the specimen. All of this makes tensile

testing of ceramics very expensive!
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Example 3.4

Determine, for the curve shown in Figure E3.4.1,
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(a) Young’s modulus

(b) the UTS

(c) the yield stress (with a 0.2% offset)

(d) the uniform strain

(e) the total strain

(f) the engineering stress--strain curve.

D0

L0

Fig. E3.4.2

The dimensions of the specimen, which is depicted in Figure E3.4.2,

are:

L 0 = 20 mm,

D 0 = 4 mm.

Solution:

(a) The elastic region is the straight line of the stress--strain curve.

Taking both ends of this line, we obtain

Point 1 : F1 = 0 kN, �l1 = 0,

Point 2 : F2 = 5.5 kN, �l2 = 0.175 mm.
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To calculate Young’s modulus (E = �σ /�ε), we have to change F, �l

in terms of σ , ε:

Point 1:

σ1 = F1

A0

= 0,

ε1 = �l1

L 0

= 0.

Point 2:

σ2 = F2

A0

= 5.5

π (2)2
kN

mm2
≈ 0.44 kN/mm2 = 440 MPa,

ε2 = �l2

L 0

≈ 0.175

20
≈ 0.009.

So

E = �σ

�ε
= σ2 − σ1

ε2 − ε1

≈ 440

0.009
≈ 49000 MPa ≈ 49 GPa

(b) The UTS is the maximum value of the stress reached just before

necking. Therefore, from the stress--strain curve, the UTS is equal to

the stress corresponding to F ≈ 7.5 kN. So

UTS = 7.5

π (2)2
≈ 0.6 kN/mm2 ≈ 600 MPa

(c) The 0.2%-offset yield stress is

ε = �l

L 0

,
ε = 0.2% = 0.002,

l0 = 20 mm.

Therefore,

�l = ε · l0 = 0.002 × 20 = 0.04 mm.

If you draw a line parallel to the elastic region calculated in part

(a), from �l = 0.04 mm, you will find that the point of intersection

with the stress--strain curve is at F ≈ 6 kN. At that point,

σy = 6

π (2)2
≈ 0.48 kN/mm2 = 480 MPa.

(d) For uniform strain, make a parallel line from the UTS point to the

stress axis. You will then find that

�lu ≈ 1.5 mm.

The percent uniform strain is

�lu

L 0

× 100% = 1.5

20
× 100% = 7.5%.

(e) To find the total strain, we repeat (d) from the failure point. We

have

�lt ≈ 3.7 mm.

The percent total strain is

�lt

L 0

× 100% = 3.7

20
× 100% = 18.5%.
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(f) The engineering stress--strain curve is as shown in Figure E3.4.3.
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Example 3.5

The load--extension curve of an aluminum alloy, shown in Figure E3.5.1

was taken directly from a testing machine. A strain-gage extensometer

was used, so machine stiffness effects can be ignored. From this curve,

obtain the true and engineering stress--strain curves. Also, calculate the

following parameters:

(a) Young’s modulus

(b) the UTS

(c) the 0.2%-offset yield stress

(d) the uniform strain

(e) the total strain

(f) the reduction in area at the fracture.
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Solution: We first change the coordinates to stress and strain. For engin-

eering stresses, this is easily done:

σe = P

A0

(A0 = 28.26 mm2),

εe = �L

L 0

(L 0 = 54 mm).

The shape of the curve remains the same. For true stresses and true

strains, we have to convert the engineering values into true values using

the equations

σt = σe (1 + εe ),

εt = ln(1 + εe ).

This is valid up to the onset of necking. Beyond necking (which starts

at the UTS), we have only one point: that corresponding to failure. We

can establish the true strain in the neck from the equation

ε f = ln
A0

A f

= ln
π × 9

π × 4
= 0.81.

The corresponding true stress is

σt = P

A
= 6.5

π × 4

kN

mm2
,

σt = 515 MPa.

The other parameters are determined as follows:

(a) Young’s modulus:

E = slope of elastic part

= �σ

�ε

= 250

0.004
MPa

≈ 63 GPa.

(b) UTS ≈ 300 MPa (σ max).

The corresponding true stress is

σt = 300(1 + 0.056) = 317 MPa.

(c) 0.2%-offset yield stress:

σys ≈ 280 MPa.

(d) The uniform strain is approximately equal to 0.056.

The corresponding true strain is

εt = ln(1 + 0.056) = 0.054.

(e) The total strain is approximately equal to 9%.

(f) Reduction in area at the fracture:

q = A0 − A f

A0

= π × 32 − π × 22

π × 32
= 0.55, or 55%.
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The true and engineering stress--strain curves are shown in Fig-

ure E3.5.2(a). The engineering curve is shown blown up in Figure

E3.5.2(b).
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3.3 Plastic Deformation in Compression Testing

In compression testing, a cylinder or a parallelepiped cube (with one

side -- the one parallel to the loading direction -- longer than the

other two) is subjected to compression between two parallel plates.

The plates should have a self-alignment system, and they often ride

on one or two hemispherical caps, as shown in Figure 3.13(a). If ceram-

ics are being tested, it is also common to use special ceramic (WC,

for instance) inserts between the specimen and the hemispherical

caps. This eliminates indentation and plastic deformation of platens.

Lubrication between the specimen and the plate is also very desirable,

to decrease barreling (nonuniform deformation) of the specimen.
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Fig. 3.13 (a) Compression

specimen between parallel platens.

(b) Length inhomogeneity in

specimen.

(Barreling will be discussed shortly.) The use of a thin TeflonTM coat-

ing, molybdenum disulfide, or graphite is recommended. It is also

very important to ensure homogeneous loading of the specimen. This

is particularly critical for ceramics, which often fail in the elastic

range. It is easy to calculate stresses that arise when one of the paral-

lel sides of a specimen is longer than the other. Figure 3.13(b) shows

a specimen with a height difference �h. The right side will experi-

ence a stress σ = E(�h/h2) before the left side is loaded. For a typical

ceramic, it is a simple matter to calculate the relationship between

�σ , the difference in stress from one side to the other, from �h. For

example, consider alumina, for which E = 400 GPa and h = 10 mm.

The compressive strength of alumina can be as high as

σc = 4 GPa.

Therefore, the failure strain is

ε f = σ

E
= 10−2.

The corresponding displacement is

�h = εh = 0.1 mm.

If the difference in height in the specimen is greater than 0.1 mm,

the right side will fail as the left side starts to experience loading.

This inhomogeneous loading is eliminated by the hemispherical caps,

which can rotate to accommodate differences in height. However,

if the surfaces of the specimen are not flat, stress inhomogeneities

will arise, which can cause significant differences in the stress--strain

response.

In reality, the platens also undergo elastic deformation, and a

more uniform stress state is reached. Nevertheless, it is not a good

practice to have the stresses on the two sides vary significantly, as this

will result in erroneous strength determinations. The use of Teflon

or thin metallic shims (stainless steel foil) also helps to alleviate the

problem. This example illustrates the care that has to be exercised in

choosing the dimensions of the specimen. In the case of ductile mater-

ials, it is not so critical, because plastic deformation will ‘‘homoge-

nize” stresses.
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Figure 3.14(a) shows a typical compressive stress--strain curve for

a metal (70--30 brass). The engineering-stress--engineering-strain curve

(σ e, εe) is concave, whereas it is convex in a tensile test. (See, for

instance, Figure 3.3). The true-stress--true-strain curve is obtained by

means of Equations 3.4 and 3.9. (See also Section 2.2). The transla-

tion of five points by using these equations is shown in Figure 3.14(a).

After conversion to true-stress--true-strain values, the concavity of the

curve is, for the most part, lost. In contrast, the true stress--strain

curves in tension are displaced to the left (on the strain axis) and

up (on the stress axis) from the engineering stress--strain curves. (See

Figure 3.6) The phenomenon of necking is absent in compression

testing, and much higher strains are reached. However, necking is

replaced by barreling, a nonuniform plastic deformation resulting

from friction between the specimen and the platen. Figure 3.14(b)

shows the barreling of the brass specimen after the test. This barrel-

ing is responsible for some concavity in the true stress--strain curve

(at a strain greater than −0.4) and limits the range of strain in com-

pression testing of ductile materials to approximately −0.3 to −0.4. It

will be shown, through a stress analysis, that frictional effects play an

increasing role as the length/diameter ratio is decreased. This can sig-

nificantly affect the results of a test. The compression of a cylindrical

specimen under an engineering strain of −0.5, as simulated by finite

elements under sticking conditions (i.e., there is no sliding at the
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Fig. 3.15 (a) Distortion of Finite Element Method (FEM) grid after 50% reduction in

height h of specimen under sticking-friction conditions. (Reprinted with permission

from H. Kudo and S. Matsubara, Metal Forming Plasticity (Berlin: Springer, 1979),

p. 395.) (b) Variation in pressure on surface of cylindrical specimen being

compressed.

specimen--platen interface), is shown in Figure 3.15. The distortion

of the initially perpendicular grid is visible. This is an extreme case;

strain inhomogeneities in the specimen are evident by differences in

distortion of the grid. Barreling also can be seen.

The pressure or compressive stress is not uniform over the top

and bottom surfaces of the specimen. Pressure differences can be

calculated from an equation derived by Meyers and Chawla:6

p = σ0e2μ(a−r )/h .

6 M. A. Meyers and K. K. Chawla, Mechanical Metallurgy (Englewood Cliffs, NJ: Prentice-

Hall, 1984), p. 122.
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This is the equation for the ‘‘friction hill.” The compressive stress at

the outside (r = a) is equal to σ 0, the material flow stress. In the center,

it rises to pmax. The greater the ratio a/h, the more severe the prob-

lem is. The ‘‘friction hill” is schematically plotted in Figure 3.15(b).

The pressure rises exponentially toward the center of the cylinder.

The greater the coefficient of friction, the greater is pmax. A friction

coefficient μ = 0.15 is a reasonable assumption. It is instructive to

calculate the maximum pressure for three a/h ratios:

a/h = 2, pmax = 1.82σ0;

a/h = 1, pmax = 1.34σ0;

a/h = 0.5, pmax = 1.16σ0.

A specimen with an initial length/diameter ratio of 2 would have

a maximum pressure of 1.07σ 0. However, after a 50% reduction in

length, the ratio a/h is changed to 1.23σ 0. The calculation is left as a

challenge to the student; remember that the volume is constant. This

can cause significant differences between the actual strength values

of materials and stress readings. It is therefore recommended that

these effects be considered. On the other hand, if a/h is too small, the

specimen will tend to buckle under the load.

3.4 The Bauschinger Effect

In most materials, plastic deformation in one direction will affect sub-

sequent plastic response in another direction. The translation of the

von Mises ellipse (kinematic hardening; see Section 3.7.4) is a mani-

festation of this relationship. The ellipse will move toward the direc-

tion in which the material is stressed. In one-dimensional deform-

ation, the phenomenon is known as the Bauschinger effect. A material

that is pulled in tension, for example, shows a reduction in compres-

sive strength. Figure 3.16 illustrates the effect. A stress--strain curve is

drawn, and the sequence 0--1--2 represents the loading direction. The

material is first loaded in tension and yields at 1. At 2, the loading

direction is reversed. Unloading occurs along the elastic line until the

stresses become compressive. If there were no directionality effect, the

material would start flowing plastically at a stress equal to σ 2. The

idealized reverse curve is also shown in the figure. If the material

did not exhibit a dependence on the stress direction, the compressive

curve would be symmetrically opposite to the tensile curve. This ideal-

ized curve is drawn in dashed lines. The sequence is 0--1R--2R. Thus,

compressive plastic flow, after the 0--1--2 tensile sequence, should

occur at σ 3 = σ 2R = −σ 2. If the material exhibits a Bauschinger effect,

this stress is decreased from σ 3 to σ 4. Hence, the material ‘‘softens”

upon inversion of the loading direction.

An actual example is shown in Figure 3.17. The 0.2% proof stress

(the stress at which 0.2% plastic strain occurs) in compression is

divided by the tensile flow stress that preceded it. These values are
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marked in the figure, which shows three plain carbon steels and one

alloy steel. The change in flow stress is indeed highly significant and

increases with plastic strain in tension. Thus, this factor cannot be

ignored in design considerations when a component is to be subjected

to compression stresses in service after being plastically deformed in

tension.

3.5 Plastic Deformation of Polymers

3.5.1 Stress–Strain Curves
At a microscopic level, deformation in polymers involves stretching

and rotating of molecular bonds. More commonly, one distinguishes

the deformation mechanisms in polymers as brittle, ductile (with or

without necking), and elastomeric. Figure 3.18 shows schematically

the curves that correspond to these mechanisms. Clearly, factors such

as the strain rate and temperature affect the shape of stress--strain
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curves, much more so in polymers than in ceramics or metals. This

is because the polymers are viscoelastic; that is, their stress--strain

behavior is dependent on time. Temperature and strain rate have

opposite effects. Increasing the strain rate (or decreasing the tem-

perature) will lead to higher stress levels, but lower values of strain.

Figure 3.19 shows this schematically.

Polymers (especially, linear, semicrystalline polymers), in a man-

ner superficially similar to metals, can show the phenomena of yield-

ing and necking. The necking condition for polymers can be repre-

sented, again in a manner similar to that for metals (see Section 3.2.2,

Equation 3.19), by:

dσt

dεt

= σt . (3.24)

This equation says that necking occurs when the work-hardening

rate dσ t/dεt attains a value equal to σ . At that point, the increase

in strength due to work-hardening cannot compensate for the loss

in strength caused by a decrease in cross-sectional area, and necking

ensues.

3.5.2 Glassy Polymers
In a manner similar to its occurrence in metals, plastic deformation

occurs inhomogeneously in polymers. Two forms of inhomogeneous
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deformation are observed in glassy polymers: shear bands and crazes.

Shear bands form at about 45◦ to the largest principal stress. The

polymeric molecular chains become oriented within the shear bands

without any accompanying change in volume. The process of shear

band formation can contribute to a polymer’s toughness because it

is an energy-dissipating process. Shear yielding can take two forms:

diffuse shear yielding and localized shear band formation. In local-

ized shear, the shear is concentrated in thin planar regions, and the

process involves a ‘‘cooperative” movement of molecular chains. The

bands form at about 45◦ to the stress axis. Crazes are narrow zones

of highly deformed polymer containing voids; the zones are oriented

perpendicular to the stress axis. In the crazed zone, the molecular

chains are aligned along the stress axis, but they are interspersed

with voids. The void content in a craze may be as much as 55%. Unlike

shear band formation, craze formation does not require the condition

of constancy of volume. Generally, crazing occurs in brittle polymers.

It can also occur to some extent in ductile polymers, but the domi-

nant mode of deformation in these polymers is shear yielding. The

phenomena of shear yielding and crazing are discussed further in

Chapter 8.

Like ceramics, glassy or amorphous polymers show different

stress -- strain behaviors in tension and compression. The reason for

this is that the surface flaws are much more dangerous in tension

than in compression.

3.5.3 Semicrystalline Polymers
Semicrystalline polymers containing spherulites show a highly com-

plex mode of deformation. Characteristically, these materials exhibit

a ductile stress--strain curve with necking. Figure 3.20 shows such a

stress--strain curve. Also illustrated is the process of transformation

of a spherulitic structure to a fibrillar structure under the action

of a tensile stress. Such orientation of polymeric chains parallel to

the direction of stress increases the strength in that direction. Figure

3.21(a) shows a picture of the neck propagating in a linear polyethy-

lene tensile sample while Figure 3.21(b) shows a schematic of the neck

formation and propagation.
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(a)

Fig. 3.21 (a) Neck propagation

in a sheet of linear polyethylene.

(b) Neck formation and

propagation in a specimen, shown

in schematic fashion.

Necked
region

(b)

3.5.4 Viscous Flow
At high temperatures (T ≥ Tg, the glass transition temperature), poly-

mers undergo a viscous flow. Under these conditions, the stress is

related to the strain rate, rather than the strain. Thus,

τ = η
dγ

dt
, (3.25)

where τ is the shear stress, η is the viscosity, and t is the time. (The

derivation of Equation 3.25 is given in Section 3.6.2.)

Viscous flow is a thermally activated process. It occurs by molecu-

lar motion, which increases as the temperature increases. The reader

can appreciate the fact that such a viscous flow would involve the

local breaking and re-forming of the polymeric network structure.

The thermal energy for this is available above the glass transition
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temperature Tg. Below Tg, the thermal energy is too low for breaking

and re-forming bonds, and the material does not flow so easily. At

very high temperatures, the viscosity η is given by the Arrhenius-type

relationship

η = A exp

(
Q

RT

)
, (3.26)

where A is a constant, Q is the activation energy, R is the universal

gas constant, and T is the temperature in kelvin.

3.5.5 Adiabatic Heating
There is a unique feature associated with the plastic deformation of

polymers. Most of the work done during the plastic deformation of

any material is converted into heat. In metals, this is not very import-

ant, because metals are good conductors, and except at extremely

high rates of deformation, the heat generated is dissipated to the

surroundings rather quickly, so that the temperature rise of the metal

is insignificant. Polymers are generally poor conductors of heat. Thus,

any heat generated in localized regions of a specimen due to plastic

deformation can cause local softening. In the case of fatigue, heat

may be dissipated rather easily at low strains and at low frequencies,

even in polymers. A significant amount of softening, however, can

result under conditions of high strain rates and high-frequency cyclic

loading. This phenomenon is called adiabatic heating.

Example 3.6

Polyethylene is a linear-chain thermoplastic; that is, relatively speaking,

it is easy to crystallize by stretching or plastic deformation. An extreme

case of this is the high degree of crystallization obtained in a gel-spun

polyethylene fiber. Describe a simple technique that can be used to

verify the crystallization in polyethylene.

Solution: An easy way would be to use an X-ray diffraction technique.

Unstretched polyethylene will consist mostly of amorphous regions.

Such a structure will give diffuse halos. A diffuse halo indicates an

irregular atomic arrangement -- that is, an amorphous structure. A

polyethylene sample that has been subjected to stretching or a gel-

spun polyethylene fiber will have highly crystalline regions aligned

along the draw axis. There may also be some alignment of chains in

the amorphous regions. An X-ray diffraction pattern of such a sample

would show regular spots and/or regular rings. The discrete spots indi-

cate regular spacing characteristic of an orderly arrangement in a sin-

gle crystal. Well-spaced regular rings indicate a polycrystalline region.

Regular rings result from overlapping spots due to random crystalline

orientations.
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Table 3.1 Mechanical Properties of Some Metallic Glassesa

Alloy HV (GPa) σ y (GPa) H/σ y E g (GPa) Eg/σ y

Ni36Fe32Cr14P12B6 6.1 1.9 3.16 99.36 52
(Metglas 286AA) (tension)
Ni49Fe29P14B6S2 5.5 1.7 3.26 91.1 54
(Metglas 286B) (tension)
Fe80P16C2B1 5.8 1.7 3.35
(Metglas 2615) (tension)
Pd77.5Cu6Si36.5 3.4 1.08 3.17 61.9 57

(compression)
Pd64Ni16P20 3.1 1 3.17 61.9 57

(compression)
Fe80B20 7.6 2.55 2.97 116.6 45
(Metglas 2605) (tension)

aAdapted with permission from: L. A. Davis in Rapidly Quenched Metals, N. J. Grant and B. C. Giessen (eds.)

(Cambridge, MA: MIT Press, 1976, p. 401), p. 369, Table 1.

3.6 Plastic Deformation of Glasses

The unique mechanical properties exhibited by metallic glasses are

connected to their structure. Table 3.1 lists the hardnesses, yield

stresses, and Young’s moduli for several metallic glasses. The unique

compositions correspond to regions in the phase diagram that have a

very low melting point. The low melting points aid in the retention of

the ‘‘liquid” structure. Metallic glasses are primarily formed by rapid

cooling from the molten state, so that the atoms do not have time to

form crystals. The Metglas group is commercially produced in wire

and ribbon form. Young’s modulus for glasses varies between 60 and

70% of the Young’s modulus of the equilibrium crystalline structure.

Li7 has proposed a relationship between the shear modulus of the

glassy and crystalline states, namely,

G g = 0.947

1.947 − ν
G c (3.27)

where Gg and Gc are the shear moduli of the glassy and crystalline

states, respectively, and ν is Poisson’s ratio. The crystalline Young’s

modulus of glasses is recovered when the material is annealed and

crystallinity sets in. The yield stresses of metallic glasses are high,

as can be seen in Table 3.1. For Fe--B metallic glasses, strength levels

over 3.5 GPa were achieved. This is close to the highest yield strengths

achieved in polycrystalline metals. (See Section 1.4.) The yield stresses

7 J. C. M. Li, in Frontiers in Materials Science -- Distinguished Lectures, L. E. Murr and C. Stein,

eds. (New York: Marcel Dekker, 1976), p. 527.
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Fig. 3.22 Compression

stress–strain curves for

Pd77.5Cu6Si16.5. (Adapted with

permission from C. A. Pampillo

and H. S. Chen, Mater. Sci. Eng., 13

(1974) 181.)

of the metallic glasses are usually 10 to 30 times higher than the

yield stress of the same alloy in the crystalline state.

The micromechanical deformation mechanisms responsible for

the unique mechanical properties of metallic glasses are still not

very well understood. The absence of crystallinity has a profound

effect on the mechanical properties. Grain boundaries, dislocations,

mechanical twinning, and other very important components of the

deformation of crystalline metals are not directly applicable to metal-

lic glasses. Although the dislocations are not fully described until

Chapter 4 (a brief description is given in Section 1.4), the concept

is used in this section in an attempt to rationalize the mechani-

cal response of metallic glasses. The lower Young’s modulus is prob-

ably due to the less efficient packing of atoms, with a consequent

larger average interatomic distance. The plastic part of the stress--

strain curve also differs from the crystalline one. Here we have to

distinguish between the behavior of the metallic glass above and

below Tg, the glass transition temperature. As in silicate glasses, a

temperature is defined above which the glass becomes viscous and

deformation occurs by a viscous flow that is homogeneous. Only the

deformation at temperatures below Tg will be discussed here. Curves

for small cylindrical specimens under compression are shown in Fig-

ure 3.22. There is little evidence of work-hardening, and the plas-

tic range is close to horizontal. The surface of the specimens usu-

ally exhibits steps produced by shear bands. These shear bands have

been found to be 20 nm thick, and the shear offset (step) has been

found to be around 200 nm. This shows that deformation is highly

inhomogeneous in metallic glasses and that, once shear starts on a

certain plane, it tends to continue there. The plane of shear actu-

ally becomes softer than the surrounding regions. We can compute



3 .6 PLASTIC DEFORMATION OF GLASSES 195

(a)
1μm

1μm
(b)

Fig. 3.23 Shear steps

terminating inside material after

annealing at 250◦C/h, produced by

(a) bending and decreased by (b)

unbending. Metglas

Ni82.4Cr7Fe3Si4.5B3.1 strip.

(Courtesy of X. Cao and J. C. M.

Li.)

the amount of shear strain in a band by dividing the band offset by

the thickness. In the preceding case, it is equal to 10. This behavior

is termed work-softening. The curves of Figure 3.22 provide macro-

scopic support for the absence of work-hardening. The equivalent

of a dislocation can exist in a glass. The slip vector of the disloca-

tion would fluctuate in direction and magnitude along the disloca-

tion line, but its mean value would be dictated by some structural

parameter.

Figure 3.23 shows slip lines and steps produced after bending

and after unbending. We can see the slip lines terminating inside

the metallic glass. The slips decrease in height on unbending. These

observations tend to confirm the relevance of some kind of shear

localization in the plastic deformation of metallic glasses.

3.6.1 Microscopic Deformation Mechanisms
Of the theories explaining the microscopic aspects of plastic deform-

ation of metallic glasses, the best known are the dislocation theory

of Gilman and the strain ellipsoid theory of Argon.

Figure 3.24(a) shows dislocation lines in crystalline and vitreous

silica. Dislocations in crystalline solids will be studied in Chapter 4.
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Burgers vector Burgers vector

Dislocation line

Fig. 3.24 (a) Gilman model of

dislocations in crystalline and

glassy silica, represented by

two-dimensional arrays of

polyhedra. (Adapted from J. J.

Gilman, J. Appl. Phys. 44 (1973)

675) (b) Argon model of

displacement fields of atoms

(indicated by magnitude and

direction of lines) when

assemblage of atoms is subjected

to shear strain of 5 × 10−2, in

molecular dynamics computation.

(Adapted from D. Deng, A. S.

Argon, and S. Yip, Phil. Trans. Roy.

Soc. Lond. A329 (1989) 613.)

Regions of
intense shear

The two-dimensional picture in the figure is analogous to the Zachari-

asen model for silica in Figure 1.18. The dislocation line is shown in

the two cases, and we are looking at the dislocation ‘‘from the top

down;” that is, the extra atomic plane is perpendicular to the surface

of the paper. For the regular crystalline structure, all Burgers vectors

are parallel and have the same magnitude. For the glassy structure,

b fluctuates both in magnitude and direction. The dislocation line is

not forced to remain in a crystallographic plane (there are no such

planes in glasses), but can fluctuate. This is the Gilman mechanism

for plastic deformation of glasses.

Experiments using ‘‘bubble rafts” and computational simulations

indicate that there are localized regions of approximately ellipsoidal

shape that undergo larger distortions than the bulk of the material

and that are the main entities responsible for the plastic deformation

of glasses. The ellipsoidal regions do not move, but undergo gradual

distortion. Figure 3.24(b) shows the result of a computer simulation,

including the positions and displacements of individual atoms. The

lengths of the lines represent the displacements of the atoms. One

can see regions of the material where the displacements of the atoms

are larger. The ellipses become distorted, and the entire body deforms.

This is the so-called Argon model for deformation of glasses, named

after a renowned MIT professor (and not after a gas!).



3 .6 PLASTIC DEFORMATION OF GLASSES 197

3.6.2 Temperature Dependence and Viscosity
The mechanical response of glasses is often represented by their vis-

cosity, which is a property of liquids. The viscosity, η is defined as

the velocity gradient that will be generated in a liquid when it is

subjected to a specific shear stress, or

τ = η
dv

dy
, (3.28)

where τ is shear stress, v is the velocity and dv/dy is the velocity

gradient. For temperature T > Tm, the viscosity is very low and the

glass is a fluid. A characteristic value is η ∼= 10−3 Pa · s. For T ∼ Tg,

(the glass transition temperature), the viscosity is between 1010 and

1015 Pa · s. A common unit of viscosity is the Poise (P). Note that 1 P =
0.1 Pa · s. For T < Tg, the viscosity is η > 1015 Pa · s. Mechanically speak-

ing, the material is solid. Figure 3.25 shows these different regimens

of mechanical response as a function of temperature, for soda--lime--

silica glass and for some metallic glasses (Au77Si14Ge19, Pd77.5Cu6Si16.5,

Pd80Si20, and Co75P25). The temperature is normalized by dividing it

by Tg. The viscosity decreases at T > Tg, as

η = η0e Q /RT , (3.29)

where Q is the activation energy for viscous flow. This is a classic

Arrhenius response. The shear strength of the material can be related

to the viscosity by

ν = ds

dt
; γ = ds

dy

τ = η
dv

dy
= η

d

dy

(
ds

dt

)
= η

d

dt

(
ds

dy

)
= η

dγ

dt
= ηγ̇ ,

where v is the velocity of one part of the material with respect to the

other. The velocity is the displacement with time, ds/dt. By changing

the order of differentiation, we obtain dγ = ds/dy. The change of strain

with time is γ̇ = dγ /dt. A general relationship between shear stress,

shear strain, and shear strain rate is

τ = τ0γ
nγ̇ m, (3.30)

where n is the work-hardening coefficient and m is the strain rate

sensitivity. Since glasses do not work harden, n = 1. When τ is pro-

portional to γ̇ , the strain rate sensitivity is equal to unity, and the

material will be resistant to necking in tension. This is why glass

can be pulled in tension to extremely high strains. Such behavior

is discussed in greater detail in Chapter 13. Another class of mater-

ials, called superplastic materials, also exhibits this response when the

grain size of the material is very small.

Viscosity is a very important characteristic of glassy materials. On

the viscosity versus temperature curve of a given glassy material, one

can identify certain important points. The strain point of glass is the

temperature at which internal stresses are reduced significantly in a

few hours. This corresponds to η = 1013.5 Pa · s. The annealing point of
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a glass is the temperature at which the internal stresses are reduced

in a few minutes such that η = 1012 Pa · s. The softening point of a

glass corresponds to η = 106.65 Pa · s. At this viscosity, the glass deforms

rapidly under its own weight. The working point of glass corresponds

to η = 103 Pa · s. At this viscosity, the glass is soft enough to be worked.

The viscosity of glasses is dependent on their composition. Soda--

lime--silica and high-lead glasses have lower softening temperatures

and are easier to work on. Pure silica, on the other hand, has a sig-

nificantly higher softening point and requires significantly higher

temperature. On the other hand, it can be used at higher tempera-

tures. Figure 3.26 shows the temperature dependence of viscosity for

these three glasses. Note that the ordinate of plot is in P, not Pa · s.
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Example 3.7

Consider a glass with a strain point of 500 ◦C and a softening point of

800 ◦C. Using the preceding viscosity values for the strain point and

softening point, estimate the activation energy for the deformation of

this glass.

Solution: We can write the viscosity as a function of temperature as

η = A exp[Q /RT ].

At the softening point,

106.65 = A exp

[
Q

8.314 × 1073

]
,

while at the strain point,

1013.5 = A exp

[
Q

8.314 × 773

]
.

From these two expressions, we obtain, by division

106.85 = exp

[(
Q

8.314

) (
1

773
− 1

1073

)]
,

or

Q = 362 kJ/mol.

3.7 Flow, Yield, and Failure Criteria

The terms f low criterion, yield criterion, and failure criterion have differ-

ent meanings. Failure criterion has its historical origin in applications

where the onset of plastic deformation indicated failure. However,

in deformation-processing operations this is obviously not the case,

and plastic flow is desired. Yield criterion applies only to materials that

are in the annealed condition. It is known that, when a material is

previously deformed by, for instance, rolling, its yield stress increases

due to work-hardening. (See Chapter 6.) The term f low stress is usually

reserved for the onset of plastic flow in a previously deformed mater-

ial. Failure criterion is applied to brittle materials, in which the limit of

elastic deformation coincides with failure. To be completely general,

a flow criterion has to be valid for any stress state. In a uniaxial stress

state, plastic flow starts when the stress--strain curve deviates from

its initial linear range. Uniaxial stress--strain curves are very easily

obtained experimentally, and the deformation response of a material

is usually known for this situation. The main function of flow criteria

is to predict the onset of plastic deformation in a complex state of

stress when one knows the flow stress (under uniaxial tension) of the

material. Note that the value of the flow stress is strongly dependent

on the state of stress, and if this effect is not considered, it can lead
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to potentially dangerous errors in design. We next present some of

these criteria.

3.7.1 Maximum-Stress Criterion (Rankine)
According to the maximum-stress criterion, plastic flow takes place

when the greatest principal stress in a complex state of stress reaches

the flow stress in uniaxial tension. Since σ 1 > σ 2 > σ 3, we have

σ0(tension) < σ1 < σ0 (compression),

where σ 0 is the flow stress of the material. Later (Section 3.7.5) we

will see the situation where the compressive strength is greater than

the tensile strength. The great weakness of this criterion is that it

predicts plastic flow of a material under a hydrostatic state of stress;

however, this is impossible, as shown by the following example. It

is well known that tiny shrimp can live at very great depths. The

hydrostatic pressure due to water is equivalent to 1 atm (105 N/m2)

for every 10 m; at 1,000 m below the surface, the shrimp would be

subjected to a hydrostatic stress of 107 N/m2. Hence

−p = σ1 = σ2 = σ3 = −107 N/m2.

A quick experiment to determine the yield stress of the shrimp could

be conducted by carefully holding it between two fingers and pressing

it. By doing the test with a live shrimp, one can define the flow stress

as the stress at which the amplitude of the tail wiggling will become

less than a critical value. This will certainly occur at a stress of about

0.1 MPa. Hence,

σ0 = 0.1 MPa.

The Rankine criterion would produce shrimp failure at

P ≡ −σ0 = −0.1 MPa.

This corresponds to a depth of only 10 m. Fortunately for all lovers

of crustaceans, this is not the case, and hydrostatic stresses do not

contribute to plastic flow.

3.7.2 Maximum-Shear-Stress Criterion8 (Tresca)
Plastic flow starts when the maximum shear stress in a complex state

of deformation reaches a value equal to the maximum shear stress at

the onset of flow in uniaxial tension (or compression). The maximum

shear stress is given by (see Section 2.6)

τmax = σ1 − σ3

2
. (3.31)

For the uniaxial stress state, we have, at the onset of plastic flow,

σ1 = σ0, σ2 = σ3 = 0;

so

τmax = σ0

2
.

8 H. Tresca, Compt. Rend. Acad. Sci. Paris, 59 (1864) 754; 64 (1867) 809.
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Therefore,

σ0 = σ1 − σ3. (3.32)

This criterion corresponds to taking the differences between σ 1 and

σ 3 and making it equal to the flow stress in uniaxial tension (or

compression). It can be seen that it does not predict failure under

hydrostatic stress, because we would have σ 1 = σ 3 = p and no resulting

shear stress.

3.7.3 Maximum-Distortion-Energy Criterion (von Mises)9

This criterion was originally proposed by Huber as ‘‘When the expres-

sion
√

2

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2]1/2 > σ0 (3.33)

then the material will plastically flow.” The left hand side is known as

effective stress. The criterion was stated by von Mises without a physical

interpretation. It is now accepted that it expresses the critical value

of the distortion (or shear) component of the deformation energy

of a body. Based on this interpretation, a body flows plastically in

a complex state of stress when the distortional (or shear) deform-

ation energy is equal to the distortional (or shear) deformation energy

in uniaxial stress (tension or compression). This will be shown shortly.

This criterion is also called J2, which is the second invariant of the

stress deviator. Students will learn about this in advanced ‘‘Mechanics

of Materials” courses. J2 is given by:

J 2 = 1

G

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
Hence: J n ≥ σ 2

0

3
.

3.7.4 Graphical Representation and Experimental
Verification of Rankine, Tresca, and
von Mises Criteria

There is a convenient way to represent the Rankine, Tresca, and von

Mises criteria for a plane state of stress. For this, one makes σ 3 = 0

and has σ 1 and σ 2. It will be necessary to momentarily forget the

convention that σ 1 > σ 2 > σ 3, because it would not be obeyed for

σ 2 < 0; we have σ 2 < σ 3 = 0. Figure 3.27(a) shows a plot of σ 1 versus

σ 2. According to the Tresca criterion, plastic flow starts when

τmax = σ0

2
.

The four quadrants have to be analyzed separately. In the first quad-

rant, there are two possible situations. For σ 1 greater than σ 2,

τmax = (σ 1 − σ 3)/2 and σ 1 = σ 0. This is a line passing through σ 1 = σ 0

and parallel to Oσ 2. For σ 2 greater than σ 1, we have the converse

situation and a line passing through σ 2 = σ 0 and parallel to σ 1.

9 R. von Mises, Göttinger Naehr. Math. Phys. Klasse, 1913, p. 582.
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In the second quadrant, σ 2 > 0 and σ 1 < 0. We have

τmax = σ1 − σ2

2
and σ1 − σ2 = σ0.

This equation represents a straight line intersecting the Oσ 1 axis at

σ 0 and the Oσ 2 axis at −σ 0. The flow criteria for quadrants III and IV

are found in a similar way.

For the von Mises10 criterion, we have, from Equation 3.33 and

σ 3 = 0,

σ0 =
√

2
2

[(σ1 − σ2)2 + σ 2
2 + σ 2

1 ]1/2,

σ 2
1 − σ1σ2 + σ 2

2 = σ 2
0 .

This is the equation of an ellipse whose major and minor axes are

rotated 45◦ from the orthogonal axes Oσ 1 and Oσ 2, respectively. It can

be easily shown by applying a rotation of axes to the equation of an

ellipse referred to its axes:(σ1

a

)2

+
(σ2

b

)2

= k2. (3.34)

From Equation 3.34, it can be seen that the Tresca criterion is more

conservative than von Mises. The criterion would predict plastic flow

for the stress state defined by point P1, whereas the von Mises would

not. However, both criteria are fairly close. It can be seen from Figure

3.27(a) that plastic flow may require a stress σ 1 greater than σ 0 for

a combined state of stress. (See point P2). However, there are regions

(when one stress is tensile and another is compressive) where plastic

flow starts when both stresses are within the interval

σ0 < σ1, σ2 < σ0.

This occurs in the second and fourth quadrants. Point P2 shows the
situation very clearly. The conclusion is that the correct application

of a yield criterion is very important for design purposes. For com-

parison purposes, the maximum-normal stress (Rankine) criterion is

also drawn in Figure 3.27(a). It is just a square with sides parallel to

the Oσ 1 and Oσ 2 axes and intersecting them at (σ 0, 0), (−σ 0, 0) (0, σ 0),

and (0, −σ 0). We see that there is a considerable difference between

the Rankine criterion, on the one hand, and the Tresca and von Mises

criteria, on the other, for quadrants II and IV. This difference is read-

ily explained by the fact that the Rankine criterion applies to brittle

solids (including cast irons and steel below the ductile--brittle transi-

tion temperature), in which failure (or fracture) is produced by tensile

stresses.

Figure 3.27(b) shows the three criteria, together with experimental

results for copper, aluminum, steel, and cast iron. While copper and

aluminum tend to follow the von Mises criterion (and, in a more con-

servative way, the Tresca criterion), cast iron clearly obeys the Rankine

criterion. This is plainly in line with the low ductility exhibited by

10 It is also called J2 criterion; in this case, flow occurs at a critical value of J 2 = 1
6

[(σ1 −
σ2)2 + σ 2

2 + σ 2
1 ].
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Fig. 3.27 (a) Comparison of the

Rankine, von Mises, and Tresca

criteria. (b) Comparison of failure

criteria with test. (Reprinted with

permission from E. P. Popov,

Mechanics of Materials, 2nd ed.

(Englewood Cliffs, NJ:

Prentice-Hall, 1976), and G.

Murphy, Advanced. Mechanics of

Materials (New York: McGraw-Hill,

1964), p. 83.)
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cast iron. The reader is warned that the ratio σ /σ ult, and not σ /σ 0, is

used in the figure. Nevertheless, it serves to illustrate the difference

in response.

The determination of the flow locus is usually conducted in bi-

axial testing machines, which operate in a combined tension--torsion

or tension--hydrostatic-pressure mode. These two modes use tubular

specimens, and one has to use the appropriate calculations to find

the principal stresses. As the material is plastically deformed, we have

an expansion of the flow locus. For the von Mises criterion, we can
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(s0)1

(s0)3

(s0)2

s2

s1

(a)

Fig. 3.28 Displacement of the

yield locus as the flow stress of the

material due to plastic

deformation. (a) Isotropic

hardening. (b) Kinematic

hardening.

s2

s1

(b)

envision concentric ellipses having increasing major and minor axes.

This is illustrated in Figure 3.28(a). When the ellipse expands in a

symmetric fashion, the hardening is the same in all directions and

is called isotropic. Often, however, hardening in one direction (the

loading direction) causes a change in flow stress in other directions

that is different. This is very important in plastic-forming operations

(stamping, deep drawing). The extreme case where the ellipse is just

translated is shown in Figure 3.28(b). This case is called kinematic hard-

ening. (See Section 3.4.)

Example 3.8

A region on the surface of a 6061-T4 aluminum alloy component has

strain gages attached, which indicate the following stresses:

σ11 = 70 MPa,

σ22 = 120 MPa,

σ12 = 60 MPa.

Determine the yielding for both the Tresca and von Mises criteria, given

that σ 0 = 150 MPa (the yield stress).
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Fig. 3.29 (a) Tensile strength and

(b) Compressive strength of

A12O3.

Solution: We first have to establish the principal stresses. This is easily

accomplished by a Mohr circle construction or by its analytical expres-

sion (the equation of a circle):

σ1,2 = σ11 + σ22

2
±

[(
σ11 − σ22

2

)2

+ σ 2
12

]1/2

,

σ1 = 160 MPa; σ2 = 30 MPa; σ3 = 0.

According to Tresca, τmax = (160 − 0)/2 = 80 MPa.

The value τmax = 80 MPa exceeds the Tresca criterion (σ 0/2 = 75 MPa)

and the alloy would be unsafe. The von Mises criterion gives

J 2 = 1

6
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2]

= 1

6
[1302 + 1602 + 302]

= 7233 MPa2.

The maximum value of J M
2 = (1/3)σ 2

0 = (1/3)1502 = 7500 MPa2.

So J 2 < J M
2 , and the material does not yield. Plainly, the Tresca

criterion is more conservative than von Mises.

3.7.5 Failure Criteria for Brittle Materials
As shown in Figure 3.29, the tensile strength of Al2O3 is approximately

one-tenth of its compressive strength. Such is also the case for many

brittle materials, such as concrete, rock, etc. Therefore, the Rankine,

Tresca, and von Mises criteria have to be modified to incorporate this

behavior. This will be done in the rest of the section, with the presen-

tation of the Mohr--Coulomb, Griffith, and McClintock--Walsh criteria.
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s2

st

s1

sc

Fig. 3.30 Schematic

two-dimensional representation of

Mohr–Coulomb failure criterion.

There are also other criteria (e.g., Babel--Sines), which will not be pre-

sented here.

Mohr--Coulomb Failure Criterion

This is simply the equivalent of the Tresca criterion with different ten-

sile and compressive strengths. Figure 3.30 shows the Mohr--Coulomb

criterion in a schematic fashion. The criterion for failure is a maxi-

mum shear stress; the compressive strength σ c is much higher than

the tensile strength σ t.

Griffith Failure Criterion11

This criterion simply states that failure will occur when the ten-

sile stress tangential to an ellipsoidal cavity and at the cavity sur-

face reaches a critical level σ 0. The criterion is a classic spin-off of

Griffith’s work of 1919. Griffith recognized that brittle materials con-

tained flaws and that failure would occur at a specific level of stress

at the flaw surfaces. He considered an elliptical crack oriented in a

general direction with respect to the compression axis and calculated

the stresses generated at the surface of the crack. Tensile stresses are

generated by compressive loading; this might appear surprising at

first sight, but will become clear in Chapter 7. If σ 0 is the tensile

strength of the material, the following relationship is obtained:

(σ1 − σ2)2 + 8σ0(σ1 + σ2) = 0 if σ1 + 2σ2 > 0,

σ2 = σ0 if σ1 + 2σ2 < 0. (3.35)

The criterion proposed by Griffith is shown in Figure 3.31. The

compressive failure stress is eight times the tensile failure stress, as

is evident from Equation 3.31. This very important result is consistent

with the experimental results observed for brittle materials.

11 A. A. Griffith, Proc. 1st Int’l. Congress in Appl. Mech., 1925, p. 55.
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McClintock--Walsh Criterion

McClintock and Walsh12 extended Griffith’s criterion by considering a

frictional component acting on the flaw faces that had to be overcome

in order for the crack to grow. This term is a function of the applied

stress. The frictional stress f was considered equal to the product of

the frictional coefficient μ and the normal stress σ 0 acting on the flaw

surface. McClintock and Walsh assumed that there was a stress σ c at

infinity necessary to close the flaw so that the opposite surfaces would

touch each other. This approach led to the following expression:

σ1[(μ2 + 1)1/2 − μ] − σ2[(μ2 + 1)1/2 + μ]

= 4σ0

(
1 + σc

σ0

)1/2

− 2μσc . (3.36)

Assuming that σ c = 0, we get the following simple version of this

criterion:

σ1[(μ2 + 1)1/2 − μ] − σ2[(μ2 + 1)1/2 + μ] = 4σ0 (3.37)

McClintock and Walsh’s criterion is shown in Figure 3.31 for μ = 1.

Griffith’s criterion is more conservative, and the compressive strength

is 10 times the tensile strength for McClintock and Walsh. The fric-

tional forces retard failure in compression.

Example 3.9

Determine the fracture stress for SiC in compression in a complex load-

ing situation in which σ 1/σ 2 = 2 if σ 0 in tension is 400 MN/m2. Perform

all calculations assuming (a) no friction between crack surfaces and (b)

a friction coefficient of 0.5.

Solution: Applying Equation 3.35 (with no friction), we have(
σ1 − σ1

2

)2

+ 8 × 400
(
σ1 + σ1

2

)
= 0,

σ1

4
+ 4,800 = 0,

σ1 = −19,200 MPa,

σ1 = −19.2 GPa.

Applying Equation 3.37 (with friction), we obtain

σ1[(0.52 + 1)1/2 − 0.5] − 0.5σ1[(0.52 + 1)1/2 + 0.5] = 4 × 400,

σ1(0.618) − σ1(0.809) = 1,600,

σ1 = −1,600

0.272
,

σ1 = −5.88 GPa.

The very high compressive strengths are due to the confinement. If the

ceramic were not confined (i.e., if σ 2 = 0), the compressive strengths

would be −3.2 GPa (Griffith) and −2.5 GPa (McClintock--Walsh).

12 F. A. McClintock and J. B. Walsh, Proc. 4th U.S. Nat’l. Cong. of Appl. Mech. (1962),

p. 1015.
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Griffith

(a)
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(m = 1.0)
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Fig. 3.31 (a) Simple model for solid with cracks. (b) Elliptical flaw in elastic solid

subjected to compression loading. (c) Biaxial fracture criterion for brittle materials

initiated from flaws without (Griffith) and with (McClintock and Walsh) crack friction.
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3.7.6 Yield Criteria for Ductile Polymers
Brittle polymers such as epoxies fail at the end of their linear elas-

tic stage without any significant plastic deformation. Ductile poly-

mers such as thermoplastics undergo plastic deformation. Does this

mean that we can use the Tresca or von Mises criteria to describe

their yielding? The answer is no, because, unlike the yield strength of

metals, that of polymers depends on the hydrostatic component of

stress. The Tresca and von Mises criteria, on the other hand, do not

show any such dependence. This dependence on hydrostatic stress

in polymers stems from the more liquidlike structure of polymers.

Specifically, the polymers have some free volume, which makes them

highly compressible.

Let us consider the von Mises criterion for isotropic metals. Accord-

ing to this criterion, yielding occurs when the condition

(σ1 − σ2)2(σ2 − σ3)2 + (σ3 − σ1)2 ≥ 6k2 = constant

is satisfied, where σ 1, σ 2, and σ 3 are the principal stresses and k is

constant equal to the yield stress in torsion τ 0. For metals, we take

k or τ 0 to be a constant at room temperature, equal to σ0/
√

3 for

uniaxial stress, with σ 0 the uniaxial yield stress. This equation also

implicitly assumes that the tensile and compressive yield strengths

are numerically the same, equal to
√

3k or
√

3 τ0. It turns out that for

polymers, yield stress in compression is greater than that in tension

by 10 to 20%.13 This stems from the fact that, again unlike yielding

in metals, yielding in polymers shows a strong dependence on any

superimposed hydrostatic pressure. That is,

k = k(ε̇, T , σp),

where ε̇ is the strain rate, T is the temperature, and σ p is the hydro-

static pressure. As we mentioned, in molecular terms, this depend-

ence of yield stress on hydrostatic pressure can be traced to the fact

that polymers have some free volume associated with them, which is

diminished by hydrostatic compression. We can modify the yield cri-

terion to take into account this dependence on the hydrostatic com-

pressive stress σ p by using the expression

k = k0 + Aσp,

where k0 is a constant and A is another constant that represents the

dependence of yield stress on hydrostatic pressure. As σ p increases,

the free volume decreases, and molecular motion becomes more dif-

ficult. The presence of a hydrostatic component translates the von

Mises ellipse from quadrant I to quadrant III, as shown in Figure 3.32.

The yield envelopes for a polymer or metal that does not show yield

stress dependence on the hydrostatic component is shown in Figure

3.32(a), while that for a polymer showing yield stress dependence on

hydrostatic stress takes the shape shown in Figure 3.32(b). Note that

13 K. Matsushige, S. V. Radcliffe, and E. Baer, J. Polymer Sci., Polymer Phys., 14 (1976) 703.
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Fig. 3.32 Translation of von

Mises ellipse for a polymer due to

the presence of hydrostatic stress.

(a) No hydrostatic stress, (b) with

hydrostatic stress.

crazing occurs only in tension, not in compression. The yield envelope

in Figure 3.32(b) has been translated with respect to that in Figure

3.32(a).

Several glassy polymers, such as polystyrene, polycarbonate, and

PMMA, show the phenomenon of crazing. (See Section 8.4.2.) Crazing

involves the formation of microvoids and stretched chains or fibrils

under tension. The fibril formation depends on shear flow and free

volume. A yield criterion that takes crazing into account is

σ1 − σ2 = A + B

(σ1 + σ2)
,

Crazing Shear yielding
s2

s1

s1 = -s2
s 1 

= -s 2

Fig. 3.33 Envelopes defining

shear yielding and crazing for an

amorphous polymer under biaxial

stress. (After S. S. Sternstein and L.

Ongchin, Am. Chem. Soc., Div. of

Polymer Chem., Polymer Preprints, 10

(1969), 1117.)

where (σ 1 − σ 2) represents the shear, (σ 1 + σ 2) represents the hydro-

static component, and A and B are adjustable constants that depend

on temperature. Note that as the hydrostatic component (σ 1 + σ 2)

increases, the shear stress (σ 1 − σ 2) required for yielding decreases.

A better and more complete scenario for yielding in polymers is as

follows. Under multiaxial stress, glassy polymers can undergo yield-

ing by shear or crazing. Figure 3.33 shows schematically the yield

envelope under a biaxial stress condition. The constants A and B

can be chosen to fit the curve to experimental data. The pure-shear

line, σ 1 = − σ 2, is the boundary between hydrostatic compression and

hydrostatic tension. Below the pure-shear line, crazing (a void-forming

process) does not occur because hydrostatic pressure reduces the vol-

ume. Above this line, crazing is the main mechanism of failure. The

curves for crazing are asymptotic to the pure shear line. The yield

envelope shown in the figure also shows the pressure-dependent shear

yielding; that is, the envelope has been translated with respect to the

conventional von Mises criterion. Note that in the first quadrant the

crazing envelope is completely inside the shear yield envelope. This

means that for all combinations of biaxial tensile stresses, crazing

will precede shear yielding. In the second and fourth quadrants, the

two envelopes intersect. The heavy line indicates the overall yielding

or failure envelope.

A word of caution is in order here. Crazing in air does not occur

in pure shear or under conditions of compressive hydrostatic stress.

The modified criterion just described requires a dilative component of

the applied stress for crazing in air. In the presence of an appropriate

environmental agent, crazing can be observed under conditions of

simple tension and hydrostatic pressure.
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3.7.7 Failure Criteria for Composite Materials
Unidirectionally aligned fiber reinforced composites are generally

quite anisotropic in elastic constants as well as in strength. This, of

course, stems from the fact that fibers generally are a lot stiffer and

stronger than the matrix and the fact that the fibers are aligned in

the matrix. Quite frequently, the strength in the longitudinal direc-

tion is as much as an order of magnitude greater than that in the

transverse direction. We shall consider the case of laminated com-

posites made by stacking plies of different orientations in an appro-

priate sequence. We assume that the fiber reinforced lamina is a

homogeneous, orthotropic material. We use a continuum mechan-

ics approach, i.e., we treat the fiber reinforced composite as a homo-

geneous material, i.e., its properties do not change from point to

point. We do, however, consider the fiber reinforced composite to be

an orthotropic material, i.e., the anisotropic nature of the compos-

ite is taken into account. There are many criteria available in the

literature; for a summary, see Chawla14. Here, we describe one crite-

rion, called quadratic interaction criterion, which is quite general and

seems to work quite well for laminated composites made by stacking

laminae of fiber reinforced composites in different orientations. The

thickness of the individual lamina as well as the laminated composite

is much smaller than either the length or width, which allows us to

use plane stress condition to analyze the failure criterion. In practical

terms, it means that we need to worry about the in-plane stress com-

ponents, viz, two normal components, σ l and σ 2, and one in-plane

shear component, σ l2. In the composite literature, it is customary to

use symbol σ 6 for σ 12. Thus, the reader must keep in mind in what

follows that σ 6 represents the in-plane shear component.

Quadratic Interaction Criterion

This criterion, a combination of linear and quadratic terms, takes into

account the stress interactions. Tsai and Wu proposed this, a modifi-

cation of the Hill theory, for a fiber reinforced composite laminate by

adding some additional terms. According to this theory, the failure

surface in stress space can be described by a function of the form

f (σ ) = fiσi + fi jσiσ j = 1 i, j = 1, 2, 6 (3.38)

where fi and fij are the strength parameters. For the case of plane

stress, i, j = 1, 2, 6 and we can expand Equation (3.38) as follows:

f1 + σ1 + f2σ2 + f6σ6 + f11σ
2
l + f22σ

2
2 + f66σ

2
6 (3.39)

+ 2 f12σ1σ2 + 2 f12σ1σ2 + 2 f16σ1σ6 + 2 f26σ2σ6 = 1

For an orthotropic lamina, it is important to distinguish between

the signs of normal stresses, i.e., tensile or compressive. The linear

stress terms provide for this difference. For the shear stress compo-

nent, the sign reversal should be immaterial. Thus, terms containing

the first degree shear stress must vanish in Equation (3.39). These

14 K. K. Chawla, Composite Materials, 2nd ed. (New York: Springer-Verlag, 1998).
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terms are f66σ 6, 2f16σ lσ 6, and 2f26σ 2σ 6. The stress components in gen-

eral are not zero. Therefore, for these three terms to vanish we must

have

f16 = f26 = f6 = 0

Equation (3.39) is now simplified to

f1σ1 + f2σ2 + f11σ
2
1 + f22σ

2
2 + f66σ

2
6 + 2 f12σ1σ2 = 1 (3.40)

There are six strength parameters in Equation (3.40). We can measure

five of these by the following simple tests.

Longitudinal (Tensile and Compressive) Tests

If X1t and X1c are the longitudinal tensile and compressive strengths,

respectively, then we can write

f1 X1t + f11 X 2
1t = 1

and

− f1 X1c + f11 X 2
1c = 1.

From these two expressions, with two unknowns, we get

f1 = 1

X1t

− 1

X1c

and

f11 = 1

X1t X1c

.

Transverse (Tensile and Compressive) Tests

If X2t and X2c are the transverse tensile and compressive strengths,

respectively, then proceeding as above, we get

f2 = 1

X2t

− 1

X2c

and

f22 = 1

X2t X2c

.

Longitudinal Shear Test

If X6 is the shear strength, we have

f66 = 1

X 2
6

.

Thus, we can express all the failure strength parameters in Equation

3.40 except f12 in terms of the ultimate intrinsic strength properties of

the composite. f12 must be evaluated by means of a biaxial test, which

is not easy to do. In the absence of other data, we can take f12
∼=

−0.5( f11 f22)1/2. It turns out, however, that small changes in f12 can

significantly affect the predicted strength. Equation 3.40 describes the
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Fig. 3.34 Failure envelope for unidirectional E-glass/epoxy composite under biaxial

loading at different levels of shear stress. (After I. M. Daniel and O. Ishai, Engineering

Mechancis of Composite Materials (New York: Oxford University Press, 1994), p. 121.)

failure envelope, a three-dimensional ellipsoid, in the σ l, σ 2, and σ 6

space. For constant values of shear stress, σ 6 = kX6, we shall have the

failure envelope in the form of a two-dimensional ellipse described

by the following equation:

f1σ1 + f2σ2 + f11σ
2
1 + f22σ

2
2 + f66σ

2
6 + 2 f12σ1σ2 = 1 − k2 (3.41)

Figure 3.34 shows schematically the failure envelopes under biaxial

loading for a unidirectionally reinforced glass fiber/epoxy composite,

for different values of k, where k = σ 6/X6. Just as the name quadratic

interaction indicates, the stress interaction is clear in all quadrants.

The reader should note that the quadratic interaction criterion merely

predicts the conditions of failure, it does not tell us anything about

the mode of failure, i.e., fiber failure, interface failure in shear,

etc.

3.7.8 Yield and Failure Criteria for Other
Anisotropic Materials

Besides fiber reinforced composites, there are other anisotropic mate-

rials. The source of anisotropy in these materials can be one of the

following.

� A single crystal can have different properties in different directions

due to its inherent crystal symmetry.
� A cold-rolled sheet, tube, or wire of a metal or alloy can show a very

high degree of preferred orientation of grains. Polymers are also

frequently processed by drawing, extrusion, or injection molding

techniques. Such techniques impart a high degree of anisotropy to

the polymer. Figure 3.35 shows the change in shape of the yield

surface as a function of anisotropy, where R = σ 2/σ 1. For R = 1, we

have isotropy, and a classical von Mises curve is obtained.
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Fig. 3.35 Plane-stress yield loci

for sheets with planar isotropy or

textures that are rotationally

symmetric about the thickness

direction, x3. (Values of R indicate

the degree of anisotropy =
σ 2/σ 1.)

While the most anisotropic crystal would render the plasticity treat-

ment prohibitively complex, there is one type of anisotropy that can

be studied without excessive complications. The type of response dis-

played by wood is a good illustration of this anisotropy. Wood has

different yield stresses along the three directions defined by the wood

fibers and by the normals to the fibers. Similarly, a rolled sheet or slab

of metal will exhibit orthotropic plastic properties; the rolling direc-

tion, transverse direction, and thickness direction define the three

axes.

3.8 Hardness

The simplest way of determining the resistance of a metal to plas-

tic deformation is through a hardness test. Indentation tests consti-

tute the vast majority of hardness tests. They are essentially divided

into three classes, commonly called nanoindentation, microindenta-

tion, and macroindentation tests, but improperly referred to as micro-

hardness and macrohardness tests. The division between micro and

macro occurs for a load of approximately 200 gf (∼2 N). In nano-

indentation testing, the load is of the order of mN. The indentation

tests in metals measure the resistance to plastic deformation; both

the yield stress and the work-hardening characteristics of the metal

are important in determining the hardness. In spite of the theoret-

ical studies done on hardness, hardness cannot be considered a funda-

mental property of a metal. Rather, it represents a quantity measured

on an arbitrary scale.15 Hardness measurements should not be taken

15 M. C. Shaw, in The Science of Hardness Testing and its Research Applications, J. H. Westbrook

and H. Conrad, eds. (Metals Park, OH: ASM, 1973), p. 1.
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BRINELL
BHN=690

ROCKWELL-C
HRC=62

SUPERFICIAL
ROCKWELL

HR (N SCALE) 91

VICKERS 10 kg
 VPN 10 = 750

Fig. 3.36 Comparison of the impression sizes produced by various hardness tests on

material of 750 HV. BHN = Brinell hardness number, HRC = Rockwell hardness

number on C scale, HRN = Rockwell hardness number on N scale, VPN = Vickers

hardness number. (Adapted with permission from E. R. Petty, in Techniques of Metals

Research, Vol. 5, Pt. 2, R. F. Bunshah, ed. (New York: Wiley-Interscience, 1971), p. 174.)

to mean more than what they are: an empirical, comparative test of

the resistance of the metal to plastic deformation. Any correlation

with a more fundamental parameter, such as the yield stress, is valid

only in the range experimentally determined. Similarly, compari-

sons between different hardness scales are meaningful only through

experimental verification. For steels, Table 3.2 gives a fair conversion

of hardness and the tensile strength equivalents.

The most important macro-, micro-, and nanoindentation indent-

ation tests are described in Sections 3.8.1--3.8.3.

3.8.1 Macroindentation Tests
The impressions caused by macroindentation tests are shown in

Figure 3.36. The Brinell test produces by far the largest indentation.

The Vickers test may produce very small indentations, depending on

the load used.

Brinell Hardness Test

In this test, a steel sphere is pressed against a metal surface for a

specified period of time (10 to 15 s, according to the ASTM), and the

surface of the indentation is measured. The load (in kgf) divided by

the area (in mm2) of the curved surface gives the hardness HB, or

HB = P

π D × depth
(3.42)

= 2P

π D (D − √
D 2 − d2)

, (3.43)

where D and d are the diameters of the sphere and impression, res-

pectively. The parameters are indicated in Figure 3.37. Since d = D

sin φ, we have

HB = 2P

π D 2(1 − cos φ)
. (3.44)

Different spheres produce different impressions, and if we want to
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D

P

d

f

Fig. 3.37 Impression caused by

spherical indenter on metal plate.

maintain the same HB, independent of the size of the sphere, the

load has to be varied according to the relationship

P

D 2
= constant. (3.45)

This assures the same geometrical configuration (the same φ). The

diameter of the impressions between 0.25D and 0.5D gives good, repro-

ducible results. The target sought is d = 0.375D. If the same d/D ratio

is maintained (constant φ), the Brinell test is reliable. Spheres with

diameters of 1, 2, 5, and 10 mm have been used, and some of the

ratios P/D2 that provide good d/D ratios for different metals are: steels

and cast irons (30), Cu and Al (5), Cu and Al alloys (10), and Pb and Sn

alloys (1). The softer the material, the lower is the P/D2 ratio required

to produce d/D = 0.375.

One of the problems of the Brinell test is that HB is dependent on

the load P for the same sphere. In general, HB decreases as the load is

increased. ASTM standard E10--78 provides details and specifications

for Brinell hardness tests. It states that the standard Brinell test is

conducted under the following conditions:

Ball diameter: 10 mm

Load: 3000 kgf

Duration of loading: 10 to 15 s

In this case, 360 HB indicates a Brinell hardness of 360 under the

foregoing testing conditions. For different conditions, the parameters

have to be specified. For example, 63 HB 10/500/30 indicates a Brinell

hardness of 63, measured with a ball of 10 mm diameter and a load

of 500 kgf applied for 30 s. Brinell tables and additional instructions

are provided in ASTM E10--78. Meyer16 was aware of this problem and

proposed a modification of the Brinell formula. He found out that

the load divided by the projected area of the indentation (πd2/4) was

constant. Hence, he proposed, in place of Equation 3.42, the equation

Meyer = 4P

πd2
, (3.46)

16 E. Meyer, Z. Ver. Dtsch. Ing., 52 (1980) 645, 740, 835.



218 PLASTICITY

Dial is idle

Dial is set

at zero

Minor

load
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applied

Elevating

screw
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machine
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bringing piece up

against ball till

index on dial reads

zero. This applies

minor load

AB = Depth of hole made by minor load.

AC = Depth of hole made by major load and minor load combined.

DC = Recovery of metal upon withdrawal of major load. This is caused by

         elastic recovery of the metal under test, and does not enter the hardness reading.

BD = Difference in depth of holes corresponds to Rockwell hardness number.

Crank is pressed,

applying major

load

Crank is turned,

withdrawing
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but leaving minor
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piece
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A B
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applied
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load
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withdrawn
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withdrawn
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75 25
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50

Dial is idle

Dial reads BC plus

a constant amount

due to the added

strain of the machine

under major load

Dial reads BD

which is Rockwell

hardness number

DB

Fig. 3.38 Procedure in using

Rockwell hardness tester.

(Reprinted with permission from

H. E. Davis, G. E. Troxel, and C. T.

Wiscocil, The Testing and Inspection

of Engineering Materials, (New

York: McGraw-Hill, 1941), p. 149.)

where P is expressed in kilograms force and d in millimeters. The

Meyer hardness never gained wide acceptance, in spite of being more

reliable than the Brinell hardness. For work-hardened metals, it seems

to be independent of P.

Rockwell Hardness Test

The most popular hardness test is also the most convenient, since

there is no need to measure the depth or width of the indenta-

tion optically. This testing procedure is illustrated in Figure 3.38. A

preload is applied prior to the application of the main load. The dial

of the machine provides a number that is related to the depth of the

indentation produced by the main load. Several Rockwell scales are

used, and the numbers refer to arbitrary scales and are not directly

related to any fundamental parameter of the material. Two differ-

ent types of indenters are used. The A, C, D, and N scales use the

Brale indenter, which is a diamond cone with a cone angle of 120◦.

The other scales use either 1/8-in. (3.175-mm) or 1/16-in. (1.587-mm)-

diameter steel spheres. The loads also vary, depending on the scale.
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Table 3.3 Details of the More Important Scales Available for the Rockwell Hardness Tester

Scale
Designation Type of Indenter

Major Load
(kgf) Typical Field of Application

A Brale 60 The only continuous scale
from annealed brass to
cemented carbide, but is
usually used for harder
materials

B 1.587 mm-diameter steel ball 100 Medium-hardness range (e.g.,
annealed steels)

C Brale 150 Hardened steel > HRB100
D Brale 100 Case-hardened steels
E 3.175 mm-diameter steel ball 100 Al and Mg alloys
F 1.587 mm-diameter steel ball 60 Annealed Cu and brass
L 6.35 mm-diameter steel ball 60 Pb or plastics
N N Brale 15, 30, or 45 Superficial Rockwell for thin

samples or small
impressions

Table 3.3 shows the various loads and typical applications. Usually,

the C scale is used for harder steels and the B scale for softer steels;

the A scale covers a wider range of hardness. Because of the nature

of the measurement, any sagging of the test piece will produce

changes in hardness. Therefore, it is of utmost importance to have

the sample well supported; specimens embedded in Bakelite cannot

be tested. The Brinell and Vickers tests, on the other hand, which are

based on optical measurements, are not affected by the support.

For very thin samples, there is a special superficial Rockwell test.

The testing procedure is described in detail in the ASTM Standard

E18--74, and conversion tables for a number of alloys are given in

ASTM Standard E140--78. The symbol used to designate this hardness

is, according to the ASTM, HR; 64HRC corresponds to Rockwell hard-

ness number 64 on the C scale.

The following precautions are recommended for reproducible

results in Rockwell testing.17

1. The indenter and anvil should be clean and well seated.

2. The surface to be tested should be clean, dry, smooth, and free from

oxide. A rough-ground surface is usually adequate for the Rockwell

test.

3. The surface should be flat and perpendicular to the indenter.

4. Tests on cylindrical surfaces will give low readings, the error

depending on the curvature, load, indenter, and hardness of the

material. Corrections are given in ASTM E140--78.

17 G. E. Dieter, Mechanical Metallurgy, 2nd ed. (New York: McGraw-Hill, 1976), p. 398.
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5. The thickness of the specimen should be such that a mark or bulge

is not produced on the reverse side of the piece. It is recommended

that the thickness be at least 10 times the depth of the indentation.

Tests should be made on only a single thickness of material.

6. The spacing between indentations should be three to five times the

diameter of the indentation.

7. The speed of application of the load should be standardized. This

is done by adjusting the dashpot on the Rockwell tester. Variations

in hardness can be appreciable in very soft materials, unless the

rate of application of the load is carefully controlled. For such

materials, the operating handle of the Rockwell tester should be

brought back as soon as the major load has been fully applied.

Vickers (or Diamond Pyramid) Hardness Test

This test uses a pyramidal indenter with a square base, made of dia-

mond. The angle between the faces is 136◦. The test was introduced

because of the problems encountered with the Brinell test. One of the

known advantages of the Vickers test is that one indenter covers all

the materials, from the softest to the hardest. The load is increased

with hardness, and there is a continuity in scale. The angle of 136◦

was chosen on the basis of results with spherical indenters. For these,

the best results were obtained when d/D = 0.375. If we take the points

at which the sphere touches the surface of the specimen and draw

perpendiculars to the radii, their intersection will form an angle of

136◦. This exercise is left to the student. The description of the proced-

ures used in testing is given in ASTM Standard E92--72. The Vickers

hardness (HV) is computed from the equation and is equal to the load

divided by the area of the depression

HV = 2P sin(α/2)

d2
= 1.8544P

d2
, (3.47)

where P is the applied load (in kgf), d is the average length of the

diagonals (in mm), and α is the angle between the opposite faces of

the indenter (136◦). Conversion to MPa is accomplished by multiply-

ing this value by 9.81. The Vickers test described by ASTM E92--72

uses loads varying from 1 to 120 kgf. For example, 440HV30 repre-

sents a Vickers hardness number of 440, measured with a load of

30 kgf. Vickers testing requires a much better preparation of the

material’s surface than does Rockwell testing; hence, it is more time-

consuming. The surface has to be ground and polished, care being

taken not to work-harden it. After the indentation, both diagonals of

impression are measured, and their average is taken. If the surface

is cylindrical or spherical, a correction factor has to be introduced.

ASTM Standard E92 (Tables 4 through 6) provide correction factors. As

with other hardness tests, the distance between the indentations has

to be greater than two-and one-half times the length of the indent-

ation diagonal, to avoid interaction between the work-hardening

regions.



3 .8 HARDNESS 221

The manner in which the material flows and work-hardens (or

work-softens) beneath the indenter affects the shape of the impres-

sion. The sides of the square impression can be deformed into con-

cave or convex curves, depending on the nature of the deformation

process, and this results in reading errors.

Relationships Between Yield Stress and Hardness

For non-work-hardening materials, one has (this will be derived in

Example 3.10):

H = 3σy . (3.48)

Since there is a lot of plastic deformation under the indenter, in work-

hardening materials we cannot use σ y. Tabor18 gives the following

equation for the mean plastic strain under the indenter:

εp = d ′

5D
,

where d′ is the diameter at the top of the pileup and D is the diameter

of the indenter. For d′/D = 0.375, a reasonable value for indentation,

the plastic strain, εp = 0.075. Hence, for work-hardening metals one

should take the flow stress at a plastic strain of 0.375 before multi-

plying it by 3 for a good correlation with the hardness.

3.8.2 Microindentation Tests
Microindentation hardness tests --- or microhardness tests --- utilize

a load lighter than 200 gf, and very minute impressions are thus

formed; a load of 200 gf produces an indentation of about 50 μm

for a medium-hardness metal. These tests are ideally suited to investi-

gate changes in hardness at the microscopic scale. One can measure

the hardness of a second-phase particle and identify regions within

a grain where differences in hardness occur. Microhardness tests are

also used to perform routine tests on very small precision compo-

nents, such as parts of watches.

The results shown in Figure 3.39 illustrate well an application of

microindentation testing. When a metal is alloyed, the distribution

of the solute is not even throughout the grain, due to the stress

fields produced by the solute atom. (See Chapter 7.) The solute atoms

often tend to segregate at the grain boundaries. Figure 3.39(a) shows

how the addition of aluminum to zinc is reflected by an increase in

the hardness in the grain-boundary region, and the addition of gold

results in a lowering of the grain-boundary hardness. This effect can

be noted at extremely low concentrations of solute (a few parts per

million). Figure 3.39(b) shows how this ‘‘excess” hardening increases

with the concentration of aluminum.

In spite of the attempts made, several problems have arisen in

the standardization of microindentation testing and its extrapola-

tion to macroindentation results. There are several reasons for this.

18 D. Tabor, The Hardness of Metals, (Oxford: Oxford Univesity Press, 1951).
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Fig. 3.39 (a) Hardness–distance

profiles near a grain boundary in

zinc with 100-atom ppm of Al and

zinc with 100-atom ppm of Au

(1-gf load). (b) Solute

concentration dependence of

percent excess boundary

hardening in zinc containing Al, Au,

or Cu (3-gf load). (Adapted with

permission from K. T. Aust, R. E.

Hanemann, P. Niessen, and J. H.

Westbrook, Acta Met., 16 (1968)

291.)

First, almost invariably, the microhardness of any material is higher

than its standard macrohardness. Additionally, the microhardness

varies with load. Second, there is a tendency for the microhardness

to increase (up to a few grams); then the hardness value drops with

load. At very low loads, one is essentially measuring the hardness of

a single grain; the indenter ‘‘sees” a single crystal, and the plastic

deformation produced by the indentation is contained in this grain.

As the load is increased, plastic deformation of adjoining grains is

involved, and a truly polycrystalline deformation regimen is achieved.

As we know well (see Chapter 5), the grain size has a marked effect on

the yield strength and work-hardening characteristics of metals. Yet

another source of error is the work-hardening introduced in the sur-

face by polishing. The effect of crystallographic orientation, when the

impression is restricted to a single grain, is of utmost importance. It

is well known that both the yield stress and the work-hardening are

dependent on the crystallographic orientation of the material. The

Schmid law relates the applied stress to the shear stress ‘‘seen” by

the various slip systems. The Schmid relation is discussed in Section

6.2.2.

The two most common microindentation tests are the Knoop and

Vickers tests. The Knoop indenter is an elongated pyramid, shown in
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Figure 3.40. The hardness is obtained from the surface area of the

impression and is given by

KHN = 14.228P

L 2
, (3.49)

Operating
position

W

h

W
L

130°

172°30‘

Fig. 3.40 Some of the details of

the Knoop indenter, together with

its impression.

where P is the load of kgf and L is the length of the major diagonal,

in mm. The ratio between the dimensions of the impression is

h/W/L = 1 : 4.29 : 30.53.

This results in an especially shallow impression, making the tech-

nique very helpful for testing brittle materials. Indeed, that was the

purpose of introducing the test. The ratio between the major and

minor diagonal of the impression is approximately 7:1, resulting in

a state of strain in the material that can be considered to be plane

strain; the strain in the L direction may be neglected. This subject is

treated in Section 3.3. The very shallow Knoop impression is also help-

ful in testing thin components, such as electrodeposits or hardened

layers. The Vickers microhardness test uses the same 136◦ pyramid

with loads of a few grams. Both Knoop and Vickers indenters require

prepolishing of the surface to a microscopic grade.

Example 3.10 (Inspired by M. F. Ashby and D. R. H. Jones)

Obtain, for a simple two-dimensional case, a relationship between the

hardness H and flow stress σ 0 of a material.

Area A

Indenter

Material

Fig. E.3.10.1

F

4

2

u u

2

1
5

3

u  2 u/2 u/2
u  2

A

2

A

2

A

2

Fig. E.3.10.2



224 PLASTICITY

Solution: We assume a flat indenter and deformation on one plane only,

as shown in Figure E.3.10.1. Deformation is assumed to occur by the

movement of blocks. We assume a total displacement u of the punch,

shown in Figure E.3.10.2. Block ©1 moves down by u. Blocks ©2 and

©3 move sideways by u. Blocks ©4 and ©5 are pushed upward by u/2

and we compute the forces on two of their surfaces. The shear yield

strength is τ 0. We set the work done by the punch, Fu, equal to the

energy dissipated at the various interfaces. Student should compute

the areas of triangles and assume that the resistance to motion is τ 0.

The frictional forces between blocks is τ 0 times the areas (A or A/
√

2).

We have

F u = 2 × Aτ0√
2

× u
√

2 + 2 × Aτ0 × u + 4 × Aτ0√
2

× u
√

2

2
,

|← (block 1) →||← (blocks 2, 3)→|| ← (block 4, 5) → |
central triangle two lateral triangles two end triangles

where F is the applied force, u is the displacement of the punch, and

A is the area of the indentation (Figure E.3.10.1).

F u = u6Aτ0,

F

A
= 6τ0.

But τ 0 = σ 0/2; hence,

F

A
= H = 3σ0.

This is, indeed, Equation 3.48. Thus, the derivation above is a proof for

Equation 3.48.

Example 3.11

Estimate the flow stress of the material shown in Figure E.3.11 if the

indentation was done with a load of 1,000 g and the magnification of

the photograph is 100×.

(111)

(111)

(111)

(1
11

)

Fig. E.3.11 Indentation into iron-nickel single crystal; notice {111} traces of slip

planes with specimen surface.
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Solution: This is a Vickers microindentation. We measure the sides of

the square, which are more visible (in this case) than the diagonal:

a = 26 + 28

2
= 27 mm.

The diagonal is d = a
√

2 = 38.2 mm. Dividing this value by the magni-

fication, we obtain d′ = 0.382 mm. So

H = 1.8544P

d2
= 1.8544

0.145
,

H = 12.80 kg/mm2
.

We will convert this value to a yield stress, assuming that the material

does not work-harden. We have (see Example 3.10)

H = 3σ0, so σy = 4.25 kg/mm2.

But 1 kg/mm2 = 9.8 × 106 Pa; thus,

σy = 41.8 MPa.

3.8.3 Nanoindentation
An instrumented indentation test, the apparatus for which is some-

times called a nanoindenter, was developed in the last quarter of the

twentieth century, and is readily available commercially. The instru-

ment is essentially a computer-controlled depth-sensing indentation

system that allows extremely small forces and displacements to be

measured. Very small volumes of a material can be studied and local

characterization of microstructural features such as grain boundary

regions, coatings, or reinforcement/matrix interface can be obtained.

It can be regarded as a general microstructural investigation tech-

nique.

A schematic of a nanoindenter apparatus is shown in Figure 3.41.

Commonly, a triangular pyramid or Berkovich indenter is used,

CURRENT SOURCE

OSCILLATOR

DISPLACEMENT
SENSOR

LOCK-IN AMPLIFIER

COMPUTER

Load application

Capacitive
displacement

Indenter
column

Sample

Fig. 3.41 A schematic of a

nanoindenter apparatus.



226 PLASTICITY

30

(a) μm

10

20

  10 μm

(b)

Fig. 3.42 An impression made

by means of Berkovich indenter in

a copper sample. (From X. Deng,

M. Koopman, N. Chawla, and K. K.

Chawla, Acta Mater., 52 (2004)

4291.) (a) An atomic force

micrograph, which shows very

nicely the topographic features of

the indentation on the sample

surface. The scale is the same

along the three axes. (b) Berkovich

indentation as seen in an SEM.

although other types of indenters can also be used. An impression

made by means of Berkovich indenter in a copper sample is shown

in Figure 3.42. Figure 3.42(a) is an atomic force micrograph, which

shows very nicely the topographic features of the indentation on the

sample surface, while Figure 3.42(b) shows a view of the indentation

as seen in an SEM micrograph. The penetration of the indenter into

the specimen is measured by a very sensitive capacitance gage. The

resolution of the applied load may be less than 50 nN while displace-

ment resolutions can be <0.02 nm. Remote position control is done

by means of a joystick (motorized in x-, y-, and z- directions).

Generally, a series of load/unload curves is obtained, Figure 3.43.

A nanoindenter records the total penetration of an indenter into the

sample. The indenter may be moved toward the sample or away from

the sample by means of a magnetic coil assembly. One can measure

the hardness or elastic modulus of a phase in a material. As the

indenter penetrates the specimen, the indentation load and displace-

ment are recorded continuously during a load/unload cycle. The max-

imum load and the corresponding displacement are calculated from

the plastic depth of the indentation. The hardness, H, is given by

H = Pmax/A,
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Loading
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Fig. 3.43 A schematic

representation of load vs. indenter

displacement.

where Pmax is the load and A is the projected area of contact at peak

load. The contact area at the peak load is determined by the geom-

etry of the indenter and the depth of contact, hc. Assuming that the

indenter does not deform significantly, we can write A = f(hc). The

form of function f must be established experimentally. The area A can

be calculated by means of the following expression:

A = a + bh
1/2
i + chi + dh

3/2
i + 24.56h2

i (3.50)

where hi is the plastic depth of the indentation and a, b, c, and d are

adjustable coefficients. For a perfect tip, a = b = c = d = 0, and

the only coefficient is 24.56.

The stiffness, S, can be obtained from the load, P vs. penetration

depth, h by the following expression relating the reduced modulus,

Er, the contact area A, and the stiffness, S:19,20,21

S = d P /dh = (2/
√

π )E r

√
A.

The reduced modulus Er of indenter--sample combination takes into

account the fact that elastic deformation under load occurs in the

sample as well as in the indenter. The reduced modulus is given by

E r = (1 − v2
i )/E i + (1 − v2

s )/E f

where Ei and Es are the Young’s moduli, and ν i and νs are the Poisson’s

ratio of the indenter and sample, respectively. The initial unloading

slope gives us the reduced modulus provided one can measure the

contact area at the peak load.

Modulus and hardness of a material can be obtained more accur-

ately by measuring contact stiffness throughout the test. This tech-

nique is called continuous stiffness measurement (CSM). In this

technique, a small harmonic force is superimposed on the primary

load, P. This technique enables the instrument to determine the con-

tact stiffness throughout the experiment. The displacement of the

19 M. F. Doerner and W. D. Nix, J. Mater. Res., 1 (1986) 601.
20 W. C. Oliver, MRS Bull., 11 (1985) 15.
21 W. C. Oliver and G. M. Pharr, J. Mater. Res., 7 (1992) 1564.
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indenter at the excitation frequency and the phase angle between

force and displacement are measured continuously as a function of

depth. The stiffness, S, is given by the following relationship:

S =
[

1
Pos

h(ω)
cos � − (K s − mω2)

− Kf
−1

]−1

(3.51)

where Pos is the magnitude of the force oscillation, h(ω) is the magni-

tude of the resulting displacement oscillation, ω is the frequency of

the oscillation, � is the phase angle between the force and displace-

ment, Ks is the spring constant of the leaf springs that support the

indenter, Kf is the stiffness of the indenter frame, Cf is the compliance

of the load frame, and m is the mass of the indenter.

The nanoindentation technique has been successfully used to

measure the interfacial strength in a variety of fiber reinforced com-

posites.22

Example 3.12

A copper specimen was tested in a commercial nanoindentation

machine. A Berkovich indenter (pyramid with triangular base) was used.

The specimen was loaded to different load levels shown in Figure E.3.12,

then unloaded. For each maximum load, determine the hardness. Estab-

lish whether the hardness changes with depth of indentation.

Fig. E.3.12 Load vs. displacement curves obtained for copper specimen in a

TriboIndenter machine. (Courtesy of Andrea Hodge, USC.)

22 K. K. Chawla, Ceramic Matrix Composites, 2nd ed. (Boston: Kluwer Academic Publishers,

2003), p. 176.
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Solution: The relationship between depth of indentation, hi, and area

of a perfectly sharp Berkovich tip, is (Equation 3.50):

A = 24.56h2
i

We find the forces and displacements at the top of the five loading

cycles. We obtain the corresponding displacements (depths of indenta-

tion).

Load, P (μN) Displacement, h (nm) Area, A (nm2) Hardness (GPa)

760 115 324,012 2.34
1350 165 667,012 2.02
2150 205 1,029,612 1.99
2850 243 1,446,700 1.97
3900 295 2,132,112 1.83

There is a slight but consistent decrease in nanoindentation hardness

as the load is increased.

3.9 Formability: Important Parameters

Deep drawing and stretching are the two main processes involved

in most sheet-metal-forming operations. An excellent introductory

overview on sheet-metal forming is provided by Hecker and Ghosh.23

In a stamping operation, one part of the blank might be subjected to

a deformation process similar to deep drawing (thickness increasing

with time). In deep drawing the material is required to contract cir-

cumferentially, while in stretching the stresses applied on the sheet

are tensile in all directions. Sheet-metal forming has evolved from

an art into a science, and important material parameters have been

identified. These material properties are obtained in special tests and

allow a reasonable prediction of the blank in the actual sheet-forming

operation.

The work-hardening rate n is important, because it determines the

onset of necking (tensile instability), an undesirable feature. Accord-

ing to Considère’s criterion (see Section 3.2.2), n is equal to εu, the

uniform strain. Hence, the higher n, the higher εu. The strain-rate sen-

sitivity m is an important parameter, too, because it also helps to avoid

necking. If m is positive, the material becomes stronger at incipient

necks because the strain rate in the necked region is higher. (See Sec-

tion 3.2.3.) The parameter R (the through-thickness plastic anisotropy)

is also important; it is equal to the ratio between the strain in

the ‘‘stretching” direction and the strain in the thickness direction.

The greater the resistance to ‘‘thinning” in stretching, the better is

the formability of the metal. This resistance to thinning corresponds

23 S. S. Hecker and A. K. Ghosh, Sci. Am., Nov. (1976), p. 100.
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Fig. 3.44 Simple formability tests

for sheets. (a) Simple bending test.

(b) Free-bending test. (c) Olsen or

Ericksen cup test. (d) Swift cup

test. (e) Fukui conical cup test.

to a value of R larger than 1: the strength in the thickness direction is

greater than the strength in the plane of the sheet. The three param-

eters n, m, and R are readily obtained in a tensile test. (See Sections

2.2 and 3.2).

Additional important information on the workability of sheets is

provided by the yield and flow loci. Section 3.7.8 gives a description of

yield criteria and how they are graphically presented in a plane-stress

situation. The experimental determination of the yield locus and its

expansion as plastic deformation takes place is conducted in biaxial

tests. (See Section 3.7.4, Figure 3.28.)

Figure 3.44 shows the most simple formability tests applied to

metals. In the simple bending test, the specimen is attached to a die,

and one end is clamped in a vise. The other end is bent to a specific

radius. Specimens are bent to 180◦ using bending dies with smaller

and smaller bending radii. Observations are made to see whether

cracks are formed. In the free-bending test, the specimen is first bent

between two rollers until an angle between 30◦ and 45◦ is achieved.

It is then further bent between two grips, such as a vise.

The Olsen and Erichsen tests are typical stretch tests. A hardened

steel sphere (diameter of 22.2 mm for the Olsen test, 20 mm for the

Erichsen test) is pushed into the clamped metal, forming a bulge.
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The depth of the bulge at the fracture point is measured. The clamp-

down pressure is very high (>70 kN), to minimize the drawing of the

material.

The Swift and Fukui tests (Figure 3.44(d) and (e)) are drawing tests.

The clamp-down pressure in the Swift test allows the sheet to slip

inward. The overall diameter of the part is decreased in the pro-

cess. This test simulates the deep drawing of parts. The drawability is

expressed as the limiting draw ratio

LDR = maxmimum blank diameter

punch diameter
= D

d
.

There are two geometries for the Swift test, shown in Figure 3.44(d):

the round-bottomed cup test and the cup test. The latter test causes

stretching of the center of the cup in addition to drawing. The Fukui

test (Figure 3.44(e)) is the Japanese (JIS Z 2249) equivalent of the US

stretch-drawing Swift test. A sphere 12.5 to 27 mm in diameter is

pushed into a disk and advanced until either failure results or neck-

ing occurs in the cup. A hold-down ring maintains the specimen in

place. The ratio between the diameters of the base of the deformed

cup and the original disk provides the Fukui conical cup value. The

modern counterpart of these older, but reliable, tests is the forming-

limit curve, described in Section 3.9.2. The circle-grid analysis, which

consists of applying a circle grid to the blank and measuring the

strains in the critical regions of the stamped part, is also described

in that section.

3.9.1 Plastic Anisotropy
Elastic deformation under anisotropic conditions is described by

elastic constants, whose number can vary from 21 for the most

anisotropic solid to 3 for one exhibiting cubic symmetry. (For isotropic

solids, the number of independent elastic constants is 2.) In a simi-

lar way, plasticity increases in complexity as the anisotropy of the

solid increases. Sections 3.2--3.3 cover only the isotropic case, and

even that in a very superficial way. In polycrystals, anisotropy in

plasticity is more the rule than exception. Essentially, there are two

sources of anisotropy. First is texture, in which the grains are not

randomly oriented, but have one or more preferred orientations. Tex-

turing is often introduced by deformation processing. Well-known

and well-characterized textures accompany cold rolling, wire draw-

ing, and extrusion. This type of anisotropy is also called crystallo-

graphic anisotropy. Second, anisotropy is produced by the alignment of

inclusions or second-phase particles along specific directions. When

steel is produced, the inclusions existing in the ingot take the shape

and orientation of the deformation process (rolling). These inclusions,

such as MnS, produce mechanical effects called fibering. This type of

anisotropy is also known as mechanical anisotropy. Whereas crystallo-

graphic anisotropy can strongly affect the yield stress, mechanical

anisotropy usually manifests itself only in the later stages of deform-

ation, influencing fracture.
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1 mm

Fig. 3.45 “Ears” formed in

deep-drawn cups due to in-plane

anisotropy. (Courtesy of Alcoa,

Inc.)

Figure 3.45 shows the effect of texture on a deep-drawn cup. This

effect is known as ‘‘earing.” Prior to drawing, the sheet exhibited

different yield stresses along different directions. The orientation in

which the sheet is softer is drawn in faster than the harder direc-

tion, resulting in ‘‘ears.” The number of ears (four) actually shows the

type of texture. Figure 3.46 on the other hand, illustrates the effect

of inclusions on the formability of an alloy. Fracture is much more

probable if the sheet is bent along the second-phase strings than if it

is bent perpendicular to them.

Section 3.7.8 shows the yield locus for anisotropic materials; this

equation is an ellipse essentially identical to that described by the von

Mises yield criterion in plane stress. (See Section 3.7.4.) The ellipse is

distorted, however.

3.9.2 Punch–Stretch Tests and Forming-Limit Curves (or
Keeler–Goodwin Diagrams)

An ideal test is the one that predicts exactly the performance of a

material. The m, n, and R values are insufficient to predict the form-

ability, and tests more closely resembling the actual plastic-forming

operations have been used for a long time. The main parameter

that they can provide is the strain to fracture. These tests are called

punch--stretch tests, or simply, ‘‘cupping” tests.

The punch--stretch test consists of clamping a blank firmly on its

edges between two rings or dies; the next step is to force a plunger

or punch through the center area of the specimen enclosed by the

area of the ring, until the blank fractures. Several punch--stretch tests

have been developed over the years, including the Olsen, Erichsen,

Guillery, and Wazau tests. These ‘‘cupping” tests are routinely used for

inspection purposes, since they provide a quick indication of ductility;
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Rolling direction

Rolling direction

Elongated inclusions

Fig. 3.46 Effect of “fibering” on formability. The bending operation is often an integral

part of sheet-metal forming, particularly in making flanges so that the part can be

attached to another part. During bending, the fibers of the sheet on the outer side of

the bend are under tension, and the inside ones are under compression. Impurities

introduced in the metal as it was made become elongated into “stringers” when the

metal is rolled into sheet form. During bending, the stringers can cause the sheet to fail

by cracking if they are oriented perpendicular to the direction of bending (top). If they

are oriented in the direction of the bend (bottom), the ductility of the metal remains

normal. (Adapted with permission from S. S. Hecker and A. K. Ghosh, Sci. Am., Nov.

(1976), p. 100.)

they also show the change in surface appearance of the sheet upon

forming. Two important defects appear in stamping:

1. The orange-peel effect (surface rugosity) is due to the large grain

size of the blank. The anisotropy of plastic deformation of the

individual grains results in an irregular surface, perfectly visible

to the naked eye, when the grain size is large.

2. Stretcher strains are produced when Lüders bands appear in the

forming process. The interface between the Lüders band and un-

deformed materials exhibits a step easily visible to the naked eye.

This is an undesirable feature that can be eliminated either by

prestraining the sheet prior to forming (beyond the Lüders band

region) or by alloying the material in such a way as to eliminate the

yield drop and plateau from the stress--strain curve. In low-carbon

steels, Lüders bands are formed by the interactions of carbon and
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EE1

Fig. 3.47 Sheet specimen

subjected to punch–stretch test

until necking; necking can be seen

by the clear line. (Courtesy of

S. S. Hecker.)

nitrogen atoms with dislocations. After a process called temper

rolling, the susceptibility is eliminated; however, it can return fol-

lowing aging. This problem is easily solved by flexing the sheet by

effective roller leveling just prior to forming.24

The poor correlation between the common ‘‘cupping” test and

the actual performance of the metal led investigators to look at

some more fundamental parameters. The first breakthrough came in

1963, when Keeler and Backofen25 found that the localized necking

required a critical combination of major and minor strains (along

two perpendicular directions in the sheet plane). This concept was

extended by Goodwin to the negative strain region, and the resulting

diagram is known as the Keeler--Goodwin,26 or forming-limit, curve

(FLC). The FLC is an important addition to the arsenal of techniques for

testing formability and is described after the description of Hecker’s

testing technique, presented next.27

Hecker developed a punch--stretch apparatus and technique well

suited for the determination of FLC. The device consists of a punch

with a hemispherical head with a 101.6-mm (4-in.) diameter. The die

plates are mounted in a servohydraulic testing machine with the

punch mounted on the actuator. The hold-down pressure on the die

plates (rings) is provided by three hydraulic jacks. (The hold-down load

is 133 kN.) The bead-and-groove arrangement in the rings eliminates

any possible drawing in. The specimens are all gridded with 2.54-mm

circles by a photoprinting technique. The load versus displacement

is measured and recorded during the test, and the maximum load

is essentially coincident with localized instability and the onset of

fracture. A gridded specimen after failure is shown in Figure 3.47. The

24 H. E. McGannon (ed.), The Making, Shaping, and Treating of Steel, 9th ed. (Pittsburgh, PA:

US Steel, 1971), pp. 1126, 1260.
25 S. P. Keeler and W. A. Backofen, Trans. ASM, 56 (1963) 25.
26 G. M. Goodwin, ‘‘Application of Strain Analysis to Sheet Metal Forming Problems in

the Press Shop,” SAE Automotive Eng. Congr., Detroit, Jan. 1968, SAE Paper No. 680093.
27 S. S. Hecker, Metals Eng. Quart., 14 (1974) 30.
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circles become distorted into ellipses. The clear circumferential mark

is due to necking. The strains ε1 and ε2 are called meridian and cir-

cumferential strains, respectively, and are measured at various points

when the test is interrupted. Figure 3.48(a) shows how these strains

vary with distance from the axis of symmetry of the punch, at the

point where the punch has advanced a total distance of h = 27 mm.

ε1, the meridional strain, is highest at about 25 mm from the center

(ε1 ≈ 0.25); ε2, the circumferential strain, shows a definite plateau. By

using sheets with different widths and varying lubricants between

the sheet and the punch, different strain patterns are obtained.

(Figure 3.48(b) shows the geometry of the deformed sheet.) The tests

are conducted to obtain different combinations of minor--major

strains leading to failure. Figure 3.49 shows how the FLC curve

is obtained. The minor strain (circumferential) is plotted on the

abscissa, and the major strain (meridional) is plotted on the ordinate

axis. Four different specimen geometries are shown. The V-shaped

curve (FLC) marks the boundary of the safe--fail zone. The region

above the line corresponds to failure; the region below is safe.

In order to have both major and minor strains positive, we use a

full-sized specimen. By increasing lubrication, the major strain is

increased; a polyurethane spacer is used to decrease friction. The

drawings on the lower left- and right-hand corners of the figure

show the deformation undergone by a circle of the grid. When both

strains are positive, there is a net increase in area. Consequently,

the thickness of the sheet has to decrease proportionately. On
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the left-hand side of the plot, negative strains are made possible

by reducing the lateral dimension of the blank. This allows free

contraction in this dimension. The strains in an FLC diagram are

obtained by carefully measuring the dimensions of the ellipses

adjacent to the neck-failure region. It is interesting to notice

that diffuse necking (thinning) starts immediately after deform-

ation, whereas localized necking occurs only after substantial form-

ing. Semiempirical criteria for localized necking that agree well with

experimental results have been developed.

FLCs provide helpful guidelines for press-shop formability. Cou-

pled with circle-grid analysis, they can serve as a guide in modifying

the shape of stampings. Circle-grid analysis consists of photoprinting

a circle pattern on a blank and stamping it, determining the major

and minor strains in its critical areas. The strain pattern in the stamp-

ing is then compared with the FLC to verify the available safety mar-

gin. The strain pattern can be monitored with changes in lubrication,

hold-down pressure, and size and shape of drawbeads and the blank;

such monitoring can lead to changes in the experimental procedure.
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Fig. 3.50 Different strain

patterns in stamped part. (Adapted

from W. Brazier, Closed Loop, 15,

No. 1 (1986) 3.)

Circle-grid analysis also serves, in conjunction with the FLC, to indi-

cate whether a certain alloy might be replaced by another one, possi-

bly cheaper or lighter. During production, the use of occasional circle-

grid stampings provides valuable help with respect to wear, faulty

lubrication, and changes in hold-down pressure. Hecker and Ghosh28

claim that the circle-grid analysis has replaced the craftsman’s ‘‘feel”

for the proper flow of the metal.

The strain pattern undergone by a stamped part is shown schemat-

ically in Figure 3.50. Different portions exhibit different strains, and

this is evident by observing the distortion of circles at different

regions.

3.10 Muscle Force

The maximum force that a muscle fiber can generate depends on the

velocity at which it is activated. Figure 3.51 shows the stress that can

be generated as a function of strain rate for ‘‘slow-twitch” and ‘‘fast-

twitch” muscles. We use slow-twitch muscles for long-range events

(e.g., distance running) and fast-twitch muscles for explosive activi-

ties, such as sprinting or throwing a punch at our professor. Both

muscles show a decreasing ability to generate stress as the strain rate

is increased. However, the fast-twitch muscles show a lower decay.

The plot shown in Figure 3.51 is only schematic and represents

the rat soleus (slow-twitch) and extensor digitorum longus (fast-twitch).

The equation that describes the response in Figure 3.51 is called the

Hill29 equation. It has the form:

(σ + a)(̇ε + b) = (σ0 + a)b,

28 S. S. Hecker and A. K. Ghosh, Sci. Am., Nov. (1976), p. 100.
29 A. V. Hill, Proc. Roy. Soc. London, 126 (1938), 136--195.
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where σ0 is the stress at zero velocity (equal to 200 kPa in Figure

3.51). The range of σ0 is usually between 100 and 300 kPa; a and b are

parameters and ε̇ is the strain rate (obtained from the velocity).

Example 3.13

A person is lifting a weight by contracting the biceps muscles. Assuming

that each muscle fiber has the capacity to lift 300 μg, and that each

muscle fiber has a diameter of 5 μm, what is the required cross section

of biceps muscle needed to lift a mass of 20 kg?

F1

F2

90°

5 cm

35 cm

Fig. E3.13 Forearm and force F2 exerted by weight and reaction F1 applied by

biceps.
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Solution: The cross section of each fiber is:

A = π

4
× 52 = 19.625 μm2.

We can see from Figure E3.13 that we need to apply a lever rule to

calculate the force that the muscle has to exert. Distances given in

Figure E3.13 are typical. Students should check by measuring their

arms. Equating the sum of the moments to zero,

�M0 = 0

F1 X1 − F2 X2 = 0.

We have, for typical values: X1 = 5 cm; X2 = 35 cm.

But:

F2 = 20 × 9.8 = 196 N.

Thus:

F1 = 196 × 35

5
= 1372 N.

The maximum force that each muscle fiber can lift is:

F f = 300 × 10−6 × 9.8 × 10−3 = 2940 × 10−9 N.

The ratio F1/F f gives the number of fibers:

N = 4.66 × 108.

The total area is equal to:

At = N × A = 91.425 × 108 μm2.

This may be converted into cm2:

At = 91.4 cm2.

This is indeed a biceps with a diameter of:

D =
(

4At

π

)1/2

= 10.7 cm.

This corresponds to Arnold on steroids!

Example 3.14

Determine the safety factor built into the Achilles’ tendon of a person

weighing 80 kg, assuming a cross-sectional area of 1.5 cm2, if the person

can jump up to a height of 1 m, then land with a deceleration time

of 0.3 s. Assume that the tensile strength of the tendon is 60 MPa.

Dimensions are given in Figure E3.14.
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Fig. E3.14 (a) Structure of foot with Achilles’ tendon shown; (b) force T on

tendon; (c) jump from a height h.

Solution: We first calculate the relationship between T, the tension in

the Achilles’ tendon, and F, the force exerted on the ground. We assume

that the person is standing on the ball of the foot.

Setting the sum of moments equal to zero,

�MB = 0,

B C × F − AB × T = 0,

T = B C × F

AB
.

The forces and distances are defined in Figure E3.14(b). We now calcu-

late F for the static and dynamic cases. For the static case, we simply

have:

Fs = 80 × 9.8 = 784 N.

For the dynamic case, we have to consider the kinetic energy gained by

the person, when jumping down from a height of 1 m. The potential
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energy is converted into kinetic energy

mgh = 1

2
mv2,

The velocity is:

v = (2gh)1/2 = 4.43 m/s.

In order to find the dynamic force, Fd , we set the impulse equal to the

change in momentum:

mv − m × 0 = Fd × t.

The deceleration time is given: t = 0.3 s.

Thus:

Fd = 707 N.

The total force is:

F = Fs + Fd = 1492 N.

From the figure we obtain the values of AB and BC

T = 5968 N.

Assuming a round section, the area of the tendon is:

A = π

4
(1.5 × 10−2) = 1.7 × 10−4 m2.

Thus, the stress is:

σ = T

A
= 35.1 MPa.

The safety factor is:

S F = 60

35.5
= 1.7.

This is indeed a small number, and a weakened Achilles’ tendon could

easily rupture. Indeed, this happened to one of the coauthors (MAM)

while playing soccer (his last game). The tendon was operated upon

and reconnected through stitches. The foot was immobilized in the

stretched position for 4 months enabling the tendon to repair itself.

Interestingly, the operated tendon now has a cross section twice as

large as the other one. Hence, nature somehow remembers the trauma

and overcorrects for it. The same thing happens in bones. The healed

portion becomes stronger than the original bone.

3.11 Mechanical Properties of Some
Biological Materials

Figure 3.52 shows the stress--strain response of a number of bio-

logical materials. It may be seen that the properties vary widely. As

is the case with synthetic materials, the strength increases as the
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for a number of biological

materials.

ductility decreases. The strongest materials in our body are the cor-

tical bone, followed by tendons and ligaments. The wide range in

properties is due to differences in structure and constituents, pre-

sented in Chapter 1. Table 3.4 provides some important mechanical

properties for a number of biological materials.

Elastin, which is described in Chapter 1, is an important compo-

nent in skin and arteries. As the name implies, it provides elasticity.

Figure 3.53 gives the stress--strain response from elastin taken from

ligamentum nuchae (a long ropelike fiber running along the top of a

horse’s neck and holding it upright). The material is approximately

linearly elastic with a Young’s modulus of approximately 0.6 MPa.

Bone is the structural component of our body. It also has other

functions, but we will concentrate on the mechanical performance

here. There are two principal types of bone: cortical (or compact) and

cancellous (or porous). Figure 3.54 shows the structure of a long bone.

The surface regions consist of cortical bone; the inside is porous and

is cancellous bone. The porosity reduces the strength of the bone,

but also reduces its weight. Bones are shaped in such a manner that

strength is provided only where it is needed. The porosity of can-

cellous bone provides interesting mechanical properties, which are

quantitatively treated in Chapter 12. The pores also perform other

physiological functions and contain the marrow. Thus, bone is a

true multifunctional material. Researchers are developing synthetic
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Table 3.4 Mechanical Properties of Some Biological Materials

Material E (MPa)
Fracture Stress
(MPa)

Strain at
Fracture

Elastin 0.6
Resilin 1.8
Collagen 1,000 70 0.09
Fibroin 10,000
Cortical bone –

Longitudinal (14–24) ×103 150 ∼0.015
Transverse (8–18) ×103 50

Cancellous (porous) bone 10–200
Cellulose 80,000 1000 0.024
Tendon 1,300 75 0.09
Keratin 2,500 50 0.02

Alpha (mammalian) Beta (birds) 2,000 20
Dentine 300
Spider Silk (radial) 1,500 0.06
Silkworm Silk 500
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Fig. 3.53 Stress–strain response

for elastin; it is the ligamentum

nuchae of cattle (Adapted from Y.

C. Fung and S. S. Sobin, J. Biomech.

Eng., 1103 (1981) 121. Also in Y.

C. Fung, Biomechanics: Mechanica

properties of Living Tissues (New

York: Springer, 1993) p. 244.)

multifunctional materials that have more than one function; this par-

ticular area of research is based on biological systems and is called

‘‘biomimetics” (mimicking nature).

Cortical bone is found in long bones (femur, tibia, fibula, etc.).

The longitudinal mechanical properties (strength and stiffness)

are higher than the transverse ones. Thus, cortical bone can be



244 PLASTICITY

considered as transversely isotropic. Figure 3.55 provides the tensile

and compressive stress--strain curves for cortical bone in longitudinal

and transverse directions. The anisotropy is clearly visible. The bone

is stronger in the longitudinal direction.

Fig. 3.54 Longitudinal section of

a femur. (From S. Mann,

Biomineralization (New York:

Oxford University Press, 2001).)

Bone is a composite of collagen, hydroxyapatite, and water.

Hydroxyapatite is a calcium phosphate with the composition:

3Ca3(PO4)2Ca(OH)2. Water corresponds to 15--25 vol.% of the bone in

mammals. The Young’s modulus of cortical bone varies from 14 to 24

GPa (see Table 3.4). This is much lower than that of hydroxyapatite,

which has a Young’s modulus of approximately 130 GPa and a tensile

strength of 100 MPa. Although collagen is not linearly elastic, we can

define a tangent modulus; it is approximately 1.25 GPa. The strength

achieved in bone is therefore higher than both hydroxyapatite (100

MPa) and collagen (50 MPa), demonstrating the synergistic effect of

a successful composite. Hydroxyapatite is the major mineral compo-

nent of bone. The hydroxyapatite content of bone varies from animal

to animal, depending on function. For instance, an agile animal like

a gazelle has bones that have to be highly elastic. Thus, the hydroxy-

apatite level is fairly low (around 50% by weight). Collagen provides

the elasticity. On the other hand a whale has bones with a much

higher mineral content (∼80% by weight). We are somewhere in

between. A young athletic student has more compliant bones than

a sedentary professor!

The mechanical response of bone is also quite strain-rate sensitive.

As the velocity of loading increases, both the elastic modulus and the

fracture stress increase. Hence, the stiffness increases with strain rate.

This is shown in Figure 3.56.
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Fig. 3.55 Tensile and

compressive stress–strain curves

for cortical bone in longitudinal

and transverse directions.

(Adapted from G. L. Lucas, F. W.

Cooke, and E. A. Friis, A Primer on

Biomechanics (New York: Springer,

1999).)



SUGGESTED READING 245

300

200

100

0
0.0 0.5 1.0 1.5 2.0

Strain, %

S
tr

e
s
s
, 
M

P
a

1500/s

300/s

1/s
0.1/s

0.01/s

0.001/s

Fig. 3.56 Strain-rate

dependence of tensile response of

cortical bone. (Adapted from J. H.

McElhaney, J. Appl. Physiology,

21(1966) 1231.)

An equation called the the Ramberg--Osgood equation is used to

describe this strain-rate dependence of the elastic modulus:

E = σ
ε

= C (ε̇)d,

where σ is the stress, ε is the strain, ε̇ is the strain rate, and C and d

are experimental parameters. The following are typical values:

Human cranium: C = 15 GPa; d = 0.057

Bovine cortical bone (longitidinal): C = 12 GPa; d = 0.018.
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Exercises

3.1 A polycrystalline metal has a plastic stress--strain curve that obeys Hol-

lomon’s equation,

σ = K εn.

Determine n, knowing that the flow stresses of this material at 2% and 10%

plastic deformation (offset) are equal to 175 and 185 MPa, respectively.

3.2 You are traveling in an airplane. The engineer who designed it is, casually,

on your side. He tells you that the wings were designed using the von Mises

criterion. Would you feel safer if he had told you that the Tresca criterion

had been used? Why?

3.3 A material is under a state of stress such that σ 1 = 3σ 2 = 2σ 3. It starts

to flow when σ 2 = 140 MPa.

(a) What is the flow stress in uniaxial tension?

(b) If the material is used under conditions in which σ 1 = − σ 3 and σ 2 =
0, at which value of σ 3 will it flow, according to the Tresca and von Mises

criteria?

3.4 A steel with a yield stress of 300 MPa is tested under a state of stress where

σ 2 = σ 1/2 and σ 3 = 0. What is the stress at which yielding occurs if it is

assumed that:

(a) The maximum-normal-stress criterion holds?

(b) The maximum-shear-stress criterion holds?

(c) The distortion-energy criterion holds?

3.5 Determine the maximum pressure that a cylindrical gas reservoir can

withstand, using the three flow criteria. Use the following information:

Material: AISI 304 stainless steel --- hot finished and annealed, σ 0 = 205 MPa

Thickness: 25 mm

Diameter: 500 mm

Length: 1 mm

Hint: Determine the longitudinal and circumferential (hoop) stresses by the

method of sections.

3.6 Determine the value of Poisson’s ratio for an isotropic cube being plastic-

ally compressed between two parallel plates.

3.7 A low-carbon-steel cylinder, having a height of 50 mm and a diameter of

100 mm, is forged (upset) at 1,200◦C and a velocity of 1 m/s, until its height is

equal to 15 mm. Assuming an efficiency of 60%, and assuming that the flow
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stress at the specified strain rate is 80 MPa, determine the power required to

forge the specimen.

3.8 Obtain the work-hardening exponent n using Considère’s criterion for the

curve of Example 3.4.

3.9 The stress--strain curve of a 70--30 brass is described by the equation

σ = 600ε0.35
p MPa

until the onset of plastic instability.

(a) Find the 0.2% offset yield stress.

(b) Applying Considère’s criterion, find the real and engineering stress at the

onset of necking.

3.10 The onset of plastic flow in an annealed AISI 1018 steel specimen is

marked by a load drop and the formation of a Lüders band. The initial strain

rate is 10−4 s−1, the length of the specimen is 5 cm, and the Lüders plateau

extends itself for a strain equal to 0.1. Knowing that each Lüders band is

capable of producing a strain of 0.02 after its full motion, determine:

(a) The number of Lüders bands that traverse the specimen.

(b) The velocity of each Lüders band, assuming that only one band exists at

each time.

3.11 A tensile test on a steel specimen having a cross-sectional area of 2 cm2

and length of 10 cm is conducted in an Instron universal testing machine

with stiffness of 20 MN/m. If the initial strain rate is 10−3 s−1, determine the

slope of the load-extension curve in the elastic range (E = 210 GN/m2).

3.12 Determine all the parameters that can be obtained from a stress--strain

curve from the load-extension curve (for a cylindrical specimen) shown in

Figure E.3.12, knowing that the initial cross-sectional area is 4 cm2, the

crosshead velocity is 3 mm/s, the gage length is 10 cm, the final cross-sectional

area is 2 cm2, and the radius of curvature of the neck is 1 cm.
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Fig. Ex.3.12

3.13 Draw the engineering-stress--engineering-strain and true-stress--true-

strain (with and without Bridgman correction) curves from the curve in Exer-

cise 3.12.
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3.14 What is the strain-rate sensitivity of AISI 1040 steel at a strain of 0.02

and a strain of 0.05 (Obtain your data from Figure 3.12(a).)

3.15 From the load-extension curve shown in Example 3.4, draw the true-

stress--true-strain curve.

3.16 An AISI 1045 steel obeys the following relationship relationship between

stress (σ ) and strain (e) in tension:

σ (MPa) = 300 + 450e0.5.

Obtain the compressive stress--strain curve, considering the Bauschinger

effect. Use the data from Figure 3.17.

3.17 The PMMA specimens, Figure Ex.3.17, were deformed in uniaxial tension

at different temperatures. (a) Plot the total elongation, ultimate tensile stress,

and Young’s modulus as a function of temperature. (b) Discuss changes in

these properties in terms of the internal structure of the specimen.
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3.18 For the force--displacement curve of Figure Ex.3.18, obtain the engineer-

ing and true-stress--strain curves if the specimen were tested in compression.
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3.19 Calculate the softening temperature for a soda--lime silica glass at which

the viscosity is equal to 107 Pa · s if the activation energy for viscous flow is

250 kJ/mol and the viscosity at 1,000◦C is 103 Pa · s.

3.20 The viscosity of a SiO2 glass is 1014 P at 1,000 ◦C and 1011 P at 1,300 ◦C.

What is the activation energy for viscous flow in this glass? Note: 1 P = 0.1

Pa · s.

3.21 When tested at room temperature, a thermoplastic material showed a

yield strength of 51 MPa in uniaxial tension and 55 MPa in uniaxial compres-

sion. Compute the yield strength of this polymer when tested in a pressure

chamber with a superimposed hydrostatic pressure of 300 MPa.

3.22 From Equation 3.35, obtain Equation 3.34. Then prove that Equation 3.34

represents an ellipse rotated 45◦ from its principal axis.

3.23 An annealed sheet of AISI 1040 steel (0.85 mm thick and with in-plane

isotropy) was tested in uniaxial tension until the onset of necking, to deter-

mine its formability. The initial specimen’s length and width were 20 and

2 cm, respectively. At the onset of necking, the length and width were 25 and

1.7 cm, respectively.

(a) Determine the ratio between the through-thickness and the in-plane yield

stress, assuming that R does not vary with strain.

(b) Draw the flow locus of this sheet, assuming that σ y (1,2) = 180 MN/m2.

3.24 Repeat Exercise 3.23 if the final width of the specimen is 1.9 cm, and

explain the differences. Which case has a better formability?

3.25 Imagine that you want to perform a circle-grid analysis, but you do not

have the facilities for photoprinting. Hence, you decide to make a grid of

perpendicular and equidistant lines. After plastic deformation of the material,

can you still determine the major and minor strains from the distorted grid?

(Hint: Use the method for determining principal strains.)

3.26 Determine the activation energy for deformation for the three glasses

shown in Figure 3.26. (Hint: plot ln viscosity vs. 1/T.)

3.27 You are given a 2.5 mm diameter cylindrical specimen 180 mm long. If

the specimen is subjected to a torque of 50 N · m.

(a) Calculate the deflection of the specimen end, if one end is fixed.

(b) Will the specimen undergo plastic deformation?

3.28 Calculate the resulting rod diameter for 1040 carbon steel subjected to

a 4000 N compressive load, with an initial diameter of 15 cm.

3.29 You are asked to design a spherical pressure vessel for space application.

The weight has to be minimized. Given that σ = Pr/T, among materials below,

which one you would select?

Alloy
Density
(kg/m3) Y. S. (MPa)

304 SS 7.8×103 400
Ti6Al4V 4.46×103 850
2024 Al 2.7×103 400
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3.30 You have a piece of steel, and you are able to measure its hardness:

HV = 250 kg/mm2. What is its estimated yield stress, in MPa?

3.31 You received a piece of cast iron, and you want to estimate its yield

strength. You are able to make a hardness indentation using a 10 mm diameter

tungsten carbide sphere. The diameter of the indentation is 4 mm. What is

the estimated yield strength?

3.32 Describe the similarities and differences in the phenomena of Lüders

band formation in low-carbon steels and tensile drawing of a polymer.

3.33 The shear yield strength of a polymer is 30% higher in compression

than in tension. Determine the coefficient A that represents the dependence

of yield stress on hydrostatic pressure.

3.34 Looking at Figure 3.3, give reasons as to why the ultimate tensile stress

(UTS) of AISI 1040 steel decreses with increased heat treatment.

3.35

(a) Describe the changes that occur at a microstructural level when a thin

semicrystalline polymer begins to neck.

(b) Why does the strength increase in the load direction? Does the necking

region become more or less transparent if the material is made of a semi-

transparent material?

3.36 The following stresses were measured on a metal specimen:

σ 11 = 94 MPa

σ 22 = 155 MPa

σ 12 = 85 MPa.

Determine the yielding for both the Tresca and von Mises criteria, given that

σ 0 = 180 MPa (yield stress). Which criterion is more conservative?

3.37 A flat indenter strikes the surface of an iron block and sinks into the

material by 0.4 cm. Assuming that the surface of a piece of iron (τ 0 = 6.6

GPa, σ 0 = 12.6 GPa, A = 0.5 cm2) can be modeled as triangular blocks as in

Figure E2.10.2, determine the force with which the indenter hits the material.

3.38 Determine the hardness of the copper specimen from the nanoindent-

ation SEM image in Figure 3.42(b) knowing that the applied load is 2000 μN.

3.39 Calculate the projected area of an indentation made in keratin, the pene-

tration depth h is 600 nm. Assume we used the Berkovich tip (A = 24.5h2).

3.40 You are designing a kinetic energy penetrator for the M1 tank. This

penetrator is made of depleted (non-radioactive but highly lethal!) uranium-

0.75%Ti. Plot the stress--strain curve, from 0 to 1:

(a) At the following strain rates: 10−3 s−1, 103 s−1 (ambient temperature).

(b) At a strain rate of 10−3 s−1 and the following temperatures: 77 K, 100 K,

300 K.

Given:

Tm = 1473 K

σ 0 = 1079 MPa

K = 1120 MPa

n = 0.25

C = 0.007

m = 1

ε̇ = 10−4 s−1



Chapter 4

Imperfections: Point and Line

Defects

4.1 Introduction

The mechanical properties of materials are often limited by their

imperfections. The theoretical cleavage and shear strengths of mater-

ials are given by (see Section 4.2):

σth =
√

E γ

a
≈ E

π
and τth = G b

2πa
≈ G

2π
,

where E and G are the Young’s and shear moduli, respectively; a is

the interatomic spacing, and γ is the surface energy of the material.

These equations predict exceedingly high strengths (on the order of

GPas), and few materials reach such strengths. (See Chapter 1.) Indeed,

this is somehow the Holy Grail of materials science: If materials were

perfect, those values could be reached. However, all materials contain

imperfections, either by design or inadvertently produced during pro-

cessing. We review these in this and subsequent chapters. They are

classified, according to their dimensions, into four kinds, each dis-

cussed in a separate section as follows:

� Point (atomic or electronic) defects (Section 4.3)
� Line (or one-dimensional) defects (Section 4.3)
� Interfacial (or two-dimensional) defects (Chapter 5, Section 5.1)
� Volume (or three-dimensional) defects (Chapter 5, Section 5.2).

Cracks are discussed in chapters 7 and 8, on fracture.

Imperfections determine the mechanical response of materials,

and the manner in which the response is used to enhance perform-

ance in a material will be analyzed in considerable detail in chapters

5 through 9. Note that the dimensional scale of defects covers a wide

spectrum, 10--14 m, as shown schematically in Figure 4.1. Electronic

point defects do not affect mechanical properties significantly and

will therefore not be discussed in this text.
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Fig. 4.1 Dimensional ranges of

different classes of defects.
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Fig. 4.2 Stress required to shear

a crystal.

4.2 Theoretical Shear Strength

Frenkel1 performed a simple calculation of the theoretical shear

strength of crystals by considering two adjacent and parallel lines

of atoms subjected to a shear stress; this configuration is shown in

Figure 4.2 where a is the separation between the adjacent planes and

b is the interatomic distance. Under the action of the stress τ , the

top line will move in relation to the bottom line; the atoms will

pass through successive equilibrium positions A, B, C, for which τ is

zero. When the applied shear stress is enough to overcome these bar-

riers, plastic deformation will occur, and the atoms will move until a

shear fracture is produced. The stress is also zero when the atoms are

exactly superimposed; in that case, the equilibrium is metastable.

Between these values the stress varies cyclically with a period b.

Frenkel assumed a sine function, as one would expect:

τ = k sin
2πx

b
, (4.1)

where x is the displacement, b is the Burgers vector, and k is the

constant to be determined (see below).

For small displacements,

τ = k
2πx

b
. (4.2)

Since, for small displacements, one can consider the material to

deform elastically, we have

τ = G
x

a
, (4.3)

where x/a is the shear strain and G is the shear modulus. Substituting

Equation 4.3 into Equation 4.2, we have

k = G b

2πa
. (4.4)

1 J. Frenkel, Z. Phys., 37 (1926) 572.
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Table 4.1 Theoretical Shear Strengtha

Element G (GPa) τmax (GPa) τmax/G

Iron 60.0 6.6 0.11
Silver 19.7 0.77 0.039
Gold 19.0 0.74 0.039
Copper 30.8 1.2 0.039
Tungsten 150.0 16.5 0.11
Diamond 505.0 121.0 0.24
NaCl 23.7 2.8 0.12

a From A. Kelly, Strong Solids (Oxford, U.K.: Clarendon Press, 1973),

p. 28.

Substituting Equation 4.4 into Equation 4.1 yields

τ = G b

2πa
sin

2πx

b
.

The maximum of τ occurs for x = b/4:

τmax = G b

2πa
. (4.5)

For FCC materials, the relationship between a0 (the lattice parameter),

a, and b can be calculated. Drawing a unit cell, the student will be

able to show that b = a0/2; the spacing between adjacent planes is

given by (see crystallography textbooks):

dhkl = a0√
h2 + k2 + �2

.

For (111) planes:

d111 = a0/
√

3.

This is equal to a in Figure 4.2.

Substituting b and a into Equation 4.5, we obtain

τmax ≈ G

5.1
. (4.6)

More complex models have been advanced in which the sine func-

tion is replaced by more precise curves expressing the interaction

energy. The method used by Kelly (Mackenzie’s method) is an exam-

ple. Kelly took into account the distortion of the planes. Table 4.1

shows the stresses calculated by Mackenzie’s method. Note that the

ratio τmax/G varies between 0.039 and 0.24. Consequently, it is fairly

close to Frenkel’s ratio (0.18), obtained by the simpler method.

The theoretical strength derived above is on the order of

gigapascals; unfortunately, the actual strength of materials is orders

of magnitude below that. We derive an expression for theoretical

cleavage strength in Chapter 7.
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Example 4.1

Estimate the theoretical shear and cleavage strength for copper and

iron. From Table 2.5 in Chapter 2, we have the following data:

Iron E = 211.4 GPa G = 81.6 GPa
Copper E = 129.8 GPa G = 43.3 GPa

For the shear strength, we assume, to a first approximation, that

b = a. Thus,

τmax = G

2π

and

Fe: τmax = 13.0 GPa

Cu: τmax = 7.7 GPa.

For the cleavage strength,

σmax =
√

E γ

a0

and γ ≈ E a0

10
;

So

σmax ≈
√

E 2

10
≈ E

3.16
.

Therefore, we have

Fe: σmax = 66.9 GPa

Cu: σmax = 41.1 GPa.

The actual tensile strength of pure Fe and Cu is on the order of 0.1 GPa.

Since these metals fail by shear, the actual shear strength is equal to

0.05 GPa.

4.3 Atomic or Electronic Point Defects

These defects exist on an atomic scale. These defects can have a dia-

meter of approximately 10−10 m. Although relatively small compared

to other imperfections, atomic defects do generate a stress field in

the crystal lattice and affect the properties of the material. Figure 4.3

shows the following three types of atomic point defects.

1. Vacancy. When an atomic position in the Bravais lattice is vacant.

2. Interstitial point defect. When an atom occupies an interstitial pos-

ition. This interstitial position can be occupied by an atom of the

material itself or by a foreign atom; the defect is called a self-

interstitial and an interstitial impurity, respectively, for the two

cases.
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Vacancy Substitutional
solute atom

Self-interstitial
atom

Interstitial solute
atom

Fig. 4.3 Atomic point defects.

Frenkel
defect

Schottky
defect

Fig. 4.4 Two most common

point defects in compounds:

Schottky and Frenkel defects.

3. Substitutional point defect. When a regular atomic position is occu-

pied by a foreign atom.

The vacancy concentration in pure elements is very low at low tem-

peratures. The probability that an atomic site is a vacancy is approxi-

mately 10−6 at low temperatures, rising to 10−3 at the melting point.

In spite of their low concentration, vacancies have a very important

effect on the properties of a material, because they control the self-

diffusion and substitutional diffusion rates. The movement of atoms

in the structure is coupled to the movement of vacancies. In Section

4.3.1, the equilibrium concentration of vacancies is calculated.

In compounds (ceramics and intermetallics), defects cannot occur

as freely as in metals, because we have additional requirements, such

as electrical neutrality. Two types of defects are prominent in com-

pounds and are shown in Figure 4.4: the Schottky defect, which is a

pair of vacancies that have opposite sign (one cation and one anion);

and the Frenkel defect, which consists of a vacancy--self-interstitial

pair.

The self-interstitial and interstitial impurities lodge themselves in

the ‘‘holes” that the structure has. There is more than one type of

hole in the FCC, BCC, and HCP structures, and their diameters and

positions will be determined in what follows.

The FCC structure, shown in Figure 4.5 has two types of voids:

the larger, called octahedral, and the smaller, called tetrahedral. The

names are derived from the nearest neighbor atoms; they form the

vertices of the polyhedra shown. If we consider the atoms as rigid

spheres, we can calculate the maximum radius of a sphere that would

fit into the void without straining the lattice. The reader is encour-

aged to engage in this exercise; with some luck, he or she will find

radii of 55 and 31 pm for octahedral and tetrahedral voids, respect-

ively, in γ -iron. Hence, carbon (r = 80 pm) and nitrogen (r = 70 pm)

produce distortions in the lattice when they occupy the voids.
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(a) (b)

Regular site atoms

Fig. 4.5 Interstices in FCC

structure. (a) Octahedral void.

(b) Tetrahedral void.

(a) (b)

Fig. 4.6 Interstices in the BCC

structure. (a) Octahedral void.

(b) Tetrahedral void.

(a) (b)

Fig. 4.7 Interstices in the HCP

structure. (a) Octahedral void.

(b) Tetrahedral void.

In BCC metals there are also octahedral and tetrahedral voids, as

shown in Figure 4.6. In this case, however, the larger void is tetra-

hedral. For rigid spheres in α-iron, the void radii are 36 and 19 pm

for tetrahedral and octahedral interstices, respectively. Hence, a solute

atom is accommodated in an easier way in FCC than in BCC iron, in

spite of the fact that the FCC structure is more closely packed.

Analogously, the HCP structure presents tetrahedral and octa-

hedral voids, shown in Figure 4.7; the reader is reminded of the

similarity between the FCC and HCP structures, which explains the

presence of the same voids.

4.3.1 Equilibrium Concentration of Point Defects
A very important characteristic of vacancies and self-interstitial

atoms, in contrast to line and surface defects, is that they can exist in

thermodynamic equilibrium at temperatures above 0 K. The thermo-

dynamic equilibrium in a system of constant mass, at a constant pres-

sure and temperature, and that does not execute any work in addition
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to the work against pressure, is reached when the Gibbs free energy

is minimum. The formation of point defects in a metal requires a cer-

tain quantity of heat δq (as there is no work being executed, except

against pressure). Hence, if dH = δq, the enthalpy H of the system

increases. The configurational entropy S also increases, because there

are a certain number of different ways of putting the defects into the

system.

The Gibbs free energy is, by definition,

G = H − T S . (4.7)

One can thus see that the free energy will reach a minimum for a

certain value of n (the number of point defects) different from zero;

at 0 K, the entropic term is zero and the equilibrium concentration

is zero.

The equilibrium concentration of point defects can be calculated

from statistical considerations and is given by

n

N
= exp (− G f /kT ) (4.8)

where n and N are the number of point defects and sites, respectively,

Gf is the free energy of formation of the defects, and k is Boltzmann’s

constant. For copper, the formation of vacancies and interstitials are

G v = 83 kJ/mol, G i = 580 kJ/mol.

We have, approximately, the following ratio:

G i

G v

≈ 7.

Therefore, for copper, the free energy of formation of a vacancy

is approximately one-seventh that of a self-interstitial defect. Using

Equation 4.8, we can obtain the ratio between the vacancy (Xv) and

interstitial (Xi) concentrations:

Xv

Xi

≈ exp

(
G i − G v

kT

)
. (4.9)

For copper at 1,000 K (we have to convert molar quantities or use

R = 8.314 J/(mol K):

Xv

Xi

≈ 1026.

It can be concluded that, at least in close-packed structures, the con-

centration of interstitials is negligible with respect to that of the

vacancies. Using Equation 4.9 for copper at 1,000 K, we obtain

Xv
∼= 4.5 × 10−5.

Hence, there is only one vacancy for each 2 × 104 copper atoms

at 1,000 K. This number is very small; in spite of this, it corres-

ponds to approximately 1014 vacancies/cm3. The low concentration

of self-interstitials in close-packed structures is a consequence of the



258 IMPERFECTIONS : POINT AND LINE DEFECTS

small diameter of the interstitial voids. (See Figures 4.5 and 4.6.) In

more open structures these concentrations can be higher. Even so,

high interstitial concentrations are not observed in equilibrium struc-

tures.

Example 4.2

If, at 400 ◦C, the concentration of vacancies in aluminum is 2.3 ×
10−5, what is the excess concentration of vacancies if the aluminum

is quenched from 600 ◦C to room temperature? What is the number of

vacancies in one cubic μm of quenched aluminum?

We are given:

G v = 0.62 eV,

k = 86.2 × 10−6 eV/K,

rAl = 0.143 nm.

Solution: We have

nv

N
= e−G v/kT .

At 400 ◦C ( = 673 K),

2.3 × 10−5 = e−0.62/86.2×10−6×673,

Thus,

nv

n
= e−0.62/86.2×10−6×873 = 2.6 × 10−4.

Aluminum has the FCC structure, with four atoms per unit cell. The

lattice parameter a is related to the unit cell by

a = 2
√

2r = 0.404 nm.

The corresponding volume is

V = a3 = 0.0662 nm3.

In one μm3, the number of atoms is

n = 4 × 109

0.0662
= 6.04 × 1010,

nv = (2.6 × 10−4)n = 1.6 × 107.

Hence, there are about 1.6 × 107 vacancies per cubic μm of the

quenched aluminum.

Point defects can group themselves in more complex arrangements

(for instance, two vacancies form a divacancy, two interstitials form

a diinterstitial, etc.) The energy of formation of divacancies has been

determined for several metals. For example, for copper (with Gf = 5.63

× 10−19 J), it is: 0.96 × 10−19 J. The energy of formation of divacancies

in noble metals in on the order of 0.48 × 10−19 J. It is thought that di-

vacancies are stable, in spite of the fact that their enthalpies of bonding

are not very well known.



4 .3 ATOMIC OR ELECTRONIC POINT DEFECTS 259

Diinterstitials also exist, and their energies can be calculated by the

same processes as for monointerstitials. Similarly, the vacancies can

bind themselves to atoms of impurities when the binding energy is

positive.

4.3.2 Production of Point Defects
Intrinsic point defects in a metal -- either vacancies or self-interstitials

-- exist in well-established equilibrium concentrations. (See Section

4.3.1.) By appropriate processing, the concentration of these defects

can be increased. Quenching, or ultra-high-speed cooling, is one of

these methods. The concentration of vacancies in BCC, FCC, and HCP

metals is greatly superior to that of interstitials and on the order of

10−3 when the metal is at a temperature close to the melting point;

it is only 10−6 when the metal is at a temperature of about half the

melting point. Hence, if a specimen is cooled at a high enough rate,

the high-temperature concentration can be retained at low tempera-

tures. For this to occur, the rate of cooling has to be such that the

vacancies cannot diffuse to sinks -- grain boundaries, dislocations,

surface, and so on. Theoretically, gold would have to be cooled from

1,330 K to ambient temperature at a rate of 1011 K/s to retain its high-

temperature vacancy concentration. The fastest quenching technique

to cool thin wires produces cooling rates lower than 105 K/s; never-

theless, a significant portion of the high-temperature point defects is

retained.

Another method of increasing the concentration of point defects

is by plastic deformation. The movement of dislocations generates

point defects by two mechanisms: the nonconservative motion of

jogs, and the annihilation of parallel dislocations of opposite sign,

producing a line of vacancies or interstitials. Jogs are created by dis-

location intersections; since they cannot glide with dislocations, they

have to climb as the dislocation moves. In a screw dislocation, they

are small segments having the character of an edge. The slip plane

of this segment is not compatible with that of the dislocation. The

climb is possible only by continuous emission of vacancies or inter-

stitials. The second mechanism is depicted schematically in Figure 4.8.

When the two dislocations cancel each other, they create a row of

interstitials or vacancies if their slip planes do not coincide.

(a)

(b)

Row of
vacancies

Row of
interstitials

Fig. 4.8 Formation of point

defects by the annihilation of

dislocations. (a) Row of vacancies.

(b) Row of interstitials.
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Quenching produces mostly vacancies and vacancy groups. The

concentrations obtained are lower than 10−4. Deformation, on the

other hand, can introduce higher concentrations of vacancies and

equivalent ones of interstitials; the problem is that it also introduces a

number of other substructural changes that complicate the situation.

Dislocations are introduced, and they interact strongly with point

defects. One method of producing point defects does not present these

problems: Irradiation of the metal by high-energy particles allows the

introduction of a high concentration of point defects. The radiation

displaces the electrons, or ionizes, displaces atoms by elastic colli-

sions, and produces fission and thermal spikes. This subject is treated

in greater detail in Section 4.3.4. The displacement of atoms is pro-

duced by the elastic collision of the bombarding particles with the

lattice atoms, transferring the kinetic energy of the particles to the

atoms. This may cause the atoms to travel through the lattice. In

the majority of cases, an atom travels a few atomic distances and

enters an interstitial site. Consequently, a vacancy is produced,

together with a self-interstitial. The energy transferred in the colli-

sion has to be well above the energy required to form an interstitial-

-vacancy pair in a reversible thermodynamic process (3 to 6 eV, or

4.8 × 10−19 to 9.6 × 10−19 J). It is believed that the energy transferred

to the atom has to be approximately 25 eV (40 × 10−19 J). Different par-

ticles can be used in the bombardment process: neutrons, electrons,

γ rays, and α particles.

4.3.3 Effect of Point Defects on Mechanical Properties
Point defects have a marked effect on the mechanical properties of a

material. For this reason, the effect of radiation is of great importance.

Maddin and Cottrell2 used aluminum single crystals with various

purity levels, observing that the yield stress increased with quench-

ing. Quenching was accomplished by taking the specimens from

600 ◦C and throwing them into a water--ice mixture, while annealed

material was slowly cooled in the furnace. The yield stress increased

from 550 to 5,900 kPa, on average. The effect of impurity atoms

could be neglected because the increase in yield stress was consist-

ent throughout the specimens. The effect of possible residual stresses

due to quenching was also neglected. With the purpose of obtaining

evidence that was still more convincing, a single crystal was tested

immediately after quenching, while another was tested after staying

a few days at ambient temperature. The yield stress increased from

5.9 MPa to 8.4 MPa in the aged condition. The strengthening by

quenching is due to the interaction of dislocations and vacancies

or groups thereof. The effect of jogs, formed by the condensation of

vacancies on the dislocations, can also be considerable. During aging,

the excess concentration of vacancies forms groups and/or annihilates

preexisting dislocations.

2 R. Maddin and A. H. Cottrell, Phil. Mag., 46 (1955) 735.
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There are also alterations in the plastic portion of the stress-

versus-strain curve seen in Figure 4.9. The initial work-hardening

rate of the quenched aluminum is lower than that of slowly (fur-

nace) cooled aluminum. At greater strains, however, the two work-

hardening rates become fairly similar. Hence, the effect of quench-

ing disappears at higher strains. This is thought to be because the
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Fig. 4.9 Stress-versus-strain

curves for aluminum single crystals.

The crystallographic orientation is

shown in the stereographic

triangle. (Adapted with permission

from A. H. Cottrell, Phil. Mag., 46

(1955) p. 737.)

excess concentrations of point defects are eliminated during plastic

deformation; at the same time, excess vacancies are generated by

dislocation motion, so that the concentrations in the quenched and

furnace cooled materials become the same.

The increase in hardness in many quenched metals is negligible,

in spite of the obvious changes in the stress-versus-strain curve. This

is explained by the fact that the effect of quenching disappears after

a certain amount of plastic deformation. Since the indenter deforms

the metal plastically (in an extensive way), the effect of quenching is

minimal.

4.3.4 Radiation Damage
Irradiation of solids by high-energy particles may produce one or

more of the following effects:

1. Displaced electrons (i.e., ionization).

2. Displaced atoms by elastic collision.

3. Fission and thermal spikes.

Ionization has a much more important role in nonmetals than it

has in metals. The high electrical conductivity of metals leads to a

very quick neutralization of ionization, and there is no observable

change in properties due to this phenomenon. Electronic excitations

in metals are also eliminated almost instantaneously. Such would

not be the case in semiconductors and dielectrics, where electronic

excitation configurations are almost permanent. Thus, in the case of

metals, only collisions among incident particles and atomic nuclei are

of importance. The basic mechanism in all processes of radiation dam-

age is the transfer of energy and motion from the incident particle

beams to the atoms of the material. The incident particle beam may

consist of positive particles (protons, for example), negative particles

(which are invariably electrons), or neutral particles (X-rays, γ -rays,

neutrons, etc.). Irradiation by neutrons results in a large spectrum of

constant energy until the maximum energy that a particle can trans-

mit to an atom which suffered the impact. A neutron of 1 MeV (0.16 pJ)

can transfer about 105 eV (0.016 pJ) to an atom. High-energy transfers

can also be obtained by means of positive particles, but such energy

transfers are less common. In the case of electrons, only low-energy

transfers are possible. We shall consider here mainly the effects of

neutron radiation on metals. The primary collision has the function

of transferring energy to the atomic system. The subsequent events

that occur are as follows.
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1. Displacement of an atom from its normal position in the lattice

to a position between the normal lattice sites.

2. Creation of defects by displacements and their migrations and

interactions.

When an atom is displaced from its normal lattice site, two defects

are created: an interstitial atom referred to as autointerstitial or self-

interstitial, and a vacant lattice site called a vacancy. More complex

configurations can be regarded as having started from this funda-

mental step. When an atom receives an energy impulse greater than

a certain value Ee’ called the effective displacement energy, some atom

is displaced from its normal position to an interstitial position. In

the most simple case, if an atom receives the primary impact of

energy Ee, the atom itself is displaced. This, however, is not inevitable;

sometimes another atom, a neighboring one, is displaced. With an

increase in the energy imparted to the affected atom, various events

can occur. At low energies, but higher than Ee, only an interstitial

and its connected vacancy are possible. At high energies, the affected

atom becomes an important particle for creating more damage. This

leads to cascade elements.

Near the end of its trajectory, an energetic atom displaces all

the atoms that it encounters; this is called a ‘‘displacement spike.”

Through a cascade effect, damage propagates through the lattice.

Many atoms that spread about by displacement spikes will become

situated along the atomic packing lines, and thus these lines will be

a most efficient manner of transporting energy far away from the

spike. The impact transferred along a crystallographic direction is

called a Focuson (analogous to photon and phonon). If the energy is not

well above the energy required for atomic displacement, it will be

transferred into a chain of exchange collisions that makes the atom

travel far away from the spike before it comes to a stop as an inter-

stitial. The efficiency of this process is much higher in the close-

packed directions (the <110> directions in FCC crystals). The atomic

configuration in the <110> direction in which an interstitial is prop-

agated along a line is called a dynamic crowdion. The efficiency of the

focusing processes is directly proportional to the interatomic poten-

tial, being higher for heavy metals and lower for light metals (such as

Al). According to the Seeger model, at zero kelvin, for each initially

displaced atom, one would have one or more regions in which a good

fraction of atoms (about 30%) disappear. These regions are surrounded

by interstitial clouds that extend a few hundreds of atomic distances

in noble metals and perhaps a few atomic distances in a metal such

as Al. Seeger called the region of lost atoms in the center of a cascade

a ‘‘depleted zone” and estimated that its typical size would be less

than 1 nm. Figure 4.10 shows the Seeger model of damage produced

by irradiation.

Vacancies generated during exposure to radiation often condense

and form voids inside the material. An illustration of this is pro-

vided in Figure 4.11, which shows Ni irradiated by a high dosage of
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Primary
knock-on

Lattice
vacancy

Energy transport by
focusing collisions (110)

(200)

Depleted
zone

Interstitial
atoms

P

Propagating
dynamically

Exchange
collisionsPair

Close
frenkel

Fig. 4.10 Seeger model of

damage produced by irradiation. P

indicates the position where the

first “knock-on” terminates.

(Reprinted with permission from

A. Seeger, in Proc. Symp. Radiat.

Damage Solids React., Vol. 1,

(Vienna, IAEA, 1962) pp. 101, 105.)

Fig. 4.11 Voids formed in nickel

irradiated using 400 keV 14N2
+

ions to a dose of 40 dpa at 500 ◦C;

notice the voids with polyhedral

shape; dpa = displacements per

atom. (Courtesy of L. J. Chen and

A. J. Ardell.)

N +
2 ions. A high concentration of voids is produced. The voids have

polyhedral shapes because the surface energy is anisotropic and this

shape, rather than a sphere, minimizes the overall surface energy.

In any event, a major portion of radiation damage in common

metals caused by neutrons in reactors consists of a large number of

interstitials and vacancies produced in a cascade process that follows

after a primary knock-on impact. These point defects act as small

obstacles to dislocation movement and result in a hardening of the

metals. Besides this direct effect on mechanical properties, some in-

direct effects are possible. These indirect effects, which arise from the

fact that irradiation by neutrons changes the rates and mechanisms

of atomic interchange, are as follows.

1. Destruction of order of lattice.

2. Fractionating of precipitates.

3. Acceleration of nucleation.

4. Acceleration of diffusion.

These processes have their origin, directly or indirectly, in the

kinetic energy exchanges between energetic neutrons and atoms.

According to Seeger’s model, atoms can be transported long dis-

tances by ‘‘cooperative” focalization along the more densely packed
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directions, and the collision processes create simple defects, such as

interstitials and vacancies, and complex defects, such as displacement

spikes. If an alloy is ordered, focalization and displacement spikes may

destroy the order. If the alloy contains precipitates, a displacement

spike may break the precipitates if they are smaller than the spike

and thus return the precipitates into solution. In an alloy that can

have precipitates, the damaged regions caused by spikes can serve

as nucleation sites. The excess vacancies produced by irradiation can

accelerate the diffusion rate. All these effects influence significantly

the mechanical properties. At ordinary temperatures (i.e., ambient or

slightly above) one or both the defects (interstitials and vacancies)

are mobile, and thus, the ones that survive the annihilation, due

to recombination or loss of identity at sinks such as dislocations or

interfaces, group together. It is well established that in a majority of

metals, irradiation at low temperatures (<0.2Tm’ where Tm is the melt-

ing point, in kelvins) results in joining of vacancies and interstitials to

form groups that are surrounded by dislocations (i.e., loops and tetra-

hedral packing defects). These groups impede dislocation motion, as

well as increase the strength and reduce the ductility of the mater-

ial. At high temperatures, the vacancies can group together to form

voids. The formation of such groups of defects can cause important

and undesirable changes in mechanical properties and result in a

dimensional instability of the material. Damage accumulated during

irradiation by neutrons (and other particles) can cause significant

changes in important properties. For example, the yield stress or the

flow stress increases, and frequently there is a loss of ductility.

The problem of mechanical and dimensional stability is a very

serious one for structural components in fast reactors. In 1967, it was

discovered that nuclear fuel cladding consisting of austenitic stainless

steel, when exposed to high doses of fast neutrons, showed internal

cavities (∼10 nm). These cavities, called voids, result in an increase

in the dimensions of the material. It is estimated that the maxi-

mum possible dilation in the structural components is of the order

of 10%. However, as neutron flux and the temperature of the sodium

coolant are not uniform in the core, the swelling of the component
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Fig. 4.12 Stress–strain curves

for irradiated and unirradiated

Zircaloy. (Adapted with permission

from J. T. A. Roberts, IEEE Trans.

Nucl. Sci., NS-22, (1975) 2219.)

will be nonuniform. This nonuniformity can influence the compo-

nent’s behavior.

Irradiation by neutrons causes marked changes in the properties

of the zirconium alloys Zircaloy-2 and Zircaloy-4 (both very much

used in light water reactors) and in 304 and 316 stainless steels (used

in liquid metal fast-breeder reactors). Figure 4.12 shows the increase

in strength (yield strength and ultimate tensile strength) of Zircaloy

after neutron radiation. The exact nature of the defects introduced

by radiation that are responsible for these changes in Zircaloy are not

well characterized. There is a considerable variation in the observed

microstructures. One of the few observations about which there exists

general agreement is the absence of radiation-induced vacancies in

Zircaloy, which is a significant difference compared with, say, the

behavior of stainless steels. Stainless steels show swelling due to
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neutron irradiation. The dilation induced by neutron irradiation in

stainless steel depends on the neutron flux and the temperature, as

shown in Figure 4.13. It is believed that the vacancies introduced by

irradiation combine to form voids, while the interstitials are preferen-

tially attracted to dislocations. According to Shewmon3 this dilation

of stainless steel does not affect the viability or security of breeder-

type reactors, but will have a significant effect on core design and

economy of reproduction. It would appear that, in spite of not being

able to eliminate the effect completely, cold work, heat treatments,

or changes in composition can reduce the swelling by a factor of two

or more. Figure 4.14 shows the change in dilation of stainless steel as

a function of Cr and Ni content.

4.3.5 Ion Implantation
An interesting technological application using charged particles is

called ion implantation. Charged ions are accelerated in an electric

field (e.g., in a linear accelerator) to very high energies (∼200 keV) and

3 P. G. Shewmon, Science, 173 (1971) 987.
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allowed to strike the target solid in a moderate vacuum (∼1 mPa). It

is worth emphasizing that the selected species of ions is implanted

into, and not deposited on, the target surface. The technique, origin-

ally developed for preparing semiconductor devices in a controlled

fashion, has been made into a sophisticated tool for altering the com-

position and structure of surfaces for any number of purposes -- for

example, modifying the surface chemistry for better corrosion and

oxidation resistance, tribological properties, and superconductivity.

The reader can well imagine the power of the technique by the fact

that it allows one to introduce elements into a surface, which may

not be possible in conventional heat treatment because of low diffu-

sivity. Depending on the dose, B+, N+, and Mo+ ions implanted into

steel can reduce the wear of a tool by an order of magnitude.

The ion implantation technique of modifying the composition and

structure of surfaces has a number of advantages over conventional

techniques:

1. The process is essentially a cold one; therefore, there is no loss of

surface finish and dimensions (i.e., the process can be applied to

finished parts).

2. One can implant a range of metallic and nonmetallic ions, indi-

vidually or combined.

3. One can implant selected critical areas.

Ion implantation is particularly suited for the selected modification of

small, critical parts. Oil burners used for injecting a mixture of fuel

oil and air into boilers of oil-fired power plants face rather severe

erosion conditions. Ti and B implantation of oil-burner tips improved

erosion properties and increased the service life of the boilers.

Another very important aspect of ion implantation has to do with

the fact that it is basically a nonequilibrium process. There are thus

no thermodynamic constraints, such as solubility limits. In other

words, we are able to produce metastable alloys with new and unusual

characteristics, amorphous alloys, and so on. Hence, the technique

offers a novel way of producing surfaces, in a controlled manner, for

scientific studies.

4.4 Line Defects

Bands in the surface of plastically deformed metallic specimens were

reported as early as the 19th century. With the discovery of the crys-

talline nature of metals, these bands were interpreted as being the

result of the shear of one part of the specimen with respect to the

other. Similar slip bands (or markings) were observed by geologists

in rocks. However, calculations of the theoretical strength of crystals

based on the simultaneous motion of all atoms along the slip band

showed systematic deviations of several orders of magnitude with

respect to the experimental values. (See Section 4.2.) This discrepancy

led to the concept of line imperfections in crystals called dislocations.
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Later, the actual existence of such imperfections was verified by a

variety of techniques.

Figures 4.15 and 4.16 present two analogies that help us to visu-

alize dislocations. The displacement of a rug can be accomplished

b

Fig. 4.15 (a) Rug with a fold.

by applying a much lower force if a wave is created in the rug and

moved from the back to the front. This displacement, b, is indicated

in Figure 4.15. In a similar manner, caterpillars move by creating a

‘‘dislocation” and displacing it from the back to the front. (See Fig-

ure 4.16.) Sidewinders use a similar principle: these snakes generate

‘‘waves” along their bodies. The movement of the wave propels the

snake sideways. Having understood this concept, the diligent student

can readily comprehend how the movement of a dislocation in a body

can produce plastic deformation.

Figure 4.17 shows two distinct types of dislocations encountered

in crystalline solids: edge and screw dislocations. The atomic arrange-

ment surrounding these dislocations is distorted from the regular

periodicity of the lattice. The edge dislocation (Figure 4.17(a)) may be

visualized as an extra half plane of atoms terminating at the disloca-

tion line (perpendicular to the plane of the paper and passing through

the symbol ‘‘⊥”.) The screw dislocation can be visualized as a ‘‘parking

garage:” a car, driving around the dislocation line will go up or down

the building. Another analogy is the screw. Figure 4.17(a) shows the

atomic arrangement. The distortion of the periodic atomic arrange-

ment is represented by the Burgers vector b. A circuit is created

around the dislocation line, as indicated by ABCDE. AB and CD corres-

pond to 4a, where a is the interatomic spacing. BC and DE correspond

b

b

Fig. 4.16 Caterpillar with a

hump.
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A b E

(a)

D

B C

Fig. 4.17 (a) Arrangement of

atoms in an edge dislocation and

the Burgers vector b that

produces closure of circuit ABCDE.

(b) Arrangement of atoms in

screw dislocation with “parking

garage” setup. (Notice car entering

garage.)
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Fig. 4.18 Geometrical

production of dislocations.

(a) Perfect crystal. (b) Edge

dislocation. (c) Screw dislocation.

to 3a. The failure of the circuit to close represents the vector b. A Burg-

ers circuit is also represented around the screw dislocation in Figure

4.17(b). The essential difference between these two types of disloca-

tion is that in the edge dislocation, b is perpendicular to dislocation

line vector, �, whereas in the screw dislocation, b is parallel to �.

Edge dislocations were proposed by Orowan, Polanyi and Tay-

lor, in 1934.4 Screw dislocations were proposed by Burgers in 1939.5

Figure 4.18 shows how the shearing of the lattice can generate edge

and screw dislocations. Imagine a cut made along ABCD in Figure

4.18(a). If the shearing direction is as marked in Figure 4.18(b), the

Burgers vector is perpendicular to line AB or �. The resultant dis-

location is of edge character. If the shearing direction, defined by b,

is parallel to AB, then b // �, and the resulting dislocation is of screw

character. (See Figure 4.18(c).) The movement of an edge dislocation

under an applied shear stress τ is shown in Figure 4.19. The perfect

lattice shown in Figure 4.19(a) is broken and the dislocation is formed

as shown in Figure 4.19(b). This edge dislocation (b ⊥ � ) moves from

left to right, and the final, deformed configuration is shown in Figure

4.19(c). The relationship between the applied shear stress, the direc-

tion of movement of dislocation, and the plastic strain generated is

quite different for the two types of dislocation. Figure 4.20 shows how

a hypothetical crystal subjected to a shear stress τ undergoes plastic

deformation by means of the propagation of (a) an edge dislocation

and (b) a screw dislocation. The direction of motion of the dislocations

is always parallel to b. The final shear is the same, but the motion

of the two dislocations is completely different. There is also a mixed

dislocation that possesses both screw and edge character. Figure 4.21

shows such a dislocation, together with the ‘‘cut.” It can be seen that

the shear direction is neither parallel (screw) nor perpendicular (edge)

to the direction of the cut.

4 E. Orowan, Z. Phys., 89 (1934) 604. M. Polanyi, Z. Phys., 89 (1934) 660. G. I. Taylor, Proc.

Roy. Soc. (London), A145 (1934) 362.
5 J. M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42 (1939) 293, 378.
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Fig. 4.19 The plastic

deformation of a crystal by the

movement of a dislocation along a

slip plane.

Another type of dislocation is called a helical dislocation. It forms

a large helix and is sometimes observed in crystals that were heat-

Unsheared

b

d

b

Partially sheared

Completely sheared

t

Fig. 4.20 Plastic deformation

(shear) produced by the movement

of (a) edge dislocation and (b)

screw dislocation. Note d is the

direction of dislocation motion; �

is the direction of dislocation line.

treated to produce climb. ‘‘Climb” is the movement of a dislocation

perpendicular to its slip plane. ‘‘Glide” is the movement along the slip

plane. Climb is described in Chapter 13 (Creep). These dislocations are

of mixed character; the reader should not confuse them with screw

dislocations.

Dislocations will be studied in detail in this chapter, since they are

the building blocks for the understanding of the mechanical response

of metals. The treatment, however, still is far from comprehensive. For

further details, the reader is referred to the suggested readings at the

end of the chapter.

4.4.1 Experimental Observation of Dislocations
It took 20 years to prove, beyond any doubt, the existence of disloca-

tions experimentally, and this period (1935--1955) was surrounded by

skepticism and harsh polemics. Nevertheless, the existence of disloca-

tions is nowadays universally recognized, and the ‘‘lunatic” theories

and models have been proven to be remarkably correct. A number

of techniques have allowed the observation of dislocations, including

etch pitting, X-ray diffraction (Berg--Barrett topography), and, most

importantly, transmission electron microscopy (TEM). The last one is

established as the principal method for observing dislocations.

In TEM, the foil has to be thinned to a thickness between 0.1

and 0.3 μm, becoming transparent to electrons when the accelerating

voltage is in the 100--300 kV range. Dislocations produce distortions
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of the atomic planes. Hence, for certain orientations of the foil with

respect to the beam, the region around a dislocation diffracts the

beam. The dislocations can then be seen as dark, thin lines under

a bright field. TEMs with higher operating voltages (in the megavolt

B

A

b

Fig. 4.21 Mixed dislocation

obtained from cut-and-shear

operation; notice the angle

between b and �.

range) are available and allow thicker specimens to be observed. Fig-

ure 4.22 shows dislocations in titanium and silicon rendered visible

by this technique. The dislocations in titanium (Figure 4.22(a)) appear

as sets of parallel segments; the segments are parallel because the

dislocations minimize their energy by being along certain crystallo-

graphic planes. The same phenomenon is observed in silicon (see Fig-

ure 4.22(b)). A hardness indentation (lower right-hand corner) gener-

ated a profusion of dislocation loops. These loops are not circular, but

consist of segments that are crystallographically aligned because of

energy minimization considerations. The dislocation configurations

in materials are highly varied and depend on a number of param-

eters, such as total strain, strain rate, stress state, deformation tem-

peratures, crystallographic structure, etc. Note that the dislocations

in silicon (Figure 4.22(b)) appear as white lines, whereas in Figure

4.22(a) they are dark lines. This is because Figure 4.22(b) is a dark-field

image, in which the grain diffracts, and the dislocation transmits, the

electron beam. The figure is opposite to the normal bright-field trans-

mission images (Figure 4.22(a)).

Dislocations are also present in ceramics, although they are less

mobile. They can be produced by plastic deformation at high tempera-

tures, by thermal stresses during cooling, or by applying very high

stresses, made possible by, for instance, impacts at several hundred

meters per second. Figure 4.23 shows dislocations observed in alumina

(a) (b)

Fig. 4.22 Dislocations in metals. (a) Titanium. (Courtesy of B. K. Kad.) (b) Silicon.
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(a) (b)

Fig. 4.23 Dislocations in (a) Al2O3 and (b) TiC. (Courtesy of J. C. LaSalvia.)

Fig. 4.24 Atomic resolution transmission electron micrograph of dislocation in

molybdenum with a Burgers circuit around it. (Courtesy of R. Gronsky.)

and titanium carbide. The dislocations in the alumina were generated

by impact at 600 m/s. The dislocations in the titanium carbide were

produced by plastic deformation above the material’s ductile-to-brittle

transition temperature (∼2,000 ◦C). At room temperature, this ceramic

would simply undergo brittle fracture.

High-resolution TEM can resolve the individual atoms and iden-

tify the lattice distortions around a dislocation. Figure 4.24 shows
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molybdenum imaged in such a fashion. The dark spots represent one

atom each. Mo has the BCC structure, and the foil plane imaged is

(100). The right-hand side of the picture shows a unit cell. A Burg-

ers circuit is drawn around an edge dislocation, which has a line �

perpendicular to the plane of the foil. The closure gap represents the

Burgers vector of the dislocation. A comparison of the figure with the

unit cell establishes the magnitude of the Burgers vector; it is equal

to the lattice parameter a. This is clearly indicated in the figure. The

presence of the dislocation can also be felt by noticing the break in

the [110] planes, making 45◦ with the cube axes.

The electron micrographs of Figures 4.22--4.24 illustrate the pres-

ence and variety of dislocation configurations observed in crystalline

materials.

4.4.2 Behavior of Dislocations

Dislocation Loops
A dislocation line can form a closed loop, instead of extending until

it reaches an interface or the surface of the crystal. This is illustrated

in Figure 4.25(a), where a square loop is sketched. Two cuts, along

perpendicular sections, were made: AAA and BBB. Figure 4.25(b) and

(c) show these sections. It can clearly be seen that the dislocation seg-

ments CF and DE (Figure 4.25(b)) are of edge character, while segments

CD and FE (Figure 4.25(c)) are of screw character. This is due to the

direction of the shear. The loop can be imagined as a cut made in

the interior of the crystal (an impossible feat, of course); the edges

of the cut form the dislocation line, after shear is applied to the crys-

tal. Dislocations CF and DE are of the same type, with opposite signs;

the same applies to CD and FE. The sign convention used for edge

dislocations is the following: If the extra semiplane (wedge) is on the

top portion, it is positive; if on the bottom, it is negative. Hence, CF

is positive and DE is negative. For screw dislocations, a similar con-

vention is used. If the helix turns in accord with a normal screw, it

is positive. If not, it is negative. According to this convention, CD is

positive and FE is negative.

A

A

A
A

A
A

B

BB

B

B

A

EF

C D

B

B

(a)

(b)

(c)

Fig. 4.25 Square dislocation

loop.

The actual dislocation loops are not necessarily square. An ellip-

tical shape would be more favorable energetically than a square.

For an elliptical or circular shape, the character of the disloca-

tion changes continuously along the line. Figure 4.26(a) shows this

situation; the regions that are edge and screw are shown by appro-

priate symbols. The symbols most commonly used are an inverted

T (⊥) for a positive edge, and an S for a positive screw disloca-

tion. The negative signs can be described by a correct T and by

an inverted S (< S>). In Figure 4.26(a), all the portions of the loop

between the short segments of pure screw and edge character are

mixed. These loop segments move as shown in the figure. The loop

expands and eventually ‘‘pops out” of the parallelepiped, creating the

shear shown in Figure 4.26(b). Figure 4.26(c) shows a shear loop in

copper.
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(a) (b)

(c)

Fig. 4.26 Elliptic dislocation loop. (a) Intermediate position. (b) Final (sheared)

position. (c) TEM of shear loop in copper (Courtesy of F. Gregori and M. S. Schneider.)

There is another type of loop, called a prismatic loop, that should

not be confused with a common loop. A prismatic loop is created

when a disk of atoms is either inserted or removed from the

crystal. Figure 4.27(a) shows this situation; cuts AAAA and BBBB

are indicated. A disk having the thickness of one atomic layer was

introduced and it can be seen that sections AAAA (Figure 4.27(b))

and BBBB (Figure 4.27(c)) are identical. They are edge dislocations

with opposite signs. This configuration is very different from that

encountered in normal loops. One can also remove a disk of atoms,

instead of adding it. These loops do not have the same ability to move

as do normal loops because the Burgers vector is perpendicular to the

loop.

A

A A

A

B B

B B

A

B

B

B

(a)

(b)

(c)

A

A

Fig. 4.27 Prismatic loop

produced by the introduction of a

disk into metal. (a) Perspective

view. (b) Section AAAA. (c) Section

BBBB.

Movement of Dislocations

The plastic deformation of metals is normally accomplished by the

movement of dislocations. The elements of dislocation motion are

reviewed in this section, together with the resulting deformations.

In actual deformation and for elevated strains, complex interactions

occur between dislocations. These interactions can be broken down




