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(a)

(b)

Fig. 4.28 Slip produced by the

movement of dislocation. (a)

Positive and negative edge

dislocations. (b) Positive and

negative screw dislocations.

into simple basic mechanisms that will be described next. Two edge

dislocations are shown in Figure 4.28(a). After the passage of one of

them, one part of the lattice is displaced in relation to the other

part by a distance equal to the Burgers vector. Both a positive and a

negative dislocation can generate the same shear; however, they have

to move in opposite directions in order to accomplish this. The reader

is reminded (see Figure 4.20(a)) that the shear and motion directions

are the same for edge dislocation.

Screw dislocations can produce the same lattice shear (Figure

4.28(b)). However, in this case the shear takes place perpendicular

to the direction of motion of the dislocations; positive and negative

screw dislocations have to move in opposite directions in order to

produce the same shear strain.

The plane in which a dislocation moves is called a slip plane. The

slip plane and the loop plane coincide in Figure 4.29. A loop will

eventually be ejected from a crystal upon expanding if there is no

barrier to its motion. The expansion of a loop will produce an amount

of shear in the crystal equal to the Burgers vector of the dislocation.

It is worth noting that the shears of the different dislocations are all

compatible; there is no incompatibility of movement.

The prismatic loops, consisting totally of edge dislocations, can-

not expand like the normal loops. Thus, because the plane of the dis-

location does not coincide with the loop plane, the coupled move-

ment of the edge dislocations will force the loop to move perpendic-

ular to its plane, maintaining the same diameter. Upon being ejected

from the crystal, a step will be formed at the surface. Figure 4.30

shows a succession of vacancy loops formed by punching of prismatic

dislocations.

4.4.3 Stress Field Around Dislocations
Dislocations are defects; hence, they introduce stresses and strains

in the surrounding lattice of a material. The mathematical treat-

ment of these stresses and strains can be substantially simplified

if the medium is considered to be isotropic and continuous. Under

conditions of isotropy, a dislocation is completely described by the

line and Burgers vectors. With this in mind, and considering the

simplest possible situation, dislocations are assumed to be straight,

infinitely long lines. Figure 4.31 shows hollow cylinders sectioned

S
T

T
S

Fig. 4.29 Expansion of a

dislocation loop.
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Fig. 4.30 Nickel heated at

600 ◦C for 10 min and quenched in

liquid nitrogen. Strings of vacancy

loops can be clearly seen.

(Courtesy of L. E. Murr.)
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Fig. 4.31 Simple models for (a)

screw and (b) edge dislocations;

the deformation fields can be

obtained by cutting a slit

longitudinally along a thick-walled

cylinder and displacing the surface

by b parallel (screw) and

perpendicular (edge) to the

dislocation line.

along the longitudinal direction. Different deformations are applied

in the two cases. The one in Figure 4.31(a) portrays the deformation

around a screw dislocation, while Figure 4.31(b) is an idealization of

the strains around an edge dislocation. The cylinders, with external

radii R, were longitudinally and transversally displaced by the Bur-

gers vector b, which is parallel (perpendicular) to the cylinder axis in

the representation of a screw (an edge) dislocation. In either case, an

internal hole with radius r0 is made through the center. This is done

to simplify the mathematical treatment. In a continuous medium,

the stresses on the center would build up and become infinite in

the absence of a hole; in real dislocations the crystalline lattice is

periodic, and this does not occur. In mechanics terminology, this

is called a singularity, A ‘‘singularity” is a spike, or a single event.

For instance, the Kilimanjaro is a singularity in the African plains.

Therefore, we ‘‘drill out” the central core, which is a way of recon-

ciling the continuous-medium hypothesis with the periodic nature

of the structure. To analyze the stresses around a dislocation, we

use the formal theory of elasticity. For that, one has to use the rela-

tionships between stresses and strains (constitutive relationships), the

equilibrium equations, the compatibility equations, and the bound-

ary conditions. Hence, the problem is somewhat elaborate. We

present the derivation of these relationships here only for the screw
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dislocation; see Kuhlmann-Wilsdorf, and Weertman and Weertman

(in the suggested reading) for details.

In Figure 4.31, we have the following displacements, for a screw

dislocation, along the axes x1, x2, and x3:

u1 = 0, u2 = 0, u3 �= 0.

The displacement in the direction x3 can be assumed to be approxi-

mately equal to

u3 = f (θ ) = b

2π
θ.

This is so because the displacement is b after a rotation of 2π . The

angle θ is given by tan θ = x1/x2, thus

u3 = b

2π
arctan

x2

x1

. (4.10a)

The strain components in indicial notation are:

εi j = 1

2

(
∂ui

∂x j

+ ∂u j

∂xi

)
i, j = 1, 2, 3

ε11 = 0, ε22 = 0,

ε12 = 0, ε23 = 1

2

∂u3

∂x2

,

ε13 = 1

2

∂u3

∂x1

, ε33 = ∂u3

∂x3

= 0.

Substituting Equation 4.10a into the equations above, we obtain

ε13 = −bx2

4π (x2
1 + x2

2 )
, (4.10b)

ε23 = bx1

4π (x2
1 + x2

2 )
, (4.10c)

σ33 = 0.

Now, using the generalized Hooke’s law, we have

σ13 = 2G ε13,

σ23 = 2G ε23.

σ13 = σ31 = − G bx2

2π (x2
1 + x2

2 )
, (4.11a)

σ23 = σ32 = G bx1

2π (x2
1 + x2

2 )
. (4.11b)

The stresses around an edge dislocation are (given without

derivation):

σ11 = − G bx2(3x2
1 + x2

2 )

2π (1 − v )(x2
1 + x2

2 )2
, (4.12a)

σ12 = G bx1(x2
1 − x2

2 )

2π (1 − v )(x2
1 + x2

2 )2
, (4.12b)

σ22 = G bx2(x2
1 − x2

2 )

2π (1 − v )(x2
1 + x2

2 )2
. (4.12c)
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Fig. 4.32 Stress fields around an

edge dislocation. (The dislocation

line is Ox3): (a) σ 11; (b) σ 22; (c)

σ 33; (d) σ 12. (Adapted with

permission from J. C. M. Li, in

Electron Microscopy and Strength of

Crystals, eds. G. Thomas and J.

Washburn (New York:

Interscience Publishers, 1963).)

It then follows that

σ33 = v (σ11 + σ22) = − G bv x2

π (1 − v )(x2
1 + x2

2 )
. (4.12d)

These stresses are shown in Figure 4.32 through isostress lines.

4.4.4 Energy of Dislocations
The elastic deformation energy of a dislocation can be found by inte-

grating the elastic deformation energy over the whole volume of the
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deformed crystal. The deformation energy is given by

U = 1

2
σi jεi j . (4.13)

For an isotropic material, converting the strains to stresses, we have

U = 1

2G

[
1

2(1 + v )
(σ 2

11 + σ 2
22 + σ 2

33) + (σ 2
12 + σ 2

13 + σ 2
23)

− v

(1 + v )
(σ11σ33 + σ11σ22 + σ22σ33)

]
. (4.13a)

Using Equations 4.10a and 4.10b we have, for a screw dislocation,

Us = 1

2G

[
G 2b2x2

2

4π2(x2
1 + x2

2 )2
+ G 2b2x2

1

4π2(x2
1 + x2

2 )2

]
(4.14)

= G b2

8π2(x2
1 + x2

2 )
.

Substituting (x2
1 + x2

2 ) by r2 (see Figure 4.31), we find that

Us = G b2

8π2r 2
. (4.15)

Integrating Equation 4.15 between r0 and R, we get

Us =
∫ R

r0

G b2

8π2r 2
2πrdr = G b2

4π
ln

R

r0

. (4.16)

In a similar way, the energy of a straight edge dislocation per unit

length is equal to

U⊥ = G b2

4π (1 − v )
ln

R

r0

. (4.17)

It should be observed that the factor (1 − v) is approximately equal

to 2/3. Hence, the energy of an edge dislocation is about 3/2 of that

of a screw dislocation.

The schematic drawing of Figure 4.31 removes the core of the

dislocation so as to avoid the infinite stresses along the dislocation

line. Several methods have been used to estimate r0. In this book, r0

will be assumed to be equal to 5b. Note that the energy given by the

foregoing equations become infinite for infinite R; hence, one has to

establish an approximate value for R. Dislocations in a metal never

occur in a completely isolated manner; they form irregular arrays

with mean density ρ. This density is given as the total length of dis-

location line per unit volume. The spaghetti analogy can be used here.

Imagine a pot with water and spaghetti. The density of the spaghetti

would be obtained by measuring the total length of the spaghetti and

dividing it by the volume of the pot. The stress fields of the various

dislocations interact, as will be seen in subsequent sections; we gen-

erally assume a value of R equal to the average distance between the
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L

L

L

LL

V

(a)

(b)

Fig. 4.33 Schematic

representation of an idealized

dislocation array (a) in two

dimensions and (b) in three

dimensions; note that dislocations

on three perpendicular atomic

planes define a volume V.

dislocations. It can be shown, by means of a simplified array, that the

average distance or mean free path of dislocations is approximately

equal to ρ−1/2.

It is possible to calculate the radius of influence of each dislocation

line, R, from the dislocation density ρ. This radius of influence is

equal to L/2, in Figure 4.33. Figure 4.33(a) shows a two-dimensional

array of dislocations; all dislocation lines ‘‘poke out” of the plane of

the page. The mean spacing is L, and the hatched area is L2. This area

is bounded by four dislocations, and each dislocation is shared by

four areas. Thus,

L2 area → 1 dislocation,

unit area → ρ dislocations.

As a result,

ρ = L −2. (4.18)

The tridimensional calculation is slightly more complicated. Figure

4.33(b) shows a tridimensional array of dislocations. The hatched vol-

ume is V = L3. This volume is composed of dislocations that lie along

the edges. The total dislocation length can be taken to be 12 L. How-

ever, each dislocation is shared by four adjacent cubes. Hence,

ρ = 12L /4

L 3
= 3L −2. (4.19)

But

R = L

2
,

so that

ρ = 3(2R)−2
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and

R = 1

2

(ρ

3

)−1/2

= 0.86ρ−1/2.

The average dislocation radius is often taken to be

R ≈ ρ−1/2.

We now add the energy of the dislocation core. This energy is taken

to be Gb2/10 for metals. Hence, the total energy of a dislocation is

Ur = Unucleus + Uperiphery.

Equation 4.17 can then be generalized to:

Ur = G b2

10
+ G b2

4π (1 − v )
(1 − v cos2 α) ln

ρ−1/2

5b
, (4.20)

where α is a parameter that describes the nature of the dislocation

(edge α = π /2, screw α = 0), which can be mixed.

The energy of dislocations is often taken to be approximately

Ur = G b2

2
. (4.21)

For typical metals, Ur is equal to a few electron volts per atomic

plane. The energy of the nucleus is 10% of this total. The energy of

a dislocation per atomic plane is high in comparison with that of a

vacancy: approximately 3 eV (4.8 × 10−19 J) versus about 1 eV (1.6 ×
10−19 J).

Example 4.3

Annealed materials have a dislocation density of approximately

108 cm−2 or 1012 m−2. Calculate the total strain energy for copper.

Solution: For copper, the Burgers vector is b = 0.25 nm. Inserting these

values into Equation 4.14 and using α = 0 (for a screw dislocation), we

obtain

U = 0.1G b2 + G b2

4π
ln

10−6

5 × 0.25 × 10−9
= 0.63G b2 = G b2

1.587
∼= G b2

2
.

For this example, the energy per unit length is equal to 1.5 × 10−9 J/m

(G = 48.3 GPa). The total strain energy is 1.5 kJ/m3.

4.4.5 Force Required to Bow a Dislocation
Two additional equations will be derived next: the force required to

curve a dislocation to a radius R and the Peach--Koehler equation.

The analogy of a string helps to explain the energy of a dislocation.

In the absence of an external stress field, a dislocation will tend to be

straight, minimizing its length and overall energy. The same occurs

for a string under tension. If the string is pushed by a force, it will

exert a force back. Thus, a curved dislocation is said to possess a ‘‘line

tension,” which can be calculated. The energy of a curved dislocation
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with radius R can be calculated (see Weertman and Weertman, p. 50,

in the suggested reading) and is equal to

U = G b2

4π
ln

R

5b
. (4.22a)

It is possible to calculate the force F required to bend a dislocation

into a radius R. Figure 4.34 shows a curved dislocation with radius

R
TT

ds

dq dq/2dq/2

Fig. 4.34 Curved dislocation.

R. The line tension T is defined as the self-energy per unit length of

dislocation. In the figure, the segment of the dislocation ds is ‘‘sec-

tioned off,” and the remaining dislocation is replaced by two tensions

T acting tangentially to the line at the section points. The line tension

is always tangential to the dislocation line. The (downward) vertical

force exerted by the line tension on the segment ds is

F1 = 2T sin(dθ/2).

This is balanced by the force F2 (per unit length) exerted on the dis-

location, multiplied by its length:

F2ds = 2T sin(dθ/2).

Since dθ /2 is a small quantity,

F2ds = T dθ.

But

Rdθ = ds,

F2 R dθ = T dθ,

F2 = T /R

Assuming, to a first approximation, that the line tension of a curved

dislocation is equal to the energy of a straight dislocation (Eqn. 4.21),

we have

F = G b2/2R . (4.22b)

Peach--Koehler equation
The Peach--Koehler equation relates the force applied to a dislocation

to a stress. F is the force per unit length of dislocation, and τ is the

shear stress acting on the slip plane along the slip direction. This

relation can be demonstrated by considering a parallelepiped with

dimensions dx1, dx2, dx3. If a dislocation, with length dx1, on which

a force per unit length is F, moves through the parallelepiped, the

work done is

W = (F dx1)dx2.

The change in strain energy of the cube is equal to 1/2 > γ in elas-

ticity and = ζγ in plasticity.

For volume dx1dx2dx3:

U = (τγ )dx1dx2dx3,
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Fig. 4.35 Decomposition of

dislocation in an FCC crystal.

where dx1 dx2 dx3 is the volume of the parallelepiped. The shear strain

produced by one dislocation is

γ = b/dx3.

Since W = U,

(F dx1)dx2 = (τb/dx3)dx1dx2dx3

and

F = τb. (4.22c)

By applying the Peach--Koehler equation to Equation 4.2b, we get the

stress required to bow a dislocation to radius R:

τ = G b/2R . (4.22d)

4.4.6 Dislocations in Various Structures

Dislocations in Face-Centered Cubic Crystals
In Section 1.3.2, we saw that, among the 80 or so metals, 55 are

FCC. The FCC structure is the closest packed one, together with the

HCP structure. Thus, it is natural that dislocations be more carefully

studied for the FCC structure.

When we visualize a dislocation, we generally think of a defect

that, upon passing, recomposes the original structure of the crystal.

Hence, in a simple cubic structure, the Burgers vector would have the

direction [100] and magnitude a (lattice parameter). However, there

are cases in which the original structure is not recomposed. This

type of dislocation is called imperfect or partial.

In FCC crystals, the closest packed planes are (111). These planes are

usually termed A, B, and C, depending on their order in the stacking

sequence. Figure 4.35 shows an atomic plane A. The glide movement of

the atoms of the plane A that would recompose the same lattice would

be indicated by the Burgers vector b1. This vector has the direction

[101̄]. Its magnitude is (it can be also seen in Figure 4.35 that it is

equal to the atomic size, and half the side AB):

b1 =

∣∣∣−→B A
∣∣∣

2
= 2r (4.23)
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Vector b1 is expressed with respect to unit vectors i, j, and k of the

coordinate system Ox1x2x3 as

−→
B A = a(i + 0j − k) b1 = a

2
i + 0j − a

2
k = a

2
(i − k). (4.24)

It can be seen that the magnitude is

|b1| = a√
2
.

This vector is, logically, the same as that of Equation 4.23. The sim-

plified notation used for Burgers vectors is

b1 = a

2
[101̄] or b1 = 1

2
[101̄].

Hence, the term in brackets gives the direction of the vector, while

the term that precedes it is the same fraction as that used in the

definition of the unit vectors i, j, and k (see Equation 4.24). There is

also a graphic method to determine this fraction. First, one draws the

vector b connecting point (0, 0, 0) to point (1, 0, --1). Then one draws

b1, which will be a fraction of b (in this case, half). The fraction is the

term that precedes the bracketed term.

One possibility of decomposition for the dislocation is shown in

Figure 4.35, where b2 and b3 add up to b1. b2 is obtained from BD

and b3 from EA.

−→
B D = a

2
i + a

2
j − ak

−→
E A = ai − a

2
j − a

2
k.

It can be shown that b2 = BD/3 and that b3 = EA/3. Both b2 and b3

define partial dislocations, because they change the stacking sequence

ABC. But, acting together (or sequentially), they would have the same

effect as b1 and maintain the correct stacking sequence. b2 and b3

are:

b2 = a

6
(i + j − 2k)

b3 = a

6
(2i − j − k)

and

b1 = b2 + b3.

It is easy to establish whether b1, b2, and b3 belong to (111): the scalar

product should be zero, because [111], which is perpendicular to (111),

should also be perpendicular to b1, b2, and b3. The magnitude of b2

is given by:

|b2| =
[

a2

36
(1 + 1 + 4)

]1/2

= a√
6.

Hence, we have the following possible reaction:

a

2
[101̄] → a

6
[112̄] + a

6
[21̄1̄].
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(a) (b)

b1
b2

b3

d0Fig. 4.36 Decomposition of a

dislocation b1 into two partial

dislocations b2 and b3, separated

by a distance d0.

From Equation 4.21, the energy is Gb2/2. Therefore, we need to check

whether

G b2
1

2
�G b2

2

2
+ G b2

3

2
,

or b2
1 � b2

2 + b2
3. Taking the square of the magnitude of the Burgers

vectors yields

a2

2
>

a2

6
+ a2

6
,

and we can see that the total energy decreases with decomposition.

When a perfect dislocation decomposes itself into partials, a

region of faulty stacking is created between the partials. This decom-

position is shown in Figure 4.36. The dislocations generate a region

in which the stacking is ABC AC ABC. Hence, we have four planes in

which the stacking is CACA. This is exactly the stacking sequence of

the HCP structure. This structure has a higher Gibbs free energy than

the equilibrium FCC structure, because it is not thermodynamically

stable under the imposed conditions. This specific array of planes is

called the stacking fault, and the energy associated with it determines

the separation between the two partial dislocations: The repulsive

force between the two partials is balanced by the attraction trying to

minimize the region with the stacking fault. The following equa-

tions from [Murr6 and Kelly and Groves, (see the suggested read-

ing) respectively], allow the calculation of the equilibrium separation

between the partial dislocations d:

γSF = G
∣∣bp

∣∣2

8πd

[
2 − v

1 − v

(
1 − 2v cos 2θ

2 − v

)]
,

γSF = G b1b2

2πd

(
cos θ1 cos θ2 + sin θ1 sin θ2

2 − v

)
,

or, in simplified form:

γSF = G b2

2πd
. (4.25)

Here, γ is the stacking-fault free energy (SFE) per unit area (free

energy of HCP minus free energy of FCC), bp is the Burgers vector of

6 L. E. Murr, Interfacial Phenomena in Metals and Alloys (Reading, MA: Addison-Wesley, 1975),

p. 142.
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Table 4.2 Stacking Fault Free Energies and Separation between Shockley

Partials for Metals (θ = 30◦)a

Metal γ (mJ/m2) a0 (nm) b (nm) G (GPa) d (nm)

Aluminum 166 0.41 0.286 26.1 1
Copper 78 0.367 0.255 48.3 3.2
Gold 45 0.408 0.288 27.0
Nickel 128 0.352 0.249 76.0 2.9
Silver 22 0.409 0.289 30.3 9

a Adapted from L. E. Murr, Interfacial Phenomena in Metals and Alloys (Reading, MA:

Addison-Wesley, 1975).

(a) (b)

Fig. 4.37 (a) Short segment of

stacking fault in AISI 304 stainless

steel overlapping with coherent

twin boundary. (a) Differences in

the nature of these defects are

illustrated by fringe contrast

differences. (b) Dislocations in AISI

304 stainless steel splitting into

partials bounded by short

stacking-fault region. Partials

spacing marked as d. (Courtesy of

L. E. Murr.)

the partial dislocation, and θ is the angle of the Burgers vector with

the dislocation line. Table 4.2 presents the SFEs for some materials.

From the preceding equations, it can be seen that d is inversely pro-

portional to γ . The effect of alloying elements is generally to decrease

the SFE. The addition of aluminum to copper has a drastic effect on

the latter’s SFE, dropping it from 78 to 6 mJ/m2. Aluminum, which has

a high SFE (166 mJ/m2), does exhibit a very small separation between

partials: 1 nm. On the other hand, in certain alloy systems, the dis-

tance can go up to 10 nm or more.

The stacking-fault energy is very sensitive to composition. Usually,

alloying has the effect of decreasing the SFE. Hence, brasses have an

SFE lower than that of copper, and Al alloys have an SFE lower than

that of Al.

Figure 4.37 shows some stacking faults in AISI 304 stainless steels

viewed by transmission electron microscopy. The region correspond-

ing to the stacking fault can be clearly seen by the characteristic

fringe (////) pattern. The extremities of the fringes are bound by the

partial dislocations. In Figure 4.37(a), the stacking fault lies paral-

lel to a coherent twin boundary, which is much longer than the

stacking fault. The fault can be distinguished from the coherent twin
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boundary by the differences in fringe contrast. While all the fringes

of the stacking fault are dark, the ones in the twin are dark at the

top and become successively lighter. Figure 4.37(b) shows a number

of dislocations (probably emitted from the same source) whose seg-

ments are trapped on the foil. These segments have decomposed into

partials, and one can clearly distinguish the stacking-fault regions by

the characteristic fringe contrast.

The effect of the stacking-fault energy on the deformation sub-

structure can be seen in Figure 4.38. This figure shows (a) a copper

and (b) Cu--Al alloy after deformation by shock loading under identi-

cal conditions (40 GPa peak pressure, 3 ns pulse duration). The Cu--Al

alloy has a significantly lower stacking-fault energy (γSF = 39 mJ/m2)

than does pure copper (γSF = 78 mJ/m2), and the resultant deforma-

tion substructures seem to be strongly affected by this difference.

Low-SFE metals tend to exhibit a deformation substructure character-

ized by banded, linear arrays of dislocations, whereas high-SFE met-

als tend to exhibit dislocations arranged in tangles or cells. Cross-slip

is more difficult in low-SFE alloys because the dislocations have to

constrict in order to change slip planes. (See Chapter 6.) Therefore,

the dislocations arrange themselves into parallel bands. The SFE also

affects the work-hardening of alloys.

Another type of dislocation in FCC structures is called a sessile

or Frank dislocation, which is immobile. Sessile or Frank dislocations

appear under two specific conditions, shown in Figure 4.39. In Figure

4.39(a), a disk was removed in plane (111); in Figure 4.39(b), a disk was

added. It can be seen that in both cases the stacking sequence was

changed, to ABCBCA and ABCBABC for Figure 4.39(a) and (b), respect-

ively. The Burgers vector is given by:

b = a

3
[111].

We have a sample of an intrinsic stacking fault in Figure 4.39(a) and an

extrinsic, or double-stacking fault in Figure 4.39(b). Since the Burgers

vector is not in the slip plane, the two faults are immobile. Another

type of immobile dislocation that can occur in FCC metals is the

Lomer--Cottrell lock. Let us consider two (111) and (111̄) planes. The

three perfect dislocations on (111) are

b1 = a

2
[11̄0],

b2 = a

2
[1̄01],

b3 = a

2
[011̄],

For plane (111̄), we have

b4 = a

2
[1̄10],

b5 = a

2
[101],

b6 = a

2
[011].
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(a)

(b)

Fig. 4.38 Effect of stacking-fault

energy on dislocation

substructure. (a) High-stacking-

fault-energy material (pure

copper); (b) lower-stacking-fault-

energy material (copper–2 wt%

aluminium). Both materials were

laser-shock compressed with an

initial pressure of 40 GPa and

pulse duration of 3 ns. (Courtesy

of M. S. Schneider.)
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Fig. 4.39 Frank or Sessile

dislocations. (a) Intrinsic. (b)

Extrinsic.
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[101]
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[011]

[111]

a
2

[110]

[111]Fig. 4.40 Cottrell–Lomer lock.

(111) (111)

(111)(111)

(b)(a)

Fig. 4.41 Stairway dislocation.

One good rule to determine whether a direction belongs to a plane

is that the scalar product between the direction b and the normal

to the plane must be zero (in a cubic structure). This rule comes

from vector calculus. Vectors b1 and b4 have the same direction and

opposite senses; the common direction is also that of the intersection

of the two planes. Hence, both dislocations will cancel when they

encounter each other. The combination of b2 and b5 would result

in

b2 + b5 = a

2
[1̄01] + a

2
[101] = a

2
[002] = a[001].

The energy of these dislocations is

a2

2
+ a2

2
= a2

Therefore, this reaction will not occur, because it will not result in a

reduction of the energy. The only combinations that would result in

a decrease in the overall energy would be of the type

b3 + b5 = a

2
[011̄] + a

2
[101]

= a

2
[110].

This reaction, which is energetically favorable, is shown in Figure

4.40. The dislocation is not mobile in either the (111) or (111̄) plane;

hence, it acts as a barrier for any additional dislocation moving

in these planes. Since it impedes slip, it is called a Lomer--Cottrell

‘‘lock.”

The resultant configuration is shown in Figure 4.41; it resembles a

stair and is therefore called a ‘‘stair-rod” or ‘‘stairway” dislocation. The
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leading partials react and immobilize the partials coupled to them

(the trailing partials). The bands of stacking faults form a configura-

tion resembling steps on a stairway. These steps are barriers to further

Basal plane

Prism
plane

Pyramidal
plane

Fig. 4.42 Basal, pyramidal, and

prism plane in HCP structure.

slip on the atomic planes involved, as well as in the adjacent planes.

Dislocations in Hexagonal Close-Packed Crystals

In HCP crystals, the stacking sequence of the most densely packed

planes is ABAB. These planes are known as basal planes. Figure 4.42

shows the main planes in the HCP structure. Perfect dislocations mov-

ing in the basal plane can decompose into Shockley partials, just as

in the FCC structure. Stacking faults are also formed (only intrinsic

stacking faults). This analogy can be easily understood if one realizes

the similarity between the two structures. The (111) planes in the FCC

structure are the equivalent of the basal planes in the HCP structures.

A perfect dislocation in the basal plane has the Burgers vector

b = a

3
[2 1̄ 1̄ 0].

In an ideal hexagonal crystal, the c/a ratio is 1.633. However, in real

hexagonal crystals this never happens. It has been experimentally

observed that, for crystals with c/a > 1.633, slip occurs mainly on the

basal plane, while the pyramidal and prism planes are ‘‘preferred” in

crystals with c/a < 1.633. This is due to the dependence of the distance

between the atoms upon c/a; it is well known that the dislocations

tend to move in the highest packed planes. A detailed treatment of

dislocations in HCP metals is given by Teutonico.7

Dislocations in Body-Centered Cubic Crystals
In BCC crystals, the atoms are closest to each other along the <111>

direction. Any plane in the BCC crystal that contains this direction is

a suitable slip plane. Slip has been experimentally observed in (110),

(112), and (123) planes. The slip markings in BCC metals are usually

wavy and ill-defined. The following reaction has been suggested for a

perfect dislocation having its Burgers vector along <111>:

a

2
[1̄1̄1] → a

8
[1̄1̄0] + a

4
[1̄1̄2] + a

8
[1̄1̄0].

This corresponds to the equivalent of Shockley partials. Apparently,

the stacking-fault energy is very high, because the faults cannot be

observed by transmission electron microscopy. The waviness of the

slip markings is also indicative of the high stacking-fault energy. If

the partials were well separated, slip would be limited to one plane.

Cross-slip, which will be treated in Chapter 6, is much easier when

the stacking-fault energy is high. If one adds up all the slip systems

for BCC, one obtains a number of 48. This is much higher than the

number for FCC.

7 L. J. Teutonico, Mater. Sci & Eng., 6 (1970) 27.
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Example 4.4

Consider the following body-centered cubic dislocation reaction:

a

2
[1̄1̄1] → a

8
[1̄1̄0] + a

4
[1̄1̄2] + a

8
[1̄1̄0].

a. Prove that this reaction will occur.

b. What kind of dislocations are the (a/8)<110> and (a/4)<112>?

c. What kind of crystal imperfection results from this dislocation

reaction?

d. What determines the distance of separation of the (a/8) [1̄1̄0] and the

(a/4) [1̄1̄2] dislocations?

Solution: (a) U α b2:

b1 b2 b3
a

2
[1̄1̄1] → a

8
[1̄1̄0] + a

4
[1̄1̄2] + a

8
[1̄1̄0].

On the left-hand side:

b2 =
(−a

2

)2

+
(−a

2

)2

+
(a

2

)2

= 3

4
a2.

On the right-hand side:

b2
1 + b2

2 + b2
3 =

[(−a

8

)2

+
(−a

8

)2

+02

]
+

[(−a

4

)2

+
(−a

4

)2

+
(

2a

4

)2
]

+
[(−a

8

)2

+
(−a

8

)2

+ 02

]

= a2

32
+ 3a2

8
+ a2

32
= 7a2

16
.

Since

3

4
a2 >

7a2

16
,

the energy is lower after the reaction, and therefore, the reaction will

occur.

(b) Partial dislocations.

(c) Stacking fault.

(d) Stacking-fault energy,γS F .

γSF ∝ b1b2

d
,

with b1, b2 known from (a),

⇒ γSF ∝ 1

d

⇒ d ∝ 1

γSF

.

That is, if γSF increases, the distance between the dislocations decreases.
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Example 4.5

Make a table with all the 48 slip systems for the BCC structure.

Solution: For each slip system, we have to satisfy the condition

u · v = 0. For (110) [11̄1], 1 × 1 + 1 × (−1) + 0 × 1 = 0.

The table of 48 slip systems for the BCC structure is as follows.

Slip Plane Slip Plane Slip Plane
{110} {112} {123}

(110) [11̄1] (112) [1̄1̄1] (123) [111̄] (123) [1̄11]

(110) [11̄1̄] (121) [11̄1] (132) [11̄1] (132) [1̄11]

(11̄0) [111̄] (211) [1̄11] (312) [1̄11] (312) [11̄1]

(110) [111] (112̄) [111] (321) [1̄11] (321) [111̄]

(101̄) [111] (12̄1) [111] (213) [111̄] (213) [11̄1]

(101̄) [11̄1] (2̄11) [111] (231) [11̄1] (231) [111̄]

(101) [111̄] (11̄2) [11̄1̄] (123) [111] [1̄23] [11̄1]

(101) [11̄1̄] (121̄) [11̄1̄] (132) [111] [1̄32] [111̄]

(011) [111̄] (211̄) [1̄11̄] (312) [111] [31̄2] [111̄]

(011) [1̄11] (1̄12) [1̄11̄] (312) [111] [321̄] [11̄1]

(01̄1) [111] (1̄21) [111̄] (213) [111] [21̄3] [1̄11]

(01̄1) [1̄11] (21̄1) [111̄] (231) [111] [231̄] [1̄11]

4.4.7 Dislocations in Ceramics
Transmission electron microscopy has revealed dislocations in most

nonmetals. Dislocations in semiconductors, minerals, oxide ceramics,

and carbides, nitrides, and borides have been described and charac-

terized. Many nonmetals tend to exhibit brittle behavior, in which

dislocations play a minor role. However, if the temperature or lateral

confinement of the material is sufficiently high, ductile behavior can

be observed; in this case, dislocations play an important role. The role

of confinement, or externally applied traction on planes parallel to

the principal direction of external loading, is described in Chapter 7.

The principal effect is to eliminate tensile stresses at the tips of in-

ternal flaws, thereby enabling the nonmetal to deform plastically. The

temperature provides thermal activation that assists the overcoming

of short-range obstacles by dislocations.

Table 4.3 lists the minimum temperatures at which ductile behav-

ior is observed in ceramics. Most ceramics have high ductile-to-brittle

transition temperature, and this has rendered the study of disloca-

tions difficult. These high temperatures also affect the mechanisms

of dislocation motion, since diffusion plays an important role at tem-

peratures greater than or equal to 0.4Tm’ where Tm is the melting

point in K. The climb of dislocations is an effective mechanism for

overcoming obstacles.
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Table 4.3 Approximate Temperature for Macroscopic Plasticity in Some

Ceramics

Ceramic Melting point, Tm (K) Softening point, 0.4Tm (K)

B4C 2,725 1,090
TiC 3,400 1,360
HfC 4,425 1,770
WC 3,000 1,200
SiC 2,970 1,188
MgO 3,100 1,240
ZrO2 3,100 1,240
Al2O3 2,325 930
TiO2 2,100 844
SiO2 (cristobalite) 1,990 796
S3N4 2,715 1,086
MoSi2 2,300 920

Table 4.4 Crystal Structures, Slip Systems, and Burgers Vectors for Ceramics (Courtesy of T. E. Mitchell)

Oxide Slip system Burgers vector Other slip systems

MgO {110} 〈11̄0〉 1/2 〈11̄0〉 = d0 {001}〈11̄0〉, {111} 〈11̄0〉
MgAl2O4 {111} 〈11̄0〉 1/2 〈11̄0〉 = 2d, {110} 〈11̄0〉
Al2O3 (0001) 〈112̄0〉 1/3〈112̄0〉 = √

3d0〉 {1120}〈101̄0〉, {1̄102}〈∼ 112̄0〉
TiO2 {001} 〈01̄1〉 〈01̄1〉 
 2d0 {110} [001]
Mg2SiO4 (100), {110} [001] [011] = 2d0 (100) [010],{0kl}[100]

BeO (0001) 〈112̄0〉 1/3〈112̄0〉 = d0 {1100}〈112̄0〉, [0001] {101̄0}
UO2 {001} 〈11̄0〉 1/2 〈11̄0〉 = √

2d0, {110}, {111} 〈11̄0〉
SiO2 (quartz) (0001) 〈112̄0〉 1/3〈112̄0〉 {1120}, {1010}[0̄001]

The structures of a number of ceramics are given in Chapter 1. (See

Figure 1.17.) In general, ceramics tend to slip along directions that

are closest packed. Since ceramics possess ordered structures, and a

perfect dislocation must recompose the original atomic arrangement,

the Burgers vectors tend to be large.

Table 4.4 lists slip systems and Burgers vectors for a number of

ceramics. For the oxide ceramics, the oxygen atoms (anions) tend to

arrange themselves in close-packed structures (FCC or HCP), and this

determines the slip systems. For instance, Al2O3 (HCP) has basal slip,

where the slip lane is (0001) and the slip directions are <112̄0>. Pris-

matic or pyramidal slip are also possible. (See Table 4.4.) The Burgers

vector is given by

b = 1

3
<112̄0> =

√
3d0,

where d0 is the nearest distance between oxygen atoms. Recall that

the oxygen atoms form an HCP structure. The arrangement of atoms

in the basal plane is shown in Figure 4.43. The large circles are the
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Fig. 4.43 Basal plane in Al2O3.

oxygen anions, forming a closed-packed hexagonal array. The full cir-

cles are the aluminum cations, which stack in the ABC sequence

(similar to the FCC structure). The empty circles are normally empty

octahedral interstices. The vectors b1, b2, and b3 are the Burgers

vectors. They translate interstitial sites in such a manner that they

become superposed. The magnitude of the Burgers vectors is equal to√
3. This can be shown from the triangle ABC, where B C = √

3d0 and

the angle BCA is equal to 120◦.

For MgO, the anions form an FCC structure, and the Burgers vector

has the direction <11̄0> and a magnitude equal to d0, the smallest

oxygen spacing. Thus,

b = 1

2
<11̄0> = d0.

The dislocations in ceramics generally have a high energy, due to

the large shear modulus and Burgers vector (U ∼ Gb2/2). Table 4.5

gives Burgers vectors and self-energies for dislocations in a number

of intermetallics and ceramics. For purposes of comparison, the dis-

location energy of aluminum is shown. The differences can be dra-

matic. The Peierls--Nabarro stress (see Section 4.4.12) is very high, in

general, because of the directionality of bonding in ionic and cova-

lent structures. For instance, the bond angles of 109◦ for the carbon

atom need very high forces to be distorted. The movement of a dislo-

cation requires the breaking and remaking of bonds, and distortions

are produced around the dislocations. Therefore, the movement of

dislocations in ceramics is, in general, difficult. There are exceptions,

however, such as MgO, which can exhibit significant plasticity at close

to ambient temperature.

Dislocation interactions and reactions occur in a manner simi-

lar to that in metals and intermetallics. An example is given in Fig-

ure 4.44. Dislocation dipoles are often observed in the deformation
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Table 4.5 Elastic Energy for Dislocations in Ceramics and Intermetallics (Courtesy of Veyssiere)

Oxygen Sublattice b b(nm) G(GPa) Gb2/2

Al 1/2 <110> 0.286 27 1.2
Ni3Al <110> 0.356 100 6.4
MgO FCC 1/2 <110> 0.298 125 5.1
CoO FCC 1/2 <110> 0.301 70 3.2
NiO FCC 1/2 <110> 0.296 135 5.9
MgAl2O4 FCC 1/2 <110> 0.57 120 19.5

BeO HCP 1/3 < 112̄0 > 0.27 160 5.9

Al2O3 – α HCP 1/3 < 112̄0 > 0.476 200 22.6
TiO2 distorted <001> 0.296 100 4.4

HCP <101> 0.546 14.9
CuO2 BCC <001> 0.427 10 0.9

<011> 0.604 1.8
UO2 cubic 1/2 <110> 0.386 94 7.0
Y2O3 vacancy — 1/2 <111> 0.918 65 27.4

containing cubic <100> 1.06 31.5
Y3Fe5O12 highly 1/2 <111> 1.072 78 44.8

distorted <100> 1.038 42.0

of sapphire and are shown in Figure 4.44(a). These dipoles are par-

allel edge dislocations of opposite sign that are attracted together

into a position of approximately 45◦ (55◦ if there is anisotropy) in

order to minimize the elastic fields. This is shown in Figure 4.44(b).

In Figure 4.32(d), the elastic (shear stress) fields of edge distortions are

shown. The shear stresses σ 12 are minimized if they place themselves

at 45◦. These dipoles break down and form loops, as indicated in Fig-

ure 4.44(a). The stress fields of one dislocation are canceled by those of

the other dislocation, at 45◦, as shown in Figure 4.44(b). Dislocation

dissociations and reactions are also observed and can be predicted

from energetics. A hexagonal dislocation network is shown in Figure

4.45. The total Burgers vector at the nodes has to be equal to zero

under equilibrium. This is called Frank’s rule. For basal dislocations in

a hexagonal structure, we have, at the nodes,

1

3
[112̄0] + 1

3
[12̄10] + 1

3
[2̄110] = 0.

And for the FCC structure,

1

2
[11̄0] + 1

2
[011̄] + 1

2
[1̄01] = 0.

These structures are often produced during recovery.

The dissociation of a perfect dislocation into partial dislocations is

treated in a manner similar to that in metals. The criterion of energy
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Fig. 4.44 (a) Dislocations,

dipoles, and loops in sapphire. (b)

Interaction between dislocations in

sapphire. (From K. P. D. Lagerdorf,

B. J. Pletka, T. E. Mitchell, and A. H.

Heuer, Radiation Effects, 74 (1983)

87.)

0001

1100
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Glide plane A

Glide plane B

55°

b1 = 1/3 <1120>

= 1/3 <1120>(b)

200 nm200 nm

g
1120

200 nm

Fig. 4.45 Hexagonal array of

dislocations in titanium diboride.

(Courtesy of D. A. Hoke and G. T.

Gray.)

decrease (U ≈ Gb2/2) is applied, and dissociation is stable if b2 > b2
1 +

b2
2.

A few dislocation dissociations have been observed in ceramics. In

the spinel structure, the dissociation

1

2
[11̄0] → 1

4
[11̄0] + 1

4
[11̄0]

was observed, and the following dissociation was suggested to occur

in Al2O3:

1

3
[112̄0] → 1

3
[101̄0] + 1

3
[011̄0].

This dissociation has been observed to occur only by climb.

As an illustration of the occurrence of stacking faults in ceramics,

Figure 4.46 shows a TEM of gallium phosphide. The large concentra-

tion of these faults is evident. They are a common occurrence in thin
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500mm

Fig. 4.46 Stacking faults in GaP.

(Courtesy of P. Pirouz.)

films deposited on Si substrates by molecular beam epitaxy (MBE),

chemical vapor deposition (CVD), or metal--organic CVD (MOCVD). Sec-

tion 4.4.14 describes the stresses generated in epitaxial growth on a

substrate. These mismatch stresses, as well as thermal stresses and

growth faults, are responsible for the high concentration of stack-

ing faults, which decreases with distance from the interface. Profuse

stacking faults bounded by Shockley partial dislocations and stair-rod

dislocations have been observed to occur in SiC grown on Si wafers.

The configuration of stacking faults observed in SiC is analogous to

that for GaP shown in Figure 4.46.

4.4.8 Sources of Dislocations
It is experimentally observed that the dislocation density increases

with plastic deformation; specifically, the relationship τ ∝ ρ1/2 (see

Chapter 6 Section 6.3) has been found to be closely obeyed. While

the dislocation density of an annealed polycrystalline specimen is

typically 107 cm−2, a plastic strain of 10% raises this density to

1010 cm−2 or more, an increase of three orders of magnitude. This is

Fig. 4.47 Homogeneous

nucleation of dislocation in

conventional deformation.

an apparent paradox, because one would think that the existing dis-

locations would be ejected out of the crystalline structure by the

applied stress. If one calculates the strain that the existing disloca-

tions in an annealed metal would be able to produce by their motion

until they would leave the crystal, one would arrive at very small

numbers. Consequently, the density of dislocations has to increase

with plastic deformation, and internal sources have to be activated.

Some possible dislocation-generation mechanisms are discussed in

the next few paragraphs.

The homogeneous nucleation of a dislocation occurs by in the

rupture of the atomic bonds of a material along a certain line. Figure

4.47 shows schematically the sequence of steps leading to the for-

mation of a pair of edge dislocations (one negative, one positive). In
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Fig. 4.48 Emission of

dislocations from ledges in grain

boundary, as observed in

transmission electron microscopy

during heating by electron beam.

(Courtesy of L. E. Murr.)

Figure 4.47(a) the lattice is elastically stressed, until, in Figure 4.47(b),

an atomic plane is sheared; this generates two dislocations that move

in opposite senses. Such a mechanism allows the formation of dis-

locations from an initially perfect lattice. It can be seen intuitively

that the stress required would be extremely high. Calculations were

done by Hirth and Lothe (see the suggested reading), and for copper,

this stress is on the order of

τhom

G
= 7.4 × 10−2.

Comparing this with the theoretical strength of crystals, one can

see that the difference is not very large. Hence, such values would

be obtained only if the applied stresses were very high or there were

internal regions of high stress concentration. In conventional deform-

ation, other dislocation-generation mechanisms should become oper-

ational at much lower stresses, rendering homogeneous nucleation

highly unlikely.

Grain boundaries can serve as sources of dislocation. Irregular-

ities at the boundaries (steps or ledges) could be responsible for the

emission of dislocations into the grains. Figure 4.48 shows the emis-

sion of dislocations from a grain-boundary source; dislocations are

seen as they are generated at the ledge. The stress due to heating pro-

duced by the electron beam produces the force on the dislocations.

It is thought that dislocation emission from grain boundaries can

be an important source of dislocations in the first stages of plastic

deformation of a polycrystal.

In monocrystals, the surfaces can act as sources of dislocation.

Small steps at the surfaces act as stress concentration sites; hence,
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Fig. 4.49 Effect of oxide layer on

the tensile properties of niobium.

(Reprinted with permission from

V. K. Sethi and R. Gibala, Scripta

Met. 9 (1975) 527.)

the stress can be several times higher than the average stress. At

these regions, dislocations can be generated and ‘‘pumped” into the

monocrystals. The majority of dislocations in monocrystals deformed

in tension are generated at the surface. Pangborn et al.8 investigated

the bulk and surface dislocation mechanism in monocrystals. The dis-

location density close to the surface was up to six times greater than

that in the bulk. The dislocation surface layer (with higher dislocation

density) extended for approximately 200 μm into the material at the

surface. The surface sources cannot have a significant effect on poly-

crystal deformation, because the majority of the grains would not be

in contact with the free surface. Since dislocation activity is restricted

to the grains, the surface sources would not be able to affect the inter-

nal grains. Incoherent interfaces between the matrix and precipitates,

dispersed phases, or reinforcing fibers (in composites) are also sources

of dislocations.

The importance of interfaces in the production of dislocations is

seen in the results shown in Figure 4.49. The low-temperature tensile

response of BCC metals was dramatically affected by the presence of

an oxide layer. The figure exemplifies this response for niobium. The

flow stress of monocrystalline niobium at 77 K is highly dependent

on the state of the surface. The oxide softens the material. Two effects

are responsible for the lowering of the flow stress by the introduction

of an oxide layer:

1. The oxide puts the surface layers under tensile stresses, because

the introduction of oxygen into the lattice expands it. On the other

hand, the oxide is under compression. The resultant resolved shear

stress at the surface is much higher (in the presence of the oxide

layer) than that due exclusively to the externally applied load.

2. The predeformed and oxide-coated specimen (the lowest curve in

the figure) has an even lower flow stress because the predeform-

ation introduces surface steps, which act as stress-concentration

sites.

8 P. N. Pangborn, S. Weissman, and I. R. Kramer, Met. Trans. 12A (1981) 109.
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Fig. 4.50 Sequence of the

formation of dislocation loop by

the Frank–Read mechanism.

Hence, the joint action of the internal stresses generated by the

oxide and the surface steps activates the dislocation sources at the

surface.

The classic mechanism for dislocation multiplication is called the

Frank--Read source. In Figure 4.50(a), there is a dislocation ABCD with

Burgers vector b. Only the segment BC is mobile in the slip plane

α. Segments AB and CD do not move under the imposed stress. The

applied stress will generate a force per unit length on segment BC

equal to (Section 4.45)

F = T ds

R
.

The radius of curvature of the dislocation segment decreases until it

reaches its minimum, equal to BC/2. At this point, the force is max-

imum (and so is the stress). Hence, the dislocation reaches a condi-

tion of instability beyond that point. The critical position is shown in

Figure 4.45(c). When P approaches P ′, the dislocation segments have

opposite signs; accordingly, they attract each other, forming a com-

plete loop when they touch, and are then pinched off. The stress

required to activate a Frank--Read source is equal to that needed to

curve the segment BC into a semicircle with radius BC/2; beyond this

point, the stress decreases. Thus from Equation 4.22d:

τ = G b

B C
= G b

2R
.

However, as loops are formed, they establish a back stress, so that the

stress required to generate successive loops increases steadily. If the

loops are expelled from the material, they cease to exert a back stress.

Only a few Frank--Read sources have been observed in metals. How-

ever, in a tridimensional array of dislocations, nodes define segments.

These segments can bow and effectively act as Frank--Read sources.

Another possibility is that the source forms when a screw disloca-

tion cross-slips and returns to a plane parallel to the original slip
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Fig. 4.51 Frank–Read source

formed by cross-slip.

plane. (See Figure 4.51.) Incidentally, edge dislocations cannot cross-

slip because their Burgers vector could not be contained in the cross-

slip plane. The Burgers vector of a screw dislocation, on the other

hand, is parallel to its line and will be in the cross-slip plane if the

intersection of the two dislocations is parallel to it. After the seg-

ment in the cross-slip plane advances a certain extent, the stress sys-

tem applied might force it into a plane parallel to the original slip

plane. At this point, a Frank--Read source is formed. Although it is

thought that the original formulation of the Frank--Read source is
Vapor

(a)

(b)

Epitaxial film

Substrate

Epitaxial film

Substrate

Substrate

Vapor

Vapor

Fig. 4.52 Epitaxial growth of thin

film. (a) Substrate. (b) Start of

epitaxial growth. (c) Formation of

dislocations.

not common, its modifications just cited -- the node and the cross-slip

case -- might be the important mechanism of dislocation generation,

after the first few percent of plastic strain.

Crystals formed by growth over a substrate (a technique commonly

employed in the production of thin films) show dislocations whose

formation can be easily explained. The substrate never has exactly the

same lattice parameter as the crystal overgrowth. Figure 4.52 shows

the sequence of formation of dislocations as the crystal grows over

the substrate. If as and a0 are the lattice parameters of the substrate

and overgrowth, respectively, the separation between the dislocations

is

d = a2
s

|as − a0| .

Often, the impurity content of a crystal varies cyclically due to

solidification; this is called segregation. The periodic change in compo-

sition is associated with changes in the lattice parameter, which can

be accommodated by dislocation arrays.

Vacancies can condense and form disks as well as prismatic loops

if they are present in a ‘‘supersaturated” concentration. In FCC crys-

tals, these disks and loops occur on {111} planes. As seen in Fig-

ure 4.39, the dislocations that form the edges of these features are

called Frank dislocations. Kuhlmann--Wilsdorf (see suggested reading)

proposed, that they can act as Frank--Read sources, and this was later

confirmed experimentally.

4.4.9 Dislocation Pileups
All dislocations generated by a Frank--Read source are in the same

slip plane if they do not cross-slip. In metals with low stacking-fault

energy, the large separation between the partials renders cross-slip

more difficult. In case one of the dislocations encounters an obstacle

(a grain boundary, a precipitate, etc.), its motion will be hampered.
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Fig. 4.53 Pileup of dislocations

against a barrier.

Fig. 4.54 Pileup of dislocations

against grain boundaries (or

dislocations being emitted from

grain-boundary sources?) in

copper observed by etch pitting.

The subsequent dislocations will ‘‘pileup” behind the leading dis-

location, after being produced by the Frank--Read source. Figure 4.53

is a schematic diagram of a pileup. The distance between the disloca-

tions increases as their distance from the obstacle increases. On the

other hand, if the metal has a very high stacking-fault energy, cross-

slip will easily occur, and the planar array will be destroyed; edge dis-

locations cannot, obviously, cross-slip because of their Burgers vector.

Figure 4.54 shows an example of a pileup, obtained by etch pitting

in copper. Observe that the dislocation configurations for a pileup and

a grain-boundary source are similar and that many grain-boundary

sources have in the past been mistaken for pileups. Figure 4.48 shows

a grain-boundary source.

Each dislocation in a pileup is in equilibrium under the effect of

the applied stress and of the stresses due to the other dislocations (in

the pileup). Assuming that the dislocations are of edge character and

parallel, the resulting force acting on the ith dislocation is obtained
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by applying the equation that gives the forces between dislocations:

τb −
n∑

j=0
i 
= j

G b2

2π (1 − v )(xi − x j )
= 0. (4.25)

n is the number of dislocations in the pileup.

Solving the n equations with n unknowns (xi − xj) for the dis-

locations behind the lead dislocation, we obtain the positions of the

dislocations. This derivation was introduced by Eshelby et al.9 and we

present the results without derivation.

The stress acting on the lead dislocation due to the presence of

the other dislocations and due to the applied stress is found to be

τ ∗ = nτ. (4.26)

So the effect of the n dislocations in the pileup is to create a stress

at the lead dislocation n times greater than the applied stress. For

this reason, the dislocation pileup is sometimes treated as a superdis-

location with a Burgers vector nb. The foregoing calculations can also

be applied to screw dislocations by removing the term (1 -- v). The

length of the pileup under an applied shear stress τ is given by

L = nG b

πτ
. (4.26a)

4.4.10 Intersection of Dislocations
A dislocation, when moving in its slip plane, encounters other dis-

locations, moving along other slip planes. If we imagine the first

dislocation moving in a horizontal plane, it will ‘‘see” the other

dislocations as ‘‘trees” in a ‘‘forest.” The latter name designates dis-

locations in other slip planes. When the dislocation intersects another

dislocation, since it shears the material equally (by a quantity b) on

the two sides of the slip plane, it will form one or more steps. These

steps are of two types: jogs if the ‘‘tree” dislocation was transferred to

another slip plane, and kink if the ‘‘tree” dislocation remains in the

same slip system. Various possible outcomes from dislocation inter-

sections are shown in Figure 4.55. Figure 4.55(a) shows an edge dis-

location traversing a ‘‘forest” composed of two edge and one screw

dislocation. A good rule to determine the direction of jogs and kinks

is the following: The direction of the segment is the same as the

Burgers vector of the dislocation that is traversing the ‘‘forest;” on

the other hand, the Burgers vector of the jog or kink is the Burgers

vector of the dislocation in which it is located, because the Burg-

ers vector is always the same along the length of a dislocation. Figure

4.55(b) shows a screw dislocation after traversing a ‘‘forest.” The reader

is asked to verify the directions of dislocation segments and Burgers

vector; he or she should also verify whether they are jogs or kinks.

The ability of these segments to slip with a dislocation is of great

importance in determining the work-hardening of metal. It should

9 J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro, Phil. Mag., 42 (1951) 351.
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Initially straight
dislocation moving
along direction shown
     by arrows

(a)

(b)

Fig. 4.55 (a) Edge dislocation

traversing “forest” dislocations.

(b) Screw dislocation traversing

“forest” dislocations.

be noted that some authors use the name ‘‘jog” for both types of

segments. Jogs and kinks can have either a screw or an edge char-

acter. From Figure 4.56(a), it can be seen that segments on an edge

dislocation cannot impede the motion of jogs or kinks, because the

segments can slip with the dislocation. On the other hand, in screw

dislocations, there are segments that can slip with the dislocations

and segments that cannot. When the segment can move with the

dislocation, the motion is called conservative. When the segment can-

not move by slip, the motion is called nonconservative. Figure 4.56(b)

shows some interactions. At the left there is a conservative motion

by slip, and at the right a nonconservative motion. The nonconser-

vative motion of a jog is, in essence, a climb process and requires

thermal activation. Vacancies or interstitials are produced as the

segment moves. If the temperature is not high enough to provide

sufficient thermal activation, the jog does not move, and loops are

formed as the dislocation advances; this is shown in Figure 4.57. The
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(a) (b)

Fig. 4.56 (a) Kink and jog in

edge dislocation. (b) Kink and jog

in screw dislocation.

Fig. 4.57 Loop being pinched

out when jog is left behind by

dislocation motion.

b b b b

Nb

X2

X1

X3

b b b b

X3

Fig. 4.58 Shear produced by the

passage of parallel dislocations.

dislocation forms a dipole upon advancing, because the jog stays back.

At a certain point, the dipole will be pinched out, producing a loop.

4.4.11 Deformation Produced by Motion of Dislocations
(Orowan’s Equation)

Upon moving, a dislocation produces a certain deformation in a

material. This deformation is inhomogeneous. Figure 4.58 shows the

steps generated by the passage of dislocations. If we consider a large

number of dislocations acting on different systems, we can posit the

association of a large number of small steps as creating a homoge-

neous state of deformation. The deformation is related to both the

number of dislocations that move and the distance traveled by them.

This equation is known as Orowan’s or Taylor--Orowan’s equation and is

derived in this section. Figure 4.58 shows a cube dimensions dx1, dx2,

and dx3 that was sheared by the passage of N dislocations moving
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along the plane Ox1x2. The plastic shear strain can be expressed as

dγ13 = N b

dx3

. (4.27)

This is so because all dislocations are of edge character and have the

same sign, with identical Burgers vector b. The density of dislocations,

ρ, is the total length N dx2 in the volume dx1 dx2 dx3. Therefore,

ρ = N dx2

dx1 dx2 dx3

and N = ρ dx1 dx3. (4.28)

Substituting Equation 4.28 into Equation 4.27 yields

dγ13 = ρb dx1.

A cube isolated in space, in which dislocations are generated on one

face and pop out of the opposite face is an idealization. In real situa-

tions, dislocations remain within the material, and the deformation

generated by each dislocation is related to the distance traveled by it.

Assuming that dislocations travel an average distance, l̄ , we have

γ13 = ρbl̄ .

But in a general case of deformation, five independent slip systems

are activated. The deformation is not perfectly aligned with the move-

ment of dislocations, and it is necessary to introduce a correction

parameter k that takes this into account:

γp = kρbl̄ . (4.29)

This is the Orowan equation. If one assumes that the density of mobile

dislocations is not affected by the rate of deformation (strain rate),

one would have, taking the time derivative of both sides of Equation

4.29,

dγp

dt
= kρb

dl̄

dt
+ klb

dρ

dl
. (4.30)

If we assume that ρ does not vary with time,

γp = kρbv ,

where v̄ is the mean velocity of the dislocations. We can also use the

longitudinal strain ε11 if we are applying the situation to a tensile

test. It can be shown that γ = 2ε (see Section 6.2.3) for an ideal

orientation for slip.

As an illustration, if iron (b ≈ 0.25 nm) is being deformed at

10−3 s−1, and the density of mobile dislocations is around 1010 cm−2,

their approximate velocity will be 4 × 10−6 cm/s.

Attention should be called to the fact that the density of mobile

dislocations is lower than the total density of dislocations in the

material. As the dislocation density increases in a deformed mater-

ial, a greater and greater number of dislocations is locked by various

types of barriers, such as grain boundaries, cell walls, or the action
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of a great number of jogs. The actual density of mobile dislocations

is only a fraction of the total dislocation density.

Example 4.6

Titanium is deformed by basal slip with edge dislocations. If a cube

with one of its sides parallel to the c-axis is being deformed by shear

through the passage of dislocations on every fifth (0001) plane, what

shear strain γ is the cube undergoing? Take the radius of Ti atom

rT i = 0.147 nm.

Solution: We first determine

a = 2r = 0.294 nm.

We assume an ideal c/a ratio equal to 1.633. Thus, c = 0.48 nm. The

Burgers vector for basal slip is equal to a.

Every fifth atomic plane corresponds to a distance d = 5c =
2.4 nm. The shear strain is thus equal to

γ = b

d
= 0.294

2.4
= 0.1225.

Example 4.7

An FCC monocrystal of nickel is sheared by γ 12 = 0.1. Assuming that

the dislocation density is equal to 108 cm−2 and that it remains con-

stant, what is the average distance each dislocation will have to move?

If the shear strain rate is 10−4 s−1, what is the mean velocity of the

dislocation?

Solution:

rNi = 0.125 nm

For FCC, b = 2rN i = 0.250 nm. Using Orowan’s equation, taking k =
1, γ = ρbl̄, we obtain the following:

(i) l̄ = γ

ρb

= 0.1

108 cm−2 × 0.25 nm

= 0.1

108 × (104 m−2) × 0.25 (10−9 m)
= 4 × 10−4 m

(ii) γ̇ = ρbv̄ ,

so

v̄ = γ̇

ρb

= 10−4s−1

108 cm−2 × 0.25 nm
= 4 × 107 m/s.
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Fig. 4.59 (a) Movement of

dislocation away from its

equilibrium position. (b) Variation

of Peierls–Nabarro stress with

distance. (Reprinted with

permission from H. Conrad, J.

Metals, 16 (1964) 583.)

4.4.12 The Peierls–Nabarro Stress
The Peierls--Nabarro stress represents the resistance that the crys-

talline lattice offers to the movement of a dislocation. Figure 4.59

shows the stress that one has to apply to a dislocation to make it move

a distance b. When the extra plane is moved away from its equilib-

rium position (either to the right or to the left), one has to overcome

a barrier. The difference in energy between the equilibrium (saddle

point) and the most unstable position is called the Peierls--Nabarro

energy, and the stress required to overcome this energy barrier is the

Peierls--Nabarro (P--N) stress. The dislocation does not advance simul-

taneously over its entire length. (See Figure 4.60(a).) Rather, a small

hump, or kink pair is formed, as shown in Figure 4.60(b), via what is

known as a Seeger mechanism. This kink pair then moves along the

dislocation (the parts of the pair move in opposite directions), and

when it has covered the entire front, the dislocation has advanced by
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(a)

(b)

b

Dk
u u

(c)

Fig. 4.60 Overcoming of Peierls

barrier by Seeger kink pair

mechanism. (a) Original straight

dislocation. (b) Dislocation with

two kinks. (c) Kinks moving apart

at velocity vk.

b, the Burgers vector. In Figure 4.60(c) the velocity of movement of a

dislocation is vD, related to the kink velocity vk by

v D = vk

b

L
. (4.31)

The stress required to overcome the obstacle is known as the Peierls--

Nabarro stress. Calculations of this stress are fairly inaccurate because

the continuum treatment breaks down for distances on the order of

the atomic spacings. The energy of the dislocation is given by U(x) as

it moves through the barrier. The applied force required to bring this

dislocation to the top of the energy barrier is

F = −dU

dx
. (4.32)

But from the Peach--Koehler equation (F = τb), we have

τ = −1

b

dU

dx
. (4.33)

A sinusoidal form for U(x) was assumed by Peierls and Nabarro, lead-

ing to the expression

τP N = α
G b

2c
e−πa/c sin

2πx

c
, (4.34)

where c is the spacing of atoms in the x direction, a is the lattice

parameter, and α is a parameter that depends on the nature of the

barrier; for α = 1, the barrier is sinusoidal.

4.4.13 The Movement of Dislocations: Temperature and
Strain Rate Effects

The resistance of crystals to plastic deformation is determined by the

resolved shear stress that is required to make the dislocations glide in

their slip planes. If no obstacles were present, the dislocations would

move under infinitesimally small stresses. However, in real metals,

the nature and distribution of obstacles determines their mechanical

response. Becker10 was the first to point out the importance of ther-

mal energy in helping the applied stress overcome existing obstacles.

10 R. Becker, Z. Phys. 26 (1925) 919.
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Fig. 4.61 Effect of temperature

on Young’s modulus. (Adapted

from J. B. Wachtman Jr., W. E. Tefft,

D. G. Lam, Jr., and C. S. Apstein, J.

Res. Natl. Bur. Stand., 64A (1960)

213; and J. Lemartre and J. L.

Chaboche, Mechanics of Solid

Materials, Cambridge: Cambridge

University Press, 1990, p. 143.)

The stress required for deformation, τ , can be divided into two parts:

τ *, which is dependent on the strain rate and temperature of the

material, and τG, in which the temperature dependence is equal to

that of the shear modulus. Thus,

τ = τ ∗ + τG , (4.35)

or, in terms of the normal stresses,

σ = σ ∗ + σG . (4.36)

The functional dependence can be expressed as

σ = σ ∗(T , ε̇) + σG (G ). (4.37)

We know that the elastic properties (E, G, v) are only slightly depen-

dent on temperature. Figure 4.61 shows the temperature dependence

of Young’s modulus for a number of materials. As the temperature

increases, the amplitude of vibration of the atoms increases (but the

frequency remains constant at approximately 1013 s−1). This results in

thermal dilation, which separates the atoms somewhat and changes

their equilibrium positions and interatomic forces. The flow stress of

metals, on the other hand, is much more sensitive to temperature

and strain rate. Figure 4.62 shows the dependence of the yield stress

on temperature for typical BCC and FCC structures. BCC metals (Fe,

Cr, Ta, W, etc.) exhibit a greater temperature and strain rate sensitiv-

ity. It can be seen that the athermal component of stress is σ G ≈ 50

MPa, whereas the thermal component exceeds 1,000 MPa at 0 K. The

increase in flow stress with decrease in temperature is much more

gradual for FCC metals, as shown in Figure 4.62(c). The differences

in temperature and strain rate sensitivity are due to different mech-

anisms controlling the rate of dislocation motion. In BCC metals,
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Peierls--Nabarro stresses are the major obstacles at low temperatures,

and thermal energy can effectively aid the dislocations to overcome

these stresses, which constitute a short-range barrier. For FCC metals,

dislocations intersecting dislocations (‘‘forest” dislocations) are the

main barriers to the motion of dislocations. Thermal energy is less

effective in helping dislocations to overcome these barriers.

At temperatures higher than 800 K, there is an additional drop in

the flow stress, not shown in Figure 4.62. This drop occurs at T ≈ 0.5

Tm, where Tm is the melting point of the metal (or alloy). The drop is

due to creep, which often involves dislocation climb. Creep is treated

separately in Chapter 13.
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Fig. 4.63 Stresses and

dislocations generated at

film–substrate interface; (a) film

and substrate with different lattice

parameters; (b) elastic (coherent)

accommodation of strains by film;

(c) elastic + dislocation

(semi-coherent) accommodation

of strains at a film thickness

greater than hc. (Adapted from

W. D. Nix, Met. Trans., 20A (1989)

2217.)

Johnston and Gilman11 were the first to measure the velocities of

dislocations as a function of applied stress. They used LiF crystals for

their measurements and observed, as expected, that the distance a

dislocation moves increases with the magnitude and duration of the

stress pulse. The distance also increases, at a constant stress, with

increasing temperature. This relationship is known as the Johnston--

Gilman equation and has the form

v = Aτme−Q /RT , (4.38)

where v is the dislocation velocity, exponent m is a stress dependency

that is dependent on v, Q is an activation energy, and A is a pre-

exponential term that depends on the material and the nature of

the dislocation (edge or screw). Although this equation predicts an

infinite dislocation velocity when the stress is high, it is generally

accepted that the limiting dislocation velocity is the velocity of elastic

shear waves. Thus, the equation breaks down at velocities close to the

shear wave velocity (e.g., ∼3,000 m/s for iron).

4.4.14 Dislocations in Electronic Materials
Producing dislocation-free substrates and epitaxial films is an import-

ant technological consideration. The presence of dislocations cre-

ates a barrier for electric fields and alters electronic properties of

thin films. It is therefore undesirable. In order for epitaxial thin

films to be stress free, they must have the same lattice parameter as

the substrate. Figure 4.63(a) shows a film and substrate, with lattice

parameters af and as, respectively. They are shown separately. If they

11 W. G. Johnston and J. J. Gilman, J. Appl. Phys. 33 (1959) 129.
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are connected, stresses will arise. The substrate is usually much

thicker than the film. Thus, the elastic accommodation is assumed

to occur entirely in the substrate. The epitaxial strain is:

ε = �a

a
≈ as − a f

as

.

We present below the van der Merwe12--Matthews13 theory for the

prediction of thin film configurations. The strain energy, in the case

where the substrate is completely coherent with the film, is:

Uh = E

1 − ν
hε2. (4.39)

where h is the thickness of the thin film; the term E /(1 − ν) is the

biaxial modulus (see Section 2.16). It can be obtained from the gen-

eralized Hooke’s law assuming a biaxial stress state. As the thickness

of the film increases, the strain energy increases, due to the factor

h in Equation 4.39. At first, the film is coherent with the substrate.

This is shown in Fig. 4.63(b). When the strain energy reaches a crit-

ical level, misfit dislocations are created, decreasing the overall strain.

Figure 4.63(c) shows a film with dislocations having a spacing S. The

homogeneous strain is decreased from ε to (ε − b/S ) due to the inser-

tion of dislocations, spacing S, with displacement (Burgers vector) b.

However, the dislocations created have an energy Ud that has to be

factored in. For misfit edge dislocations with a spacing S:

Ud = G b2

4π (1 − ν)

2

S
ln

(
h

b

)
. (4.40)

The misfit dislocations form a two-dimensional network. The term

2/S = 1/S + 1/S represents the length of misfit dislocations per unit

area (square grid). The total strain energy Ut is obtained by adding

Equations 4.39 (after subtracting the b/S term) and 4.40:

Ut = E

1 − ν
h

(
ε − b

S

)2

+ G b2

4π (1 − ν)

2

S
ln

(
h

ro

)
. (4.41)

In Figure 4.63, the two plots on the right side represent the energy in

the case of coherent and semicoherent interface. In the coherent case,

the energy is minimum for an infinite spacing of dislocations (b/S =
0). However, as the thickness h of the film is increased, the second

term (logarithmic in h) increases in importance. The energy reaches a

minimum when critical thickness hc is reached. This corresponds to

the thickness at which dislocations are created at the interface. This

is represented by the plot in Figure 4.63(c).

We can calculate the critical film thickness, hc by taking the deriva-

tive of Equation 4.41 with respect to 1/S:

∂Ut

∂ (1/S )
= −2

E

1 − ν

(
ε − b

S

)
+ G b2

2π (1 − ν)
ln

(
h

b

)
= 0. (4.42)

12 J. H. van der Merwe and N. G. van der Berg, Surface Science, 32 (1972) 1.
13 J. W. Matthews and A. E. Blakeslee, Journal of Crystal Growth, 27 (1974) 118; 29 (1975)

273.
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Fig. 4.64 Critical film thickness

as a function of misfit strain for

GexSi1–x film grown on Si

substrate; the greater fraction Gex,

the greater the misfit stain and the

smaller hc. Predictions from van

der Merwe–Matthews theory;

measurements from J. C. Bean,

L. C. Feldman, A. T. Fiory, S.

Nakahara, and I. K. Robinson, J.

Vac. Sci. Technol. A, 2 (1984) 436.

(Adapted from W. D. Nix., Met.

Trans., 20A (1989) 2216.)

(a)

(b)

Film h

SubstrateDislocation

Film h

Substrate

Source

Fig. 4.65 Mechanisms of misfit

dislocation generation; (a) Freund

mechanism in which a “threading”

dislocation preexisting in substrate

lays over interface creating misfit

dislocation; (b) Nix mechanism, by

which surface source creates

half-loops that move toward

interface.

By setting 1/S = 0, i.e., an infinite dislocation spacing, we obtain the

Matthews--Blakeslee equation:

hc

ln
(

hc

ν0

) = G b

4π E ε
= b

8π (1 + ν)E
(4.43)

Figure 4.64 shows the critical film thickness for GexSi1−x growth on

a Si substrate. The higher the fraction x of Ge, the larger the strain

in the film, ε. Consequently, the smaller will be hc. The predictions of

Equation 4.43 are compared with experimental results in Figure 4.64.

The agreement is only qualitatively satisfactory. For small strains, the

predicted thickness is orders of magnitude lower than the observed

value.
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One of the reasons for the difference is that dislocations cannot

appear spontaneously at the interface, once a critical thickness is

reached. They have to nucleate somewhere and move to the interface.

This requires additional energy. Two possible mechanisms are shown

in Figure 4.65. The Freund mechanism requires an existing dislocation

that ‘‘threads” through substrate and film. This threading dislocation,

moving along the interface as shown in Figure 4.65(a), creates the

interface dislocation. The Nix mechanism requires a dislocation to

be formed at the free surface and move to the interface. A source,

operating at the surface, is shown in Figure 4.65(b). It produces half-

loops, which expand and reach the interface.
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Exercises

4.1 Calculate the radii of the tetrahedral and octahedral holes in BCC and

FCC iron; assume lattice parameters of 0.286 and 0.357 nm, respectively.

4.2 Calculate the concentration of monovacancies in gold at 1,000 K, know-

ing that Hf = 1.4 × 10−19 J. If the gold is suddenly quenched to ambient

temperature, what will be the excess vacancy concentration?

4.3 How many vacancies per cubic centimeter are there in gold, at ambient

temperature, assuming a lattice parameter of 0.408 nm?

4.4 What is the effect of vacancies on electrical conductivity?

4.5 What is the effect of vacancies on the amplitude of vibration of the neigh-

boring atoms?

4.6 What stress is required to render operational a Frank--Read source in iron,

knowing that the distance between points B and C is 20 (Figure 4.50) nm and

that the Goldschmidt radius of the iron atoms is 0.14 nm?

4.7 Make all possible reactions between (perfect) dislocations in (111̄) and (11̄1̄)

in an FCC crystal. Among them, which ones are Lomer locks?

4.8 Consider all possible reactions between partial Shockley dislocations (only

the front dislocation, from the pair) in (111) and (111̄) in an FCC crystal. Among

them, which ones will form a stair-rod dislocation?

4.9

(a) Show that the reaction

a

2
[101̄] → a

6
[211̄] + a

6
[112̄]

is either vectorially correct or incorrect?

(b) Is the reaction energetically favorable?

4.10 107 and 1011 cm−2 are typical values for the dislocation density of

annealed and deformed nickel, respectively. Calculate the average space

among dislocation lines (assuming a random dislocation distribution), as well

as the line energy for edge and screw dislocations, in both cases. In nickel,

E = 210 GPa, v = 0.3, and the lowest distance between atom centers is

0.25 nm.

4.11 Calculate the dislocation density for Figure 4.22b; assume a foil thickness

of 0.3 μm.

4.12 The concentration of vacancies in aluminum at 600 ◦C is 9.4 × 10−4;

by quenching, this concentration is maintained at ambient temperature. The

vacancies tend to form disks, with Frank partials at the edges. Determine the

loop concentration and dislocation density, assuming that:

(a) Disks with a 5-nm radius are formed.

(b) Disks with a 50-nm radius are formed.

For aluminum, assume that the radius of the atoms is 0.143 nm. (Hint: The

length of the Frank dislocation corresponding to a disk is equal to the cir-

cumference of the circle.)
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4.13 The flow stress of monocrystals is on the order of 10−4 G. Using the

concept of Frank--Read sources, determine the length of segments required for

this stress level. If the length of the segments is determined by dislocations on

a second slip plane (‘‘tree” dislocations), obtain an estimate for the dislocation

density in annealed monocrystals. Assume that the dislocations are equally

distributed on the slip planes of an FCC crystal.

4.14 On what planes of a BCC structure can the a/2 [111] move?

4.15 Upon encountering an obstacle, an edge dislocation stops. A second edge

dislocation, with identical Burgers vector and moving in the same plane,

approaches the first dislocation, driven by a stress equal to 140 MPa.

(a) What will be the equilibrium separation between the two dislocations?

Assume that the metal is nickel (E = 210 GPa, v = 0.3, r = 0.249 nm).

(b) What would be the equilibrium separation if the dislocations were both

screw dislocations?

4.16 LiF is an ionic crystal with a NaCl-type structure (cubic). The Li atoms

occupy the vertices and the centers of the faces of the unit cell, while the

F atoms occupy the edges, and one F atom is in the body-centered position.

There are eight atoms per unit cell. Knowing that the slip plane for LiF is

[110], determine the Burgers vector of a perfect dislocation. Remember that

one has an ionic crystal and that there is a strong repulsion between ions of

the same sign. Explain your results.

4.17 Draw a unit cell for an HCP crystal. Show the perfect dislocations in the

base plane. Can they decompose into partials? If so, represent them by the

special notation for dislocations.

4.18 Nickel sheet is being rolled at ambient temperature in a rolling mill (roll

diameter 50 cm, velocity 200 rpm). See Figure 6.1 for sketch of rolling mill.

The initial thickness is 20 mm and the final thickness is 10 mm (one pass).

(a) Calculate the average strain rate.

(b) Calculate the energy that will be stored in the material, assuming that

the final dislocation density is 1011 cm−2.

(c) Determine the total energy expenditure per unit volume, assuming a flow

stress equal to 300 MPa.

(d) Assuming that all energy not stored as dislocations is converted into heat,

calculate the temperature rise if the process is adiabatic (Cp = 0.49 J/g ◦C).

(e) Why does the energy stored represent only a fraction of the energy

expended?

4.19 Calculate the largest atom that would fit interstitially into (a) nickel (FCC;

atomic radius = 0.125 nm) and (b) molybdenum (BCC; atomic radius = 0.136

nm).

4.20 Calculate, for tungsten (BCC; atomic radius = 0.1369 nm), the radii of

the largest atoms that can fit into (a) a tetrahedral interstitial site (at 0, 1/4,

1/2) and (b) an octahedral interstitial site (at 0, 1/2, 1/2).

4.21 If the enthalpy of formation for a vacancy is equal to 80 kJ/mol, what is

the fraction of vacant sites at 1,500 K.

4.22 The lattice parameter of a BCC crystal was measured at ambient tem-

perature and at 1,000 ◦C. The parameter showed an increase of 0.5% due to
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thermal expansion. In the same interval of temperature, the density, mea-

sured by a separate method, showed a decrease of 2%.

(a) Assuming that, at room temperature, there is one vacancy per 1,000 atoms,

what is the vacancy concentration at 1,000 ◦C?

(b) Calculate the activation energy necessary for the production of vacancies.

4.23 The Burgers vector of a dislocation is 0.25 nm in a crystal. The shear

modulus G = 40 GPa. Estimate the dislocation energy per unit length in this

crystal.

4.24 A dislocation is anchored between two points 10 μm distant. For a metal

with b = 0.35 nm and G = 30 GPa, compute the shear stress necessary to

bow the dislocation into a semicircle.

4.25 Consider an aluminum polycrystal with a grain size of 10 μm. If a dis-

location source at the center of a grain emits dislocations under an applied

shear stress of 50 MPa that pile up at the grain boundaries, what is the stress

experienced by a grain boundary? Take G = 26 GPa and b = 0.3 nm.

4.26

(a) Iron (r = 0.124 nm, G = 70 GPa) is being deformed to a shear strain of

0.3. Assuming a constant dislocation density equal to 1010 cm−2, what is

the average distance each dislocation has to move?

(b) Assuming that the strain rate is 10−2 s−1, what is the average dislocation

velocity?

4.27 Aluminum (r = 0.15 nm, G = 26 GPa) is deformed to a shear strain of

0.5. A dislocation density equal to 1010 cm−2 results.

(a) What is the average distance each dislocation had to move?

(b) If the strain rate were 10−2 s−1, what would be the average dislocation

velocity?

4.28 Consider the following dislocation reaction in a face-centered cubic

material:

a

2
[11̄0] → a

6
[21̄1] + a

6
[12̄1̄].

Is it energetically favorable?

4.29 Consider dislocations blocked in gold. If the flow stress is controlled by

the stress necessary to operate a Frank--Read source, compute the dislocation

density ρ in the crystal when it is deformed to a point where the resolved

shear stress on the slip plane is 45 MPa. Take G = 27 GPa.

4.30 Plot the stresses around a screw dislocation, in terms of isostress fields.

Do a plot equivalent to the one in Figure 4.32 (edge dislocations).

4.31 Plot the energy of a single edge dislocation in copper as a function of

dislocation density (in units of Gb2). Start at a density of 106 cm−2, charac-

teristic of well-annealed material, and finish at 1011 cm−2, characteristic of

work-hardened material.

4.32 A dislocation segment is pinned by two obstacles at a distance of 10 μm.

Calculate the stress required to bow this segment into a semicircle (this is

equal to the stress required to activate a Frank--Read source). b = 0.25 nm;

G = 40 GPa.

4.33 A tantalum polycrystal (grain size equal to 50 μm) is deformed to a total

shear strain of 0.5 at a strain rate of 10 s−1. Assume that dislocations cannot
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cross grain boundaries. Given that G = 10 GPa, b = 0.2 nm, and assuming

k = 1, calculate:

(a) The dislocation density required.

(b) The velocity at which each dislocation will move.

4.34 On eight cubes that have a common vertex, corresponding to the origin

of axes, draw the family of {111} planes. Show that they form an octahedron

and indicate all <110> directions.

4.35 How many vacancies per cubic centimeter are there in gold, at ambient

temperature, assuming a lattice parameter of 0.408 nm? Gv = 1.4 × 10−19.

4.36 Burgers vector of a crystal generally lies in a close-packed direction. Why?

4.37 What is the ideal strength of a crystalline solid? What crystal imperfec-

tion allows the material to deform at much lower strength and why?

4.38 Do you think the addition of dislocations in a crystal changes its density?

Explain your answer.

4.39 Describe in detail the effects of quenching in comparison to furnace

cooling. Which process creates higher yield stresses and why?

4.40 In copper G = 48.3 GPa and b, the Burgers vector, is taken to be 0.25

nm. Find (a) the force required to bend a dislocation into a radius R = 10

μm; (b) the energy of this curved dislocation.

4.41 What is the effect of misfit dislocations on film--substrate interfaces?

What happens as the thickness of the film increases?



Chapter 5

Imperfections: Interfacial and

Volumetric Defects

5.1 Introduction

In Chapter 4, we dealt with point and line defects. There is another

class of defects called interfacial, or planar, defects. These imperfec-

tions, as the name signifies, occupy an area or surface and so are two-

dimensional, as well as being of great importance. Examples of such

defects are free surfaces of a material, grain boundaries, twin bound-

aries, domain boundaries, and antiphase boundaries. Of all these,

grain boundaries are the most important from the point of view of

the mechanical properties of the material. In what follows, we con-

sider in detail the structure of grain and twin boundaries and their

importance in various deformation processes, and, very briefly, the

structure of other interfacial defects. Details regarding the strength-

ening of a material by grain boundaries are given in Section 5.3. Volu-

metric defects, such as voids, also play a major role in the mechanical

properties of materials, affecting the strength and elastic properties

of the material significantly. Volumetric defects are briefly described

in Section 5.7. In Section 5.8, we present the defects occurring in

polymers.

5.2 Grain Boundaries

Crystalline solids generally consist of a large number of grains sep-

arated by boundaries. Most industrial metals and ceramics are poly-

crystalline aggregates, and the mechanical properties of these poly-

crystals can be radically different from those of the monocrystals

that form the individual grains. Figure 5.1 illustrates a polycrys-

talline aggregate, in which each grain has a distinct crystallographic

orientation. The sizes of these individual grains vary from sub-

micrometer (for nanocrystalline and microcrystalline structures) to

millimeters and even centimeters (for materials especially processed

for high-temperature creep resistance). Figure 5.2 shows typical equi-

axed grain configurations for polycrystalline tantalum and titanium
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Fig. 5.1 Grains in a metal or

ceramic; the cube depicted in each

grain indicates the crystallographic

orientation of the grain in a

schematic fashion.

(a)

(b)

Fig. 5.2 Micrographs showing

polycrystalline (a) tantalum and (b)

TiC.

carbide. Grains often are elongated through plastic deformation. Each

grain (or subgrain) is a single crystal, and the grain boundaries are

thus transition regions between neighboring crystals. These regions

may consist of various kinds of dislocations. When the misorientation

between two grains is small, the grain boundary can be described
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by a relatively simple configuration of dislocations (e.g., an edge dis-

location wall) and is, fittingly, called a low-angle boundary. When the

misorientation is large (called, again appropriately, a high-angle bound-

ary), more complicated structures are involved (as in a configuration

of soap bubbles simulating the atomic planes in crystal lattices). A

general grain boundary has five degrees of freedom. Three degrees

specify the orientation of one grain with respect to the other, and

two degrees specify the orientation of the boundary with respect to

one of the grains.

Grain structure is usually specified by giving the average diameter

or using a procedure attributed to the American Society for Testing

and Materials (ASTM) according to which the grain size is specified

by the number n in the expression N = 2n --1, where N is the number

of grains per square inch when the sample is examined at 100 power.

The ASTM procedure is common in engineering applications. In

research, it is often preferred to measure the grain size by the lin-

eal intercept technique. In this technique, lines are drawn in the

photomicrograph, and the number of grain-boundary intercepts, N�,

along a line is counted. The mean lineal intercept is then

�̄ = L

N�M
, (5.1)

where L is the length of line and M is the magnification in the photo-

micrograph of the material. In Figure 5.2(b), a line is drawn for pur-

poses of illustration. The length of the line is 6.5 cm. The number of

intersections, N�, is equal to 7, and the magnification (obtained by

using the marker of 10 μm) M = 1,300. Thus,

�̄ = 65 × 10−3

7 × 1300
= 7.1 μm.

Several lines should be drawn to obtain a statistically significant

result. The mean lineal intercept �̄ does not really provide the grain

size, but is related to a fundamental size parameter, the grain-

boundary area per unit volume, Sv, by the equation

�̄ = 2

Sv

. (5.2)

The proof of this formula is beyond the scope of this book, but is given

by deHoff and Rhines.1 If we assume, to a first approximation, that

the grains are spherical, we have the following relationship between

the grain-boundary area and volume:

Sv = 1

2

4πr 2

4
3
πr 3

= 3

2r
= 3

D
. (5.3)

1 R. T. deHoff and F. N. Rhines (eds.), Quantitative Microscopy (New York: McGraw-Hill,

1968).
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Here, D is the average grain diameter, and the factor 1/2 was intro-

duced because each surface is shared between two grains. From

Equations 5.2 and 5.3, we get

D = 3

2
�,

which is the most correct way to express the grain size from lineal

intercept measurements.

Example 5.1

The American Society for Testing and Materials (ASTM) has a simple

index, called the ASTM grain size number, n, defined as

N = 2n−1

where N is the number of grains in an area of 1 in2 ( = 64.5 mm2) in

a 100-power micrograph. In one such grain size measurement of an

aluminum sample, it was found that there were 56 full grains in the

area, and 48 grains were cut by the circumference of the circle of area

1 in2. (a) Calculate ASTM grain size number n for this sample. (b) Cal-

culate the mean lineal intercept.

Solution: The grains cut by the circumference of the circle are taken

as one-half the number. Thus,

N = 56 + 48/2

= 56 + 24 = 80 = 2n−1

n = ln N/ ln 2 + 1

= ln 80/ ln 2 + 1

= 4.38/0.69 + 1 = 7.35.

(b) For the mean lineal intercept, we use the circle:

πr 2 = 1in2,

r = 0.56 in,

�̄ = 2πr

N� M
= 2π × 0.56 × 25.4

48 × 100

= 0.0186 mm = 18.6 μm.

Example 5.2

Determine the grain size for the microstructure shown in Figure E5.2,

using both the lineal intercept method and the ASTM method. The

straight marks traversing the grains are annealing twins and should be
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counted in the computation. From the mean lineal intercept, obtain

the grain diameter.

3.07 in.0

4.14 125 in25 in

12 cm

Fig. E5.2

Solution: From the ASTM method, N = 2n --1, where N is the number of

grains per unit area (in2) and n is the grain size number.

The number of grains counted is approximately 60, and the area of

the picture is 3.07 × 4.20 = 12.90 in2. So we have

N = 60

12.9
= 4.65.

We rewrite N as 2n --1, and taking logarithms, we get

ln N = ln 2n−1

= (n − 1) ln 2.

So we have

1.53 = (n − 1) ln 2,

n − 1 = 2.24,

n ≈ 3.

By the lineal intercept method, � = L /(MN ), where M = 2 cm/200 μm

= 100 is the magnification, L = 12 cm is the straight line drawn, and
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Fig. 5.3 Low-angle

grain-boundary observed by

high-resolution transmission

electron microscopy. Positions of

individual dislocations are marked

by Burgers circuits. (Courtesy of

R. Gronsky.)

N ≈ 9 is the number of intercepts (with grains). Thus, we have

� = 12

100 × 9
= 0.013cm

= 130 μm.

5.2.1 Tilt and Twist Boundaries
The simplest grain boundary consists of a configuration of edge dis-

locations between two grains. The misfit in the orientation of the

two grains (one on each side of the boundary) is accommodated by

a perturbation of the regular arrangement of atoms in the boundary

region. This is very clearly seen in the high-resolution transmission

electron micrograph of Figure 5.3. A low-angle grain-boundary with

a misorientation θ = 10◦ between equivalent (100) planes is shown,

and the dislocations are highlighted by circles marking their Burgers

vector.

Figure 5.4 shows some vertical atomic planes terminating in a

boundary, and each termination is represented by an edge dislocation.

The misorientation at the boundary is related to the spacing between

dislocations, D, by the relation (see triangle with dimensions)

D = b/2

sin(θ/2)
∼= B

θ
(for very small θ ), (5.4)

where b is the Burgers vector.

It is instructive to calculate the spacing between dislocations in

Figure 5.3 and to compare it with the measured value from the elec-

tron micrograph. We will express all values in terms of the lattice

spacing along [100] directions. Let us call this value a, so that
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Grain
II

D

D ~ b

q/2
q/2

q

q/2

b/2

b
b

Grain
I

–

Fig. 5.4 Low-angle tilt boundary.

b = 1.3a.

The calculated dislocation spacing (from the measured angle θ = 10◦

≈ (1/6 rad) is

D = 1.3a

θ
≈ 7.8a.

The measured dislocation spacing in Figure 5.3 is

D = 8a.

Thus, the agreement with Equation 5.4 and Figure 5.3 is excellent.

As the misorientation θ increases, the spacing between disloca-

tions is reduced, until, at large angles, the description of the bound-

ary in terms of simple dislocation arrangements does not make sense.

Theta becomes so large, that the dislocations are separated by one or

two atomic spacings; for such small separations, the dislocation core

energy becomes important and the linear elasticity does not hold.

In these cases, the grain boundary is a region of severe localized

disorder.

Twist
boundary

Grain
I

Grain
II

q

q

Fig. 5.5 Low-angle twist

boundary.

Boundaries consisting entirely of edge dislocations are called tilt

boundaries, because the misorientations, as can be seen in Figure 5.4,

can be described in terms of a rotation about an axis normal to the

plane of the paper and contained in the plane of dislocations. The

example shown in that figure is called a symmetrical tilt wall, as

the two grains are symmetrically located with respect to the bound-

ary. A boundary consisting entirely of screw dislocations is called a

twist boundary, because the misorientation can be described by a rela-

tive rotation of two grains about an axis. Figure 5.5 shows a twist

boundary consisting of two groups of screw dislocations.

It is possible to produce misorientations between grains by com-

bined tilt and twist boundaries. In such a case, the grain boundary

structure will consist of a network of edge and screw dislocations.
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5.2.2 Energy of a Grain Boundary
The dislocation model of a grain boundary can be used to com-

pute the energy of low-angle boundaries (θ ≤ 10◦). For such bound-

aries, the distance between dislocations in the boundary is more

than a few interatomic spaces. We have

b

D
∼= θ ≤ 10◦ ∼= 1

6
rad or D ≈ 6b,

and the energy of the boundary is equal to the total energy of all

dislocations per unit length

E = E ⊥

(
1

D

)
= E ⊥

(
θ

b

)
= θ

b

[
G b2

4π (1 − v )
ln

D

r0

+ E core

]
, (5.5)

where E⊥ is the strain energy per dislocation in the grain boundary.

Thus, the energy of a tilt boundary is given by2

E = θ
G b

4π (1 − v )
(− ln θ + A) = E = E 0θ (A − ln θ ), (5.6)

where A is a parameter that emerges in the derivation and

E 0 = G b

4π (1 − v )
. (5.7)

Example 5.3

In a low-angle tilt boundary in an aluminum sample, the misorienta-

tion is 5◦. Estimate the spacing between dislocations in this boundary,

given that bAl = 0.29 nm.

Solution: We have

b = 0.29 nm, θ = 5◦ = 5/57.3 = 0.087 rad.

The dislocation spacing is

D = b/θ = 0.29 nm/0.087 = 3.33 nm.

Example 5.4

Calculate the energy of a low-angle tilt boundary in nickel as a function

of the misorientation θ , for 0 < θ < 10. For Ni, r = 0.125 nm, G = 76

GPa, and v = 0.31.

Solution: We have

E = G b

4π (1 − v )
θ (A − ln θ ).

2 M. A. Meyers and K. K. Chawla, Mechanical Metallurgy (Englewood Cliffs, Prentice Hall,

1984), pp. 273--275.
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We first calculate b; we use a = 2r
√

2, and the magnitude of [100] Bur-

gers vectors is

d[110] = a√
h2 + k2 + l2

= a√
2
.

Thus,

b = a√
2

= 2r = 0.250 nm

and

E = 47 × 109 × 0.25 × 10−9

4π (1 − 0.31)
θ (A − ln θ ).

We can assume that the dislocation energy is equal to the core energy

when the separation between them is equal to 10b. This is twice the

core radius used by many scientists. From that value, we obtain the

value of the constant of integration, A. The sequence of equations is

U = G b2

10
for D = 10b = b

θ
,

E = G b2

10D
= G b2

100b
= G b

100
(θ = 0.1),

G b

100
= G b × 0.1

4π (1 − v )
(A − ln 0.1),

A = 4π (1 − v )

10
+ ln 0.1 = 0.866 − 2.30,

= −1.436.

So

E = 2.2θ (−1.436 − ln θ ).

Example 5.5

Calculate the dislocation spacing and energy of a low-angle tilt bound-

ary in copper crystal if θ = 0.5◦, G = 48.3 GPa, v = 0.343, and rCu =
0.157 nm.

Solution: The spacing is

D = b

θ
.

For FCC copper,

b = a√
2
, 4rcu = √

2a,

b = (4/
√

2)rcu√
2

= 2rcu = 0.314 nm,

θ = 0.5◦ = 0.5

180
π = 0.0009 rad,

D = b

θ
= 0.314

0.009
= 34.9 nm.
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We next assume that D = 10b, so

D = b

θ
= 10b

θ = 0.1.

We thus have

E = E ⊥

(
1

D

)
= G b2

10

(
1

D

)
= G b

100
, θ = 0.1.

Also,

E = G b

4π (1 − v )
θ (A − ln θ ).

Hence, setting the two equations for E equal to each other, we obtain

G b

100
= G b

4π (1 − v )
θ (A − ln θ )

and it follows that

A = 4π (1 − v )

100θ
+ ln θ

= 4π (1 − 0.343)

100 × 0.1
+ ln 0.1

= −1.477.

Substituting this value of A into the second equation for E yields

E = G b

4π (1 − v )
θ (−1.477 − ln θ ).

Now, given that G = 48.3 GPa, v = 0.343, and θ = 0.009 rad, we obtain

E = 48.3 × 109 × 0.314 × 10−9

4π (1 − 0.343)
× 0.009 × (−1.477 − ln 0.009)

= 0.053 J/m2.

5.2.3 Variation of Grain-Boundary Energy
with Misorientation

Consider Equation 5.6. Because of the (−ln θ ) term, a merger of two

low-angle boundaries, forming a high-angle boundary, always results

in a net decrease in the total energy of the interface. Thus, low-angle

boundaries have a tendency to combine and form boundaries of large

misorientation.

A plot of E versus θ gives a curve with a maximum at θmax ≈ 0.5 rad

(≈ 30◦). However, the dislocation model of grain boundaries loses

validity at much smaller orientations (θ ≤ 10◦). Some recent studies,

using field-ion microscopy, have shown that the high-angle grain

boundaries consist of rather large regions of atomic fit separated by

regions of misfit, to which are associated the grain-boundary ledges.

The boundary thickness is not more than two to three atomic dia-

meters. Low-angle grain boundaries have a dislocation density that

increases proportionally to the misorientation angle (see Equations

5.4 and 5.6), and, consequently, the energy of a low-angle boundary
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Fig. 5.7 Coincidence lattice

made by every seventh atom in the

two grains, misoriented 22◦ by a

rotation around the <111> axis.

(Adapted from M. L. Kronberg and

H. F. Wilson, Trans. AIME, 85

(1949), 501.)

increases linearly with θ near 0◦. After this, the energy increases

slowly as the stress fields of adjacent dislocations interact more

strongly. This behavior is shown in Figure 5.6. A surface tension,

γ gb, can be associated with an ordinary (high-angle) grain boundary,

which consists of a mixture of various types of dislocations. Because

the value of γ gb is relatively high, it is instructive to determine the

stable forms assumed by the grains of a given material. As it hap-

pens, there are certain special boundaries for which a particular high

angle between two adjacent crystals produces a low value of γ . These

special boundaries can be divided into two categories: coincidence

boundaries and coherent twin boundaries. A coincidence boundary

(Figure 5.7) is incoherent, as is an ordinary grain boundary; that is,

a majority of the atoms of one crystal in the boundary do not corre-

spond to the lattice sites of the other crystal. On an average, however,

this noncorrespondence in a coincidence boundary is less as the den-

sity of coincidence sites increases. For example, in the figure, one
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Table 5.1 Some Coincidence Site Boundaries in FCC Crystalsa

Rotation Axis Rotation Angle (deg) Density of Coincidence Sites

(111) 38 1 in 7
22 1 in 7
32 1 in 13
47 1 in 19

(110) 39 1 in 9
50.5 1 in 11
26.5 1 in 19

(100) 37 1 in 15

a Reprinted with permission from J. W. Christian, The Theory of

Transformation in Metals and Alloys (Elmsford, NY: Pergamon Press, 1965),

p. 326.

atom in seven in the boundary is in a lattice position for both the

crystals. We call this boundary a one-seventh coincidence boundary, and

the atomic sites (the black atoms in the figure) in question form a

coincidence lattice for the two grains. Coincidence lattices occur in

all common crystalline structures and have a density of sites varying

from 1
3

to 1
9

and less.

A twin boundary is frequently a kind of coincidence boundary, but

it is convenient to treat it separately. The energy of a twin boundary,

γ twin, is generally about 0.1 γ gb (see Figure 5.6), whereas the energy

of a coincidence boundary is only slightly less than γ gb. The two

most common twin orientations are (1) rotation twins (coincidence),

produced by a rotation about a direction [hkl] called the twinning

axis, and (2) reflection twins, in which the two lattices maintain a

mirror symmetry with respect to a plane [hkl] called the twinning

plane.

Some of the orientations that give the highest density of coinci-

dence lattice sites in crystals are shown in Table 5.1. These boundaries

have lower energies than those of random high-angle boundaries. Con-

trary to the great majority of low-energy boundaries, coincidence site

boundaries have greater mobility than that of random boundaries.

Twin boundaries, even with low energies, have lower mobility because

they are coherent.

The interfaces between different phases (interphase interfaces)

are more complex, since the accommodation of the atoms has to

be more drastic. Nevertheless, strong interfaces can be formed, even

between different ceramic phases. An illustration of this is provided in

Figure 5.8, which shows the interface between alumina (hexagonal)

and the spinel structure (NiAl2O4). In ceramics, the requirement

of electrical charges puts additional restrictions on the boundaries.

Nevertheless, the boundary shown in Figure 5.8(a) and the atomic

positions clearly marked in Figure 5.8(b) are of high coherence.

5.2.4 Coincidence Site Lattice (CSL) Boundaries
It is instructive to consider some other important aspects of coinci-

dence site lattice (CSL) boundaries. As described earlier, we get a CSL
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boundary when a certain rotation of one grain relative to another

grain results in a three-dimensional atomic pattern in which a certain

fraction of lattice points coincide in the two grains. The volume of

the CSL primitive cell is a small multiple of the volume of the lattice

primitive cell. Such a CSL boundary is characterized by a parameter

�, the reciprocal of the fraction of lattice sites that coincide (in Table

5.1, � = 7, 9, 13, 15, 19). Equivalently, � is the ratio of the volume of

the CSL primitive cell to that of the lattice primitive cell. A coherent

twin boundary is �3. It has been observed that CSL grain bound-

aries with relatively low values of � can have a significant influence

on the mechanical behavior of a polycrystalline material. CSL bound-

aries with small values of � result in short-period ordered structures

in the grain boundary. CSL boundaries with � less than 29 show the

following advantages over random grain boundaries or boundaries

with higher � values:

� lower grain boundary energy in pure metals
� lower diffusivity
� lower electrical resistivity
� lower susceptibility to solute segregation
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� greater resistance to grain boundary sliding, fracture, and cavita-

tion
� greater resistance to initiation of localized corrosion
� greater boundary mobility with specific solutes in a specific

concentration range.

It would thus appear that control of the character and density of low-

� boundaries can be a means of producing a superior polycrystalline

material.

5.2.5 Grain-Boundary Triple Junctions
Grain-boundary triple junctions are sites where four grains or three

grain boundaries meet. Such boundaries are commonly observed in

crystalline materials. The number of triple junctions can have a great

influence on the mechanical properties of the material. The number

of triple junctions in a polycrystalline material will depend on the

grain size and crystal geometry of the material. Palumbo et al.3 con-

sidered a three-dimensional distribution of tetrakaidecahedral grains

and obtained the volume fractions of intercrystalline region (grain-

boundary) and triple-boundary junctions. Figure 5.9 shows the effect

of grain size on calculated volume fractions of these entities. Note

the highly pronounced effect for grain sizes less than 20 nm, i.e., in

the nanometer range.

5.2.6 Grain-Boundary Dislocations and Ledges
Various experimental observations of the structure of grain bound-

aries have demonstrated the existence of grain-boundary dislocations

(GBDs) when the orientation relations deviate from the ideal coinci-

dence lattice site orientations. A grain-boundary dislocation belongs

to the grain boundary and is not a common lattice dislocation.

Grain-boundary dislocations can acquire the geometry of a grain-

boundary ledge by grouping together. This agglomeration, which

leads to the formation of a step, is shown in Figure 5.10. Figure 5.10(a)

3 B. Palumbo, S. J. Thorpe, and K. T. Aust, Scripta Met., 24 (1990) 1347.
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Fig. 5.10 Models of ledge

formation in a grain boundary.

(Reprinted with permission from

L. E. Murr, Interfacial Phenomena in

Metals and Alloys (Reading, MA:

Addison Wesley, 1975), p. 255.)

shows the movement of GBDs along the grain-boundary plane in the

direction indicated by the arrow. Figure 5.10(b) shows the coalescence

of GBDs to make a grain-boundary ledge. Another way of ledge for-

mation is shown in Figures 5.10(c) and (d). Under the applied tension,

lattice dislocations can move from grain A through the boundary

plane to grain B (Figure 5.10(c)). The passage through the boundary

results in heterogeneous shear of the boundary, forming a ledge.

The distinction between a ledge and an intrinsic GBD is one of

height; the smallest ledge corresponds to a GBD. Detailed analyses

showing how slip can transfer from one grain to another via the

formation of intrinsic GBDs have been carried out. Figure 5.11 shows

a TEM that reveals ledges and GBDs. The larger steps can be considered

ledges, whereas the lines could be GBDs.

In the simplified situation shown in Figure 5.10, the (111) planes

of the neighboring grains intersect along the boundaries. Ledges in

the grain boundaries constitute an important structural character-

istic of the high-angle boundaries. It has been observed that the

density of ledges increases with an increase in the boundary misori-

entation. One of the important aspects of this structure of boundaries

is that the ledges can function as effective sources of dislocations, a

fact that has important implications for the mechanical properties of

polycrystals.
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Fig. 5.11 Grain boundary ledges

observed by TEM. (Courtesy of L.

E. Murr.)

5.2.7 Grain Boundaries as a Packing of Polyhedral Units
The grain-boundary structure can also be described in terms of a

packing of polyhedral units. If equal spheres are packed to form a

shell such that all spheres touch their neighbors, then the centers

of the spheres are at the vertices of a ‘‘deltahedron,” a polyhedron

with equilateral triangles as faces. Ashby et al.4 regard a crystal as a

regular packing of polyhedral holes. The FCC structure, for example,

consists of a regular packing of tetrahedra and octahedra. The main

advantage of such a description of the structure is that it remains

valid even when the structure becomes completely disordered (i.e.,

amorphous). Any grain boundary between metallic crystals can be

described in terms of this scheme as a packing of eight basic delta-

hedra. Ashby et al.’s model is able to describe a number of proper-

ties associated with grain boundaries --- for example, the segregation

of certain elements to the boundaries, the characteristically high

diffusion rates in the boundaries, and grain-boundary faceting in

the presence of impurities. Figure 5.12(a) shows an image-enhanced

transmission electron micrograph of a symmetric tilt boundary in

gold. The angle θ between the [110] directions in the two grains

is approximately 32◦. The boundary can be represented (as shown

in Figure 5.12(b)) as an array of polyhedra. The figure represents

the atomic positions along two planes (‘‘+” and ‘‘•”) of the TEM of

Figure 5.12(a).

5.3 Twinning and Twin Boundaries

There are two types of twin boundaries: deformation twins and

annealing twins. A brief description of deformation twins follows.

4 M. F. Ashby, F. Spaepen, and S. Williams, Acta Met., 26 (1978) 1053.
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[001]2

Fig. 5.12 Image and atomic

position model of an

approximately 32◦ [110] tilt

boundary in gold; note the

arrangement of polygons, which

represents the boundary. (From

W. Krakow and D. A. Smith, J.

Mater. Res. 22 (1986) 54.)

5.3.1 Crystallography and Morphology
Deformation or mechanical twinning is the second most important

mechanism of plastic deformation after slip, although it is not nearly

as common as slip. The crystallographic nature of deformation twins

is shown in Figure 5.13. When a crystal deforms plastically by twin-

ning, atomic displacements occur, as shown in the figure, which

give rise to crystal bands within the grain that are twin oriented.

Hexagonal metals, such as Zn and Mg, behave in this way when they

are deformed at ambient temperatures, while BCC metals, such as
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Table 5.2 Twinning Planes, Directions, and Shears

Structure Twin Plane and Direction Shear Strain, γ

FCC (111)[112] 0.707

BCC (112)[111] 0.707
Cd: 0.171
Zn: 0.139

HCP (101̄2) [101̄1̄] Mg: 0.129
Ti: 0.139
Be: 0.199

(110) plane

Twinning planes (111)

[112] Twinning direction

Atom displacement

Fig. 5.13 Schematic of twinning

in FCC metals.

iron, show this behavior when they are deformed at subambient tem-

peratures. This mechanism is not of great importance in the defor-

mation of FCC metals. The twin planes, twin vectors, and the shear

produced by them are given in Table 5.2 for FCC, BCC, and HCP

crystals.

Figures 5.14(a) and (b) show deformation twins in Fe--Si and tung-

sten, respectively. It is clear that twins are crystallographically ori-

ented along specific planes. Figure 5.14(b) shows several grains, as

well as the twins that extend, at most, from grain boundary to grain

boundary. A few of them are marked by arrows and number 2. They

cannot propagate through grain boundaries because of the crystallo-

graphic requirements. The sagacious reader will note that there is a

mixture of microcracks and deformation twins in the figure, but this

issue will not be discussed.

Figure 5.15 illustrates the formation of deformation twins in

ceramics. A grain of silicon nitride subjected to compressive load-

ing is imaged in Figure 5.15(a). The diffraction pattern (the spots in

Figure 5.15(c)) reveals more than one crystallographic orientation. It

is possible, by focusing on only one family of reflections, to image one

family of twins. This is shown in Figure 5.15(b). All the bright twins

in this dark-field image have the same orientation.
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200 μm

(a)

Fig. 5.14 Deformation twins in

(a) iron–silicon (courtesy of O.

Vöhringer) and (b) tungsten.

(b)

The mechanism of plastic deformation by twinning is very dif-

ferent from that of slip. First, the twinned region of a grain is a

mirror image of the original lattice, while the slipped region has the

same orientation as that of the original, unslipped grain. Second, slip

consists of a shear displacement of an entire block of crystal, while

twinning consists of uniform shear strain. Third, the slip direction

can be positive or negative (i.e., in tension or compression), while the

twinning direction is always polar. Twinning results in a change of

shape of a definite type and magnitude, as determined by the crys-

tallographic nature of the twinning elements.

The stress necessary to form twins is, generally, greater, but less

sensitive to temperature, than that necessary for slip. This stress

required to initiate twinning is much larger than the stress nec-

essary for its propagation. Deformation twinning occurs when the
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(a) (b)

(c)

0.25 μm

Fig. 5.15 Deformation twins in silicon nitride observed by TEM. (a) Bright field.

(b) Dark field. (c) Electron diffraction pattern showing spots from two twin variants, A

and B. (Courtesy of K. S. Vecchio.)

applied stress is high due to work-hardening, low temperatures, or,

in the case of HCP metals, when the resolved shear stress on the basal

plane is low. Copper and other FCC metals can be made to deform

by twinning at very low temperatures or at very high strain rates.

Deformation twins, however, play an important role in the straining

of HCP metals. The ‘‘cry” heard when a polycrystalline sample of tin

is bent plastically is caused by the sudden formation of deformation

twins. The bursting of twins during straining can lead to a serrated

form of stress--strain curve (Figure 5.16). In many HCP metals, the slip
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Fig. 5.16 Serrated stress–strain

curve due to twinning in a Cd

single crystal. (Adapted with

permission from W. Boas and E.

Schmid, Z. Phys., 54 (1929) 16.)

is restricted to basal planes. Thus, twinning can contribute to plas-

tic deformation by the shear that it produces, but this is generally

small. (See Table 5.2.) More importantly, the twinning process serves

to reorient the crystal lattice to favor further basal slip. In HCP

metals, the common twinning elements are the (101̄2) plane and

[101̄1̄] direction (see Figure 5.17). Twinning results in a compression

or elongation along the c-axis, depending on the ratio c/a. For c/a >
√

3

(the case of Zn and Cd), twinning occurs on (101̄2̄) [101̄1̄] when the

metal is compressed along the c-axis. When c/a >
√

3 , the twinning

shear is zero. For c/a <
√

3 (the case of Mg and Be), twinning occurs

under tension along the c-axis. Figure 5.17 shows this dependence on

the ratio c/a.
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Fig. 5.18 Effect of temperature on the stress required for twinning and slip (at low and

high strain rates). (Courtesy of G. Thomas.)

5.3.2 Mechanical Effects
One may regard slip and twinning as competing mechanisms; experi-

mentally, it has been found that either an increase in strain rate or

a decrease in temperature tends to favor twinning over slip. In this

context, the graphical scheme proposed by G. Thomas and presented

in Figure 5.18 is helpful. The low temperature dependence of the

stress required to initiate twinning is a strong indication that it is

not a thermally activated mechanism. Hence, τ /G for twinning is not

temperature dependent. On the other hand, the thermally activated

dislocation motion becomes very difficult at low temperatures; Tt is
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and R. D. Doherty, Met. and Mater.
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the temperature below which the material will yield by twinning in

conventional deformation. However, at high strain rates, dislocation

generation and dynamics are such that the whole curve is translated

upward, while the twinning curve is stationary, for reasons that will

be given later. As a consequence, the intersection of the two curves

takes place at a higher temperature.

As the stacking-fault energy of an alloy is decreased, the propen-

sity for twinning increases. The addition of zinc to copper decreases

the stacking-fault energy dramatically, from 78 mJ/m2 (for pure Cu)

to 7 mJ/m2 (for 75--25 brass). This leads to a much greater planarity

of slip, which eventually results in twinning. Twinning generates

internal barriers to slip and breaks down a material’s microstruc-

ture into progressively smaller domains. The result is an increase

in work-hardening; that is, the movement of dislocations is ham-

pered. Figure 5.19(a) illustrates this effect. The work-hardening rate of

copper decreases with plastic strain, in the expected fashion, while

brass, in which twinning is prevalent, shows an almost constant

work-hardening, over a significant plastic strain range. The onset of

twinning is clearly seen in the plateau of the work-hardening rate, in

Fig 5.19(b).

As shown in Figure 5.18, the twinning stress seems to be quite

insensitive to the temperature. Figure 5.20 shows the twinning stress

for a number of metals. The stress required for slip, on the other

hand, is quite sensitive to temperature; see Figure 5.18.

Mechanical twinning is, in FCC metals, quite sensitive to the

stacking-fault energy. The stress required for twinning increases as

the stacking-fault energy is increased. Figure 5.21 shows the twinning

stress for a number of copper alloys. The following relationship is

obeyed between the twinning stress, σT , and the staking-fault energy,

γS F :

σT = K
(γS F

G b

)1/2

,
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where G is the shear modulus, b is the Burgers vector, and K is a

constant.

By setting the twinning stress equal to the slip stress, one can

obtain the domains in which twinning and slip are prevalent as a

function of grain size, stacking-fault energy, etc. For the strain rate,

temperature, and grain size dependence of the slip stress, we use

constitutive equations such as the Johnson--Cook equation (Section

3.2). One sets the slip stress, σS , equal to the twinning stress:

σT = σS .

The application of this equation for titanium with different grain

sizes provides the plot shown in Figure 5.22(a). The lines in the
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plot separate the twinning and slip domains. As the strain rate is

increased, the maximum temperature for twinning is increased. The

same plot shows the effect of grain size (different lines). As the

grain size is decreased, the twinning domain decreases. Figure 5.22(b)

shows the effect of stacking-fault energy on the domains. This is done

for a monocrystalline copper--zinc alloy. The stacking-fault energy

decreases with increasing zinc content. Whereas the Cu--20 at% Zn

alloy twins at ambient temperature and low strain rate, it is neces-

sary to apply a very high strain rate at a low temperature to trigger

twinning in a Cu--5 at% Zn alloy.
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5.4 Grain Boundaries in Plastic Deformation
(Grain-Size Strengthening)

Grain boundaries have a very important role in the plastic deform-

ation of polycrystalline materials. The following are among the more

important aspects of this role.

1. At low temperatures (T <, 0.5Tm, where Tm is the melting point

in K), the grain boundaries act as strong obstacles to dislocation

motion. Mobile dislocations can pile up against the boundaries

and thus give rise to stress concentrations that can be relaxed by

initiating locally multiple slip.

2. There exists a condition of compatibility among the neighboring

grains during the deformation of polycrystals that is, if the develop-

ment of voids or cracks is not permitted, the deformation in each

grain must be accommodated by its neighbors.5 This accommoda-

tion is realized by multiple slip in the vicinity of the boundaries,

which leads to a high strain-hardening rate. It can be shown, fol-

lowing von Mises, that for each grain to stay in contiguity with

others during deformation, at least five independent slip systems

must be operating. (See Section 6.2.5.) This condition of strain com-

patibility leads a polycrystalline sample to have multiple slip in the

vicinity of grain boundaries. The smaller the grain size, the larger

will be the total boundary surface area per unit volume. In other

words, for a given deformation in the beginning of the stress--strain

curve, the total volume occupied by the work-hardened mater-

ial increases with decreasing grain size. This implies a greater

hardening due to dislocation interactions induced by multiple

slip.

3. At high temperatures, the grain boundaries function as sites of

weakness. Grain boundary sliding may occur, leading to plastic

flow or opening up voids along the boundaries. (See Chapter 13.)

4. Grain boundaries can act as sources and sinks for vacancies at high

temperatures, leading to diffusion currents, as, for example, in the

Nabarro--Herring creep mechanism. (See Chapter 13.)

5. In polycrystalline materials, the individual grains usually have a

random orientation with respect to one another. Frequently, how-

ever, the grains of a material may be preferentially oriented. For

example, an Fe--3% Si solid--solution alloy, used for electrical trans-

former sheets because of its excellent magnetic properties, has

grains with their {110} planes nearly parallel and their <100>

direction along the rolling direction of the sheet. This material is

said to have a texture or preferred orientation. A preferred orientation

of grains is also frequently observed in drawn wires.

5 J. P. Hirth, Met. Trans. 3 (1972) 3047.
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indicates yield strength.

Ever since Hall and Petch6 introduced their well-known relation-

ship between the lower yield point of low-carbon steels and grain size,

a great deal of effort has been devoted to explaining that relationship

from a fundamental point of view and applying it to the yield and

flow stress of different metals and alloy systems. The Hall--Petch (H--P)

equation has the form

σy = σ0 + kD −1/2, (5.8)

where σ y is the yield stress, σ 0 is a frictional stress required to move

dislocations, k is the H--P slope, and D is the grain size. This equation

has been applied to many systems, with varying degrees of success.

It seems to be a satisfactory description of the dependence of yield

stress on grain size when a somewhat limited range of grain sizes is

being investigated. Figure 5.23 illustrates the Hall--Petch equation for

several metals. BCC and FCC metals exhibiting smooth elastic--plastic

transitions and yield points are represented. Table 5.3 presents the

parameters for a number of metals.

Figure 5.24 shows the yield strength of iron over a much wider

range than that presented in Figure 5.23. The plot is of the Hall--Petch

line (full line) and the upper bound (theoretical strength, assumed to

be E/30), as well as the lower bound (single crystal). Substantial devia-

tions from a single Hall--Petch curve that has approximately the slope

for ferrovac E steel and 0.05C steel are observed. The very broad range

of grain sizes is the reason for the deviation. Thus, the Hall--Petch

6 E. O. Hall, Proc. Roy. Soc. (London) B64 (1951) 474; N. J. Petch, J. Iron Steel Inst. 174 (1953)

25.
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Table 5.3 Tabulation of σ 0 and k Values for BCC, FCC, and HCP

Structuresa

Material Specificationb σ 0 (MPa) k (MN/m3/2)

Body-Centered Cubic
Mild steel, y.p. 70.60 0.74
Mild steel, ε = 0.10 294.18 0.39
Swedish iron, y.p. 47.07 0.71
Swedish iron, no y.p. 36.28 0.20
Fe–3% Si, y.p., –196 ◦C 505.99 1.54
Fe–3% Si, twinning, –196 ◦C 284.37 3.32
Fe–18% Ni, ε = 0.002 650.14 0.22
Fe–18% Ni, twinning, –196 ◦C 843.32 1.30
FeCo, ordered, ε = 0.004 50.01 0.90
FeCo, disordered, ε = 0.004 319.68 0.33
Chromium, y.p. 178.47 0.90
Chromium, twinning, –196 ◦C 592.52 4.37
Molybdenum, y.p. 107.87 1.77
Molybdenum, ε = 0.10 392.24 0.53
Tungsten, y.p. 640.33 0.79
Vanadium, y.p. 318.70 0.30
Niobium, y.p. 68.64 0.04
Tantalum, with O2, y.p. 0 ◦C 186.31 0.64

Face-Centered Cubic
Copper, ε = 0.005 25.50 0.11
Cu–3.2% Sn, y.p. 111.79 0.19
Cu–30% Zn, y.p. 45.11 0.31
Aluminum, ε = 0.005 15.69 0.07
Aluminum, fracture, 4K 539.33 1.67
Al–3.5% Mg, y.p. 49.03 0.26
Silver, ε = 0.005 37.26 0.07
Silver, ε = 0.002 23.53 0.17
Silver, ε = 0.20 150.03 0.16

Hexagonal Close- Packed
Cadmium, ε = 0.001, –196 ◦C 17.65 0.35
Zinc, ε = 0.005, 0 ◦C 32.36 0.22
Zinc, ε = 0.175, 0 ◦C 71.58 0.36
Magnesium, ε = 0.002 6.86 0.28
Magnesium, ε = 0.002, –196 ◦C 14.71 0.47
Titanium, y.p. 78.45 0.40
Zirconium, ε = 0.002 29.42 0.25
Beryllium, y.p. 21.57 0.41

a Adapted with permission from R. W. Armstrong, in Advances in Mater-

ials Research, Vol. 5, R. F. Bunshah, ed. (New York: Wiley-Interscience, 1971),

p. 101.
b y.p. = yield point.
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behavior should be considered not a universal law, but an approxi-

mation over a limited range of grain sizes. Since most engineering

alloys have grain sizes in the range 10--100 μm, the Hall--Petch equa-

tion is indeed very useful.

The principal theories advanced to explain the Hall--Petch rela-

tionship are presented next. The first two theories have lost a lot of

their credibility, because dislocation pileups are not thought to be as

important as they used to be, especially in high-stacking-fault energy

materials.

5.4.1 Hall–Petch Theory
The basic idea behind the separate propositions of Hall and Petch

is that a dislocation pileup can ‘‘burst” through a grain boundary

due to stress concentration at the head of the pileup. If τ a is the

resolved shear stress applied on the slip plane, then the stress acting

at the head of a pileup containing n dislocations is nτ a (Equation

4.26). The number of dislocations in a pileup depends on the length

of the pileup, which, in turn, is proportional to the grain diameter

D. According to Eshelby et al.7 (see Equation 4.26(a)):

L = αnG b

πτa

. (5.9)

In this equation we have added a geometrical constant α which is

equal to unity for screw dislocations and equal to 1 (1 − ν) for edge

dislocations. If the source of the dislocation pileup is located at the

centre of the grain, then L = D/2.

If τ c is the critical stress required to overcome the grain-boundary

obstacles, then the dislocations of the pileup will be able to traverse

the grain boundary if

nτa ≥ τc . (5.10)

7 J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro, Phil. Mag. 42 (1951) 351.
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Fig. 5.25 Frank–Read source

operating in center of grain 1 and

producing two pileups at grain

boundaries; the Frank–Read

source in grain 2 is activated by

stress concentration.

From Equation 5.9

αD τa

2G b/π
τa ≥ τc , or

απ D τ 2
a

2G b
≥ τc .

In order to take into account the friction stress τ 0 needed to move

the dislocations in the absence of any obstacle, we have to add the

term τ 0. Thus,

τa ≥ τ0 + kD −1/2. (5.11)

Equation 5.11 is essentially identical to Equation 5.8, once the shear

stresses are converted into normal stresses. Note that Eshelby’s equa-

tion is valid only for a large number of dislocations; hence, the equa-

tion is not applicable to grain sizes below a few micrometers.

5.4.2 Cottrell’s Theory
Cottrell8 used a somewhat similar approach to that of Hall and Petch;

however, he recognized that it is virtually impossible for dislocations

to ‘‘burst” through boundaries. Instead, he assumed that the stress

concentration produced by a pileup in one grain activated dislocation

sources in the adjacent grain. Figure 5.25 shows how a Frank--Read

source at a distance r from the boundary is activated by the pileup

produced by a Frank--Read source in the adjacent grain. The slip band

blocked in the boundary was treated by Cottrell as a shear crack. The

maximum shear stress at a distance r ahead of a shear crack is given

by

τ = (τa − τ0)

(
D

4r

)1/2

,

where τ 0 is the frictional stress required to move dislocations and

r < D/2. The stress required to activate the Frank--Read source in the

neighboring grain is given by

τc = (τa − τ0)

(
D

4r

)1/2

,

or

τa = τ0 + 2τc r 1/2 D −1/2.

This equation is of a Hall--Petch form.

8 A. H. Cottrell, Trans. TMS-AIME, 212 (1958) 192.
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Fig. 5.26 Dislocation activity at

grain boundaries in AISI 304

stainless steel (ε̇ = 10−3 s−1). (a)

Typical dislocation profiles after a

strain of 0.15%. (b) Same after a

strain of 1.5%. (Courtesy of L. E.

Murr.)

5.4.3 Li’s Theory
Li9 used a different approach to obtain a relationship between the

yield stress and grain size. Instead of using pileups, he considered the

grain boundary to be a source of dislocations. The concept of grain-

boundary dislocation sources is discussed in Section 4.4.8, and it is

thought that the onset of yielding in polycrystals is associated with

the activation of these sources. Li suggested that the grain-boundary

ledges generated dislocations, ‘‘pumping” them into the grain. Figure

5.26 shows dislocation activity in stainless steel in the grain-boundary

regions. These patterns can be interpreted as being due to dislocation

pileups or dislocation emission from grain-boundary ledges. Such dis-

locations act as Taylor (Section 4.4.10) ‘‘forests” in regions close to the

boundary. The yield stress is, according to Li, the stress required to

move dislocations through these ‘‘forests.” For many metals, the flow

stress is related, under most conditions, to the dislocation density by

the relationship (Section 6.3)

τ = τ0 + αG b
√

ρ, (5.12)

9 J. C. M. Li, Trans. TMS-AIME, 227 (1963) 239.
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where τ 0 is the friction stress, α is a numerical constant, and ρ is the

dislocation density. At this point, use was made of the experimen-

tal observation: ρ was taken to be inversely proportional to the grain

diameter D. Li rationalized this as follows: The ledges ‘‘pump” disloca-

tions into the grains. The number of dislocations generated per unit

deformation is proportional to the number of ledges, or to the grain-

boundary surface per unit volume, assuming the same ledge density

per unit area for different grain sizes. That is,

ρ ∝ Sv . (5.13)

Equation 5.3 shows that the grain boundary surface per unit volume,

Sv, is inversely proportional to D. Thus:

ρ ∝ 1

D
. (5.14)

Substituting Equation 5.14 into Equation 5.12, we obtain

τ = τ0 + G bD −1/2.

Again, this is a Hall--Petch equation.

5.4.4 Meyers–Ashworth Theory
There have been other proposals, including one by Meyers and

Ashworth,10 who analyzed elastic and plastic incompatibility stress

between neighboring grains. Stress concentrations occur at grain

boundaries during elastic loading because the strains have to be com-

patible. For metals having anisotropy ratios different from unity (see

Chapter 2, Equation 2.17), the Young’s moduli in different directions

are different. For example, for nickel,

E [100] = 137 GPa,

E [110] = 233 GPa,

E [111] = 303 GPa.

The incompatibility stresses were calculated by Meyers and Ashworth

by finite element analysis and found to be

τI = 1.37σAP,

where σ AP is the normal stress applied to the specimen. Hence, the

interfacial shear stress due to the incompatibility is almost three

times higher than the resolved shear stress homogeneously applied

on the grain (τH = σ AP/2). This means that dislocation activity at the

grain boundary starts before dislocation activity at the center of the

grains.

When the stress reaches the critical level required for emission,

localized plastic deformation will start (Figure 5.27(b)). These dislocat-

ions do not propagate throughout the grain, for two reasons:

10 M. A. Meyers and E. Ashworth, Phil. Mag., 46 (1982) 737.
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Fig. 5.27 Sequence of stages in

(a) polycrystalline deformation,

starting with (b) localized plastic

flow in the grain-boundary regions

(microyielding), forming (c) a

work-hardened grain-boundary

layer that effectively reinforces the

microstructure.

1. The stress decreases rapidly with distance from the grain boundary.

2. The center of the grains is under homogeneous shear stress control,

which is maximum at 45◦ to the tensile axis. On the other hand,

the interfacial and homogeneous shear stresses have different

orientations. Figure 5.27 shows how the dislocations emitted from

the grain boundaries will undergo cross-slip. Extensive cross-slip

and the generation of dislocation locks will result in a localized

layer with high dislocation density.

The plastic flow of the grain-boundary region attenuates the stress

concentration; geometrically necessary dislocations accommodate

these stresses (Figures 5.27(b) and (c)). This marks the onset of

microyielding. The dislocations do not propagate throughout the

whole grain, because of cross-slip induced by the difference in orien-

tation between the maximum shear stress (due to the applied load)

and the stress concentration due to elastic incompatibility. The work-

hardened grain-boundary layer has a flow stress σ GB, while the bulk

has a flow stress σ B(σ GB > σ B). The material behaves, at increasing

applied loads, as a composite made out of a continuous network

of grain-boundary film with flow stress σ GB and of discontinuous

‘‘islands” of bulk material with flow stress σ B. The increasing applied

stress σ AP does not produce plastic flow in the bulk in spite of the

fact that σ AP > σ B, because the continuous grain-boundary network

provides rigidity to the structure. The total strain in the continu-

ous grain-boundary network does not exceed 0.005, since it is elastic;

hence, plastic deformation in the bulk is inhibited. This situation can

be termed ‘‘plastic incompatibility.”

When the applied load is such that the stress in the grain-

boundary region becomes equal to σ GB, plastic deformation re-

establishes itself in this region. The plastic deformation of the con-

tinuous matrix results in increases in stress in the bulk with plastic
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flow (Figure 5.27(c)). This marks the onset of macroyielding. After a

certain amount of plastic flow, dislocation densities in the bulk and

grain-boundary regions become the same; then, since both regions

have the same flow stress, plastic incompatibility disappears, and we

have σ AP = σ GB = σ B.

One arrives at a relationship

σy = σB + 8k(σG B − σB )D −1/2 − 16k2(σG B − σB )D −1. (5.15)

The last term becomes important at small grain sizes and decreases

the slope.

Example 5.6

If you could produce AISI 1020 steel with a grain size of 50 nm, what

would be the expected yield stress, assuming a Hall--Petch response?

(Use data from Figure 5.23.)

Solution: The Hall--Petch equation for this problem is σ y = σ 0 + kD−1/2.

From Figure 5.23

σ0 = 120 MPa,

k = 18 MPa/mm1/2 = 0.56 MN/m3/2
.

Therefore,

σ = (120 × 106) + (0.56 × 106) × (50 × 10−9)−1/2

= 2.65 × 109 Pa

= 2.65 GPa.

5.5 Other Internal Obstacles

There are other internal obstacles to the motion of dislocations that

may have an effect analogous to grain boundaries. Examples are cell

walls and deformation twins. These barriers were studied by several

investigators, and their effect on flow stress may be represented by

the general equation

σ f = σ0 + K 	−m, (5.16a)

where the coefficient m has been found to vary between 1
2

and 1. If we

want to include the effects of both grain size and substructure refine-

ment due to the internal barriers, we can use the following overall

equation, which describes the response of the material reasonably

well:

σ f = σ0 + K 1 D −1/2 + K 2	
−m. (5.16b)
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Fig. 5.28 Deformation twins in
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(111) making 90◦. (Courtesy of

L. E. Murr.)
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Figure 5.28 shows an example of substructural refinement in

nickel. The twins were induced by shock loading at 45 GPa and

2 μs. It is easy to understand why these obstacles strengthen the

metal. Dislocation movement occurring in subsequent deformation

by, say, tensile testing is severely hampered by all such planar obs-

tacles. Internal cells are also very effective barriers.

The effect of the dislocation cell size on the flow stress of highly

cold-worked low-carbon steel wire is shown in Figure 5.29. The strain-

ing to high levels was accomplished by wire drawing, and the material

was recovered and showed thin cell walls and virtually dislocation-

free cell interiors. The slope in the log--log plot is −1, and we have,

consequently,

log(σ f − σ0) − log(σ1 − σ0) = −1(log d̄ − log d̄1), (5.17)

where this equation expresses the straight line passing through (σ f −
σ0, d̄) and (σ1 − σ0, d̄1). Notice that the ordinate in Figure 5.26 is σ −
σ 0. Manipulation of Equation 5.17 will yield

log
(σ f − σ0)

(σ f − σ0)
= log

(
d̄

d̄1

)−1

.
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Hence,

σ f − σ0 = σ1 − σ0

d̄−1
1

d̄−1 = K d̄−1.

σ f = σ0 + K d̄−1.

On the other hand, when the annealings were done at 600 ◦C and

above, recrystallization took place, and the group of points on the

right side of the plot were found. The slope was decreased to − 1
2
,

leading to a regular Hall--Petch relationship.

In low-carbon steels, the yield stress is strongly dependent on grain

size; a steel with a grain size of 0.5 mm and σ y of 104 MN/m2 has

its yield stress increased to approximately 402 MN/m2 when the grain

size is reduced to 0.005 mm. As the carbon content is increased and

the steel tends more and more toward eutectoid, other effects, such

as the ferrite--pearlite ratio, the spacing of cementite layers in the

pearlite, and the size of the pearlite colonies, become important

parameters. Gladman, McIvor, and Pickering11 developed an expres-

sion for pearlite--ferrite mixtures, namely,

σy (ksi) = f 1/3
α [2.3 + 3.81(% Mn) + 1.13D −1/2]

+ (1 − f 1/3
α )[11.6 + 0.25S

−1/2
0 ] + 4.1(% Si) + 27.6(

√
%N),

where fα is the ferrite fraction, D is the ferrite grain size (in mm), S

is the interlamellar spacing in pearlite (in mm), and % Mn, Si, and

N are the weight percentages of manganese, silicon, and nitrogen,

respectively.

Hyzak and Bernstein12 proposed the following equation for fully

pearlitic steels:

σy (MPa) = 2.18 S−1/2 − 0.40 P −1/2 − 2.88 D −1/2 + 52.30.

Here, S is the pearlite interlamellar spacing, P is the pearlite colony

size, and D is the austenite grain size. (The units of S, P, and D are

not given by Hyzak and Bernstein, but should be cm.)

5.6 Nanocrystalline Materials

Since 1985, a great deal of research has been devoted to materials con-

taining grain sizes in the nanometer range. These materials possess

mechanical, magnetic, and electronic properties that are quite differ-

ent from those of conventional crystalline materials (10 μm ≤ d ≤
300 μm). It is clear that high strength levels can be achieved through

reductions in grain size. Another beneficial effect is an enhanced

deformability of ceramics, due to the large grain-boundary interface.

A strength level of 4,000 MPa was obtained in a drawn steel that had

a grain size of 10 nm (0.01 μm).

11 T. Gladman, I. D. McIvor, and R. E. Pickering, J. Iron Steel Inst., 210 (1972) 916.
12 J. M. Hyzak and I. M. Bernstein, Met. Trans., 7A (1976) 1217.
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Fig. 5.30 Gleiter representation

of atomic structure of a

nanocrystalline material; white

circles indicate grain-boundary

regions. (Courtesy of H. Gleiter.)

Figure 5.30 shows the schematic atomic structure of a nanocrys-

talline material. The atoms in the centers of the crystals (black

circles) have a crystalline periodic arrangement. The configuration

was developed by Gleiter, based on a Morse potential fitted to gold. At

the boundaries, the spacings are altered. Thus, nanocrystalline mater-

ials can be considered a new class of disordered materials created by

having a sizeable fraction of the atoms at disordered sites. The bound-

ary region is characterized by a lower atomic density, and this is

indeed a characteristic of nanocrystalline materials (between 75 and

90% of the crystalline density). The densities of nanocrystalline mater-

ials vary from 83--96% for Pd and 72--97% for Cu. In conjunction with

the lower density, the Young’s modulus of nanocrystalline materials is

also lowered. For Cu and Pd (with theoretical values of Young’s modu-

lus E of 120--130 GPa), the reported E value in the nanocrystalline state

is 21--66 GPa.

Two principal methods are used to produce these nanocrystalline

materials:

1. Evaporation of metal from melt and condensation on to a ‘‘cold

finger;” this nanosized powder is subsequently densified by press-

ing.

2. Extreme mechanical deformation of powders in, for instance, a

ball-milling machine. Hard spheres impinge upon powders numer-

ous times until a saturation of defects occurs, causing recrystal-

lization.

There are also other techniques: molecular beam epitaxy, rapid solid-

ification from melt, reactive sputtering, sol-gel, electrochemical depo-

sition, and spark erosion.

The mechanical properties of nanocrystalline materials are quite

distinct from those of conventional polycrystalline materials. A sim-

ple extrapolation using the Hall--Petch equation would predict extra-

ordinarily high values of the yield stress. For example, copper with

a grain size of 25 nm should have a yield stress of 720 MPa (data

extrapolated from Table 5.3). Indeed, experimental results, shown in

Figure 5.31, show a very high yield stress (∼185 MPa). However, a
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Fig. 5.31 Stress–strain curves

for conventional (D = 50 μm) and
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Fig. 5.32 Hall–Petch relationship

for nanocrystalline copper. (After

G. W. Nieman, J. R. Weertman,

and R. W. Siegel, Nanostructured

Matls., 1 (1992) 185.)

simple extrapolation using the Hall--Petch equation does not predict

quantitatively correct results. The Hall--Petch slope decreases as the

grain size is decreased. Figure 5.32 shows the Hall--Petch relationship

obtained in the nanocrystalline regimen (grain sizes between 10 and

100 nm). The slope k is equal to 470 MPa
√

nm. This can be con-

verted into 0.014 MN/m3/2. There has been considerable discussion as

to the nature of the strength of nanocrystals. Some of the ideas13,14,15

that have been bandied about are briefly presented in the following

list.

1. Dislocation pileups. There is a minimum number of dislocations

below which the equation for the stress concentration is no longer

operative.

2. Dislocation network models. Models such as Li’s or Meyers and

Ashworth’s use dislocation networks within the grain-boundary

regions as the parameters determining the effects of grain size.

Chang and Koch13 and Scattergood and Koch14 addressed these

13 J. S. C. Chang and C. C. Koch, Scripta Met. Mat., 24 (1990) 1599.
14 R. O. Scattergood and C. C. Koch, Scripta Met. Mat., 27 (1992) 1195.
15 M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci., 51 (2006) 427.
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Fig. 5.33 Classical Hall–Petch

slope compared with Meyers and

Ashworth equation and

computations assuming a

grain-boundary region and grain

interior with different

work-hardening curves. As grain

size is decreased, grain-boundary

region gradually dominates the

deformation process. (From H.-H.

Fu, D. J. Benson, and M. A. Meyers,

Acta Mater., 49 (2001) 2567.)

phenomena and proposed that, below a critical grain size Dc, a

dislocation-network mechanism controlled the flow stress. Meyers

and Ashworth’s formulation predicted a decrease in the Hall--Petch

slope for smaller grain sizes, in line with experimental observa-

tions. Their theory is based on the formation of a hardened region

along the grain boundaries (Section 5.4.4).

3. Grain-boundary sliding. In the nanocrystalline domain, sliding along

grain boundaries becomes a significant component of plastic defor-

mation for D < 10 nm.

The incorporation of the D−1 term into the Hall--Petch equation that

was carried by Meyers and Ashworth, and is described in Section 5.4.4,

leads to results that are shown in Figure 5.33. The The D−1 term in

Equation 5.15 is negative and produces a gradual decrease in the slope

of the Hall--Petch curve. This is evident from the plot in Figure 5.33,

made by the application of Equation 5.15.

The same curvature was obtained by means of computational mod-

eling carried out by Fu et al.16 These calculations were made for grains

as small as 26 nm. Figure 5.33 also shows the classical Hall--Petch

slope for the micrometer-sized grains. It is a straight line. The slopes

predicted from Equation 5.15 and from the computational prediction

decrease with decreasing grain size and the yield stress approaches a

saturation value as the grain size is reduced.

When the grain size is smaller than 10 nm, other processes start

operating; grain-boundary sliding becomes important, as pointed out

above, and some researchers have even reported a negative Hall--Petch

slope.

5.7 Volumetric or Tridimensional Defects

Voids and inclusions are among the principal tridimensional defects

in materials. Inclusions are often produced in metals by the acciden-

tal incorporation of slag or pieces of refractory bricks into the melt or

16 H.-H. Fu, D. J. Benson, and M. A. Meyers, Acta Mater., 49 (2001) 2567.
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10mm

Fig. 5.34 Voids (dark spots

marked by arrows) in titanium

carbide. The intergranular phase

(light) is nickel, which was added to

increase the toughness of the TiC.

in powder metallurgy processes, from extraneous matter. Inclusions

are also often the result of impurities, such as sulfur and phospho-

rous in steel. Vacuum arc remelting and other refining processes lead

to alloys in which the inclusion content is minimized. Ceramics and

brittle metals and intermetallics are especially sensitive to inclusions

and voids. As will be seen in Chapter 8, these are easy sites for the

initiation of fracture. Spherical and elongated flaws are the princi-

pal failure initiation sites in brittle materials. Such flaws are acti-

vated both in tension and compression, and are responsible for the

great differences between compressive and tensile strength (a factor of

5--10).

Ceramics are often produced by sintering or hot pressing of pow-

ders. This often leaves a residual porosity, which is a major source

of concern. Figure 5.34 shows the microstructure of titanium carbide

produced by hot pressing of powders. Residual porosity can be seen,

and the voids are indicated by arrows. These voids have diameters of

1--4 μm. It is difficult to completely eliminate porosity in ceramics.

Small, intragranular pores that are only visible by TEM, such as the

ones in Al2O3 in Figure 5.35(a), are very difficult to remove, because

bulk diffusion is orders of magnitude slower than grain-boundary

diffusion. If the voids were at the confluence of grain boundaries,

it would be easier to eliminate them by high-temperature sintering.

The voids seen in Figure 5.27(a) are faceted because this shape min-

imizes the overall surface energy; the surface energy is anisotropic,

and the surfaces with the least number of broken bonds per unit

area have the least energy. This is evident from the hexagonal voids

shown in Figure 5.35(a), which all have parallel faces. The TEM of

Figure 5.35(b) also shows dislocations, which are produced during hot

pressing of titanium carbide. The difficulty of hot pressing or sinter-

ing pure, high-temperature ceramics without voids is often bypassed

by using sintering aids, or materials with a lower melting point. These

materials --- usually glasses --- become viscous at high temperatures

and fill the existing voids. They also act as a high-temperature lubri-

cant between the ceramic particles and help to densify the ceramic,

by capillary action. An illustration of the use of sintering aids to help
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Fig. 5.35 (a) Transmission

electron micrograph illustrating

faceted grain-interior voids within

alumina and (b) voids in titanium

carbide; dislocations are pinned by

voids.

Fig. 5.36 Glassy phase at triple point in silicon nitride; notice the individual

crystallographic planes in Si3N4. (Courtesy of K. S. Vecchio.)

the consolidation is given in Figure 5.36. Three silicon nitride grains

are imaged by the TEM; the interplanar spacing, 0.65 nm, is shown.

The three grains surround a glassy material, marked G. If no sinter-

ing aid were used, a central void would be formed. Nevertheless, the

glassy phase is a volumetric defect and results in a weaker material

than a fully dense, pure Si3N4.
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Example 5.7

(a) Calculate the volume fraction of voids in the micrograph in Figure

5.34.

(b) If Young’s modulus for fully dense TiC is 440 GPa, what is Young’s

modulus for the porous TiC?

Fig. E5.7

Solution:

(a) We overlay a grid on the micrograph and count the intersections of

lines falling within the voids. (See Figure E5.7.)

Total numbers of intersections in grid = 72 × 47 = 3,384;

Total numbers of intersections inside voids ≈ 66.

Therefore, the porosity is approximately 66/3,384 = 2%.

(b) From Chapter 2, we obtain the equation for Young’s modulus

(Equation 2.25):

E = E 0(1 − 1.9p)

= 440 × (1 − 1.9 × 0.02)

= 423 GPa.

5.8 Imperfections in Polymers

Let us consider again the basic ‘‘cooked spaghetti” structure of a poly-

mer. In an amorphous polymer, there is no apparent order among
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the molecules, and the polymeric chains are arranged randomly.

As we pointed out in Chapter 1, macromolecules can be made to

crystallize. However, unlike metals or ceramics, long-chain polymers

or macromolecules (synthetic or natural) do not form exact, peri-

odic structures having long-range order in three dimensions. This

is because such a highly ordered structure in a polymer, in gen-

eral, will not be in equilibrium. It is, however, possible to obtain a

variety of metastable chain conformations, depending on the route

taken to reach a particular state. In any of these metastable states,

order may be locally present; that is, we can have crystalline regions

interspersed with amorphous regions. Polymers can thus be amor-

phous or partially crystalline, a 100% crystalline polymer being

difficult to obtain in practice. In a partially crystalline or semicrys-

talline polymer, depending on its type, molecular weight, and crys-

tallization temperature, the amount of crystallinity can vary from

30 to 90%. The inability to attain a fully crystalline structure is

due mainly to the long chain structure of polymers: Some twisted

and entangled segments of chains that get trapped between crys-

talline regions never undergo the conformational reorganization nec-

essary to achieve a fully crystalline state. Molecular architecture also

has an important bearing on the polymer crystallization behavior:

Linear molecules with small or no side groups crystallize easily;

branched chain molecules with bulky side groups do not. For exam-

ple, linear, high-density polyethylene can be crystallized to more than

90%, whereas branched polyethylene can be crystallized only to

about 65%.

Amorphous polymers can be considered to be fairly homogeneous

on a supramolecular scale. Semicrystalline polymers, consisting of

tiny crystalline regions randomly distributed in an amorphous mater-

ial, are heterogeneous, multiphasic, or even composite in nature.

Lamellar crystals can form when a crystallizable polymer such as

a linear polymer is cooled very slowly from its melting point. Small,

platelike lamellar single crystals can also be obtained by the precipi-

tation of a polymer from a dilute solution. The long molecular chains

in the lamellae are folded in a regular manner. In a lamellar-polymer

single crystal, the thickness of a lamella is typically about 10 nm,

while the length of the chain is about 100 to 1,000 nm. The extremely

long chain is conformed into a narrow lamella by the process of chain

folding during crystallization. Figure 1.26c shows this phenomenon

of chain folding. Many such lamellar crystallites group together and

form spherulites. (See Chapter 1.)

Crystalline defects such as those described for metals and ceramics

are not at all ubiquitous in polymers. One may define defects in poly-

mers in simple chemical and physical terms. Chemical defects include

defects such as a linear polymer branching off into two branches that

grow at different rates to give branches of different lengths. One can

also have syndiotactic defects, which are stereochemical in nature.

For example, an isotactic polymer chain can have syndiotactic defects

embedded in it. Physical aspects of defects involve conformational

defects in chain coiling. It is easy to see that kinetic and energetic
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factors will be very important in these type of defects, because such

defects involve chain movement. Variables such as temperature, pres-

sure, concentration, molecular weight, chain polarity, etc., are import-

ant, and statistical mechanics needs to be used. Thus, point defects in

polymers are chain-conformational kinks, jogs, and inclusions. Point

defects also include an interstitial or substitutional molecule. For

example, if a macromolecular chain consisting of species A has a

monomer B trapped inside the polymer crystal, that would be an

interstitial point defect. If there is a break in the length of the

molecular chain we will have a chain end and a vacancy or a row

of vacancies.

As we have seen, in metals dislocations are very important because

they are mobile, while in ceramics they are immobile under most con-

ditions. Although dislocations can exist in polymeric crystals also,

they do not play such a major role in the deformation of polymers.

Direct observations of dislocations have been made in some semicrys-

talline polymers by transmission electron microscopy, which has been

instrumental in elucidating the structural imperfections in metals

and ceramics. One of the great limitations to the use of electron

microscopy in the study of polymers is the radiation damage pro-

duced in the polymers by the electron beam. Images produced by

electron diffraction contrast, as well as electron diffraction patterns,

depend on the crystallinity of the specimen. A large dose of electrons

will tend to destroy the long-range crystalline order, more so in poly-

mers than in metals or ceramics, because nonpolymeric crystalline

materials such as metals and ceramics are more resistant to electron

irradiation. Thus, only a limited number of scattered electrons can be

used to obtain crystallographic information from the sample under

study before the diffraction pattern changes from crystalline reflec-

tions to broad, amorphous haloes. Radiation damage can establish

cross-links and cause strain in the lattice at first. Continued expo-

sure to an electron beam can make the diffraction contrast weaker

and eventually disappear. It is therefore necessary to take special pre-

cautions before examining the structure of polymers in an electron

microscope. Perhaps the most widely studied polymer in this regard is

polyethylene, although it is difficult to take high-resolution images of

polyethylene at room temperature by TEM because of the sensitivity

of the polymer to radiation. By comparison, thermoplastics such as

PPS, PEEK, and PEK are fairly resistant to electron irradiation. Experi-

mentally, giant screw dislocations showing growth spirals have been

observed in these thermoplastics. Terminating moiré fringes have

been used to show the existence of dislocations in a polyethylene crys-

tal. A lattice-imaging technique has been used on poly (para phenylene

terephthalamide) PPTA and poly (paraphenylene benzobis thiazole)

PBT fibers. In these fibrous materials, one has, relative to polyethylene,

rather high radiation stability for electron microscopic observations

because of the electronic conjugation of the backbone chain.

In crystalline metals and ceramics, two-dimensional defects such

as grain boundaries are thin regions where two grains meet. In poly-

meric crystals, grain boundaries can be very complex, again because
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of the chain connectivity. Besides, the electron beam sensitivity of

polymers makes TEM observations and their interpretation quite dif-

ficult. Planar defects such as stacking faults and twins have been

observed in samples of poly (diacetylene) crystals.
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Exercises

5.1 Calculate the dislocation spacing in a symmetrical tilt boundary (θ =
0.5◦) in a copper crystal.

5.2 Starting from the equation E = E0θ (A − ln θ ) for a low-angle boundary,

show how one can obtain graphically the values of E0 and A.

5.3 Taking A = 0.3, compute the value of θmax.

5.4 Show that, for a low-angle boundary, we have

E

E max

= θ

θmax

(
1 − ln

θ

θmax

)
,

where Emax and θmax correspond to the maximum in the E-versus-θ curve.

5.5 Consider two parallel tilt boundaries with misorientations θ1 and θ2. Show

that, thermodynamically, we would expect the two boundaries to join and

form one boundary with misorientation θ1 + θ2.
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5.6 Can you suggest a quick technique to check whether lines observed in an

optical microscope on the surface of a polished sample after deformation are

slip lines or twin markings?

5.7 A twin boundary separates two crystals of different orientations; however,

we do not necessarily need dislocations to form a twin. Why?

5.8 Let m be the total length of dislocations per unit area of a grain boundary.

Assume that at yield, all the dislocations in the grain interiors (ρ) are the ones

emitted by the boundaries. Assume also that the grains are spherical (with

diameter D). Derive the Hall--Petch relation (σ = σ 0 + kD−1/2) for this case,

and give the expression for k.

5.9 Consider a piano wire that has a 100% pearlitic structure. When this wire

undergoes a reduction in diameter from D0 to Dε, the pearlite interlamellar

spacing normal to the wire axis is reduced from d0 to dε, that is,

d0

dε

= D 0

D ε

,

where the subscript o refers to the original dimensions, while the subscript

ε refers to the dimensions after a true plastic strain of ε. If the wire obeys

a Hall--Petch type of relationship between the flow stress and the pearlite

interlamellar spacing, show that the flow stress of the piano wire can be

expressed as

σ = σi + k′
√

d0

exp
( ε

4

)
.

5.10

(a) Determine the mean lineal intercept, the surface area per unit volume,

and the estimated grain diameter for the specimen shown in Figure

Ex5.10.

(b) Estimate the yield stress of the specimen (AISI 304 stainless steel).

(c) Estimate the parameters of part (a), excluding the annealing twins. By

what percentage is the yield stress going to differ?

Fig. Ex5.10

5.11 Professor M. I. Dum conducted a study on the effect of grain size on the

yield stress of a number of metals using thin foil specimens (thickness 0.1

mm and width 6.25 mm). He investigated grain sizes of 5, 25, 45, and 100 μm.

Which specimens can be considered truly polycrystalline?

5.12 Thompson17 obtained the following results for the yield stress of

nickel:

Grain Size Yield Stress
(μm) (MN/m2)

0.96 251
2 185

10 86
20 95
95 33

130 25

17 A. W. Thompson, Acta Met., 25 (1977) 83.
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(a) Find the parameters in the Hall--Petch equation. Plot the yield stress versus

D−1, D−1/2, and D−1/3. Which plot shows the best linearity?

(b) Show how you can determine the correct exponent by another plot (not

by trial and error).

5.13 If the grain size of a metal is doubled by an appropriate annealing, by

what percentage is the surface area per unit volume of the metal changed?

5.14 Nilles and Owen18 found a strong grain-size dependence of the stress

required for twinning when deforming an Fe--25 at.% Ni alloy at 4 K. From

what you learned in the text, is this behavior expected? Compare the ratio of

the Hall--Petch slopes of the twinning and yield stresses for Fe--25% Ni with

the ratio found for chromium and Fe--Si.

5.15 Most polycrystalline materials, when etched, form grooves at grain

boundaries. When annealed, ceramics form thermal grooves at grain bound-

aries. A schematic of such a groove is shown in Figure Ex5.15. If the surface

energy per unit area of the material is γ s, derive an expression for the energy

per unit area of the grain boundary between grains 1 and 2.

21

Solid

q Vapor

Fig. Ex5.15

5.16 Estimate the average grain diameter and the grain-boundary area per

unit volume for a material that has isotropic grains (the same dimension in

all directions) and ASTM grain size 6.

5.17 How many grains in an area of 5 × 5 cm would be counted, in a photo-

micrograph taken at a magnification of 500×, for a metal with ASTM grain

size 3?

5.18 A graduate student (undergraduates are much brighter!) measured the

grain size of a metallic specimen and found that it was equal to ASTM #2.

However, he had the wrong magnification in his picture (400× instead of

100×). (a) What is the correct ASTM grain size? (b) What is the approximate

grain diameter?

5.19 Nanophase materials show many different characteristics vis-à-vis con-

ventional materials. Discuss the sintering behavior of a nanophase powder in

relation to that of a conventional powder.

5.20 Calculate the volume fraction of voids in the TiC specimen shown in

Figure 5.35(b).

5.21 Examine Figure Ex5.21.

(a) Using the lineal intercept method, determine the mean lineal intercept

and the grain size if the material is TiC.

(b) Determine the grain size using the ASTM method.

5.22

(a) Using the mean lineal intercept, calculate the grain diameter for tanta-

lum, given the micrograph in Figure 5.29(a).

(b) Calculate the ASTM grain size.

(c) Estimate the yield stress for this specimen of tantalum, using values from

Table 5.3.

18 J. L. Nilles and W. S. Owen, Met. Trans., 3 (1972) 1877.
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Fig. Ex5.21

5.23 A polycrystalline sample has 16 grains per square inch in a photomicro-

graph taken at magnification 100×. What is the ASTM grain size number?

5.24 A 20-cm line gave seven intersections in a 100× micrograph. Using the

lineal intercept method, determine the mean lineal intercept and the grain

size.

5.25 How many grains in an area of 5 × 5 cm would be counted in a photo-

micrograph taken at a magnification of 500× for a metal with an ASTM grain

size 3.

5.26 The yield stress of AISI 1020 steel with a grain size of 200 μm is 200 MPa.

Estimate the yield stress for a grain size of 10 μm if the Hall--Petch constant

k = 0.8 MN/m3/2.

5.27 A small-angle tilt boundary has a misorientation of 0.1◦. What is the

spacing between the dislocations in this boundary if the Burgers vector of

the dislocation is 0.33 nm?

5.28 Calculate the dislocation spacing of a low-angle tilt boundary in alu-

minum for θ = 0.5◦. Take G = 26.1 GPa, v = 0.345, and rAl = 0.143 nm.

5.29

(a) Determine the grain size for the microstructure of zirconium shown in

Figure Ex5.29, using the lineal intercept method. Use the scale given at

the bottom.

(b) Use the Hall--Petch equation to determine the yield stress of this material,

given σ 0 = 29 MPa, k = 0.25 MPa m1/2.

5.30 From Figure 5.2 (a, b) find the grain diameter of samples using the lineal

intercept ASTM method, N = 2n --1.
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Fig. Ex5.29 Microstructure of zirconium. (Courtesy of S. Barrabes and M. E. Kassner.)

5.31 Calculate the dislocation spacing and energy of a low-angle tilt boundary

in Ni if θ = 0.5◦, G = 76 GPa, r = 0.125 nm, ν = 0.31.

5.32 If a sample of copper had a grain size of 75 mm, what would be the

expected yield stress, assuming a Hall--Petch response? (Use the data from

Figure 5.23.)

5.33 Describe the difference between deformation twins and annealing twins.

Describe the differences in twinning in HCP, BCC, and FCC crystals.



Chapter 6

Geometry of Deformation and

Work-Hardening

6.1 Introduction

The relaxation times for the molecular processes in gases and in a

majority of liquids are so short, that molecules/atoms are almost

always in a well-defined state of complete equilibrium. Consequently,

the structure of a gas or liquid does not depend on its past history. In

contrast, the relaxation times for some of the significant atomic pro-

cesses in crystals are so long, that a state of equilibrium is rarely, if

ever, achieved. It is for this reason that metals in general (and ceram-

ics and polymers, under special conditions) show the usually desirable

characteristic of work-hardening with straining, or strain-hardening.

In other words, plastic deformation distorts the atoms from their

equilibrium positions, and this manifests itself subsequently in hard-

ening.

In fact, hardening by plastic deformation (rolling, drawing, etc.)

is one of the most important methods of strengthening metals, in

general. Figure 6.1 shows a few deformation-processing techniques

in which metals are work-hardened. These industrial processes are

used in the fabrication of parts and enable the shape of metals to be

changed. The figure is self-explanatory. Rolling is used to produce flat

products such as plates, sheets, and also more complicated shapes

(with special rolling cylinders). In forging, the top hammer comes

down, and the part is pushed into a die (closed-die forging) or is

simply compressed. Extrusion uses a principle similar to that in the

use of a tube of toothpaste. The material is squeezed through a die,

and its diameter is reduced. In stamping, first the ends of a blank are

held, and then the upper die comes down, punching the blank into

the lower die.

If deformation is carried out at low and moderate temperatures,

the metal workhardens. However, if the temperature is sufficiently

high, the dislocations generated in work-hardening are annealed out,

and the final metal is in the annealed condition. Hot working des-

ignates all work done on a metal or alloy above its recrystalliza-

tion temperature, while cold working indicates work done below the
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Fig. 6.1 Common metalworking

methods. (a) Rolling. (b) Forging

(open and closed die). (c)

Extrusion (direct and indirect).

(d) Wire drawing. (e) Stamping.

recrystallization temperature of the metal or alloy. Certain metals,

in particular (e.g., copper), do not have many precipitation harden-

ing systems, but are ductile and can be appreciably hardened by

cold working. If the relaxation times were short, the structure would

Work hardening

Softening

Ideally
plastic

Strain

Elastic

s0

S
tr

e
s
s

Fig. 6.2 Stress–strain curves

(schematic) for an elastic, ideally

plastic; a work-hardening; and a

work-softening material.

return almost immediately to its state of equilibrium, and a constant

stress for plastic deformation would result, independent of the extent

of deformation. This is shown in Figure 6.2 as the elastic, ideally plas-

tic solid. However, when a real crystalline solid is deformed plastic-

ally, it turns more resistant to deformation, and a greater stress is

required for additional deformation. The phenomenon is called work-

hardening. If the stress is interrupted, and the material is unloaded

after a certain plastic strain, the unloading slope is equal to the

Young’s modulus. Upon loading, the stress returns to its original
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Fig. 6.3 Engineering-stress–

engineering-strain curves for

nickel. (a) Nickel subjected to 0,

20, 40, 60, 80, and 90% cold-rolling

reduction. (b) Nickel cold rolled to

80%, followed by annealing at

different temperatures. (From D.

Jaramillo, V. S. Kuriyama, and M. A.

Meyers, Acta Met. 34 (1986) 313.)

value. Thus, for a work-hardening material, the flow stress is increased

above σ 0, whereas for an ideally plastic material, the flow stress is con-

stant at σ 0. Under certain conditions, the material can also soften.

This is also shown in Figure 6.2 and is discussed in greater detail in

Section 6.4.

In Chapter 4, we discussed the various kinds of defects in mater-

ials. Of these defects, the primary carriers of plastic deformation in

metals and ceramics are dislocations and twins. From the simple

motion of dislocations along specific planes, we derived the Orowan

Equation 4.29, which relates the global plastic strain to the individu-

al dislocation motion and density. Basically, the hardening in a crys-

talline structure occurs because these materials deform plastically by

the movement of dislocations, which interact directly among them-

selves and with other imperfections, or indirectly with the internal

stress field (short range or long range) of various imperfections and

obstacles. All these interactions lead to a reduction in the mean mobil-

ity of dislocations, which then require a greater stress for accomplish-

ing further movement (i.e., with continuing plastic deformation, we

need to apply an ever greater stress for further plastic deformation);

hence the phenomenon of work-hardening.

Figure 6.3 illustrates how a metal (in this case, nickel) work-

hardens by cold rolling. As the nickel plate is reduced in thickness

(and increased in length), its stress--strain response changes. In the

figure, we plot engineering stress versus engineering strain, and all

the curves show a softening after hardening. This softening is due not

to an inherent structural ‘‘softening,” but to a localized reduction in

cross section, called necking. (See Chapter 3.) The yield stress increases

from less than 100 MPa (in the annealed condition) to approximately

850 MPa (after 90% reduction in thickness by cold rolling). Concomi-

tantly, the ductility decreases. The sample that received 80% reduc-

tion was subjected to one-hour annealings at various temperatures;

the resulting mechanical response is shown in Figure 6.3(b). After a

700 ◦C annealing, the curve is almost coincident with the original
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annealed curve, showing that the effects of cold rolling have been

eliminated. This occurs because the dislocations produced by plas-

tic deformation have been eliminated by the annealing. The nickel

specimens were polycrystalline, with a grain size of 40 μm.

In Chapter 4, we dealt exclusively with monocrystals; we will see,

in this chapter, how the plastic deformation in one single crystallo-

graphic direction is related to the overall deformation of a crystal

and how different crystals in a polycrystal deform in a ‘‘cooperative”

manner.

In ceramics, plastic deformation is not so common. At room tem-

peratures many ceramics are brittle, and it was seen in Chapter 4

that the Peierls--Nabarro stress opposing dislocations is much higher

and that the mobility of dislocations is much more restricted than

for metals. This is illustrated in Figure 6.4 which shows results of

compression tests on TiC specimens carried out at different tempera-

tures. Note that the elastic portion of the curves shows a slope that

is considerably lower than the prediction from the Young’s modu-

lus, because no extensometer was used to measure strain. Thus, the

abscissa records both the strain in the specimen and the deflec-

tion in the machine; for this reason, the term ‘‘apparent strain”

is used. The ambient-temperature compressive strength of TiC is

approximately 4,000 MPa. As the temperature is increased beyond

950 ◦C, plastic deformation gradually sets in. This is called the

ductile--brittle transition. As the temperature is increased, the flow stress

decreases. In this temperature regimen, the material exhibits plas-

ticity. In monocrystalline Al2O3 deformed at high temperatures, sig-

nificant plastic deformation is also observed. Figure 6.5 shows the
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shear-stress--shear-strain response for Al2O3 oriented for prismatic

slip. (See Section 4.4.7.)

6.2 Geometry of Deformation

6.2.1 Stereographic Projections
The mechanical properties of crystals are anisotropic, and slip occurs

only on certain planes, along certain directions. For this reason, it

is important to define the orientation of a crystal. The most common

technique for doing so is the stereographic projection, which will

be presented here in an abbreviated way; greater details are given

in Barrett and Massalski. (See suggested reading.) The stereographic

projection is a geometric representation of the directions and planes

of a crystal. From stereographic projections, one can determine the

angles between planes, planes and directions, and directions. The

stereographic projection is the projection of a sphere on a plane. We

imagine a unit cell of a certain crystalline structure at the center of

the sphere. (See Figure 6.6(a).) The directions and plane poles (normals

to the planes passing through the origins) intercept a sphere at points;

these points are projected onto a plane. Figure 6.6(b) shows a standard



374 GEOMETRY OF DEFORMATION AND WORK-HARDENING

cubic projection. This projection is known as a [100] standard projec-

tion because the <001> direction corresponds to the center. There

are other standard projections: [110], [111], [112], and so on. Theoreti-

cally, the angles between directions and/or plane poles are measured

on the sphere; in practice, however, these angles are measured on the

standard projection, making use of a special chart called the Wulff

net. This chart is the projection of a plane of a sphere in which all the

meridians and parallels are marked at regular degree intervals. The

sphere has the same diameter as the standard projection. By inserting

a tack at the center and rotating the standard projection around it,

we can easily find all desired angles.

An analogy can be made with maps. Imagine that we look at the

earth from the ‘‘top;” that is, we view the northern hemisphere with

the north pole at the center. If we now draw a map on a circle, we have

a situation analogous to a stereographic projection. The meridians of

the map correspond to great circles on the stereographic projection --

that is, circles whose center is coincident with the center of the

sphere. The four great circles that are perpendicular to the plane

of the paper are projected as straight lines.

In a stereographic projection, the crystalline symmetry can be

clearly seen. For instance, the <100> directions form a cross in

Figure 6.6, with the crystalline symmetry indicated in Figure 6.6(b);

two-, three-, four-, and six-field symmetry axes are shown. (The symme-

tries have been introduced in Section 2.8, and the reader is referred

to Table 2.1.) For the <111>, <110>, and <100> directions, the sym-

metry is four-, two-, and threefold, respectively, in the cubic system.

Two-, three-, and fourfold symmetries are indicated by lens, triangle,

and square, respectively. As a consequence, the standard projection

can be divided, by means of great circles, into 24 spherical trian-

gles that are crystallographically equivalent. The vertices of these

triangles are <100>, <110>, and <111>, as can be seen in Figure

6.7. Comparing this figure with Figure 6.6(b), we can see that the

directions on the sides and within the spherical triangles are also

equivalent. Consequently, one single triangle is sufficient to specify

any crystallographic orientation in the cubic system; the [100], [110],

[111] triangle is used most commonly. The reader is warned, however,

that this simplification is not applicable to the other crystal systems.

6.2.2 Stress Required for Slip
The flow stresses of crystals are highly anisotropic. For instance, the

yield stress of zinc under uniaxial tension can vary by as much as

a factor of 6, depending on the orientation. Consequently, it is very

important to specify the orientation of the load with respect to that

of the crystal. In shear or torsion tests, the shear plane and direc-

tions are precisely known. Because dislocations can glide only under

the effect of shear stresses, these shear stresses have to be deter-

mined. In uniaxial tensile and compressive tests (the most common

tests), one has to determine mathematically the shear component of

the applied stress acting on the plane in which slip is taking place.




