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Fig. 6.7 Standard [001]

stereographic projection divided

into 24 triangles.
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Fig. 6.8 Relationship between

loading axis and slip plane and

direction.

Figure 6.8 shows a crystal with a normal cross-sectional area A upon

which a tensile load P acts, generating a uniaxial stress P/A. The slip

plane and direction are indicated, respectively, by the angles φ and

λ that they make with the tensile axis. The normal n of the slip

plane, cross-sectional area A1, that makes an angle φ with the loading

direction �.

The areas A1 and A are related by the angle φ. Area A is the pro-

jection of A1 onto the horizontal plane; thus, we can write

A = A1 cos φ.
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The shear stress τ acting on the slip plane and along the slip direction

s is obtained by dividing the resolved load along the slip direction

(P cos λ) by A1:

τ = P cos λ

A1

= P

A
cos φ cos λ.

But P/A = σ is the normal stress applied to the specimen. Hence,

τ = σ cos φ cos λ.

Note that cos φ = sin χ .

This equation shows that τ will be zero when either λ or φ is equal

to 90◦. On the other hand, the shear component is maximum when

both φ and λ are equal to 45◦. We have, in this case,

τmax = σ cos 45◦ cos 45◦ = σ

2
.

The angle between any two directions a and b can be obtained from

the scalar product of these vectors:

a · b = |a||b| cos θ

or

cos θ = a · b

|a||b| .

For cubic crystals, planes and directions with the same indices are

perpendicular, and the angle is determined from the coefficients, h,

k, and l. For two vectors

a = h1i + k1j + l1k

and

b = h2i + k2j + l2k,

the angle θ is given by

cos θ = h1h2 + k1k2 + l1l2

(h2
1 + k2

1 + l2
2 )1/2 (h2

2 + k2
2 + l2

2 )1/2
. (6.1)

If two directions are perpendicular, their dot product is zero; and

the same is true for a direction that is contained in a plane. From

Equation 6.1, it is possible to obtain the cos φ and cos λ terms for

all desired crystallographic directions of a crystal. For instance, if

the loading direction is [123] for an FCC crystal, then the Schmid

factors (see below) of the various slip systems are found by obtaining

the angles of [123] with <111> (perpendicular to slip planes) and

<110> (slip directions). Note that each slip plane contains three slip

directions and that 12 values (4 × 3) have to be obtained.
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Schmid and coworkers1 used the variation in the resolved shear

stress to explain the great differences in the yield stresses of
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Fig. 6.9 Comparison of Schmid

law prediction with experimental

results for zinc. (Adapted with

permission from D. C. Jillson,

Trans. AIME, 188 (1950) 1120.)

monocrystals of certain metals. They proposed the following rational-

ization, known as the Schmid law: Metal flows plastically when the resolved

shear stress acting in the plane and along the direction of slip reaches the crit-

ical value

τc = σ0 sin χ cos λ = Mσ0, (6.2)

M = sin χ cos λ = cos φ cos λ, (6.3)

where the factor M is usually known as the Schmid factor.

Schmid’s law has found experimental confirmation principally in

hexagonal crystals. Figure 6.9 shows the experimental results, com-

pared with Schmid’s prediction for high-purity zinc. The full line

shows the hyperbola obtained by the use of Equation 6.3, assuming

a critical resolved shear stress of 184 kPa. It is worth noting that the

yield stress is minimum for M = 0.5.

For cubic crystals, the correspondence between Schmid’s law and

experiments is not as good. This is mainly due to the great number

of slip systems in these structures. For nickel, the critical resolved

shear stress is practically orientation independent. On the other hand,

for copper, the critical resolved shear stress is dependent on orien-

tation, being constant in the center of the stereographic triangle

and assuming higher values close to the sides. Figure 6.10 shows

the inverse of Schmid’s factor in the stereographic triangle based on 3.0
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Fig. 6.10 Effect of orientation

on the inverse of Schmid’s factor

(1/M) for FCC metals. (Adapted

with permission from G. Y. Chin,

“Inhomogeneities of Plastic

Deformation,” in The Role of

Preferred Orientation in Plastic

Deformation (Metals Park, OH:

ASM, 1973), pp. 83, 85.)

a {111} <110> slip: This is the situation for FCC crystals. The orienta-

tion for which FCC crystals are softest is M = 0.5, or M−1 = 2, which

occurs approximately at the center of the triangle. The dependence of

τ c on the orientation for cubic systems is thought to be because the

components of compressive stresses acting normal to the slip planes

are different for different orientations at the same applied stress level.

These compressive stresses should have an effect on τ c. Easy glide in

FCC crystals is greatest in the center of the stereographic projection,

in the region closer to (but not coinciding with) the <110> corner.

It is affected by a number of parameters, the most notable being the

following.

1. Specimen size. Specimens with a smaller cross-sectional area tend to

have a more extended easy-glide region.

2. Temperature. Easy glide is more pronounced at lower temperatures

and may vanish completely at high temperatures.

3. Stacking-fault energy. FCC metals with low stacking-fault energy tend

to have a more pronounced easy-glide region. Why?

4. Solute atoms. If solute atoms pin the dislocations, they will shorten

their mean free path and the extent of easy glide. If solute atoms

contribute primarily to the lowering of the stacking-fault energy

or to ordering, they will increase the easy glide range.

1 E. Schmid and W. Boas, Kristalplastizitat (Plasticity of Crystals) (Berlin and London:

Springer and Hughes, 1950).
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Example 6.1

A single crystal of copper is deformed in tension. The loading axis is

[112].

(a) Calculate the Schmid factors for the different slip systems.

(b) If the critical resolved shear stress is 50 MPa, what is the tensile

stress at which the material will start to deform plastically?

Solution:

(a) Copper is FCC, which has 12 slip systems of the type {111}<110>;

thus, we have

cos φ = n · �

|n| · |�| ,

cos λ = s · �

|s| · |�| ,

and the following table:

Slip plane Slip direction Schmid factor

(n) (s) Cos φ Cos λ (cos φ cos λ) σ (MPa)

[1̄10] 2
√

2/3 0 0 Not deformed

(111) [1̄01] 2
√

2/3
√

3/6
√

6/9 184

[01̄1] 2
√

2/3
√

3/6
√

6/9 184

[110]
√

2/3
√

3/3
√

6/9 184

(1̄11) [101]
√

2/3
√

3/2
√

6/6 122

[01̄1]
√

2/3
√

3/6
√

6/18 367

[110]
√

2/3
√

3/3
√

6/9 184

(11̄1) [1̄01]
√

2/3
√

3/6
√

6/18 367

[011]
√

2/3
√

3/2
√

6/6 122

[1̄10] 0 0 0 Not deformed

(111̄) [101] 0
√

3/2 0 Not deformed

[011] 0
√

3/2 0 Not deformed

A diagram showing the loading axis [112] is given in Figure E6.1.

n

s

l
f

Fig. E6.1
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(b) τcrss = σ cos φ cos λ,

σ = τcrss

cos φ cos λ
= 50

cos φ cos λ
.

Results are shown in the foregoing table.

Example 6.2

Calculate the total energy due to dislocations in iron in the annealed

condition, after 20% plastic deformation and 100% plastic deformation.

Use both the exact (Equation 4.20) and the approximate equation (Equa-

tion 4.21) (U = Gb2/2). Assume that the core has a radius equal to 5b and

that dislocations are evenly distributed between edge and screw types.

Given the following information:

G = 81.6 GPa,

v = 0.293,

r = 0.124 nm.

The relationship between the stress and dislocation density is (see

Section 6.3):

τ = 40 × 106 + 16.67
√

ρ (in Pa).

The stress--strain relationship is:

τ = τ0 + kγ n,

where τ 0 = 50 × 106, k = 100 × 106, and n = 1/2.

Solution: The stress levels for γ = 0, 0.4, and 2 (γ = 2ε) are

τ = 50,113, and 191.4 × 106 Pa.

The dislocation density is:

ρ = (τ − 40 × 106)2 × 1

16.672
= 3.5 × 10−3(τ − 40 × 106)2.

Hence, for

ε = 0, ρ = 3.5 × 109 m−2,

ε = 0.2, ρ = 3.71 × 1013 m−2,

ε = 1, ρ = 1.15 × 1014 m−2.

We now obtain the dislocation spacing. It is known that

� = 1

ρ1/2
.

So, for

ε = 0, l ≈ 1.69 × 10−5 m,

ε = 0.2, l ≈ 1.64 × 10−7 m,

ε = 1, l ≈ 0.93 × 10−7 m,
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and we have

UT = Gb2

10
+ Gb2

4π (1 − v )
(1 − v cos2 α)

ρ−1/2

5b
.

For 50% edge and 50% screw dislocations, we make α = 45◦. The Burgers

vector can then be calculated from the radius of the atoms. If the lattice

parameter is a, the Burgers vector is, along [111]

|b| = a
√

12 + 12 + 12 = 4r

= 0.496 nm.

Thus, for

ε = 0, UT = (0.1 + 0.847)G b2 = 0.947 Gb2,

ε = 0.2, UT = (0.1 + 0.402)G b2 = 0.502 Gb2,

ε = 1, UT = (0.1 + 0.34)G b2 = 0.44 Gb2.

The approximate expression for the dislocation self-energy (UT = Gb2/2)

becomes gradually better as the density is increased. The total energy

of dislocations per unit volume is

U = UT ρ,

and for

ε = 0, U = 696.3 J/m3
,

ε = 0.2, U = 74.2 × 104 J/m3
,

ε = 1, U = 2.3 × 105 J/m3
.

6.2.3 Shear Deformation
Just as a tensile test does not directly provide the shear stress in the

slip plane and along the slip direction, it does not directly provide the

corresponding deformation. Accordingly, one must determine shear

by taking into account the relative orientations of the tensile axis

and the slip system. If a tensile specimen is attached to the grips

of a tensile-testing machine by means of universal joints, it can be

seen that the slip plane will rotate with respect to the tensile axis as

deformation proceeds. Therefore, it is important to know the deform-

ation and, consequently, the change in orientation, along with the

attendant alteration in Schmid’s factor. In a similar way, it can be

shown that the shear strain dγ in the slip system is related to the

longitudinal strain dε by

dλ = dε

sin χ cos λ
= dε

M
. (6.4)

Therefore, when M = 0.5, we have τ = 0.5σ and γ = 2ε. (Notice that

τ = σ /2!).
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Fig. 6.11 Stereographic

projection showing the rotation of

slip plane during deformation.

Direction P1, inside stereographic

triangle moves toward P2 on

boundary [100]–[111]. Then, P2

moves toward [211].

6.2.4 Slip in Systems and Work-Hardening
Equations 6.3 and 6.4 establish the stress and strain in the plane and

in the direction of shear and are therefore important from the point

of view of dislocation motion. In HCP structures, the slip is more

easily maintained in one plane. However, in BCC and FCC structures,

other slip systems are easily activated. The rotation and direction of

the slip plane will easily put other systems in a favorable position.

This situation is shown in the stereographic projection of Figure 6.11.

A certain crystal has its tensile axis within the crosshatched stereo-

graphic triangle. The first slip system to be activated will be the one

with the highest Schmid factor. (See Equations 6.2 and 6.3). There are

eight slip systems around axis P1 in the figure. There are other ones in

the total stereographic projection. By using great circles, the reader

can check whether the following systems of directions really belong

to the planes:

(111̄)[101], (111̄)[11̄0],

(111)[11̄0], (111)[101̄],

(11̄1)[101̄], (11̄1)[110],

(11̄1̄)[110], (11̄1̄)[101].

The maximum value of Schmid’s factor, M = 0.5, is obtained for

χ = λ = 45◦. The angles between P1 and the <100> directions are

determined by means of a Wulff net, passing a great circle through

the two poles. Among the preceding eight systems, the slip system

having the highest Schmid factor is (111̄) [101]; slip will initially take

place in this system. Plane (111̄) is therefore called the primary slip

plane. As deformation proceeds, χ and λ will rotate. In the stereo-

graphic projection, this is indicated by rotation of the axis P1. Actu-

ally, the specimen rotates with respect to the axis. P1 will tend to align

itself with direction [101], decreasing λ in the process; this is shown in
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Figure 6.11. However, when the great circle passing through [100] and

[111] is reached, the primary system and the conjugate slip system (11̄1)

[110] will have the same Schmid factor. The typical behavior in this

case is double slip in both systems: The axis P1 will tend toward the

direction [211], as shown in the figure. In reality, there are deviations

from this behavior, and there is a tendency to ‘‘overshoot” and subse-

quent correction. The two other slip systems are called the cross system

and the critical system. This nomenclature, however, is not universal:

Often, the term ‘‘cross-slip” is used to describe a different situation --

small slip segments in a secondary slip system joining slip lines in a

primary slip system.

As a conclusion to the foregoing discussion, it can be said that a

cubic crystal will initially undergo slip in one system if P1 is within

the stereographic triangle. If P1 is on the sides of the triangle, two

systems have the same Schmid factor. On the other hand, if P1 coin-

cides with one of the edges, the situation is more complicated: Eight

systems will have the same Schmid factor if P1 coincides with [100],

four if it coincides with [110], and six if it coincides with [111]. The

term ‘‘polyslip” refers to a crystal oriented in such a way that more

than one system is activated.

When a cubic monocrystal with an orientation inside the stereo-

graphic triangle is deformed, one single slip system is often acti-

vated. Such orientations in the center of the stereographic triangle

are considered ‘‘soft” orientations, and Figure 6.12 illustrates the dif-

ferent stress--strain curves obtained for niobium. Orientations 1 and

2 are close to polyslip, and the stress--strain curves have the char-

acteristic parabolic hardening shape. Several slip systems are acti-

vated at the onset of yielding. For orientations 3 through 7, inside

the sterographic triangle, one single slip system is activated first.

The onset of conjugate slip requires rotation of the crystal toward

an orientation along the sides of the triangle; this occurs only at

a certain amount of strain, which depends on the orientation. Sin-

gle slip is characterized by a very low work-hardening rate; once the

conjugate slip becomes operative, the work-hardening rate increases

significantly.
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Figure 6.13 shows generic shear-stress--shear-strain curves for FCC

single crystals. Any such curve can be divided, conveniently, into three

regions: I, II, and III; θ I, θ II, and θ III are the respective work-hardening
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Fig. 6.13 Generic

shear-stress–shear-strain curves

for FCC single crystals for two

different temperatures.

slopes (dτ /dγ ) of the regions. In what follows, we describe the salient

points of the various stages.

Stage I starts after elastic deformation at the critical stress τ 0. This

stage, called ‘‘easy glide,” is a linear region of low strain-hardening

rate. θ I is approximately G/3000. Stage I is characterized by long slip

lines (100 to 1,000 μm), straight and uniformly spaced (10 to 100 nm

apart). We adopt the nomenclature used by A. Seeger.2 Slip lines are

the ‘‘elementary structure” of slip and can be observed only via the

electron microscope. With the optical microscope, one observes slip

bands; they occur at the higher strains and are made up of clusters of

slip lines. On the other hand, slip markings are observed as steps at the

surface of the specimen. Stage I does not exist in polycrystals or in

monocrystals oriented for polyslip. The extent of this stage depends

strongly on the crystal orientation. The strain at the end of stage I

(γ 2) has a maximum value when the crystal orientation is located in

the center of the standard stereographic triangle. The end of stage I

is considered to be the start of secondary slip (when, in Figure 6.11,

point P1 has moved to P2).

Stage II, or the linear hardening stage, has the following important

characteristics.

1. A linear hardening regimen with a high θ II.

2. θ II/ G ≈ 1/300. This parameter is relatively constant for a great

majority of metals. (The maximum variation is a factor of about 2).

θ II is approximately equal to 10θ I and is relatively independent of

temperature, although temperature has a significant effect on the

extent of stage II.

Stage III is characterized by cross-slip. Stage III is difficult to occur

at a low level of stresses, and its operation is aided by high tempera-

tures. Thus, one expects that the stress necessary at the start of stage

III, τ 3, would depend on temperature, and such, indeed, is the case

in practice: τ 3 increases with a decrease in temperature.

The start of Stage III is also markedly dependent on the stacking-

fault energy of the metal. Metals with relatively low stacking-fault

energies -- for example, brasses, bronzes, and austenitic steels -- have

a rather wide stacking-fault ribbon and, consequently, need a higher

activation energy for cross-slip to occur. (See Figure 6.14.) This is so

because, for cross-slip to occur in these metals, it is necessary to form

a constriction over a wide ribbon of the stacking fault, in order to have

a certain length of perfect dislocation. Thus, in metals and alloys with

low stacking-fault energies, cross-slip will be difficult to bring about

at normal stress levels. This, in turn, makes it difficult for the screw

dislocations to change their slip plane. The dislocation density is high,

2 A. Seeger, in J. C. Fischer, W. G. Johnston, and T. Vreeland (eds.), Dislocations and Mechan-

ical Properties of Crystals (New York: John Wiley, 1957), p. 243.
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and the transition from stage II to stage III is retarded. Aluminum, on

the other hand, has a higher stacking-fault energy. Thus, the stress

necessary for cross-slip to occur in aluminum, at a given temperature,

is much lower than in, say, copper or brass.

6.2.5 Independent Slip Systems in Polycrystals
For any FCC crystal whose tensile axis is near the center of the stereo-

graphic triangle, deformation should start on the primary system.

However, if the crystal is surrounded by other crystals with different

crystallographic orientations -- as is likely in a polycrystalline aggre-

gate -- all the crystals (grains) are not likely to start deforming in

the same manner. The strain taking place in the first grain must

be compatible with the neighboring grains. In other words, it is not

possible to form discontinuities along the grain boundaries; deform-

ation has to propagate from one grain to another if continuity at

the boundary is to be maintained. Five independent slip systems are

required to produce a general homogeneous strain in a crystal by

slip.

The slip along several parallel systems produces, macroscopically,

a translation of one part of the crystal with respect to the other and,

consequently, a certain shear. Since the plastic flow generally occurs

without any appreciable change in volume, we have ε11 + ε22 + ε33 =
0. This relationship reduces the components of strain from six (ε11,

ε22, ε33, ε12, ε13, ε23) to five; the operation of one slip system produces

only one independent component of the strain tensor. Therefore, one

may conclude that five independent slip systems are required for the

deformation of one grain in a polycrystalline aggregate. Consequently,

polycrystals do not exhibit stage I (easy glide) of work-hardening.

6.3 Work-Hardening in Polycrystals

In the preceding sections, work-hardening in single crystals was

attributed to the interaction of dislocations with other dislocations

and barriers that impede the motion of dislocations through the

crystal lattice. In polycrystals, too, this basic idea remains valid.
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However, due to the mutual interference of neighboring grains and

the problem of compatible deformations among adjacent grains,

multiple slip occurs rather easily, and, consequently, there is an appre-

ciable work-hardening right at the beginning of straining.

In a manner similar to that in single crystals, primary disloca-

tions interact with secondary dislocations, giving rise to dislocation

dipoles and loops which result in local dislocation tangles and, even-

tually, a three-dimensional network of subboundaries. Generally, the

size of these cells decreases with increasing strain. The structural

differences between one metal and another are mainly in the sharp-

ness of these cell boundaries. In BCC metals and in FCC metals with

high stacking-fault energy, such as Al, the dislocation tangles re-

arrange into a well-defined cell structure, while in metals or alloys

with low stacking-fault energy (e.g., brasses, bronzes, austenitic steels,

etc.), where the cross-slip is rather difficult and the dislocations are

extended, the sharp subboundaries do not form even at very large

strains.

The plastic deformation and the consequent work-hardening

results in an increase in the dislocation density. An annealed metal,

for example, will have about 106 to 108 dislocations per cm2, while

a plastically cold-worked metal may contain up to 1012 dislocations

per cm2. The relationship between the flow stress and the dislocation

density is the same as that observed for single crystals -- that is,

τ = τ0 + αG b
√

ρ, (6.5)

where α is a constant with a value between 0.3 and 0.6. This rela-

tionship has been observed to be valid for a majority of the cases.

τ0 is the stress necessary to move a dislocation in the absence of

One

Two

Six

Polycryst.

Slip

systems

1011

1010

109

108

107

106

1 10

t (MPa)

r1
/2

 (
c
m

-2
)

100

Fig. 6.15 Average dislocation

density ρ as a function of the

resolved shear stress τ for copper.

(Adapted with permission from H.

Wiedersich, J. Metals, 16 (1964)

p. 425, 427.)

other dislocations. Figure 6.15 shows that Equation 6.5 is obeyed

for copper monocrystals (with one, two, and six slip systems oper-

ating), as well as polycrystals. The relationship is very important and

serves as a basis for work-hardening theories. In ceramics, only limit-

ed observations of such kind have been made. Nevertheless, they show

the same trend. Measurements of dislocation densities in sapphire

(single-crystal α-alumina) subjected to plastic deformation at high

temperatures (1,400--1,720 ◦C), above the ductile-to-brittle transition,

are shown in Figure 6.16. These dislocation densities were measured

at strains γ < 0.23, and it was observed that the dislocation density

showed a stress dependence analogous to Equation 6.5, with τ0 =
0. The proportionality coefficient was dependent on temperature and

varied in the range 0.2--0.5, which is very similar to the corresponding

range for metals.

Many theories have been advanced to explain the phenomenon of

work-hardening. The most important and difficult part in the attempt

to predict work-hardening behavior is to determine how the dens-

ity and distribution of dislocations vary with the plastic strain. The

problem is that stress is a state function in the thermodynamic sense



386 GEOMETRY OF DEFORMATION AND WORK-HARDENING

3

2

1

1
0

0 10 20

t

¥

, MN/m2

30 40 50 60 70

1400 °C
1500 °C

1720 °C

Fig. 6.16 Relationship between

flow shear stress and dislocation

density for monocrystalline

sapphire (A12O3) deformed at

different temperatures. (Adapted

from B. J. Pletka, A. H. Heuer, and

T. E. Mitchell, Acta Met., 25 (1977)

25.)

(i.e., it depends only on its position or value, not on how that partic-

ular value of stress was attained.) Plastic strain, on the other hand,

is a path function of its position (i.e., it depends on the actual path

traversed in reaching a certain strain value.) In other words, plastic

strain is dependent on its history. Thus, the presence or absence of

dislocations and their distributions can tell us nothing about how a

certain amount of strain was accumulated in the crystal, because we

do not know the path that dislocations traversed to accumulate that

strain. Hence, one constructs models that recreate the processes by

means of which the various dislocation configurations emerge; one

then tries to correlate the models with the configurations observed

experimentally. Both the density and the distribution of dislocations

are very sensitive functions of the crystal structure, stacking-fault

energy, temperature, and rate of deformation. In view of all this, it is

not surprising that a unique theory of work-hardening which would

explain all of its aspects does not exist.

In what follows, we briefly review three of the best-known theories

of workhardening -- those of Taylor, Seeger, and Kuhlmann--Wilsdorf.

6.3.1 Taylor’s Theory
Taylor’s theory3 is one of the oldest theories of work-hardening. At

the time the theory was postulated (1934), the stress--strain curve for

metallic crystals such as aluminum was considered to be parabolic.

(The single-crystal stress--strain curve consisting of three stages was

unknown; see Figure 6.13.) This being so, Taylor proposed a model

that would predict the parabolic curve. The principal idea, which,

incidentally, is still used in one form or another by modern theories,

was that the dislocations, on moving, elastically interact with other

dislocations in the crystal and become trapped. These trapped dis-

locations give rise to internal stresses that increase the stress neces-

sary for deformation (i.e., the flow stress).

3 G. I. Taylor, Proc. Roy. Soc. (London), A145 (1934) 362.
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Fig. 6.17 Taylor model of

interaction among dislocations in a

crystal.

Let � be the average distance that a dislocation moves before it

is stopped. The initial and final positions A and B are marked in

Figure 6.17. Let ρ be the dislocation density after a certain strain.

Then the shear strain is given by (see Equation 4.29)

γ = kρb�, (6.6)

where k is an orientation-dependent factor and b is the Burgers

vector.

Taylor considered only edge dislocations and assumed that the

dislocation distribution was uniform; thus, the separation between

dislocations, L, will be equal to ρ−1/2. (See Figure 6.17.) The effective

internal stress τ , caused by these interactions among dislocations, is

the stress necessary to force two dislocations past each other. The

interactions among dislocations are complex, involving attraction,

repulsion, reactions, etc. Taylor considered only a very simple case:

As the dislocation moves from A to B, it will approach the other dis-

locations, with the minimum distance being L/2. Taking into account

just the repulsion from the dislocations, we can assume that, for

an edge dislocation, the shear stress fields given in Chapter 4 are

(Equation 4.12)

σ12 = Gb

2π (1 − ν)

x1(x2
1 − x2

2 )

(x2
1 + x2

2 )
.

Supposing that x2 = L/2 and x1 = 0, we arrive at

σ12 = Gb

π (1 − ν)L
= K Gb

L
,

where K is a constant. In order for the moving dislocation to overcome

this stress field, a shear stress

τ = K Gb

L

has to be applied. Or, recalling that L = ρ−1/2, we obtain

τ = K Gb
√

ρ. (6.7)

From Equations 6.6 and 6.7, we get

τ = K Gb

√
γ

kb�
= k′G

√
γ

�
. (6.8)
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We could add a frictional term τ 0 that is required to move the dislo-

cation in the absence of other dislocations, and arrive at:

τ = τ0 + k′′γ 1/2

Equation 6.8 is a parabolic relation between the stress τ and the

strain γ . It describes, approximately, the behavior of many materials

at large deformations. Among the criticisms of the Taylor theory, one

may include the following.

1. Such regular configurations of dislocations are rarely observed in

cold-worked crystals.

2. Screw dislocations are not involved, and thus, the cross-slip is

excluded; edge dislocations cannot cross-slip.

3. Two dislocations on neighboring planes may be trapped in each

other’s stress fields and may thus become incapable of moving

independently of each other. But the pair of dislocations may be

pushed by a third dislocation.

4. We know now that stress--strain curves for hexagonal crystals, as

well as those for stage II of cubic crystals, are linear. Taylor’s theory

does not explain this linear hardening.

5. Taylor’s parabolic relation derives from the supposition that there

is a uniform distribution of deformed regions inside the crystal.

In reality, the distribution is not uniform, and experimentally, we

observe slip bands, cells, and other nonuniform arrangements.

6.3.2 Seeger’s Theory
Seeger’s theory, (see the suggested reading for details) addresses the

three stages of work-hardening of a monocrystal (easy glide, linear

hardening, and parabolic hardening) and proposes specific mechan-

isms for each stage. The values of the slopes for the three stages are

obtained from dislocation considerations. In stage I, long-range inter-

actions between well-spaced dislocations are considered. The disloca-

tion loops are blocked by unspecified obstacles, all on the primary

system. Slip activity on secondary slip systems begins in stage II of

hardening. The secondary activity furnishes barriers such as Lomer--

Cottrell barriers. The dislocations pile up against such barriers in

Stage II and give rise to long-range internal stresses that control the

flow stress. Without going into complex details, we can say that the

long-range theory of Seeger et al. does predict that θ II/G ≈ 1/300 for

FCC metals.

6.3.3 Kuhlmann–Wilsdorf’s Theory
The substructures developed during metal deformation processes

resemble the idealized models only in the initial stages. As the

imposed deformation increases, dislocation cells start to form in

alloys with medium and high stacking-fault energies. With increas-

ing deformation, the cell diameters decrease, and the cells become

elongated in the general direction of the deformation. The cell walls
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tend to become progressively sharper as the misorientation between

two adjacent cells increases. A cell wall is essentially a low-angle grain

boundary, but when the misorientation between adjacent cell walls

reaches a certain critical value, we can no longer refer to the bound-

ary in these terms. The boundary between two cells becomes freer

of dislocations, and subgrains are formed in a process called polygon-

ization. This transition from cells to subgrains occurs at different effec-

tive strains for different materials: 0.80 for 99.97% pure Al and 1

to 1.20 for copper. A detailed treatment of the work-hardening and

formation of texture at large imposed plastic strains is given by Gil

Sevillano et al.4 For metals with low stacking-fault energies, the devel-

opment of a fine lamellar substructure consisting of microtwins, twin

bundles, shear bands, and stacking faults is the characteristic feature

of high-strain deformation.

Figure 6.18 shows the changes in substructure observed in nickel

rolled at room temperature. At reductions up to 40%, we clearly have

a cellular structure. We can see that at 40% (Figure 6.18(b)) we already

have a large dislocation density. At 80% reduction, we can clearly see

that many of the cell walls have disappeared and are replaced by well-

defined boundaries. The observation is made more difficult because

of the large density of dislocations. The electron diffraction patterns

(right-hand corner of photomicrographs) show the effect very well.

Up to 40% reductions, the diffraction spots are fairly clear, with lit-

tle asterism (elliptical distortion). At 80% (Figure 6.18(c)), the asterism

is very pronounced, and elongated spots break down into smaller

spots, indicating that a distorted grain has broken down into sub-

grains, which have relatively little distortion. Based on observations

of dislocation cells in plastically deformed metals with medium and

high stacking-fault energies, Kuhlmann-Wilsdorf 5 proposed the so-

called mesh-length theory, which is based on the stress necessary for

dislocation bowing. In stage I, the dislocations multiply into certain

restricted regions and penetrate into regions as yet substantially free

of mobile dislocations, until a quasiuniform distribution of disloca-

tions is obtained. The only resistance to deformation is the disloca-

tion line tension. Thus, hardening occurs because free segments of

dislocations become ever smaller. Stage II starts when there are no

more ‘‘virgin” areas left for penetration by new dislocations. The stress

required to bow segments of dislocation is responsible for a great part

of stage II hardening: Dislocation segments can bow out inside the

cells. Figure 6.19 shows, in a schematic manner, dislocation cells of

size L in which the cell walls occupy a fraction f of the total crys-

tal. Dislocation sources with mean width � are activated and form

loops, as shown in the figure. As these loops are formed, the disloca-

tion density increases and the cell size decreases. Kuhlmann-Wilsdorf

was able to explain, in quantitative manner, the three stages of work-

hardening.

4 J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Prog. Mater. Sci., 25 (1981) 69.
5 D. Kuhlmann--Wilsdorf, Met. Trans. 11A (1985) 2091.
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Fig. 6.19 Schematic

representation of dislocation cells

of size L, with activation of

dislocation sources from the cell

walls and bowing out of loops into

the cell interior. (Courtesy of

D. Kuhlmann-Wilsdorf.)

Example 6.3

Consider dislocations blocked in a copper crystal. If the flow stress is

controlled by the stress necessary to operate a Frank--Read source, com-

pute the dislocation density ρ in this crystal when it is deformed to a

point where the resolved shear stress in the slip plane is 42 MPa. Take

G = 50 GPa.

Solution: The dislocation line length is related to the dislocation

density by

� = ρ−1/2.

The flow stress is the shear stress necessary to operate a Frank--Read

source. Hence (from Equation 4.22d),

τ = G b/� = G b
√

ρ.

For copper, b = 3.6 × 10−10(
√

2/2) m = 2.55 × 10−10 m, where 3.6 × 10−10

m is the Cu lattice parameter. Rearranging the preceding expression,

we obtain the dislocation density

ρ = τ 2/G 2b2 = (42 × 106)2/(50 × 109)2 × (2.55 × 10−1)2,

or

ρ = 1.09 × 1013 m−2.

Example 6.4

For the single crystal of an FCC metal, the work-hardening rate in shear

is dτ /dγ = 0.3 GPa. Compute the work-hardening rate in tension, dσ /dε,

for a polycrystal of this metal. Take the Schmid factor Mp to be 1/3.1.

Solution: The tensile stress is related to the shear stress by the Schmid

factor

σ = M −1
p τ.
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Fig. 6.20 Typical load

deformation curve for concrete

under uniaxial compression; the

specimen was unloaded and

reloaded at different stages of

deformation. (From G. A.

Hegemier and H. E. Reed, Mech.

Mater., 4 (1985) 215; data

originally from A. Anvar.)

Thus,

dσ = M −1
p dτ. (1)

Also, the tensile strain ε is related to the shear strain γ by

ε = M p y.

Thus,

dε = M −1
p dτ. (2)

Dividing Equation 1 by Equation 2, we have

dσ/dε = M −2
p (dτ/dγ ) = (dτ/dγ )(3.1)2,

or

dσ/dε = 9.61(dτ/dγ ) = 9.61 × 0.3 = 2.88 GPa.

6.4 Softening Mechanisms

Under special circumstances, materials can undergo softening dur-

ing plastic deformation. This degradation of a material’s strength

can be caused by a number of mechanisms. Damage accumulation is

the most common mechanism in ceramics and composites. Dam-

age can be of many types: microcracks forming in the material, a

breakup of the matrix/reinforcement interface, cracking of second

phase, etc. Figure 6.20 shows softening observed in concrete. The

compression was halted at several points, and the specimen was

unloaded and subsequently reloaded. The damage consists of micro-

cracks, which results in the reduction in the Young’s modulus of

concrete as the compression evolves (E1 > E2 > E3). In Chapter 2, we

saw how microcracks affect the Young’s modulus of brittle mater-

ials. A discussion of damage accumulation in composites is given in

Chapter 15.
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Softening of radiation-hardened materials occurs when the sweeping

of radiation induced defects (point defects) by dislocations leads to

the formation of ‘‘soft” channels.

In geometric softening, during plastic deformation, individual grains

rotate toward crystallographic orientations for which the Schmid fac-

tor is increased. This rotation can lead to global softening of the

material in spite of the hardening along the individual slip systems.

We describe the last of the major softening mechanisms, thermal

softening, in detail. The plastic deformation of a metal is an irreversible

process, and most of the work of deformation is converted into heat.

At most, only 10% of plastic deformation is stored as defects (primarily

dislocations) as shown in the example below.

Example 6.5

Calculate the stored energy in a copper crystal with a dislocation dens-

ity of ∼1011 cm−2, typical of a highly deformed metal.

Solution: We first find the total energy in the crystal which is equal to

U = ρ
G b2

2
.

For copper, G = 48.3 GPa and b = 0.25 nm. Thus, the total deformation

energy is (ρ = 1011 cm−2 = 1015 m−2):

U = 1

2
× 1015 × 48.3 × 109 × 0.0625 × 10−18

= 1.5 × 106 J/m3.

Assuming that this sample of copper exhibits work-hardening and that

the constitutive equation is (see Equation 3.11)

σ = σ0 + K εn,

where

σ0 = 50 MPa,

n = 0.5,

K = 500 MPa.

We can calculate the total deformation energy per unit volume at a

strain of 0.5:

U =
∫ ε

0

σdε =
∫ ε1

0

(σ0 + K εn)dε

= σ0ε1 + K
εn+1

1

n + 1
= 50 × 106 × 0.5 + 500 × 106 × 0.35

1.5

= (25 + 116) × 106

= 1.41 × 108 J/m3.
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Fig. 6.21 (a) Compressive

true-stress–true-strain curves for

titanium at different strain rates;

notice the onset of softening at the

arrows. (Adapted from M. A.

Meyers, G. Subhash, B. K. Kad, and

L. Prasad, Mech. Mater., 17 (1994)

175.) (b) Schematic linear

shear-stress–shear-strain curves

for titanium at different

temperatures, with superimposed

adiabatic curve constructed from

isothermal curves by incrementally

converting deformation work into

heat (and a consequent rise in

temperature.) (Adapted from M.

A. Meyers and H.-R. Pak, Acta Met.,

34 (1986) 2493.)

Thus, the dislocation energy represents 1.4% of the total work of defor-

mation. The work of deformation leads to a rise in the temperature of

the specimen.

If there is insufficient time for the heat to escape from the specimen

during deformation, the material cannot be considered isothermal

any longer, and the loss of strength caused by the increase in tem-

perature will, at a certain point, exceed the increase in strength due

to work-hardening. At this point, the stress--strain curve starts to go

down, and thermal softening sets in. This is shown in Figure 6.21(a).

At lower strain rates (2 × 10−4 s−1, 10−3 s−1, and 10−2 s−1), the curves

show the normal work-hardening behavior up to high strains. How-

ever, for the strain rates of 1.44 s−1 and 3.9 s−1, the stress--strain

curves show maxima beyond which softening sets in. It is easy to

understand and to predict this softening. Figure 6.21(b) shows shear-

stress--shear-strain curves for titanium at different temperatures. For

simplicity, linear work-hardening was assumed. These curves are all

isothermal. We now compute the temperature elevation produced by

plastic deformation, by applying the following equation:

dT = β

σC p

σdε,
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where β is the conversion factor for mechanical energy into heat, Cp

is the heat capacity and ρ the density of the material. By taking small

increments of strain, we obtain

�T = β

ρC p

σ�ε.

In Figure 6.21(b), an adiabatic curve was built in such a fashion. The

work-to-heat conversion factor β is usually taken to be in the range

0.9--1.0. (Most of the work is converted to heat.) The adiabatic curve

shows a maximum at γ approximately equal to 1; this marks the

shear strain at which softening starts.

The softening of the material will lead to the phenomenon of

adiabatic shear localization. Adiabatic shear bands are narrow regions

where softening occurs and where concentrated plastic deformation

takes place. Steels, titanium alloys, and aluminum alloys are quite

prone to shear-band formation, which occurs in machining and which

is responsible for the breakup of the machining chips. Shear-band

formation also occurs in high-strain-rate operations, such as forging

and shearing, as well as in ballistic impact.

Shear bands formed during forging operations are highly undesir-

able, because they can lead to subsequent fracture of the specimen.

The microstructure within shear bands is quite different from that of

the surrounding material. The shear bands often undergo dynamic

recrystallization, due to the high local temperature.

In the ballistic impact of projectiles against armor, shear bands

play a major role both in the defeat of the armor and in the breakup

of the projectiles. Since recrystallization occurs very rapidly, the

resultant grain size is very small, typically 0.1 μm. Figure 6.22(a)

shows a shear band in titanium with a width of approximately

10 μm. The fine microcrystalline structure inside of the shear band is

seen in the photomicrograph of Figure 6.22(b); the initial grain size

of the material was 50 μm.

6.5 Texture Strengthening

A single crystal rotates when it deforms plastically in a particular slip

system. (See Section 6.2.4.) When a polycrystal is deformed in rolling,

forging, drawing, and so on, the randomly oriented grains will slip

on their appropriate glide systems and rotate from their initial condi-

tions, but this time under a constraint from the neighboring grains.

Consequently, a strong preferred orientation or texture develops after

large strains; that is, certain slip planes tend to align parallel to the

rolling plane, while certain slip directions tend to align in the direc-

tion of rolling or wire drawing. In metals, annealing can also result

in a texture generally different from that obtained by mechanical

working, but still dependent on the history of the mechanical work-

ing. As an illustration, Figure 6.23 shows the microstructures along

three perpendicular planes for nickel cold-rolled to a reduction in
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(a)

(b)

Fig. 6.22 Shear bands in

titanium. (a) Optical micrograph,

showing band. (b) Transmission

electron micrograph, showing

microcrystalline structure, with

grain size approximately equal to

0.2 μm. The original grain size of

the specimen was 50 μm.

Fig. 6.23 Perspective view of

microstructure of Nickel-200

cold-rolled to a reduction in

thickness of 60%.

thickness of 60%. The highly elongated grains along the rolling direc-

tion are readily seen.

A strongly textured material can exhibit highly anisotropic prop-

erties. This is not intrinsically bad; in fact, controlled anisotropy in

sheet metals can be exploited to obtain an improved final product. The
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Young’s modulus E of steel can, theoretically, have a value between

the extreme values of the iron monocrystal (i.e., between Fe[111] and

Fe[100]), as shown in Figure 6.24. The Young’s modulus cannot be

changed much by alloying, but texture can -- again, theoretically --

have some influence. We caution the reader that the effect on E,

for all practical purposes, is rather small. This is not the case, how-

ever, for many other properties. For example, Figure 6.25 shows the

rather marked orientation dependence of the yield strength σ y and

the strain to fracture, εf, of a rolled copper sheet. Clearly, cups

made out of this material by deep drawing would show ‘‘earing” at

90◦ intervals due to this texture (see Figure 3.45 for illustration of
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Table 6.1 Some Common Wire and Sheet Textures

Wire (Fiber Texture) Sheet (Rolling Texture)

FCC [111] + [100] (110) [11̄2] + (112) [111̄]
BCC 110 (100) [011]

HCP [101̄0] (0001) [112̄0]

Rolling
direction

Transverse

direction

Fig. 6.26 [111] pole figure of a

rolled-brass sheet.

‘‘earing”). Use is made of such texture development in Fe--3% Si. Sheets

of this material are used to make transformer cores, wherein thermo-

mechanical treatments are given to develop a desirable magnetic

anisotropy that improves electrical performance.

Crystallographic texture is commonly represented in the form of

normal-pole or inverse-pole figures. A normal-pole figure is a stereo-

graphic projection showing the intensity of normals to a specific

plane in all directions, while an inverse-pole figure is a sterographic

projection showing the intensities of all planes in a specific direction.

The experimental procedure involves measuring relative intensities

of X-ray reflections from the polycrystalline material at different ang-

ular settings. Details of the experimental determination of pole fig-

ures can be found in standard texts on the subject.

Figure 6.26 shows the [111] pole figure of a heavily deformed

α-brass (70% Cu−30% Zn) sheet. This texture, called brass-type tex-

ture, is a (110) [11̄2] texture, i.e., with (110) planes parallel to the

rolling plane and [11̄2] directions parallel to the rolling direction.

The double texture indicated for FCC structures in Table 6.1 is not

obtained in α-brass, but single (110) [11̄2] texture develops, owing to

the material’s low stacking-fault energy or (probably) to mechanical

twinning.
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Exercises

6.1 Discuss the merits and demerits of the use of transmission electron

microscopy techniques to study the dislocation behavior in crystalline

materials.

6.2 Explain why a metal like lead does not work-harden when deformed at

room temperature, whereas a metal such as iron does.

6.3 What is the effect of cold work and annealing on the Young’s modulus of

a metal?

6.4 If we strain an FCC and an HCP single crystal, which of the two will have

a larger amount of easy glide, and why?

6.5 In a cold-worked metal, a dislocation density of 1 × 1016 m−2 was meas-

ured after a shear strain of 10%. Assuming that the dislocations are uniformly

distributed, estimate the flow stress of this metal. Take G = 25 GPa.

6.6 Consider dislocations blocked with an average spacing of � in a copper

crystal. If the flow stress is controlled by the stress necessary to operate a

Frank--Read source, compute the dislocation density ρ in this crystal when it

is deformed to a point where the resolved shear stress in the slip plane is 42

MPa. Take G = 50 GPa.
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6.7 Make a schematic plot showing the variation in the following parameters

with percent cold work:

(a) ultimate tensile strength,

(b) yield strength in tension,

(c) strain to failure,

(d) reduction in area.

6.8 The stress axis in an FCC crystal makes angles of 31◦ and 62◦ with the

normal to the slip plane and with the slip direction, respectively. The applied

stress is 10 MN/m2.

(a) Determine the resolved stress in the shear plane.

(b) Is the resolved stress larger when the angles are 45◦ and 32◦, respectively?

(c) Using a stereographic projection, determine the resolved stresses on the

other slip systems.

6.9 Magnesium oxide is cubic (having the same structure as NaCl). The slip

planes and directions are [110] and <110>, respectively. Along which direc-

tions, if any, can a tensile (or compressive) stress be applied without producing

slip?

6.10 A Cu monocrystal (FCC) of 10 cm length is pulled in tension. The stress

axis is [1̄23].

(a) Which is the stress system with the highest resolved shear stress?

(b) If the extension of the crystal continues until a second slip system

becomes operational, what will this system be?

(c) What rotation will be required to activate the second system?

(d) How much longitudinal strain is required to activate the second system?

6.11 Flow stress varies with strain rate; one equation that has been used to

express this dependence is

σ = c ε̇m′
f (ε, T ),

where m′ is the strain-rate sensitivity, which is generally less than 0.1. Some

metals, called superplastic, can undergo elongations of up to 1,000% in uni-

axial tension. Assuming that these tests are performed at a uniform velocity

of the crosshead, will the metals have a very high or a very low value of m′?
Explain, in terms of the formation and inhibition of the neck.

6.12 Johnston and Gilman6 experimentally determined the relationship

between dislocation velocity and applied stress

v = Aσ m,

where A is the constant of proportionality. Assuming that the mobile dis-

location density does not depend on the velocity of the dislocations, obtain

a relationship between m and m′ (from Exercise 6.11).

6.13 The following results were obtained in an ambient-temperature tensile

test, for an aluminum monocrystal having a cross-sectional area of 9 mm2

and a stress axis making angles of 27◦ with [100], 24.5◦ with [110], and 29.5◦

with [111]:

6 W. G. Johnston and J. J. Gilman, J. Appl. Phys., 30 (1959) 129.
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Load (N) Length (cm)

0 10.000
12.40 10.005
14.30 10.040
16.34 10.100
18.15 10.150
21.10 10.180
23.60 10.200
26.65 10.220

(a) Plot the results in terms of true stress versus true strain.

(b) Determine the resolved shear stress on the system that will slip first.

(c) Determine the longitudinal strain at the end of the easy-glide stage (when

a second slip system becomes operative).

6.14 Take a stereographic triangle for a cubic metal. If the FCC slip systems

are operative, indicate the number of slip systems having the same Schmid

factor if the stress axis is:

(a) [111],

(b) [110],

(c) [100],

(d) [123].

Use the stereographic projections to show your results.

6.15 A copper bicrystal is composed of two monocrystals separated by a

coherent twin boundary (111). The bicrystal is being compressed in a homo-

geneous upset test in such a way that the twin boundary is perpendicular

to machine plates. The compression direction is the same for both crystals,

namely, [134].

(a) Is this crystal isoaxial?

(b) Is deformation in the two crystals compatible or incompatible?

6.16 The flow stress σ is related to the dislocation density ρ by the relation-

ship

σ1 = σi + αG b
√

ρ,

where the symbols have their usual significance. If the dislocation density is

inversely related to the grain size d, show that a Hall--Petch type of dependence

of flow stress on grain size is obtained.

6.17 For an FCC polycrystalline metal, TEM analysis showed that the disloca-

tion density after cold working was 5 × 1010 m−2. If the friction stress is 100

MPa, G = 40 GPa, and b = 0.3 nm, compute the flow stress of this metal.

6.18 The stress--strain curve of a polycrystalline aluminum sample can be rep-

resented by

σ = 25 + 2000.5
ε .

Calculate the energy of deformation per unit volume corresponding to uni-

form strain (i.e., just prior to the onset of necking) in this material.
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6.19 An FCC crystal is pulled in tension along the [100] direction.

(a) Determine the Schmid factor for all slip systems.

(b) Identify the slip system(s) that will be activated first.

(c) What is the tensile stress at which this crystal will flow plastically? (τ =
50 MPa.)

6.20 Calculate the total energy due to dislocations for copper that under-

went 20% plastic deformation, resulting in a dislocation density of 1014 m−2.

Assume that b = 0.3 nm.

6.21 Using data from Figure Ex6.21 for (Ni--22%Cr--12%Co--9%Mo), obtain

appropriate parameters for the Johnson--Cook equation (see Chapter 3).

Assume ε̇0 = 3 × 10−4 s−1 and Tm = 1,600 K.

(a) Using the Johnson--Cook equation, plot stress--strain curves for tempera-

tures of 77, 173, 473, and 1,473 K.

(b) If C = 0.02, plot the stress strain curves for a strain rate of 3 × 104 s−1.
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e = 3 – 10-4s-1

123 K

173 K

293 K
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673 K

873 K

973 K

1023 K

1073 K
1123 K

1473 K
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Fig. Ex6.21 (After D Viereck,

G. Merckling, K. H. Lang, D. Eifler,

and D. Löhe, in Festigkeit und

Verformung bei Höher Temperatur,

K. Schneider, ed. (Oberursel:

Informationsgesellshaft, pp.

102–208.)

6.22 A monocrystal (diameter 4 mm, length 100 mm) is being pulled in ten-

sion.

(a) What is the elongation undergone by the specimen if 1,000 dislocations

on slip planes making 45◦ with the tension axis cross the specimen

completely? Take b = 0.25 nm.

(b) What would the elongation be if all dislocations existing in the crystal

(106 cm−2) were ejected by the applied stress? Assume a homogeneous

distribution of dislocations. Assume that the crystal is FCC and all the

dislocations are in the same slip system.

6.23 A long crystal with a square cross section (1 × 1 cm) is bent to form a

semicircle with radius R = 25 cm.

(a) Determine the total number of dislocations generated if all bending is

accommodated by edge dislocations.

(b) Determine the dislocation density (b = 0.3 nm).

6.24 The response of copper to plastic deformation can be described by Hol-

lomon’s equation σ = K ε0.7.

It is known that for ε = 0.25, σ = 120 MPa. The dislocation density varies

with flow stress according to the well-known relationship

σ = K ′ρ1/2.

(a) If the dislocation density at a plastic strain of 0.4 is equal to 1011 cm−2,

plot the dislocation density versus strain.

(b) Calculate the work performed to deform the specimen.

(c) Calculate the total energy stored in the metal as dislocations after a plastic

deformation of 0.4, and compare this value with the one obtained in part

(d) Explain the difference.

6.25 A single crystal of silver is pulled in tension along the [100] direction.

Determine the Schmid factor for all slip systems. What is the tensile stress at

which this crystal will flow plastically? (τ = 100 MPa.)

6.26 Determine the area of the slip plane in Ni deformed parallel to [100] and

under a load P = 150 × 103 N. The shear stress is 600 MPa.
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6.27 Compute the dislocation density in tungsten if the flow stress is con-

trolled by the stress necessary to operate a Frank--Read source. The shear

stress in the slip plane is 50 MPa. Take G = 166 GPa.

6.28 List all the slip systems in single crystal copper. Calculate the Schmid

factors for them with loading axis as [221]. Which system will be activated

first when we apply the load?

6.29 Obtain the parameters for the relationship between the flow stress and

the dislocation density for copper with one, two, and six slip systems from

the data in Figure 6.15. Use the equation:

τ = τ0 + αGb
√

ρ.

6.30 What is the dislocation density in iron with a shear strain of 0.4?

Given:

(a) τ = τ0 + K γ n, τ 0 = 50 × 106 MPa, K = 108 MPa, n = 0.5,

(b) τ = τ0 + αG b
√

ρ, G = 81.6 GPa, b = 0.25 nm, α = 0.5.

6.31 The flow stress for an alloy is 100 MPa when its dislocation density is

106 cm−2, and 150 MPa when its dislocation density is 108 cm−2. When the

flow stress is 190 MPa, what is the dislocation density?

6.32 A copper sample exhibits work-hardening described by:

σ = σ0 + K εn,

where σ0 = 50 MPa, n = 0.5, K = 500 MPa.

Calculate the temperature rise when the sample is deformed up to a strain

of 0.2. Assume that the conversion factor is 1.0, and given: density = 8.9 g/cm3;

heat capacity = 360 J/kg K.



Chapter 7

Fracture: Macroscopic Aspects

7.1 Introduction

The separation or fragmentation of a solid body into two or more

parts, under the action of stresses, is called fracture. The subject of frac-

ture is vast and involves disciplines as diverse as solid-state physics,

materials science, and continuum mechanics. Fracture of a material

by cracking can occur in many ways, principally the following:

1. Slow application of external loads.

2. Rapid application of external loads (impact).

3. Cyclic or repeated loading (fatigue).

4. Time-dependent deformation (creep).

5. Internal stresses, such as thermal stresses caused by anistropy of

the thermal expansion coefficient or temperature differences in a

body.

6. Environmental effects (stress corrosion cracking, hydrogen embrit-

tlement, liquid metal embrittlement, etc.)

The process of fracture can, in most cases, be subdivided into the

following categories:

1. Damage accumulation.

2. Nucleation of one or more cracks or voids.

3. Growth of cracks or voids. (This may involve a coalescence of the

cracks or voids.)

Damage accumulation is associated with the properties of a material,

such as its atomic structure, crystal lattice, grain boundaries, and

prior loading history. When the local strength or ductility is exceeded,

a crack (two free surfaces) is formed. On continued loading, the

crack propagates through the section until complete rupture occurs.

Linear elastic fracture mechanics (LEFM) applies the theory of lin-

ear elasticity to the phenomenon of fracture -- mainly, the propa-

gation of cracks. If we define the fracture toughness of a material

as its resistance to crack propagation, then we can use LEFM to
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(a) (b) (c) (d)

Fig. 7.1 “Goofy duck” analog for

three modes of crack loading. (a)

Crack/beak closed. (b) Opening

mode. (c) Sliding mode. (d) Tearing

mode. (Courtesy of M. H. Meyers.)

provide us with a quantitative measure of fracture toughness. Vari-

ous standardization bodies, such as the American Society for Testing

and Materials (ASTM), British Standards Institution (BSI), and Japan

Institute of Standards (JIS), have standards for fracture toughness

tests.

In this chapter, we will develop a quantitative understanding of

cracks. It is very important to calculate the stresses at the tip (or in

the vicinity of the tip) of a crack, because these calculations help

us answer a very important practical question: At what value of the

external load will a crack start to grow?

Figure 7.1 shows a simple analog that will assist the student in the

visualization of different types of crack. In Figure 7.1(a), ‘‘goofy duck”

has its beak initially closed. Let us consider the spacing between the

upper and lower beaks as a crack. Depending on how the goofy duck

moves its beak, different modes of crack loading are generated:

� The opening mode, shown in Figure 7.1(b) is caused by loading that

is perpendicular to the crack plane.
� The sliding mode, shown in Figure 7.1(c) is produced by forces par-

allel to the crack plane and perpendicular to the crack ‘‘line” (crack

extremity).
� The tearing mode (Figure 7.1d) is produced by forces parallel to the

crack surface and to the crack ‘‘line.”

Among the parameters and tests that have been developed, mostly

during the last quarter of the twentieth century, to describe the resist-

ance to fracture of a material in a quantitative and reproducible

manner, is the plane strain fracture toughness, defined as the crit-

ical stress intensity factor under plane strain conditions and mode

I loading. This is the stress intensity factor at which a crack of a

given size starts to grow in an unstable manner. The fracture tough-

ness is related to the applied stress by an equation of the following

form:

K I c = Y σ
√

πa,

where KIc is the fracture toughness in mode I loading, a is the

characteristic dimension (semilength) of the crack and Y is a
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Fig. 7.2 Stress required to

separate two atomic layers.

factor that depends on the geometry of the specimen, the location

of the crack, and the loading configuration. One can see that the

stress which can be safely applied decreases with the square root of

the size of the crack. Also, note that KIc is a parameter of the mater-

ial in the same manner as are hardness and yield strength. We will

explain this in detail in Section 7.5. First we derive an expression for

the theoretical tensile strength of a crystal.

7.2 Theorectical Tensile Strength

A material is said to cleave when it breaks under normal stress and

the fracture path is perpendicular to the applied stress. The process

involves the separation of the atoms along the direction of the applied

stress. Orowan developed a simple method for obtaining the theoret-

ical tensile strength of a crystal.1 With his method, no stress concen-

trations at the tip of the crack are assumed; instead, it is assumed

that all atoms separate simultaneously once their separation reaches

a critical value. Figure 7.2 shows how the stress required to separate

two planes will vary as a function of the distance between planes.

The distance is initially equal to a0. Naturally, σ for a = a0; σ will

also be zero when the separation is infinite. The exact form of the

curve of σ versus a depends on the nature of the interatomic forces.

In Orowan’s model, the curve is simply assumed to be a sine func-

tion -- hence the generality of the model. The area under the curve

is the work required to cleave the crystal. This work of deformation

-- and here there is a certain similarity with Griffith’s crack propa-

gation theory to be presented in Section 7.4 -- cannot be lower than

the energy of the two new surfaces created by the cleavage. If the

surface energy per unit area is γ and the cross-sectional area of the

specimen is A, the total energy is 2γ A (two surfaces formed). The

stress dependence on plane separation is then given by the follow-

ing equations, admitting a sine function and assuming a periodicity

of 2d:

σ = K sin
2π

2d
(a − a0) . (7.1)

1 E. Orowan, ‘‘Fracture and Strength of Solids,” Rep. Prog. Phys., 12 (1949) 185.
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K is a constant that can be determined by the following artifice:

When a is close to a0, the material responds linearly to the applied

loads (Hookean behavior). Assuming that the elastic defomation is

restricted to the two planes shown in Figure 7.2 and that the mater-

ial is isotropic, the fractional change in the distance between the

planes, da/a0, is defined as the incremental strain dε.

da

a0

= dε

dσ

dε
= dσ

da/a0

= E , (7.2)

where E is Young’s modulus, which is defined as dσ /dε in the elastic

region. Thus,

a0

dσ

da
= E .

Taking the derivative of Equation 7.1 and substituting into Equation

7.2 for a = a0,

a0

dσ

da
= K

π

d
a0 cos

π

d
(a − a0) = E ,

K = E

π

d

a0

. (7.3)

However, d is not known; to determine d, the area under the curve

has to be equated to the energy of the two surfaces created:∫ a0+d

a0

σda =2γ. (7.4)

Substituting Equation 7.1 into 7.4, we get∫ a0+d

a0

K sin
2π

2d
(a − a0) da =2γ. (7.5)

From a standard mathematics text, the preceding integral can be

evaluated:∫
sin axdx = 1

a
cos ax. (7.6)

A substitution of variables is required to solve Equation 7.5; applying

the standard Equation 7.6, we have a − a0 = y; therefore, da = dy,

and

K

∫ d

0

sin
π

d
ydy = 2γ,

K
d

π
= γ,

and

d = πγ

K
. (7.7)

The maximum value of σ is equal to the theoretical cleavage stress.

From Equation 7.1, and making the sine equal to 1, we have,
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Table 7.1 Theorectical Cleavage Stresses According to Orowan’s Theory∗

Element Direction
Young’s Modulus
(GPa)

Surface
Energy (mJ/m2)

σmax

(GPa) σmax/E

α-Iron <100>

<111>

132
260

2
2

30
46

0.23
0.18

Silver <111> 121 1.13 24 0.20
Gold <111> 110 1.35 27 0.25
Copper <111>

<100>

192
67

1.65
1.65

39
25

0.20
0.38

Tungsten <100> 390 3.00 86 0.22
Diamond <111> 1,210 5.4 205 0.17

∗ Adapted with permission from A. Kelly, Strong Solids, 2nd ed. (Oxford, U.K.: Clarendon Press, 1973), p. 73.

from Equation 7.3,

σmax = K = E

π

d

a0

. (7.8)

Substituting Equation 7.7 into Equation 7.8 yields

K = σmax = E γ

a0 K
,

and

K 2 = (σmax)2 = E γ

a0

,

or

σmax =
√

E γ

a0

. (7.9)

According to Orowan’s model, the surface energy is given by

γ = Kd

π
= E

a0

(
d

π

)2

(7.10)

γ = Ea0

10
and σmax

∼= E

π
(7.11)

We can conclude from Equation 7.9 that, in order to have a high theo-

retical cleavage strength, a material must have a high Young’s modu-

lus and surface energy and a small distance a0 between atomic planes.

Table 7.1 presents the theoretical cleavage strengths for a number of

metals. The greatest source of error is γ : it is not easy to determine γ

with great precision in solids, and the values used in the table come

from different sources and were not necessarily determined at the

same temperature.
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7.3 Stress Concentration and Griffith
Criterion of Fracture

The most fundamental requisite for the propagation of a crack is that

the stress at the tip of the crack must exceed the theoretical cohesive

strength of the material. This is indeed the fundamental criterion,

but it is not very useful, because it is almost impossible to measure

the stress at the tip of the crack. An equivalent criterion, called the

Griffith criterion, is more useful and predicts the force that must be

applied to a body containing a crack for the propagation of the crack.

The Griffith criterion is based on an energy balance and is described

in Section 7.4. Let us first grasp the basic idea of stress concentration

in a solid.

7.3.1 Stress Concentrations
The failure of a material is associated with the presence of high local

stresses and strains in the vicinity of defects. Thus, it is important

to know the magnitude and distribution of these stresses and strains

around cracklike defects.

Consider a plate having a through-the-thickness notch and sub-

jected to a uniform tensile stress away from the notch (Figure 7.3).

We can imagine the applied external force being transmitted from

one end of the plate to the other by means of lines of force (similar

to the well-known magnetic lines of force). At the ends of the plate,

which is being uniformly stretched, the spacing between the lines

is uniform. The lines of force in the central region of the plate are

severely distorted by the presence of the notch (i.e., the stress field is

perturbed). The lines of force, acting as elastic strings, tend to min-

imize their lengths and thus group together near the ends of the

elliptic hole. This grouping together of lines causes a decrease in the

line spacing locally and, consequently, an increase in the local stress (a

stress concentration), there being more lines of force in the same area.

7.3.2 Stress Concentration Factor
The theoretical fracture stress of a solid is on the order E/10 (see

Section 7.2), but the strength of solids (crystalline or otherwise) in

practice is orders of magnitude less than this value. The first attempt

s s

Fig. 7.3 “Lines of force” in a bar with a side notch. The direction and density of the

lines indicate the direction and magnitude of stress in the bar under a uniform stress σ

away from the notch. There is a concentration of the lines of force at the tip of the notch.
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at giving a rational explanation of this discrepancy was attributed to

Griffith. His analytical model was based on the elastic solution of a

cavity elongated in the form of an ellipse.

Figure 7.4 shows an elliptical cavity in a plate under a uniform

stress σ away from the cavity. The maximum stress occurs at the

ends of the major axis of the cavity and is given by Inglis’s formula,2

σmax = σ
(

1 + 2
a

b

)
. (7.12)

where 2a and 2b are the major and minor axes of the ellipse, respect-

ively.3 The value of the stress at the leading edge of the cavity becomes

extremely large as the ellipse is flattened. In the case of an extremely

flat ellipse or a very narrow crack of length 2a and having a radius

of curvature ρ = b2/a, Equation 7.12 can be written as

σmax = σ

(
1 + 2

√
a

ρ

)
∼= 2σ

√
a

ρ
for ρ � a. (7.13)

We note that as ρ becomes very small, σ max becomes very large, and

in the limit, as ρ → 0, σ max → ∞. We define the term 2
√

a/ρ as the

stress concentration factor Kt (i.e., Kt = σ max/σ ). Kt simply describes

the geometric effect of the crack on the local stress (i.e., at the tip of

the crack). Note that Kt depends more on the form of the cavity than

on its size. A number of texts and handbooks give a compilation of

stress concentration factors Kt for components containing cracks or

notches of various configurations.

As an example of the importance of stress concentration, we point

out the use of square windows in the COMET commercial jet aircraft.

Fatigue cracks, initiated at the corners of the windows, caused cata-

strophic failures of several of these aircraft.

2b

2a

s

s

Fig. 7.4 Griffith model of a

crack.

In addition to producing a stress concentration, a notch produces

a local situation of biaxial or triaxial stress. For example, in the case

of a plate containing a circular hole and subject to an axial force,

there exist radial as well as tangential stresses. The stresses in a large

plate containing a circular hole (with diameter 2a) and axially loaded

(Figure 7.5(a)) can be expressed as4

σrr = σ

2

(
1 − a2

r 2

)
+ σ

2

(
1 + 3

a4

r 4
− 4

a2

r 2

)
cos 2θ,

σθθ = σ

2

(
1 + a2

r 2

)
− σ

2

(
1 + 3

a4

r 4

)
cos 2θ,

σrθ = −σ

2

(
1 − 3a4

r 4
+ 2a2

r 2

)
sin 2θ. (7.14)

2 C. E. Inglis, Proc. Inst. Naval Arch., 55 (1913) 163, 219.
3 The derivation of this equation, which can be found in more advanced tests [e.g., J. F.

Knott, Fundamentals of Fracture Mechanics, (London: Butterworths, 1973), p. 51], involves

the solution of the biharmonic equation, the choice of an appropriate Airy stress

function, and complex variables.
4 See, for example, S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. (New

York: McGraw-Hill, 1951), p. 78.
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a large plate containing a circular
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The maximum stress occurs at point A in Figure 7.5(a), where θ =
π /2 and r = a. In this case,

σθθ = 3σ = σmax,

where σ is the uniform stress applied at the ends of the plate. The

stress concentration Kt = σ max/σ = 3. Figure 7.5(b) shows the stress

concentration for a circular hole in a plate of finite lateral dimensions.

When D, the lateral dimension, decreases, or the radius of the hole

increases, the stress concentration Kt drops from 3 to 2.2.

Goodier5 calculated the stresses around spherical voids in per-

fectly elastic materials. Although his solution was obtained when the

applied stress was tensile, it can be extended to compressive stress

by changing the signs. The stresses given by Timoshenko and Good-

ier can be determined from the methods of elasticity theory. At the

equatorial plane (θ = π /2), the tangential stress σ θθ is equal to

σθθ =
[

1 + 4 − 5ν

2(7 − 5ν)

a3

r 3
+ 9

2(7 − 5ν)

a5

r 5

]
σ, (7.15)

where a is the radius of the hole, r is the radial coordinate, and ν is

the Poisson’s ratio. For r = a, ν = 0.3, and we have

(σθθ )max = 45

22
σ ≈ 2σ.

5 J. N. Goodier, App. Mech. 1 (1933) 39; see also Timoshenko and Goodier, op. cit.
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Thus, as expected, the stress concentration for a spherical void is

approximately 2. The stress σ θθ decays quite rapidly with r, as can

be seen from Equation 7.15; the decay is given by r−3. For r = 2a, we

have σ θθ = 1.054. This decay is faster than for the circular hole, where

it goes with r−2 (Equation 7.14). For θ = 0 (north and south poles),

Timoshenko and Goodier have the equation

(σrr )θ = (σθθ )θ=0 = − 3 + 15ν

2(7 − 5ν)
σ.

Hence, a compressive stress generates a tensile stress at θ = 0. This

result is very important and shows that compressive stress can gener-

ate cracks at spherical flaws such as voids. Taking ν = 0.2--0.3 (typical

of ceramics), one arrives at the following values:

1

2
≤ (σθθ )θ=0 ≤ 7.5

11
.

Thus, the tensile stress is 50--80% of the applied compressive stress. If

failure is determined by cracking at spherical voids, cracking should

start at a compressive stress level equal to −4σ t (depending on ν; in

this case, for ν = 0.2), where σ t is the tensile strength of the mater-

ial. This value represents, to a first approximation, the marked dif-

ferences between the tensile and compressive strengths of cast irons,

intermetallic compounds, and ceramics. The result is fairly close to

the stress generated around a circular hole, given in Equation 7.14. In

that case, for r = a, we find that

σθθ = −σ.

In tensile loading, the stress σ θθ = 3σ , which would predict a three-

fold difference in tensile and compressive strengths. More general

(elliptical) flaws can be assumed, and their response under com-

pressive loading provides a better understanding of the compressive

strength of brittle materials. The generation and growth of cracks

from these flaws also needs to be analyzed, for more realistic predic-

tions. This will be carried out in Section 8.3.4.

Stress concentration caused by an elliptical hole is shown in

Figure 7.6. In this figure, σ L is the longitudinal stress applied along

x2. It is also referred to as the far-field stress. Locally at the crack

tip we have a biaxial or triaxial stress situation. In particular, for an

elliptical hole, with a = 3b, Figure 7.6 shows that σ 22 falls from its

maximum value at the crack tip and attains σ L asymptotically. The

stress component, σ 11, however is zero at the crack tip, increases to

a peak value and then falls to zero with the same tendency as σ 22.

The general result is that a major perturbation in the applied stress

state occurs over a distance approximately equal to a from the bound-

aries of the cavity, with the major stress gradients being confined to a

region of dimensions roughly equal to ρ surrounding the maximum

concentration position.

Although the exact formulas vary according to the form of the

crack, in all cases Kt increases with an increase in the crack length a

and a decrease in the root radius at the crack tip, ρ.
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Fig. 7.6 Stress concentration at

an elliptical hole for a = 3b.

Despite the fact that the analysis of Inglis represented a

great advance, the fundamental nature of the fracture mechanism

remained obscure. If the Inglis analysis was applicable to a body con-

taining a crack, how does one explain that, in practice, larger cracks

propagate more easily than smaller cracks? What is the physical sig-

nificance of the root radius at the tip of the crack?

Example 7.1

Although the elastic modulus of silica-based glass is rather low (E =
70 GPa), the theoretical strength of a defect-free glass can be as high

as 3 GPa. Generally, such high strength values are not measured in

practice. Why?

Solution: Extremely minute crack-like defects form rather easily on the

glass surface. Such imperfections can lead to a drastic reduction in the

strength of glass. This is the reason that, in the making of a glass fiber,

a protective coating called a size is applied to the fiber immediately as

it comes out of the spinneret. Just to get an estimate of the reduction

in strength caused by a tiny imperfection -- say, a 1-μm-long, atomically

sharp scratch -- we can use the Inglis expression (Equation 7.13),

σth = 2σ (a/ρ)0.5, or σ = 0.5 σth(ρ/a)0.5,

where σ th is the theoretical strength (3 GPa), a is the crack length

(1 μm), and ρ is the root radius at the crack tip, which, since the tip

is atomically sharp, can be taken to be 0.25 nm. Plugging these values

into the preceding expression, we find that the real strength of such a

glass is only 24 MPa! Note that in this problem we made an estimate of

the notch root radius. In practice, this is very difficult to measure. That

is why the concept of stress intensity factor, involving the far-field stress

and the square root of the crack length, is much more convenient to

deal with in fracture toughness problems, as we shall see later in this

chapter (Section 7.6).
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Example 7.2

Determine the stresses at distances equal to 0, a/2, a, 3a/2, and 2a from

the surface of a spherical hole and for θ = 0 and π /2.

Solution: We use Equation 7.14. By setting θ = 0, we have

σrr = σ

2

(
2 − 5a2

r 2
+ 3a4

r 4

)
,

σθθ = σ

2

(
a2

r 2
− 3a2

r 4

)
,

τrθ = 0.

For θ = π /2,

σrr = σ

2

(
3a2

r 2
− 3a4

r 4

)
,

σθθ = σ

2

(
2 + a2

r 2
+ 3a4

r 4

)
,

τrθ = 0.

We calculate the stresses for r = 0, a, 3a/2, and 2a and plot them as

shown in Figure E7.2 in terms of a dimensionless parameter r/a.
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Example 7.3

Two flat plates are being pulled in tension. (See Figure E7.3.) The flow

stress of the materials is 150 MPa.

(a) Calculate the maximum stresses in the plate.

(b) Will the material flow plastically?

(c) For which configuration is the stress higher?

Solution:

(a) Normal stress:

σ = P

A
= 100 kN

10 cm × 1 cm

= 100 MPa,

σmax = σ
(

1 + 2
a

b

)
.

Circular hole:

a = b = 3/2 cm = 1.5 cm,

σmax = 100 ×
(

1 + 2 × 1.5

1.5

)
= 300 MPa.

Elliptical hole:

a = 3/2 cm = 1.5 cm, b = 1/2 cm = 0.5 cm,

σmax = 100 ×
(

1 + 2 × 1.5

0.5

)
= 700 MPa.

(b) Yes, because in both cases, the stress is greater than the flow stress

(150 MPa).

(c) The elliptical hole has higher stress than the circular one.

P = 100kN P = 100kN

3 cm 3 cm

1 cm1 cm

1 cm

10 cm10 cm

Fig. E7.3
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7.4 Griffith Criterion

Griffith proposed a criterion based on a thermodynamic energy bal-

ance. He pointed out that two things happen when a crack propagates:

Elastic strain energy is released in a volume of material, and two new

crack surfaces are created, which represent a surface-energy term.

Thus, according to Griffith, an existing crack will propagate if the

elastic strain energy released by doing so is greater than the surface

energy created by the two new crack surfaces. Figure 7.7(a) shows

an infinite plate of thickness t that contains a crack of length 2a

under plane stress. As the stress is applied, the crack opens up. The

shaded region denotes the approximate volume of material in which

the stored elastic strain energy is released (Figure 7.7(b)). When the

crack extends a distance da on the extremities, the volume over which

elastic energy is released increases, as shown in Figure 7.7(c). The elas-

tic energy per unit volume in a solid under stress is given by σ 2/2E.

(See Chapter 2.) To get the total strain energy released, we need to

multiply this quantity by the volume of the material in which this

energy is released. In the present case, this volume is the area of the

ellipse times the plate thickness. The area of the shaded ellipse is

π (2a)a = 2 πa2; therefore, the volume in which the strain energy is

relaxed is 2 πa2t. The total strain energy released is thus(
σ 2

2E

)
(2πa2t) = πσ 2a2t

E
,

or, in terms of the per-unit thickness of the plate under plane stress,

the energy released is

Ue = πσ 2a2/E .

The decrease in strain energy, Ue, when a crack propagates is bal-

anced by an increase in the surface energy, Us, produced by the cre-

ation of the two new crack surfaces. The increase in surface energy

equals:

Us = (2at)(2ys ),

(a)

(b)

Relaxed
volume

(c)

4a

t

da

2a

Fig. 7.7 A plate of thickness t

containing a crack of length 2a. (a)

Unloaded condition. (b) and (c)

Loaded condition.

here γ s is the specific surface energy, i.e., the energy per unit area. In

terms of the per-unit thickness of the plate, the increase in surface

energy is 4aγ s. Now, when an elliptical crack is introduced into the

plate, we can write, for the change in potential energy of the plate,

�U = Us−Ue ,

�U = 4aγs − πσ 2a2

E
,

where �U is the change in the potential energy per unit thickness of

the plate in the presence of the crack, σ is the applied stress, a is half

the crack length, E is the modulus of elasticity of the plate, and γs

is the specific surface energy (i.e., the surface energy per unit area)

of the plate.
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As the crack grows, strain energy is released, but additional sur-

faces are created. The crack becomes stable when these energy com-

ponents balance each other. If they are not in balance, we have an

unstable crack (i.e., the crack will grow). We can obtain the equilib-

rium condition by equating to zero the first derivative of the potential

energy �U with respect to the crack length. Thus,

�U

∂a
= 4γs − 2πσ 2a

E
= 0, (7.16a)

or

2γs = πσ 2a

E
. (7.16b)

The reader can check the nature of this equilibrium further by tak-

ing the second derivative of U with respect to a. A negative second

derivative would imply that Equation 7.16a represents an unstable

equilibrium condition and that the crack will advance.

Rearranging Equation 7.16b, we may write, for the critical stress

required for the crack to propagate in the plane-stress situation,

σc =
√

2E γs

πa
(plane stress). (7.17a)

We can rearrange Equation 7.17a to get the following expression:

σ
√

πa =
√

2E γs .

The reader should note that the left-hand side of this expression

involves critical stress for crack propagation and square root of crack

length. This product is called fracture toughness. Note that the right-

hand side of the expression consists only of material parameters: E

and γ s, i.e., the above expression represents a material property, viz.,

fracture toughness.

For the plane-strain situation, we will have the factor (1 − ν2) in

the denominator because of the confinement in the direction of thick-

ness. The expression for the critical stress for crack propagation then

becomes

σc =
√

2E γs

πa(1 − v2)
(plane strain). (7.17b)

The distinction between plane stress and plane strain is shown in Fig-

ure 7.8. Normal and shear stresses at free surfaces are zero; hence, for

a thin plate, σ33 = σ23 = σ13 = 0. This is the plane-stress state (Figure

7.8(a)). In very thick plates (t2 > t1), the flow of material in the x3

direction is restricted. Therefore, ε33 = 0, and so are, ε23 = ε13 = 0.

This is the plane-strain condition (Figure 7.8(b)). Note that the factor

(1 − ν2) is less than unity and is in the denominator. Therefore, the

critical stress corresponding to fracture in the plane-strain situation

will be higher than that in the plane-stress state. This is as expected,
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(a) (b)

ε33 = 0

ε23 = 0

ε13 = 0

Fig. 7.8 Crack in (a) thin (t1) and

(b) thick (t2) plates. Note the

plane-stress state in (a) and the

plane-strain state in (b).

because of the confinement in the direction of thickness in the case

of plane strain. For many metals, ν ≈ 0.3, and (1 − ν2) ≈ 0.91. Thus,

the difference is not very large for most metals.

The importance of the length of the crack is implicit in Griffith’s

analysis. In modern fracture mechanics, as we shall see later, the crack

length enters as a square-root term in the product σ
√

a. According

to Griffith’s thermodynamic analysis, a necessary condition for crack

propagation is

−∂Ue

∂a
≥ ∂Us

∂a
,

where Ue is the elastic energy of the system (i.e., the machine plus the

test piece) and Us is the surface energy of the two crack faces. This is

a necessary condition for fracture by rapid crack propagation. But it

may not always be sufficient: if the local stress at the crack tip is not

sufficiently large to break the atomic bonds, the energy criterion of

Griffith will be inadequate.

Let us consider Equation 7.17a or 7.17b again. Note that the frac-

ture stress, or critical stress required for crack propagation, σ c, is

inversely proportional to
√

a. More importantly, the quantity σ c

√
a

depends only on material constants. It is instructive, then, to exam-

ine the Inglis result, Equation 7.13, and the Griffith result, Equation

7.17a or 7.17b in the form

σc

√
a = 1

2
(σmax)c

√
ρ = constant.

Here, σ c is the critical far-field or uniform stress (i.e., the stress at

fracture), a is the crack length corresponding to σ c, (σ max)c is the
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stress at the crack tip at fracture, and ρ is the root radius at the tip

of the crack.

Both analyses, Inglis’s and Griffith’s lead to the same result, viz.,

that a crack will propagate when an appropriate quantity with dimen-

sions of stress times the square root of length reaches a critical value,

a material constant. It is easy to see that the parameters in the Inglis

analysis, (σ max)c and ρ, are local parameters and very difficult to meas-

ure, while the Griffith analysis allows us to use the far-field applied

stress and crack length, which are easy to measure. It is this quantity,

σ c

√
a, that is called the fracture toughness and is denoted by KIc. We

treat fracture toughness in detail in Section 7.6.

Example 7.4

Consider a brittle material with γ s = 1 J/m2 and E = 100 GPa. (a) What

is the breaking strength of this material if it contains crack-like defects

as long as 1 mm? (b) Should it be possible to increase γ s to 3,000 J/m2,

what would be the breaking strength for a 1-mm-long crack?

Solution

(a) We have

γs = 1 J/m2 and E = 100 GPa,

and

2a = 1 mm and a = 0.5 mm.

Thus,

σc =
√

2E γs

πa
=

√
2 × 100 × 109 × 1

π × (0.5 × 10−3)

= 11.3 MPa.

(b) If γ s increases to 3,000 J/m2,

2a = 1 mm and a = 0.5 mm,

so that

σc =
√

2E γs

πa
=

√
2 × 100 × 109 × 3,000

π × (0.5 × 10−3)

= 618 MPa.

7.5 Crack Propagation with Plasticity

If the material in which a crack is propagating can deform plastically,

the form of the crack tip changes because of plastic strain. A sharp

crack tip will be blunted. Another important factor is time: because
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Fig. 7.9 Dislocations emitted from a crack tip in copper. (Courtesy of S. M. Ohr.)

plastic deformation requires time, the amount of plastic deformation

that can occur at the crack tip will depend on how fast the crack is

moving. Figure 7.9, a TEM micrograph, shows dislocations that were

generated at a crack tip and that propagated along crystallographic

planes. The crack is at the left-hand side, and the plane of the cop-

per foil is (123). In a great majority of materials, localized plastic

deformation at and around the crack tip is produced because of the

stress concentrations there. In such a case, a certain amount of plas-

tic work is done during crack propagation, in addition to the elastic

work done in the creation of two fracture surfaces. The mechanics of

fracture will, then, depend on the magnitude of γ p, the plastic work

done, which in its turn depends on the crack speed, temperature,

and the nature of the material. For an inherently brittle material, at

low temperatures and at high crack velocities γ p is relatively small

(γ p <0.1γ s). In such a case, the crack propagation would be continu-

ous and elastic. These cases are usefully treated by means of linear

elastic fracture mechanics, which is dealt with in Section 7.6. In any

event, in the case of plastic deformation, the work done in the prop-

agation of a crack per unit area of the fracture surface is increased

from γ s to (γ s + γ p). Consequently, the Griffith criterion (Equation

7.17a or 7.17b) is modified to

σc =
√

2E

πa
(γs + γp) (plane stress) (7.18a)

and

σc =
√

2E

πa(1 − ν2)
(γs + γp) (plane strain). (7.18b)

Rearranging Equation 7.18a, we get

σc =
√

2E γs

πa

(
1 + γp

γs

)
.

For γ p/γ s � 1,

σc
∼=

√
2E γp

πa
.

Thus, the plastic deformation around the crack tip makes it blunt

and serves to relax the stress concentration by increasing the radius

of curvature of the crack at its tip. Localized plastic deformation at the

crack tip therefore improves the fracture toughness of the material.
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This is the conventional treatment of the plastic work contribu-

tion to the fracture process, wherein γ p is considered to be a constant.

However, the reader should be warned that this is not strictly true.

As a matter of fact, the value of γ p increases with the stress inten-

sity factor K (=Y σ
√

a). Consider Equation 7.18a. As was pointed out,

in the conventional approach γ p will be very much larger than γ s

for a ductile material such as polycrystalline copper. Thus, according

to this conventional treatment, the fracture stress σ c should be rela-

tively insensitive to changes in γ s. However, in the embrittlement of

copper with beryllium, all we change is the γ s part of Equation 7.18a

(along the grain boundaries where the fracture proceeds). The γ p part

in that equation (i.e., the plastic behavior of copper) does not change

appreciably by the addition of beryllium to copper.

As pointed out earlier, equations of the type 7.17a or 7.18 are dif-

ficult to use in practice. It is not a trivial matter to measure quan-

tities such as surface energy and the energy of plastic deformation.

In a manner similar to that of Griffith, Irwin made a fundamental

contribution to the mechanics of fracture when he proposed that

fracture occurs at a stress that corresponds to a critical value of the

crack extension force

G = 1

2

∂Ue

∂a
= rate of change of energy with crack length.

G is sometimes called the strain energy release rate.

Now, Ue = πa2σ 2/E, the energy released by the advancing crack

per unit of plate thickness. This is for plane stress. For plane strain,

a factor of (1 -- ν2) is introduced in the denominator. Thus,

G = πaσ 2

E
.

At fracture, G = Gc, and

σc =
√

EG c

πa
(plane stress) (7.19a)

or

σc =
√

EG c

πa(1 − ν2)
(plane strain). (7.19b)

From Equations 7.18 and 7.19, we see that

G c = 2(γs + γp).

We shall come back to this idea of crack extension force later in the

chapter.

7.6 Linear Elastic Fracture Mechanics

A nonductile material has a very low capacity to deform plastically;

that is, it is not capable of relaxing peak stresses at crack-like defects.
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Fracture
mechanics

KR

KR

a
a s

sFig. 7.10 Inherent material

resistance to crack growth and its

relationship to the applied stress σ

and crack size a.

In such a material, a crack will propagate very rapidly with little

plastic deformation around the crack tip, resulting in what is called

a brittle fracture. Typically, such a fracture is also characterized by

a crack propagation that is sudden, rapid, and unstable. In prac-

tical terms, this definition of brittleness, which refers to the onset

of instability under an applied stress smaller than the stress corres-

ponding to plastic yielding of the material, is very useful. Numerous

brittle fractures have occurred in service, and there are abundant

examples of them in a great variety of structural and mechanical

engineering fields involving ships, bridges, pressure vessels, oil ducts,

turbines, and so on. In view of the great importance of brittle frac-

ture in real life, a discipline called linear elastic fracture mechanics

(LEFM) has emerged, enabling us to obtain a quantitative measure

of the resistance of a brittle material to unstable or catastrophic

crack propagation. Extension of these efforts into nonlinear elastic

and plastic regimens has led to the development of elasto-plastic frac-

ture mechanics (EPFM), also called post-yield fracture mechanics (see

Section 7.9).

7.6.1 Fracture Toughness
Fracture mechanics gives us a quantitative handle on the process

of fracture in materials. Its approach is based on the concept that

the relevant material property, fracture toughness, is the force nec-

essary to extend a crack through a structural member. Under certain

circumstances, this crack extension force (or an equivalent param-

eter) becomes independent of the dimensions of the specimen. The

parameter can then be used as a quantitative measure of the fracture

toughness of the material.

Fracture mechanics adopts an entirely new approach to design-

ing against fracture. Admittedly defects will always be present in a

structural component. But consider a structure or a component with

a crack-like defect. We can simulate this with single edge notch of

length a in a plate. (See Figure 7.10.) Alternatively, we can say that we

are increasing the applied stress intensity factor K at the crack tip. The

material at the tip, however, presents resistance to crack growth. We

denote this inherent material resistance by KR (sometimes the symbol

R alone is used in place of KR.) The discipline of fracture mechanics
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can then be represented by a triangle as shown in Figure 7.10; that

is, we have an interplay among the following three quantities:

1. The far-field stress, σ .

2. The characteristic crack length, a.

3. The inherent material resistance to cracking, KR.

Various parameters are used to represent KR. We discuss their equiv-

alence in Section 7.7.5. Here we wish to clarify one common point

of confusion. The symbol K is used to designate the stress intensity

factor at the crack tip corresponding to a given applied stress and

crack length. The symbol KR (or one of its equivalents) represents

fracture toughness. In this regard, the following analogy is helpful.

The stress intensity factor, K, is to stress as fracture toughness, KR, is

to strength. Stress and stress intensity factor vary with the external

loading conditions; strength and toughness are material parameters,

independent of loading and specimen size considerations.

We now seek an answer to the question: Given a certain applied

stress, what is the largest size defect (crack) that can be tolerated

without the failure of the member? Once we know the answer to this

question, it remains only to use appropriate inspection techniques to

select/repair/replace a material so that defects larger than the critical

size for the given design stress are not present.

7.6.2 Hypotheses of LEFM
The basic hypotheses of LEFM are as follows:

1. Cracks are inherently present in a material, because there is a limit

to the sensibility or resolution of any crack-detecting equipment.

2. A crack is a free, internal, plane surface in a linear elastic stress

field. With this hypothesis, linear elasticity furnishes us stresses

near the crack tip as

σrθ = K√
2πr

f (θ ), (7.20)

where r and θ are polar coordinates and K is a constant called the

stress intensity factor (SIF).

3. The growth of the crack leading to the failure of the structural

member is then predicted in terms of the tensile stress acting at

the crack tip. In other words, the stress situation at the crack tip

is characterized by the value of K. It can be shown by elasticity

theory that K = Y σ
√

πa, where σ is the applied stress, a is half

the crack length, and Y is a constant that depends on the crack

opening mode and the geometry of the specimen.

Fig. 7.11 The three modes of

fracture. (a) Mode I: opening

mode. (b) Mode II: sliding mode.

(c) Mode III: tearing mode (see

also Figure 7.1).

7.6.3 Crack-Tip Separation Modes
The three modes of fracture are shown in Figure 7.11. Mode I

(Figure 7.11(a)), called the opening mode, has tensile stress normal

to the crack faces. Mode II (Figure 7.10(b)) is called the sliding mode

or the forward shear mode. In this mode, the shear stress is normal
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to the advancing crack front. Mode III (Figure 7.11(c)) is called the

tearing mode or transverse shear mode, with the shear stress parallel

to the advancing crack front. The ‘‘goofy duck” analog of Figure 7.1

shows this in a more illustrative fashion.

7.6.4 Stress Field in an Isotropic Material in the Vicinity of
a Crack Tip

The stress components for the three fracture modes in an isotropic

material are given next. In the case of anisotropic materials, these

relations must be modified to permit the asymmetry of stress at the

crack tip. KI, KII, and KIII represent stress intensity factors in modes I,

II, and III, respectively. We have (the derivation of these expressions

is attributed to Westergaard6):

Mode I:

⎡
⎣ σ11

σ22

σ12

⎤
⎦ = K I√

2πr
cos

θ

2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − sin
θ

2
sin

3θ

2

1 + sin
θ

2
sin

3θ

2

sin
θ

2
cos

3θ

2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

σ13 = σ23 = 0,

σ33 = 0, (plane stress),

σ33 = v (σ11 + σ22), (plane strain). (7.21)

Mode II:

⎡
⎣ σ11

σ22

σ12

⎤
⎦ = K II√

2πr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− sin
θ

2

(
2 cos

θ

2
cos

3θ

2

)

sin
θ

2
cos

θ

2
cos

3θ

2

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

σ13 = σ23 = 0,

σ33 = 0, (plane stress),

σ33 = v (σ11 + σ22) (plane strain). (7.22)

Mode III:

[
σ13

σ23

]
= K III

2πr

⎡
⎢⎣− sin

θ

2

cos
θ

2

⎤
⎥⎦

σ11 = σ22 = σ33 = σ12 = 0. (7.23)

The derivation of this expression for Mode III is given in the Appendix

at the end of this chapter

6 H. M. Westergaard, J. Appl. Mechan., 5A (1939) 49.
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x2

r

x1

2a

σ

q

σ

σ22
σ12

σ11

Fig. 7.12 Infinite, homogeneous,

elastic plate containing a

through-the-thickness central

crack of length 2a, subjected to a

tensile stress σ .

7.6.5 Details of the Crack-Tip Stress Field in Mode I
Consider an infinite, homogeneous, elastic plate containing a crack of

length 2a (Figure 7.12). The plate is subjected to a tensile stress σ far

away from and normal to the crack. The stresses at a point (r, θ ) near

the tip of the crack are given by Equation 7.21. Ignoring the subscript

of K, we may write the stress components in expanded form as:

σ11 = K√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)
,

σ22 = K√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
,

σ12 = K√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
, (7.24)

σ13 = σ13 = 0,

σ33 = 0 (plane stress),

σ33 = v (σ11 + σ22) (plane strain),

where

K = σ
√

πa (7.25)

is the stress intensity factor for the plate and has the units (N/m2)√
m, or Pa

√
m, or Nm−3/2. Note that Equation 7.25 is applicable in the

region r � a (i.e., in the vicinity of the crack tip). For larger r, higher

order terms must be included.

For a thin plate, one has plane-stress conditions, and σ 33 = σ 13 =
σ 23 = 0. For a thick plate (infinite in the direction of thickness), there

exist plane-strain conditions (i.e., σ 33=ν(σ 11 +σ 22) and σ 13 = σ 23 = 0).

Consider again Equation 7.24. The right-hand side has three

quantities: K, r, and f(θ ), f(θ ) here designating the group of terms

containing the angle θ in Equation 7.24. The terms r and f(θ ) describe
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√
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(
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cos2 θ

)1/4 (
3π

8
+

π a2

8 c2

)
Circular crack: K 1 = Y σ

√
πa

Y =
2

π

Fig. 7.13 Some common load and crack configurations and the corresponding

expressions for the stress intensity factor, K.

the stress distribution around the crack tip. These two characteristics

(i.e., dependence on
√

r and f(θ )) are identical for all cracks in two- or

three-dimensional elastic solids. The stress intensity factor K includes

the influence of the applied stress σ and the appropriate crack dimen-

sions, in this case half the crack length a. Thus, K will characterize

the external conditions (i.e., the nominal applied stress σ and half the

crack length a) that correspond to fracture when stresses and strains

at the crack tip reach a critical value. This critical value of K is desig-

nated as Kc. It turns out, as we shall see later, that Kc depends on the

dimensions of the specimen. In the case of a thin sample (plane-stress

conditions), Kc depends on the thickness of the sample, whereas in

the case of a sufficiently thick sample (plane-strain conditions), K is

independent of the thickness of the specimen and is designated as KIc.
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a

B

W

2c

θ

Semi-elliptical surface flaw in tension:

K 1 = Y
σ
√
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(
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W
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)
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[
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B

)2

+ Y3

( a

B

)4
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Y4g(θ )g(W)
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)
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a
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+ 14
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)24
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sin2 θ +

(a

c

)
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√
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a

c
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B
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√
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1/4
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a θ
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Fig. 7.13 (cont.)

The stress intensity factor K measures the amplitude of the stress

field around the crack tip and should not be confused with the stress

concentration factor Kt discussed in Section 7.3.2. It is also important

to distinguish between K and Kc or KIc. The stress intensity factor K is

a quantity, determined analytically or not, that varies as a function

of configuration (i.e., the geometry of the crack and the manner of

application of the external load). Thus, the analytical expression for

K varies from one system to another. However, once K attains its crit-

ical value, KIc, in plane strain for a given system and material, it is

essentially a constant for all the systems made of this material. The

difference between Kc and KIc is that Kc depends on the thickness of

the specimen, whereas KIc is independent of the thickness. The forms

of K for various load and crack configurations have been calculated

and are available in various handbooks. Some of the more common

configurations and the corresponding expressions for K are presented

in Figure 7.13.
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For samples of finite dimensions, the general practice is to con-

sider the solution for an infinite plate and modify it by an algebraic

or trigonometric function that would make the surface tractions van-

ish. Thus, for a central through-the-thickness crack of length 2a, in a

plate of width W, we have

K = σ
(

W tan
πa

W

)1/2

. (7.26)

For the same crack in an infinite plate, we have

K = σ
√

πa.

If we expand tan πa/W in a series (Equation 7.26), we get

K = σ W1/2

(
πa

W
+ π3a3

3W3
+ · · ·

)1/2

= σ
√

πa

(
1 + π3a3

3W3
+ · · ·

)1/2

.

Thus, for an infinite solid, a/W = 0, and we have K = σ
√

πa, as

expected. For an edge crack in a semi-infinite plate, we have K =
1.12 σ

√
πa. The factor 1.12 here takes care of the fact that stresses

normal to the free surface must be zero.

At this point, it is appropriate to make some comments on the limi-

tations of LEFM. It was pointed out earlier that the expressions for

stress components (Equations 7.21--7.23) are valid only in the neigh-

borhood of the crack tip. The reader will have noticed that these

stress components tend to infinity as we approach the tip (i.e., as r

goes to zero). Now, there does not exist a material in real life that can

resist an infinite stress. The material in the neighborhood of the crack

tip, in fact, would inevitably deform plastically. Thus, these expres-

sions for stress components based on linear elasticity theory are not

valid in the plastic zone at the crack tip. The deformation process in

a plastic zone, as is well known, will be a sensitive function of the

microstructure, among other things. However, in spite of ignorance

of the exact nature of the plastic zone, the LEFM treatment is valid

for low-enough stresses such that the size of the plastic zone at the

crack tip is small with respect to the crack length and the dimensions

of the sample. We shall see in the next section how to incorporate a

correction term for the presence of a plastic zone at the crack tip.

7.6.6 Plastic-Zone Size Correction
Equations 7.21--7.23 show a

√
r singularity; that is, σ 11, σ 22, and σ 12

go to infinity when
√

r goes to zero. For a great majority of materials,

local yielding will occur at the crack tip, which would relax the peak

stresses. As we shall see shortly, the utility of the elastic stress field

equations is not affected by the presence of this plastic zone as long

as the nominal stress in the material is below the general yielding

stress of the material.

When yielding occurs at the crack tip, it becomes blunted; that

is, the crack surfaces separate without any crack extension. (See
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Apparent elastic stress

Real stress
     distribution

Plastic 
zone

Crack

a 2 ry

X

σy

σ

ry

Fig. 7.14 Plastic-zone

correction. The effective crack

length is (a + ry).

Figure 7.14.) The plastic zone (radius ry) will then be embedded in

an elastic stress field. Outside and far away from the plastic zone, the

elastic stress field ‘‘sees” the crack and the perturbation due to the

plastic zone, as if there were present a crack in an elastic material

with the leading edge of the crack situated inside the plastic zone. A

crack of length 2(a + ry) in an ideal elastic material produces stresses

almost identical to elastic stresses in a locally yielded member out-

side the plastic zone. If the stress applied is too large, the plastic zone

increases in size in relation to the crack length, and the elastic stress

field equations lose precision. When the whole of the reduced section

yields, the plastic zone spreads to the edges of the sample, and K does

not have any validity as a parameter defining the stress field.

When the plastic zone is small in relation to the crack length, it

can be visualized as a cylinder (Figure 7.14) of radius ry at the crack

tip. From Equation 7.24, for θ = 0, r = ry, and σ 22 = σ y, the yield

stress, we can write

σy = K√
2πry

,

and, to a first approximation, the plastic-zone radius will be

ry = 1

2π

(
K

σy

)2

. (7.27)

In fact, the plastic-zone radius is a little bigger than (1/2π )(K/σ y)2, due

to redistribution of load in the vicinity of the crack tip. Irwin,7 taking

into account the plastic constraint factor in the case of plane strain,

gave the following expressions for the size of the plastic zone:

ry ≈ 1

2π

(
K

σy

)2

(plane stress),

ry ≈ 1

6π

(
K

σy

)2

(plane strain).

7 G. R. Irwin, in Encyclopaedia of Physics, Vol. VI (Heidelberg: Springer-Verlag, 1958); see

also J. Basic Eng., Trans. ASME, 82 (1960) 417.
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x2
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2c

Plastic zone

Crack

(a)

(b)

2a

2cR R

Fig. 7.15 Dugdale–Bilby–

Cottrell–Swinden (BCS) model of

a crack.

Thus, the center of perturbation, the apparent crack tip, is located

a distance ry from the real crack tip. The effective crack length is,

then,

(2a)eff = 2(a + ry ).

Substituting (a + ry) for a in the elastic stress field equations gives an

adequate adjustment for the crack-tip plasticity under conditions of

small-scale yielding. With this adjustment, the stress intensity factor

K is useful for characterization of the fracture conditions.

There is another model for the plastic zone at the crack tip for

the plane-stress case, called the Dugdale--BCS model.8 In this model,

the plasticity spreads out at the two ends of a crack in the form of

narrow strips of length R (Figure 7.15). These narrow plastic strips in

front of the actual crack tips are under the yield stress σ y that tends

to close the crack. Mathematically, the internal crack of length 2c is

allowed to extend elastically a distance 2a, and then internal stress

is applied to reclose the crack in this region. Combining the internal

stress field surrounding the plastic enclaves with the external stress

field associated with the applied stress σ acting on the crack, Dugdale

showed that

c

a
= cos

πσ

2σy

.

8 B. A. Bilby, A. H. Cottrell, and K. H. Swinden, Proc. Roy. Soc., A272 (1963) 304; D. S.

Dugdale, J. Mech. Phys. Solids, 8 (1960) 100.
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Fig. 7.16 Formal representation

of the plastic zone at the crack tip

for a through-the-thickness crack

in a plate.

From this relation, one notes that as σ → σ y, c/a → 0, a → ∞ (i.e.,

general yielding occurs). On the other hand, as σ /σ y decreases, we can

write (using the series expansion for cosine),

c

a
= 1 − π2σ 2

8σ 2
y

+ · · · .

Noting that a = c + R and using the binomial expansion, we have

c

a
= c

c + R
=

(
1 + R

c

)−1

= 1 − R

c
+ · · · .

Thus, for σ � σ y,

R

c
≈ π2

8

(
σ

σy

)2

,

or

R ≈ π

8

(
K

σy

)2

. (7.28)

Comparing Equation 7.28 with Equation 7.27, we see that there is

good agreement between the two (π /8 ≈ 1/π ). In fact, the size of

the plastic zone varies with θ also. A formal representation of the

plastic zone at the crack front through the plate thickness is shown in

Figure 7.16.

7.6.7 Variation in Fracture Toughness with Thickness
The elastic stress state is markedly influenced by the plate thickness,

as indicated by Equation 7.24. The material in the plastic zone deforms

in such a way that its volume is kept constant. Thus, the large deform-

ations in the x1 and x2 directions tend to induce a contraction in

the x3 direction (parallel to the direction of the crack front or the

plate thickness), which is resisted by the surrounding elastic material.

We next perform a dimensional analysis. Since the elastic material
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Fig. 7.17 (a) Variation in

fracture toughness (Kc) with plate

thickness (B) for Al 7075-T6 and

H-11 Steel. (Reprinted with

permission from J. E. Srawley and

W. F. Brown, ASTM STP 381

(Philadelphia: ASTM, 1965), p 133,

and G. R. Irwin, in Encyclopaedia of

Physics, Vol. VI (Heidelberg:

Springer Verlag, 1958); see also J.

Basic Eng., Trans. ASME, 82 (1960)

417.) (b) Schematic variation of

fracture toughness Kc and

percentage of flat fracture P with

the plate thickness B.

surrounding the plastic zone is the primary source of constraint, the

size of the plastic zone, 2ry, should be compared with the plate thick-

ness B. The ratio of the plate thickness B to the size of the plastic

zone, 2ry, is given by

B

2ry

= π
B

(K c/σy )2
,

and this would be a convenient parameter to characterize the vari-

ation of fracture toughness, Kc, with thickness. Data for Al 7075-T6

and H-11 steel are plotted in Figure 7.17(a) in the form9 of Kc/σ y versus

B/(Kc/σ y)2. Observe that when B/(Kc/σ y)2 is greater than 1/π (i.e., B �
2ry), the fracture toughness value Kc does not change with B. Appar-

ently, beyond a thickness B � 2ry, the constraint in the thickness

direction (x3) is completely effective, and additional plate thickness

9 J. E. Srawley and W. F. Brown, American Society for Testing and Materials, Special

Technical Publication (ASTM STP) 381 (Philadelphia: ASTM, 1965), p. 133; W. F. Brown

and J. E. Srawley, ASTM STP 410 (Philadelphia: ASTM, 1966), p. 1.
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does not change Kc. This particular value of Kc that is independent

of the thickness of the specimen is labeled the fracture toughness of

the material, and the symbol KIc is used to denote it.

On the other extreme, when the ratio B/(Kc/σ y)2 is much smaller

than 1/π (i.e., B � 2ry), we expect the fracture toughness to increase

linearly with the plate thickness. In the region of B/(Kc/σ y)2 = 1/π

corresponding to B = 2ry, the data for both materials show a rapid

fall to a constant level of KIc. This decrease in the peak value of Kc

(Figure 7.17(b)) to the KIc level represents a change in the fracture mode

from a plane-stress type to a plane-strain condition. The fracture in a

relatively thin plate (plane stress) usually consists of a certain fraction

of slant fracture (high energy) and another fraction of flat fracture

(low energy). In general, with increasing thickness of the specimen,

the percentage of slant fracture decreases, and the energy necessary

for crack propagation also decreases -- hence the fall in the Kc value. At

a certain critical thickness, the crack propagates under plane-strain

conditions, and the stress intensity factor reaches the minimum value

designated as KIc. Figure 7.17(b) shows schematically the variation of

Kc and the percentage of flat fracture P with the plate thickness B.

KIc is especially relevant in the evaluation of the material, as it is

a constant that is essentially independent of the dimensions of the

specimen.

Example 7.5

Establish the maximum load that the component shown in Figure E7.5,

made of Ti-6Al--4V alloy, can withstand (σ y = 900 MPa, KIc =
100 MPa m1/2).

Fig. E7.5

Solution:

a = 1 cm,

W = 1 cm.

K I c = Y σ
√

πa, (1)

Y = 1.12 − 0.231
( a

W

)
+ 10.55

( a

W

)2

= 1.12 − 0.231

(
1

10

)
+ 10.55

(
1

10

)2

= 1.20.
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Fig. 7.18 (a) Elastic body

containing a crack of length 2a

under load P. (b) Diagram of load P

versus displacement e.

We rewrite Equation 1 as

σ = K I c

Y
√

πa

to get

σ = 100

1.20
√

π × 10−2
= 470 MPa < σy .

Therefore,

P

A
= σ and P = σ A = (470 × 106) × (10 × 10−2 × 3 × 10−2)

= 1,410 kN.

Hence, the existing flaw, and not the yield stress, limits the maximum

load.

7.7 Fracture Toughness Parameters

In this section, we describe the variety of fracture toughness param-

eters that have come into being.

7.7.1 Crack Extension Force G
The concept of the crack extension force G, attributed to Irwin, can be

interpreted as a generalized force. One can say that fracture mechan-

ics is the study of the response of a crack (measured in terms of its

velocity) to the application of various magnitudes of the crack exten-

sion force. Let us consider an elastic body of uniform thickness B,

containing a through-the-thickness crack of length 2a. Let the body

be loaded as shown in Figure 7.18(a). With increasing load P, the dis-

placement e of the loading point increases. The load--displacement

diagram is shown in Figure 7.18(b). At point 1, we have the load as

P0 and displacement as e0. Now let us consider a ‘‘gedanken” experi-

ment in which the crack extends by a small increment, δa. Due to this
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small increment in crack extension, the loading point is displaced by

δe, while the load falls by δP. Now, before the crack extension, the

potential energy stored in body was

U1 = 1

2
Pe,

represented by the area of the triangle through point 1 in the figure.

After the crack extension, the potential energy stored in the body is

U2 = 1

2
(P − δP )(e + δe ),

represented by the area of the triangle passing through point 2 in

the figure. In this process of crack extension, the change in potential

energy, U2 − U1 is given by the difference in the areas of the two

crosshatched regions in the figure. Considering the small increment

δa in crack length, we can write an equation for G, the crack extension

force per unit length, as

GB δa = U2 − U1 = δU .

The change in elastic strain energy with respect to the crack area, in

the limit of the area going to zero, equals the crack extension force;

that is,

G = lim
δA−0

δU

δA
,

where δA = B δa.

It is convenient to evaluate G in terms of the compliance c of the

sample, defined as

e = cP . (7.29)

Now,

δU = U2 − U1 = 1

2
(p − δP )(e + δe ) − 1

2
Pe,

or

δU = 1

2
P δe − 1

2
e δP − 1

2
δP δe. (7.30)

Differentiating Equation 7.29, we have

δe = c δP + P δc . (7.31)

Substituting Equation 7.31 in Equation 7.30, we obtain

δU = 1

2
P c δP + 1

2
P 2δc − 1

2
e δP − 1

2
e (δP )2 − 1

2
P δP δc . (7.32)

Remembering that e = cP and ignoring the higher order product

terms, we can write

δU = 1

2
P c δP + 1

2
P 2 δc − 1

2
P c δP ,
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Fig. 7.19 (a) Load P versus

displacement e. Compliance c is

the inverse of the slope of this

curve. (b) Compliance c versus

crack length a. a0 is the initial

crack length.

or

δU = 1

2
P 2 δc . (7.33)

Then

G = lim
δA−0

δU

δA
= lim

δA−0

1
2

P 2δc

δA
,

or

G = 1

2

P 2

B

δc

δa
. (7.34)

From Equation 7.34, we see that G is independent of the rigidity of

the surrounding structure and the test machine. In fact, G depends

only on the change in compliance of the cracked member due to

crack extension. Thus, to obtain G for a specimen, all we need to do

is to determine the compliance of the specimen as a function of crack

length and measure the gradient of the resultant curve, δc/δa, at the

appropriate initial crack length (Figure 7.19).

This method is more useful for relatively small test samples, on

which exact measurements can be made in the laboratory. One of the

important uses of Equation 7.34 is that it provides a value of G (or

K) for complex structures that have not been (or cannot be) treated

analytically. An experimental determination of Gc, the critical crack

extension force, using this equation requires the value of fracture load

(measured experimentally) and the value of δc/δa. The compliance can

be measured by calibrating a series of samples with different crack

lengths. We obtain a diagram of c versus a, and δc/δa is evaluated as

the slope at the appropriate initial crack length.

Example 7.6

A titanium alloy (Ti--6% Al--4% V) is used for aircraft applications. The

NDE methods used cannot detect flaws whose size is smaller than

1 mm. You are asked, as the design engineer, to specify the maximum

tensile stress that the part can bear in plane-stress and plane-strain
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situations. The yield stress of the alloy is 1,450 MPa.

E = 115 GPa,

v = 0.312,

G c = 23.6 kN/m.

Solution: We have

2a = 1 mm,

so that

a = 0.5 × 10−3 m.

The critical stress in plane stress is

σc =
√

E G c

πa

=
(

115 × 109 × 23.6 × 103

π × 0.5 × 10−3

)1/2

= 1.31 × 109 Pa.

The critical stress in plane strain is

σc =
√

E G c

πa(1 − ν2)

= 1.385 × 109 Pa.

Thus, the maximum stresses are 1.31 GPa (plane stress) and 1.385 GPa

(plane strain).

From consideration of fracture toughness, the maximum stress is

lower than the yield stress; hence, the former is the limiting stress.

7.7.2 Crack Opening Displacement
The development of a plastic zone at the tip of the crack results in

a displacement of the faces without crack extension. This relative

displacement of opposite crack edges is called the crack opening dis-

placement (COD) (Figure 7.20). Wells10 suggested that when this dis-

placement at the crack tip reaches a critical value δc, fracture would

ensue.

LEFM is applicable only when the plastic zone is small in relation

to the crack length (i.e., well below the yield stress and in plane

strain). Consider a small crack in a brittle material. We have

σc = K I c (
√

πa)−1, as a → 0, σc → ∞.

But this, as we very well know, does not occur. Instead, a plastic zone

develops and may extend through the section such that

σnet = σ
W

W − a
≥ σy,

10 A. A. Wells, Brit. Weld. J., 13 (1965) 2.
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d

Fig. 7.20 Crack opening

displacement.

where W is the width of sample and σ y is the yield stress. In practice,

σ c ≤ 0.66σ y for the KIc validity.

In more ductile materials, the critical stress predicted by LEFM will

be higher than σ y. One can use the concept of COD in such cases. In

the elastic case (Figure 7.20),

COD = � = 4σ

E

√
(a2 − x2). (7.35)

At the center of the crack (x = 0), the maximum opening is

�max = 4σa

E
.

Applying the plastic zone correction, we have, from Equation 7.35,

� = 4σ

E

√
(a + ry )2 − x2,

where (a + ry) is the effective crack length.

The crack-tip opening displacement (CTOD), δ, is given for x = a

and ry � a as

δ = 4σ

E

√
2ary . (7.36)

A displacement of the origin to the crack tip gives a general expres-

sion for the crack opening:

� = 4σ

E

√
2aeffry .

Substituting ry = σ 2a/2σ 2
y (see Equation 7.27) in Equation 7.36 gives

δ = 4

π

K 2
I

Eσy

. (7.37)

Equation 7.37 is valid in the LEFM regime, and fracture occurs when

KI = KIc, which corresponds to δ = δIc, a material constant.

The use of the COD criterion demands the measurement of δc.

Direct measurement of δc is not easy. An indirect way is the following.

We have

� = 4σ

E

√
(a + ry )2 − x2

= 4σ

E

√
a + 2ary + r 2

y − x2.
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Ignoring the r 2
y term and using the relationship of Equation 7.36, we

can write

� = 4σ

E

(
a2 − x2 + E 2

16σ 2
δ2

)1/2

. (7.38)

According to this equation, δ can be measured indirectly from a COD

measurement (e.g., at x = 0, at the center of the crack) without

making any simplifications about the plastic-zone size correction. �

can be measured by means of a clip gage.

Another way of obtaining δ is to use the equations of Dugdale--

BCS model of the crack. (See Section 7.6.6.) According to Dugdale--BCS

model (Bilby, Cotrell, Swinden, op. cit.; Dugdale, op. cit.)

δ = 8σya

π E
log sec

πσ

2σy

.

Expanding the log sec function in series, we get

δ = 8σya

π E

[
1

2

(
πσ 2

2σy

)2

+ 1

12

(
πσ

2σy

)4

+ · · ·
]

.

For σ � σ y, we can write (neglecting fourth- and higher-order terms)

δ = πσ 2

E σy

= G I

σy

. (7.39)

Comparing Equation 7.39 with Equation 7.37, we note that the differ-

ence is in the factor 4/π , which comes from the plastic-zone correc-

tion. In general,

δ = G I

λσy

= K 2
I (1 − ν2)

E λσy

(for plane strain). (7.40)

The factor (1 − ν2) should be ignored in the case of plane stress.

In the literature, we encounter various values of λ. These depend

on the exact location where CTOD is determined (i.e., the exact

location of the crack tip). Wells11 suggested that, experimentally,

λ ≈ 2.1 for compatibility with LEFM (i.e., limited plasticity). For

cases involving extensive plasticity, the engineering design applica-

tion approach is to take λ ≈ 1.

Thus, at unstable fracture, GIc = λσ y δc. The important point about

COD is that, theoretically, δc can be computed for both elastic and

plastic materials, whereas GIc is restricted only to the elastic regimen.

The COD thus allows one treat fracture under plastic conditions. A

word of caution is in order, however. Figure 7.21 presents a compari-

son between COD and CTOD. We should realize that the strain fields

and crack opening displacements associated with a crack tip will

be different for different specimen configurations. Thus, we cannot

define a single critical COD value for a given material in a manner

11 A. A. Wells, Eng. Fract. Mech., 1 (1970) 399.
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Fig. 7.21 Relationship between

crack opening displacement (COD,

�), crack-tip opening displacement

(CTOD, δ), crack length (2a), and

size of plastic zone (ry).

equivalent to that of KIc, as the COD value will be affected by the

geometry of the test specimen.

Example 7.7

If the toughness of a thermoplastic polymer Gc = 103 J m−2, what would

be the critical crack length under an applied stress of 200 MPa? Take

Young’s modulus of the polymer to be 10 GPa.

Solution: We have

G c = 103 J m−2, E = 10 GPa, σ = 200 MPa.

Thus, the critical crack length ac = EGc/πσ 2 = 10 × 109 × 103/π (200 ×
106)2 = 0.08 mm.

7.7.3 J Integral
J integral is another variant for fracture toughness analysis. It provides

a value of energy required to propagate a crack in an elastic--plastic

material. The mathematical foundation for the J integral was laid

by Eshelby,12 who applied it to dislocations. Cherepanov13 and Rice14

applied it, independently, to cracks. Figure 7.22 shows a closed con-

tour � in a two-dimensional body. When such a body is subjected to

external forces, internal stresses arise in it. On the basis of the theory

of conservation of energy, Eshelby showed that the integral J is equal

to zero for a closed contour; that is,

J =
∫

�

(
Wdx2 − T

∂u

∂x1

ds

)
= 0, (7.41)

12 J. D. Eshelby, Phil. Trans. Roy. Soc London, A244 (1951) 87.
13 G. P. Cherepanov, Appl. Math. Mech. (Prinkl. Mat. Mekh.), 31, no. 3 (1967) 503.
14 J. R. Rice, J. Appl. Mech., 35 (1968) 379.



7 .7 FRACTURE TOUGHNESS PARAMETERS 441
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Fig. 7.22 A body subjected to

external forces F1, F2, . . ., Fn and

with a closed contour �.

where

W =
∫ ∑

i j

0

σi j dεi j

is the strain energy per unit volume (see Chapter 2), T is the tension

vector (traction) perpendicular to � and pointing to the outside of the

contour, ds is an element of length along the contour, and u is the

displacement in the x1 direction. The J integral is an energy related

quantity; similar to the crack extension force G, J has the units of

energy per unit area ( J/m2) or force per unit length (N/m).

Figure 7.23 shows a crack, around which a contour ABCDEFA is

made. The total J must be zero, i.e.,

J = J �1+�2
= 0.

Along AF and CD (crack surfaces), the tractions T are equal to zero.

The same is true for the normal and shear stresses. Thus, JAF = JCD =
0. It can therefore be concluded that

J �1+�2
= J �1

+ J �2
+ J AF + J C D = 0, J �1

= − J �2
.

Hence, the J integral along two different paths around a crack has

the same value. That is, in general, the J integral around a crack is

path independent.

From a physical point of view, the J integral represents the differ-

ence in the potential energies of identical bodies containing cracks

of length a and a + da; in other words, the J integral around a crack

is equal to the change in potential energy for a crack extension da.

For a body of thickness B, this can be written as

J = 1

B

δU

δa
, (7.42)
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Fig. 7.24 Physical interpretation

of the J integral. The J integral

represents the difference in

potential energy (shaded area) of

identical bodies containing cracks

of length a and a + da.

where U is the potential energy, a the crack length, and B the plate

thickness. U is equal to the area under the curve of load versus

displacement. Figure 7.24 shows this interpretation, where the shaded

area is δU = JB δa. Like GIc, JIc measures the critical energy associated

with the initiation of crack growth, but in this case accompanied by

substantial plastic deformation. In fact, Begley and Landes15 showed

the formal equivalence of JIc and GIc by measuring the JIc from small

fully plastic specimens and the GIc from large elastic specimens satis-

fying the plane-strain conditions for the LEFM test.

The path independence of the J integral, together with this inter-

pretation in terms of energy, makes it a powerful analytical tool. The

J integral is path independent in the case of either linear or nonlin-

ear materials behaving elastically. When extensive plastic deform-

ation occurs, the practice is to assume that the plastic yielding can

be described by the deformation theory of plasticity. According to

this theory, stresses and strains are functions only of the point of

measurement and not of the path taken to get to that point. As in

the case of slow, stable crack growth, there will be a relaxation of

stresses at the crack tip, so there will be a violation of this postulate.

15 J. A. Begley and J. D. Landes, ASTM STP 514, (Philadelphia: ASTM, 1972), p. 1.
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Fig. 7.25 R curves for (a) brittle

material and (b) ductile material.

Thus, the use of the J integral should be limited to the initiation

of crack propagation, by stable or unstable processes. Studies using

incremental plasticity or flow theories with finite elements indicate

the path independence of the J integral.

7.7.4 R Curve
The R curve characterizes the resistance of a material to fracture dur-

ing slow and stable propagation of a crack. An R curve graphically

represents this resistance to crack propagation of the material as a

function of crack growth. With increasing load in a cracked struc-

ture, the crack extension force G at the crack tip also increases. (See

Equation 7.34.) However, the material at the tip presents a resistance

R (sometimes, the symbol KR is used) to crack growth. According to

Irwin, failure will occur when the rate of change of the crack exten-

sion force (∂G/∂a) equals the rate of change of this resistance to crack

growth in the material (∂R/∂a). The resistance of the material to crack

growth, R, increases with an increase in the size of the plastic zone.

Since the plastic zone size increases nonlinearly with a, R will also

be expected to increase nonlinearly with a. G increases linearly with

a. Figure 7.25 shows the instability criterion: the point of tangency

between the curves of G versus a and R versus a. Figure 7.25(a) shows

the R curve for a brittle material, and Figure 7.25(b) shows the R curve

for a ductile material. Crack extension occurs for G > R. Consider the

G line for a stress σ ′, shown in Figure 7.25(b). At the stress σ ′, the

crack in the material will grow only from a0 to a′, since G > R for a <

a′, G < R for a > a′, and the crack does not extend beyond a′. As the

load is increased, the position of the G line changes, as indicated in

the figure. When G becomes tangent to R, unstable fracture ensues.

The R curve for a brittle material (Figure 7.25(a)) is a ‘‘square” curve,

and the crack does not extend at all until the contact is reached, at

which point G = Gc and the unstable fracture follows.

The R-curve method is another version of the Griffith energy bal-

ance. One can conveniently make this kind of analysis if an analytical

expression for the R curve is available. Experimental determination

of R curves, however, is complicated and time consuming.
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Fig. 7.26 Different parameters

describing the growth of a crack.

7.7.5 Relationships among Different Fracture
Toughness Parameters

So far, we have seen that, in our effort to develop a quantitative

description of fracture toughness, various parameters, such as K, G,

J, δ, R, etc., have been developed. Since all these parameters define

the same physical quantity, it is not unexpected that they are inter-

related. And we have mentioned in different sections the relationships

among the parameters. Figure 7.26 summarizes these relationships.

It would, however, be helpful to the reader to recapitulate these rela-

tionships, even at the risk of repeating. That is what we will do in this

section.

If we take into account the stress distribution around the tip of

a crack, we get the stress-intensity-factor (K) approach. The magni-

tude or the intensity of the local stresses is determined by K, because

the form of the local crack-tip stress field is the same for all situ-

ations involving a remote stress σ . Thus, K, and not σ , is the local

characterizing parameter. The fracture then occurs when the applied

K attains the critical value Kc. In particular, when the specimen’s

dimensions satisfy the plane-strain condition, we call this value the

plane-strain fracture toughness and denote it by KIc. The stress and

the crack length corresponding to KIc are the fracture stress σ c and

the fracture crack length ac. Note that the elastic constants of the

material are not involved. The energy-release-rate approach gives us

the crack extension force G, which is related to the parameters K by

the equation

K 2 = E ′G ,
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where E′ = E, Young’s modulus, in the case of plane stress and E′ =
E/(1 − ν2) in the case of plane strain. Note that, in characterizing

the fracture behavior in terms of G, we need to know the elastic

constants of the material. Because in the case of polymers E is time

dependent and very precise modulus data are not available, there is

some advantage to using the K approach.

The critical crack opening displacement δc is another useful

parameter. It is related to K by the equation

δc = K 2
I c/λE σy,

where λ is a dimensionless constant that depends on the geometry

of the specimen, its state of stress, and the work-hardening capacity

of the material. λ has a value between 1 and 2. In particular, for the

strip-yielding model of Dugdale--BCS, λ = 1.

The J integral provides yet another measure of fracture toughness.

And, for small-scale yielding, we have

J = λδσy .

In short, for small-scale yielding, we can sum up the relationships

among the different fracture toughness parameters as

J = G = K 2/E ′ = λσyδ,

where the symbols have the usual meaning.

7.8 Importance of KIc in Practice

KIc is the critical stress intensity factor under conditions of plane

strain (ε33 = 0), which is characterized by small-scale plasticity at the

crack tip. The material is fully constrained in the direction of thick-

ness. When determined under these rigorous conditions, KIc will be

a material constant. Thus, when one needs to characterize materials

by their toughness (in the same way that one characterizes materials

by their ultimate tensile strength or tensile yield strength), only valid

KIc data should be considered. This will be explained in Chapter 8.

Kc is the critical stress intensity factor under conditions of plane

stress (σ 33 = 0), which is characterized by large plasticity at the crack

tip. In this case, the through-thickness constraint is negligible. Kc

values can be up to two times greater than the KIc values of the same

material. KIc depends on the temperature T, on the strain rate ε̇, and

on microstructural variables.

In general, Kc or KIc decreases as the (yield or ultimate) strength

of a material increases. This inverse relationship between fracture

toughness and strength is shown schematically in Figure 7.27. With

concurrent improvement in the material’s strength and toughness,

this curve shifts in the direction of the arrow. The dependence of KIc

on tensile strength and on sulfur level in a steel is shown in Figure

7.28. As expected, KIc decreases monotonically with increases in tensile
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(Adapted from A. J. Birkle, R. P.

Wei, and G. E. Pellissier, Trans.

ASM, 59 (1966) 981.)

strength or sulfur content. (Sulfur is well known to embrittle steels.)

Figure 7.29 shows that the same holds for KIc as a function of the

yield strength. Kc also depends on these variables.

Table 7.2 shows representative fracture toughnesses for selected

materials. Metals have the highest toughness. For most ceramics, KIc

does not exceed 5 MPa
√

m. The addition of partially stabilized zir-

conia to alumina increases KIc to 10 MPa
√

m and even higher. The

reason for this is a martensitic transformation that is described in

greater detail in Chapter 11. Plastics have low KIc; however, we should

remember that their density is only a small fraction of that of metals.
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Table 7.2 Plane-Strain Fracture Toughnesses for Representative

Materials

Material KIc (MPa m1/2)

(a) Metals
300M steel 300 ◦C temper 65
300M steel 650 ◦C temper 152
18-Ni maraging steel, vacuum melted 176
18-Ni maraging steel, air melted 123
AISI 4130 steel 110
2024-T651 aluminum 24
2024-T351 aluminum 34
6061-T651 aluminum 34
7075-T651 aluminum 29
Ti-6Al-4V, mill annealed 106–123
Ti-6Al-4V, recrystallized, annealed 77–116

(b) Ceramics
Cement/concrete 0.2
Soda–lime glass 0.7–0.9
MgO 3
Al2O3 3–5
Al2O3 + 15% ZrO2 10
SiC 3–4
Si3N4 4–5

(c) Polymers
Epoxy 0.3–0.6
Polyethylene, high-density 2
Polyethylene, low-density 1
Polypropylene 3
ABS 3–4
Polycarbonate 1–2.6
PVC 2.4
PVC (rubber modified) 3.4
PMMA 1.8
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Fig. 7.29 Variation of fracture

toughness KIc with yield strength

σ y for a series of alloys. (Adapted

from D. Broek, Elementary

Engineering Fracture Mechanics, 3rd

ed. (Amsterdam: Martinus Nijhoff,

1978), p. 270.)
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7.9 Post-Yield Fracture Mechanics

The concepts of crack opening displacement and the J integral are

complementary. The crack tip opening displacement (CTOD), δ, is the

parameter that controls crack extension. But the notion of CTOD is

not problem free. For example, there exists a considerable amount of

diversity in its very definition. Figure 7.30 shows some ways of meas-

uring δ. The experimental determination of δ and the calculation of

the relevant value for a cracked structure also involve uncertainties.

We can split the CTOD value into an elastic and a plastic component,

to wit:

δt = δel + δpl.

The elastic portion is, of course, related to K or G, as indicated earlier.

In particular, KIc and GIc correspond to δIc, the CTOD value at the initia-

tion of unstable fracture. The plastic portion is not strictly a material

property, in as much as it depends on the specimen’s dimensions,

constraints, etc.

The J integral is, mathematically, a path-independent integral.

From a practical engineering point of view, the J integral represents,

similarly to G, a strain energy release rate and is related to the area

under the curve load, P, and the load line displacement.

Just as we did for the concept of COD, we can write, for J,

J total = J el + J pl,
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where Jel is the elastic portion, equal to K 2
I /E ′. Here again, E′ equals

E for plane stress and E/(1 -- ν2) for plane strain. Jpl is a function of

the geometry of the component and the crack load corresponding to

extensive plastic deformation, and the material characteristics such

as the yield strength, ultimate tensile strength, etc.

This division of the crack driving force into elastic and plastic

parts is conceptually very convenient. Tests for the J integral, as well

as for COD, are based on the fact that a ductile structure containing

a crack is characterized by three successive stages:

1. Crack blunting and the initiation of propagation.

2. Slow and stable crack growth under increasing load.

3. Unstable crack growth, i.e., the instability.

A curve showing these stages is called a resistance curve (δ--R or J--

R). It describes the material resistance as a function of stable crack

growth a.

7.10 Statistical Analysis of Failure Strength

As we have repeatedly pointed out, materials in real life are never per-

fect. No matter how carefully processed a material is, it will always

contain a distributions of flaws. The presence of flaws in ductile

metals is not very serious, because these metals have the ability to

deform plastically and thus attenuate, at least to some extent, the

insidious effect of flaws on strength. The same cannot be said of

brittle materials. Such preexisting flaws are responsible for the phe-

nomenon of catastrophic fracture in these materials. In general, flaws

vary in size, shape, and orientation; consequently, the strength of a

material will vary from specimen to specimen. When we test a brittle

material, one or several of the larger flaws propagate. In the case of

a ductile material such as aluminum, most of the flaws get blunted

because of plastic deformation, and only after considerable plastic

deformation do microvoids form and coalesce, leading to an eventual

fracture. (See Chapter 8.) If we were to test a large number of identical

samples and plot the strength distribution of a brittle and a ductile

solid, we would get the curves shown in Figure 7.31. The strength

distribution curve for the ductile solid is very narrow and close to

a Gaussian or normal distribution, while that for the brittle solid

is very broad with a large tail on the high-strength side -- that is, a

non-Gaussian distribution. It turns out that the strength distribution

of a brittle solid can be explained by a statistical distribution called

the Weibull distribution, named after the Swedish engineer who first

proposed it.16 We next describe this distribution and its application

to the analysis of the strength of brittle solids.

The basic assumption in Weibull distribution is that a body of

material with volume V has a statistical distribution of noninteracting

16 W. Weibull, J. App. Mech., 18 (1951), 293.
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flaws. Thus, the body of volume V can be considered to be made up

of n volume elements, each of unit volume V0 and having the same

flaw distribution. (See Figure 7.32.) Now, if we subject such a solid to

an applied stress σ , the probability that the solid will survive can be

written as

P (V ) = P (V0)P (V0) . . . . . . P (V0) = P (V0)n, (7.43)

where V0 is the volume of an element and n is the number of volume

elements. Taking logarithms, we have

ln P (V ) = n ln P (V0),

or

P (V ) = exp[n ln P (V0)]. (7.44)

Weibull defined a risk-of-rupture parameter

R = −[ln P (V0)], (7.45)

or, alternatively,

P (V0) = exp(−R ). (7.46)

He then postulated that this parameter is given by

R = [(σ − σu)/σ0]m, (7.47)

where σ is the applied stress and m, σ 0, and σ u are material con-

stants for a constant-flaw population, i.e., the flaw population does
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Table 7.3 Typical Values of the Weibull Modulus

m for Some Materials

Material m

Traditional Ceramics:
Brick, Pottery, Chalk <3

Engineered Ceramics:
SiC, Al2O3, Si3N4 5–10

Metals:
Aluminum, Steel 90–100

not change from element to element. σ u is the stress below which

the probability of failure is zero. If we assume that any tensile stress

will cause failure in a brittle solid, then we can take σ u to be zero.

For such a material, σ 0 is a characteristic strength -- often taken to

be approximately the mean strength -- of the material, and m, called

the Weibull modulus, is a measure of the variability of the strength

of the material; the higher the value of m, the less is the material’s

variability in strength. m can have any value between 0 and ∞, i.e., 0

< m < ∞. As m → 0, R → 1, and the material will fail at any stress.

Also, when m → ∞, the material will not fracture at any stress below

σ 0. Table 7.3 gives some typical values of m for some materials.

From Equations (7.46) and (7.47), we can write, for the survival

probability of a brittle material

P (V0) = exp

[
−

(
σ − σu

σ0

)m]
. (7.48)

We can write the failure probability as

F (V0) = 1 − P (V0) = 1 − exp

[
−

(
σ − σu

σ0

)m]
. (7.49)

As explained in the preceding paragraph, we can take σ u = 0 for a

brittle material. This will make Equation 7.48 become

P (V0) = exp

[
−

(
σ

σ0

)m]
. (7.50)

Equation 7.50 says that when the applied stress σ = 0, the survival

probability P(V0) = 1, and all samples of the material tested survive.

As the applied stress increases, more samples fail, and the survival

probability decreases. Eventually, as σ → ∞, P(V0) → 0; that is, all

samples fail at very high stresses. We can arrive at a value of σ 0 by

noting that, when σ = σ 0,

P (V0) = 1

e
= 0.37.
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Thus, σ 0 is the stress corresponding to a survival probability of 37%.

Taking logarithms of Equation 7.50, we get

ln

[
1

P (V0)

]
=

(
σ

σ0

)m

. (7.51)

Thus, a double-logarithmic plot of Equation 7.51 will give a straight

line with slope m. This yields a convenient way of obtaining a Weibull

analysis of the strength of a given material. If N samples are tested,

we rank their strengths in ascending order and obtain the probability

of survival for the ith strength value as

Pi (V0) = (N + 1 − i )/(N + 1).

Note that there will be N + 1 strength intervals for N tests. Alterna-

tively, we can use the failure probability:

Fi (V0) = 1 − Pi (V0) = i/(N + 1).

We can incorporate a volume dependence into Equation 7.50. Let V0

be a reference volume of a material with a survival probability of

P(V0), i.e., fraction of samples, each of volume V0, that survive when

loaded to a stress, σ . Now consider a volume V of this material such

that V = nV0. Then, from Equation 7.43, we can write

P (V ) = P (V0)n = [P (V0)]V/V0 .

Taking logarithms, we get

ln P (V ) = V

V0

ln P (V0),

or

P (V ) = exp

[
V

V0

ln P (V0)

]
. (7.52)

From Equations 7.50 and 7.52, we have

P (V ) = exp

[
− V

V0

(
σ

σ0

)m]
, (7.53)

or

ln P (V ) = − V

V0

(
σ

σ0

)m

. (7.54)

We can convert Equation 7.54 to the following form by taking loga-

rithms again.

ln ln

[
1

P (V )

]
= ln

V

V0

+ m ln
σ

σ0

.

Equation 7.54 tells us that, for a given probability of survival and for

two volumes V1 and V2 of a material,

ln P (V ) = − V1

V0

[
σ1

σ0

]m

= − V2

V0

[
σ2

σ0

]m

,

where σ 1 and σ 2 are the strengths of the material in volumes V1 and

V2, respectively.
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Hence,

V1σ
m
1 = V2σ

m
2 ,

or

σ1

σ2

=
(

V2

V1

)1/m

. (7.55)

Thus we see that, for an equal probability of survival, the larger

the volume (V2 > V1), the smaller must be the fracture strength

(σ 1 < σ 2).

An interesting application of the Weibull distribution is illustrated

in Figure 7.33, which shows a double-logarithmic plot as per Equation

7.51. Note that the failure probability F(V) = 1 − P(V), rather than the

survival probability P(V ) is plotted. The figure shows the following

items:

1. The Weibull modulus m of steel → ∞. (Note the vertical line.)

2. The Weibull modulus m of conventionally processed alumina is 4.7.

3. If we process alumina carefully -- say, by using a controlled particle

size (CPS in Figure 7.33) -- the value of m is doubled, to 9.7. By a

controlled particle size, we mean a monosize powder that enhances

packing, less use of a binder material (which produces flaws after

sintering), more uniform shrinkage, etc.

Figure 7.34 shows the cummulative probability of failure as a func-

tion of stress for three important engineering ceramics: AlN, SiC, and
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Si3N4. As the Weibull modulus increases, the slope of the curve

becomes steeper. When we plot the curves on logarithmic abscissa

and ordinate axes, a straight line is obtained that can be used to

obtain m as shown in Figure 7.33.

Some words of caution regarding the use of Weibull probabil-

ity plots are in order. The tail of the distribution (see Figure 7.31)

must be included in the analysis. In practical terms, this means

that the statistical sample size should be sufficiently large. Typ-

ically, for an allowable failure rate P = 0.01, the sample size would

be greater than 100. Also, the preceding analysis assumes a ‘‘well-

behaved flaw population.” Bimodal flaw populations can result in two

linear parts on the Weibull plot, indicating two values of the Weibull

modulus.

Example 7.8

The data obtained in four-point bend (or flexure) tests on SiC specimens

processed in three different ways are reported in Table E7.8.1. Calculate

the Weibull modulus m and the characteristic strength σ 0, and make

the Weibull plot, for each specimen. Each specimen had outer and

inner spans of 40 and 20 mm, respectively. The height and width of the

specimens are 3 mm and 4 mm, respectively.

Table E7.8.1 Fracture Load (N) of Three Hot-Pressed SiC Specimens

Test No. SiC-A SiC-B SiC-N

1 497 421 466
2 291 690 618
3 493 556 529
4 605 573 627
5 511 618 564
6 524 609 564
7 327 690 573
8 484 654 394
9 394 618 618

10 448 645 493
11 511 591 511
12 497 739 475
13 426 739 618
14 345 703 493
15 358 569 591
16 287 685 627
17 412 708 618
18 466 573 600
19 493 717 645
20 591 676 614
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Solution: We first obtain the stresses from the loads in Table E7.8.1. The

moment is

M = P

2
× L

4
.

(See Figure E7.8.1.) The maximum tensile stress is

σ = M c

I
,

where h is the height, b is the breadth, I is the moment of inertia of

the beam, and

c = h

2
,

I = bh3

12
.

L/2

L/4 L/4

P/2 P/2

Mmax

Fig. E7.8.1

The calculated stresses are shown in Figure E7.8.2. Hence,

σ = pL h × 12

8 × bh3
= 3

4

PL

bh2
.
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To obtain the Weibull parameters, we use Equation 7.50:

P (V ) = exp

[
−

(
σ

σ0

)m]
,

or

1 − F (V ) = exp

[
−

(
σ

σ0

)m]
.

Taking logarithms yields

ln[1 − F (V )] = −
(

σ

σ0

)m

.

Taking logarithms again results in

ln ln[1 − F (V )] = −m(ln σ − ln σ0),

or

ln ln

[
1

1 − F (V )

]
= m(ln σ − ln σ0).

To obtain F(V) for each point, we use the following equation:

1 − Pi (V ) = Fi (V ) = i

N + 1
,

where N is the total number of specimens tested.

In the present case, N = 20. Hence, F1(V) = 1/21, F2(V) = 2/21, F3(V)

= 3/21. . . . These results are plotted in Figure E7.8.3. We use a double

logarithm for 1/[1-- F(V )] and the logarithm for σ . The slope of this plot

provides m. The horizontal line passing through zero gives the values of

the characteristic strengths. We summarize our results in Table E7.8.2.

Figure E7.8.4 shows the Weibull curves with the preceding parameters

superimposed on the data points of Figure E7.8.3.
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Table E7.8.2

Specimen m σ 0 (MPa)
Average Stress
± S.D. (MPa)

SiC-A 5.61 411.3 380.7 ± 63.1
SiC-B 9.10 572.1 542.0 ± 52.6
SiC-N 9.22 502.9 476.8 ± 48.7

S.D. = Standard deviation.
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x2

x1

x3

Fig. A1

Appendix: Stress Singularity at Crack Tip

It is relatively simple to obtain the stress singularity close to a crack

in Mode III. (See Figure A1.) For Modes I and II, other more complex

solutions exist.

The displacements are, for the three directions (X1, X2, and X3):

u = 0,

v = 0,

w = 0.

The strains are:

γ31 = γ13 = ∂w

∂x1

,

γ32 = γ23 = ∂w

∂x2

.

All the other components are zero.

The stresses are given by

σ13 = G γ13,

σ23 = G γ23.

The equilibrium equation is

∂σi j

∂x j

= ρüi .

In our case, since the acceleration is zero

∂σi j

∂x j

= 0.

In the extended notation we can write:

∂σ13

∂x1

+ ∂σ23

∂x2

= 0,

G
∂2w

∂x2
1

+ G
∂2w

∂x2
2

= 0,

∇2w = 0.
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We now change to radial coordinates. (See Figure A2.)

θ

x2

x1

x3

r

Fig. A2

The form of Laplacian operator in radial coordinates is:

∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2

= ∂2

∂r 2
+ 1

r

∂

∂r
+ 1

r

∂2

∂θ2
.

The solution to this equation is given in differential equation

books.17

w = rλ f (θ ) ,

∇2w = λ (λ − 1) rλ−2 f (θ ) + 1

r
λrλ−1 f (θ ) + 1

r 2
rλ f ′′ (θ ) ,

rλ−2
(
λ (λ − 1) f (θ ) + λ f (θ ) + f ′′ (θ )

) = 0.

Apply for all r,

λ2 f (θ ) + f ′′ (θ ) = 0,

f (θ ) = A sin λθ + B cos λθ,

w = rλ (A sin λθ + B cos λθ ) .

The boundary conditions are:

w (r, θ ) = −w (r, −θ ) ,

w (r, θ ) = rλ (A sin λθ + B cos λθ ) ,

w (r, −θ ) = rλ (−A sin λθ + B cos λθ ) ,

B = 0,

w (r, θ ) = rλ A sin λθ.

For θ = ±π, σrθ = 0 .

σzθ = G
1

r

∂w

∂θ
= 0,

∂w

∂θ
= rλ Aλ cos λθ at θ = π,

λ = ±1

2
, ±3

2
, ±5

2
, λ = 2n − 1

2
.

In a general way, one can write:

w (r, θ ) =
N∑

n=1

(
r

2n−1
2 A sin

2n − 1

2
θ

)
.

We will only use A > 0, then the first terms becomes:

w (r, θ ) = A1r
1
2 sin

1

2
θ,

σzθ = G
1

r

∂w

∂θ
= A1

r
G r

1
2

1

2
cos

θ

2
,

σzθ = A1G

2r
1
2

cos
θ

2
.

where G is the shear modulus.

17 See, for example, R. Haberman, Elementary Applied Partial Differential Equations (Upper

Saddle River, NJ: Prentice Hall, 1998).
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We use the term K III to group the constants:

σzθ = K III√
2πr

cos
θ

2
,

σrθ = G
∂w

∂r
= A1G

2r
1
2

sin
θ

2
,

or,

σrθ = K III√
2πr

sin
θ

2
.

These expressions are equivalent to Equation 7.23 and demonstrate

the square root singularity of the stresses at the tip of the crack.
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Exercises

7.1 In a polyvinyl chloride (PVC) plate, there is an elliptical, through-the-

thickness cavity. The dimensions of the cavity are:

major axis = 1 mm,

minor axis = 0.1 mm.

Compute the stress concentration factor Kt at the extremities of the cavity.

7.2 Calculate the maximum tensile stress at the surfaces of a circular hole

(in the case of a thin sheet) and of a spherical hole (in the case of a thick

specimen) subjected to a tensile stress of 200 MPa. The material is Al2O3 with

ν = 0.2.

7.3 Calculate the maximum tensile stress if the applied stress is compressive

for a circular hole for which σ c = 200 MPa and ν = 0.2.

7.4 The strength of alumina is approximately E/15, where E is the Young’s

modulus of alumina, equal to 380 GPa. Use the Griffith equation in the plane-

strain form to estimate the critical size of defect corresponding to fracture of

alumina.
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ΔX

σ
σ = 0

L

Fig. Ex7.7

7.5 Compute the ratio of stress required to propagate a crack in a brittle

material under plane-stress and plane-strain conditions. Take Poisson’s ratio

ν of the material to be 0.3.

7.6 An Al2O3 specimen is being pulled in tension. The specimen contains flaws

having a size of 100 μm. If the surface energy of Al2O3 is 0.8 J/m2, what is the

fracture stress? Use Griffith’s criterion. E = 380 GPa.

7.7 A thin plate is rigidly fixed at its edges (see Figure Ex7.7). The plate has a

height L and thickness t (normal to the plane of the figure). A crack moves

from left to right through the plate. Every time the crack moves a distance


x, two things happen:

1. Two new surfaces (with specific surface energy) are created.

2. The stress falls to zero behind the advancing crack front in a certain volume

of the material.

Obtain an expression for the critical stress necessary for crack propagation

in this case. Explain the physical significance of this expression. Assume the

stress, σ , ahead of the crack is uniform.

7.8 A central through-the-thickness crack, 50 mm long, propagates in a

thermoset polymer in an unstable manner at an applied stress of 5 MPa.

Find Kc.

7.9 Machining of SiC produced surface flaws of a semielliptical geometry. The

flaws that were generated have dimensions a = 1 mm, width w = 100 mm,

and c = 5 mm, and the thickness of the specimen is B = 20 mm. Calcu-

late the maximum stress that the specimen can withstand in tension. KIc =
4 MPa m1/2.

7.10 (a) An AISI 4340 steel plate has a width W of 30 cm and has a central

crack 2a of 3 mm. The plate is under a uniform stress σ . This steel has a KIc

value of 50 MPa m1/2. Find the maximum stress for this crack length. (b) If

the operating stress is 1,500 MPa, compute the maximum crack size that the

steel may have without failure.

7.11 A microalloyed steel, quenched and tempered at 250 ◦C, has a yield

strength (σ y) of 1,750 MPa and a plane-strain fracture toughness KIc of 43.50

MPa m1/2. What is the largest disk-type inclusion, oriented most unfavorably,

that can be tolerated in this steel at an applied stress of 0.5σ y?
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7.12 A 25-mm2 bar of cast iron contains a crack 5 mm long and normal to

one face. What is the load required to break this bar if it is subjected to three-

point bending with the crack toward the tensile side and the supports 250

mm apart?

7.13 Consider a maraging steel plate of thickness (B) 3 mm. Two specimens

of width (W) equal to 50 mm and 5 mm were taken out of this plate.

What is the largest through-the-thickness crack that can be tolerated in

the two cases at an applied stress of σ = 0.6σ y, where σ y (yield stress) =
2.5 GPa? The plane-strain fracture toughness KIc of the steel is 70 MPa

m1/2. What are the critical dimensions in the case of a single-edge notch

specimen?

7.14 An infinitely large plate containing a central crack of length 2a = 50/π

mm is subjected to a nominal stress of 300 MPa. The material yields at

500 MPa. Compute:

(a) The stress intensity factor at the crack tip.

(b) The size of the plastic zone at the crack tip.

Comment on the validity of Irwin’s correction for the size of the plastic zone

in this case.

7.15 A steel plate containing a through-the-thickness central crack of length

15 mm is subjected to a stress of 350 MPa normal to the crack plane. The

yield stress of the steel is 1,500 MPa. Compute the size of the plastic zone and

the effective stress intensity factor.

7.16 The size of the plastic zone at the crack tip in the general plane-stress

case is given by

ry = K 2
l

2πσ 2
y

cos2 θ

2

(
4 − 3 cos2 θ

2

)
.

(a) Determine the radius of the plastic zone in the direction of the crack.

(b) Determine the angle θ at which the plastic zone is the largest.

7.17 For the plane-strain case, the expression for the size of the plastic zone is

ry = K 2
l

2πσ 2
y

cos2 θ

2

{
4[1 − ν(1 − ν)] − 3 cos2 θ

2

}
.

(a) Show that this expression reduces to the one for plane stress.

(b) Make plots of the size of the plastic zone as a function of θ for ν = 0,

ν = 1
3

, and ν = 1
2

. Comment on the size and form of the zone in the three

cases.

7.18 A sheet of polystyrene has a thin central crack with 2a = 50 mm. The

crack propagates catastrophically at an applied stress of 10 MPa. The Young’s

modulus polystyrene is 3.8 GPa, and the Poisson’s ratio is 0.4. Find GIc.

7.19 Compute the approximate size of the plastic zone, rν , for an alloy that has

a Young’s modulus E = 70 GPa, yield strength σ ν = 500 MPa, and toughness

Gc = 20 kJ/m2.

7.20 300-M steel, commonly used for airplane landing gears, has a Gc value of

10 kN/m. A nondestructive examination technique capable of detecting cracks

that are 1 mm long is available. Compute the stress level that the landing gear

can support without failure.
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7.21 A thermoplastic material has a yield stress of 75 MPa and a GIc value

of 300 J/m2. What would be the corresponding critical crack opening

displacement? Take λ = 1. Also, compute JIc.

7.22 A pipe line with overall diameter of 1 m and 25-mm thickness is con-

structed from a microalloyed steel (KIc = 60 MPa m1/2; σ y = 600 MPa). Cal-

culate the maximum pressure for which the leak-before-break criterion will

be obeyed. The leak-before-break criterion states that a through-the-thickness

crack (a = t) will not propagate catastrophically.

7.23 Al2O3 has a fracture toughness of approximately 3 MPa m1/2. Suppose you

carried out a characterization of the surface of the specimen and detected

surface flaws with a radius a = 50 μm. Estimate the tensile and compressive

strengths of this specimen; show by sketches, how flaws will be activated in

compression and tension.

7.24 Using the Weibull equation, establish the tensile strength, with a 50%

survival probability, of specimens with a length of 60 mm and a diame-

ter of 5 mm. Uniaxial tensile tests carried out on specimens with a length

of 20 mm and the same diameter yielded the following results in MPa

(10 tests were carried out): 321, 389, 411, 423, 438, 454, 475, 489, 497,

501.

7.25 An engineering ceramic has a flexure strength that obeys Weibull statis-

tics with m = 10. If the flexure strength is equal to 200 MPa at 50% survival

probability, what is the flexure strength level at which the survival probability

is 90%?

7.26 What would be the flexure strength, at 90% survival probability, if the

ceramic in the preceding problem is subjected to a hot isostatic processing

(HIP) treatment that greatly reduces the population of flaws and increases

m to 60. Assume that the flexure strength at 50% survival probability is

unchanged.

7.27 Ten rectangular bars of Al2O3 (10 mm wide and 5 mm in height) were

tested in three-point bending, the span being 50 mm. The failure loads were

1,040, 1,092, 1,120, 1,210, 1,320, 1,381, 1,410, 1,470, 1,490, and 1,540 N. Deter-

mine the characteristic flexure strength and Weibull’s modulus for the speci-

mens. (See Section 9.6.1 for the flexure formula.)

7.28 Verify the values of m in Figure 7.34, and obtain the characteristic

strengths σ 0 for the three materials. If the fracture toughness of SiC, Si3N4,

and AlN are equal to 5.2, 5.7, and 2.4 MNm3/2, respectively, what are the largest

flaws that can be tolerated in these specimens?

7.29 Aluminum has a surface energy of 0.5 Jm−2 and a Young’s modulus of

70 GPa. Compute the stress at the crack tip for two different crack lengths:

1 mm and 1 cm.

7.30 Determine the stress required for crack propagation under plane strain

for a crack of length equal to 2 mm in aluminum. Take the surface energy

equal to 0.048 J/m2, Poisson’s ratio to 0.345, and the modulus of E = 70.3

GPa.

7.31 Calculate the maximum load that a 2024-T851 aluminum alloy (10 cm ×
2 cm) with a central through-the-thickness crack (length 0.1 mm) can with-

stand without yielding. Given: σ y = 500 MPa and KIc = 30 MPa m1/2.
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7.32 An infinitely large sheet is subjected to a far-field stress of 300 MPa. The

material has a yield strength of 600 MPa, and there is a central crack 7/π cm

long.

(a) Calculate the stress intensity factor at the tip of the crack.

(b) Estimate the size of the plastic zone size at the tip of the crack.

7.33 What is the maximum allowable crack size for a material that has

KIc = 55 MPa m1/2 and σ y = 1,380 MPa? Assume a plane-strain condition

and a central crack.

7.34 Two specimens of concrete were tested in compression. One was wrapped

with a very strong composite tape. They exhibited substantial differences in

strength, shown in Figure Ex7.34. Explain, in terms of microstructural behav-

ior, the reason for the difference in response. Use sketches.

7.35 An Al2O3 specimen is being pulled in tension. The specimen contains

flaws having a size of 100 μm.

(a) If the surface energy of Al2O3 is 0.8 J/m2, what is the fracture stress? Use

the Griffith criterion. E = 380 GPa.

(b) Using your vast fracture mechanics knowledge and advanced equations,

estimate the fracture stress if the fracture toughness is 4 MPa m1/2. Assume

two positions for flaw: in the center of an infinite body and at the edge.

7.36 A structural steel component has a surface crack of 2 mm. This steel has

a fracture toughness of 75 MPa m1/2. By how much can this crack grow before

catastrophic failure?

7.37 A titanium alloy (Ti-6Al-4V) has a yield strength of 1280 MPa and a frac-

ture toughness of 77 MPa m1/2. If we apply a stress of 0.3σ y, what will be the

size of the surface crack that will lead to catastrophic failure?

7.38 An AISI steel plate has a crack with the size of 2 mm in the center. If the

plate is under a uniform stress, and the width of the plate is 24 cm:
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(a) Find the maximum value of the stress if KIc = 45 MPa m1/2.

(b) Find the maximum crack size that the plate can have, if it has to operate

at a stress of 1,250 MPa.

7.39 In an Al alloy 7178-T651 (thick plate), find the critical crack length if it

is under a stress of 500 MPa. Given: KIc = 28 MPa m1/2.

7.40 What is the largest flaw size of a ceramic material that can support a

strength of 280 MPa and KIc = 2.2 MPa m1/2, assuming Y = 1?

7.41 Determine the tensile strength of an alumina specimen having a grain

size of 1 μm, if the tensile strength of the same material with a grain size of

50 μm is 1 GPa. Assume that the flaw size is equal to one half the grain size.

7.42 A brittle material (Sialon) is used as a support plate. Sialon has a fracture

toughness of 9 MPa m1/2. The plate has to withstand a tensile load of 200kN.

We have three non-destructive inspection techniques at our disposal: X-ray

radiography (can detect flaws greater than 0.5 mm); gamma-ray radiography

(flaws greater than 0.20 mm) and ultrasonic inspection (flaws greater than

0.125 mm). Calculate the cross-sectional area of the plate for the different

NDE testing methods.

7.43

(a) An AISI steel plate has width W = 30 cm and a central crack with size of

3 mm. The plate is under a uniform stress. Find the maximum value of

the stress is KIc = 50 MPa m1/2.

(b) If the part has to operate at a stress of 1,500 MPa, compute the maximum

crack size that the plate can have.

7.44 A polymer contains internal flaws (penny shaped) with a diameter of

2 mm and fails, in tension, at an applied stress of 30 MPa. What is the fracture

toughness of this polymer?

7.45 Rank the estimated strength of three ceramic parts, made of Al2O3, with

three different volumes: V = 10 cm3; V = 100 cm3; V = 1 m3.

7.46 Establish the maximum tensile load that a block with a cross-section of

10 × 10 cm can take, if its fracture toughness is equal to 90 MPa m1/2 and its

yield stress is 1,000 MPa. This part contains an embedded crack with a radius

of 10 mm.

7.47 Engineers are designing a ceramic component for a jet engine. The

ceramic has a fracture toughness of 8 MPa m1/2. The ceramic is subjected to a

maximum tensile stress of 500 MPa. Calculate the maximum size of surface

flaws that the part can have.

7.48 A cylindrical pressure vessel (length of 10 m; diameter of 1 m) is made

from a high strength steel with KIc = 100 MPA m1/2 and a yield strength of

1,600 MPa. The thickness of the vessel is 25 mm. NDE has revealed a longitu-

dinal crack penetrating 7 mm into the cylinder wall.

(a) What maximum pressure can the cylinder be loaded to?

(b) What is the percentage reduction in maximum pressure due to the pres-

ence of flaw?



Chapter 8

Fracture: Microscopic Aspects

8.1 Introduction

In Chapter 7, we described the macroscopic aspects of the fracture

behavior of materials. As with other characteristics, the microstruc-

ture of a material has a great influence on its fracture behavior. In

what follows, we present a brief description of the microstructural

aspects of crack nucleation and propagation, as well as the effect

of the environment on the fracture behavior of different materials.

Figure 8.1 shows, schematically, some important fracture modes in a

variety of materials. These different modes will be analyzed in some

detail in this chapter. Metals fail by two broad classes of mechanisms:

ductile and brittle failure.

Ductile failure occurs by (a) the nucleation, growth, and coalescence

of voids, (b) continuous reduction in the metal’s cross-sectional area

until it is equal to zero, or (c) shearing along a plane of maximum

shear. Ductile failure by void nucleation and growth usually starts at

second-phase particles. If these particles are spread throughout the

interiors of the grains, the fracture will be transgranular (or transcrys-

talline). If these voids are located preferentially at grain boundaries,

fracture will occur in an intergranular (or intercrystalline) mode.

The appearance of a ductile fracture, at high magnification (500× or

higher) is of a surface with indentations, as if marked by an ice-

cream scooper. This surface morphology is appropriately called dim-

pled. Rupture by total necking is very rare, because most metals con-

tain second-phase particles that act as initiation sites for voids. How-

ever, high-purity metals, such as copper, nickel, gold, and other very

ductile materials, fail with very high reductions in their areas.

Brittle fracture is characterized by the propagation of one or

more cracks through the structure. While totally elastic fracture

describes the behavior of most ceramics fairly well, metals and some

polymers undergo irreversible deformation at the tip of the crack,

which affects its propagation. Figure 8.1 shows the variety of mor-

phologies and processes occurring during fracturing of materials. For

metals and ceramics, two modes of crack propagation: transgranular
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Fig. 8.1 Schematic classification

of fracture morphologies and

processes. (After M. F. Ashby.)

fracture (or cleavage) and intergranular fracture are observed. For

energy-related reasons, a crack will tend to take the path of least resist-

ance. If this path lies along the grain boundaries, the fracture will be

intergranular.

Often, a crack also tends to run along specific crystallographic

planes, as is the case for brittle fracture in steel. Upon observation at

high magnification, transgranular brittle fracture is characterized by
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clear, smooth facets that have the size of the grains. In steel, brittle

fracture has the typical shiny appearance, while ductile fracture has a

dull, grayish aspect. In addition to brittle fracture, polymers undergo

a mode of fracture involving crazing, in which the polymer chains

ahead of a crack align themselves along the tensile axis, so that the

stress concentration is released.

Another mode of deformation that is a precursor to fracture is

the phenomenon of shear banding in a polymer. If one stretches the

polymer material, one observes the formation of a band of material

with a much higher flow stress than exists in the unstretched state.

Shear banding (or localization) is also prevalent in metals.

Composites -- especially fibrous ones -- can exhibit a range of fail-

ure modes that is dependent on the components of the material

(matrix and reinforcement) and on bonding. If the bond strength is

higher than the strength of the matrix and reinforcement, the frac-

ture will propagate through the latter (Figure 8.1). If the bonding is

weak, one has debonding and fiber pullout. In compression, compos-

ites can fail by a kinking mechanism, also shown in the figure; the

fibers break, and the entire structure rotates along a band, resulting

in a shortening of the composite. This mechanism is known as plastic

microbuckling.

8.2 Fracture in Metals

Metals are characterized by a highly mobile dislocation density, and

they generally show a ductile fracture. In this section, we discuss

the various aspects of void and crack nucleation and propagation in

metals.

8.2.1 Crack Nucleation
Nucleation of a crack in a perfect crystal essentially involves the rup-

ture of interatomic bonds. The stress necessary to do this is the theo-

retical cohesive stress, which was dealt with in Chapter 7, starting

from an expression for interatomic forces. From this expression, we

see that ordinary materials break at much lower stresses than do

perfect crystals -- on the order of E/104, where E is Young’s modulus

of the material. The explanation of this behavior lies in the exist-

ence of surface and internal defects that act as preexisting cracks

and in the plastic deformation that precedes fracture. When both

plastic deformation and fracture are eliminated -- for example, in

‘‘whiskers” -- stresses on the order of the theoretical cohesive stresses

are obtained.

Crack nucleation mechanisms vary according to the type of

material: brittle, semibrittle, or ductile. The brittleness of a mater-

ial has to do with the behavior of dislocations in the region of crack

nucleation. In highly brittle materials the dislocations are practi-

cally immobile, in semibrittle materials dislocations are mobile, but
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Table 8.1 Materials of Various Degrees of Brittlenessa

Type Principal Factors Materials

Brittle Bond rupture Structures of type diamond, ZnS, silicates, alumina,
mica, boron, carbides, and nitrides

Semibrittle Bond rupture, dislocation mobility Structures of type NaCl, ionic crystals, hexagonal
close-packed metals, majority of body-centered
cubic metals, glassy polymers

Ductile Dislocation mobility Face-centered cubic metals, some body-centered
cubic metals, semicrystalline polymers

a Adapted with permission from B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge, U.K.: Cambridge

University Press, 1975), p. 17).

only on a restricted number of slip planes, and in ductile materials

there are no restrictions on the movement of dislocations other than

those inherent in the crystalline structure of the material. Table 8.1

presents various materials classified according to this criterion regard-

ing the mobility of dislocations.

The exposed surface of a brittle material can suffer damage by

mechanical contact with even microscopic dust particles. If a glass

fiber without surface treatment were rolled over a tabletop, it would

be seriously damaged mechanically.

Any heterogeneity in a material that produces a stress concentra-

tion can nucleate cracks. For example, steps, striations, depressions,

holes, and so on act as stress raisers on apparently perfect surfaces.

In the interior of the material, there can exist voids, air bubbles,

second-phase particles, etc. Crack nucleation will occur at the weak-

est of these defects, where the conditions would be most favorable. We

generally assume that the sizes as well as the locations of defects are

distributed in the material according to some function of standard

distribution whose parameters are adjusted to conform to experimen-

tal data. In this assumption, there is no explicit consideration of the

nature or origin of the defects.

In semibrittle materials, there is a tendency for slip initially, fol-

lowed by fracture on well-defined crystallographic planes. That is,

there exists a certain inflexibility in the deformation process, and

the material, not being able to accommodate localized plastic strains,

initiates a crack to relax stresses.

Various models are based on the idea of crack nucleation at an

obstruction site. For example, the intersection of a slip band with a

grain boundary, another slip band, and so on, would be an obstruc-

tion site.

8.2.2 Ductile Fracture
In ductile materials, the role of plastic deformation is very important.

The important feature is the flexibility of slip. Dislocations can move
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Fig. 8.2 (a) Failure by shear (glide) in a pure metal. (Reprinted with permission from

D. Broek, Elementary Engineering Fracture Mechanics, 3rd ed. (The Hague, Netherlands:

Martinus Nijhoff, 1982), p. 33.) (b) A point fracture in a soft single-crystal sample of

copper. (Courtesy of J. D. Embury.)

on a large number of slip systems and even cross from one plane to

another (in cross-slip). Consider the deformation of a single crystal

of copper, a ductile metal, under uniaxial tension. The single crys-

tal undergoes slip throughout its section. There is no nucleation of

cracks, and the crystal deforms plastically until the start of plastic

instability, called necking. From this point onward, the deformation

is concentrated in the region of plastic instability until the crystal

separates along a line or a point. (See Figure 8.2(a).) In the case of

a cylindrical sample, a soft single crystal of a metal such as copper

will reduce to a point fracture. Figure 8.2(b) shows an example of

such a fracture in a single crystal of copper. However, if, in a ductile

material, there are microstructural elements such as particles of a

second phase, internal interfaces, and so on, then microcavities may

be nucleated in regions of high stress concentration in a manner

similar to that of semibrittle materials, except that, due to the duc-

tile material’s large plasticity, cracks generally do not propagate from

these cavities. The regions between the cavities, though, behave as

small test samples that elongate and break by plastic instability, as

described for the single crystal.

In crystalline solids, cracks can be nucleated by the grouping

of dislocations piled up against a barrier. Such cracks are called

Zener--Stroh cracks.1 High stresses at the head of a pileup are relaxed

by crack nucleation, as shown in Figure 8.3, but this would occur only

in the case where there is no relaxation of stresses by the movement

of dislocations on the other side of the barrier. Depending on the

1 C. Zener, The Fracturing of Metals (Metals Park, OH: ASM, 1948).
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Barrier

Micro
crack

Slip
plane

Fig. 8.3 Grouping of dislocations

piled up at a barrier and leading to

the formation of a microcrack

(Zener–Stroh crack).

Fig. 8.4 Bicrystal with a slip

band in grain I. (a) The stress

concentration at the boundary of

the barrier due to slip band is fully

relaxed by multiple slip. (b) The

stress concentration is only

partially relaxed, resulting in a

crack at the boundary.

slip geometry in the two parts and the kinetics of the motion and

multiplication of dislocations, such a combination of events could

occur. (See Table 8.1.) Figure 8.4(a) shows a bicrystal that has a slip

band in grain I. The stress concentration at the barrier due to the

slip band is completely relaxed by slip on two systems in grain II.

Figure 8.4(b) shows the case of only a partial relaxation and the result-

ing appearance of a crack at the barrier. Lattice rotation associated

with the bend planes and deformation twins can also nucleate cracks.

Figure 8.5 shows crack nucleation in zinc as per the model shown in

Figure 8.5(a). Cracks can also begin at the intersections of various

boundaries in a metal, which represent sites at which there is a con-

centration of stress. Figure 8.6 presents examples of crack nucleation

at the intersection of twin boundaries and at the intersection of twin

steps and boundaries.

Fracture at high temperature can occur by a variety of other

modes as well. For example, grain-boundary sliding occurs rather

easily at high temperatures. Grain-boundary sliding can lead to the
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Fig. 8.5 Crack nucleation by (a)

lattice rotation due to bend planes

and (b) deformation twins. (c)

Crack nucleation in zinc due to

lattice rotation associated with

bend planes. (Reprinted with

permission from J. J. Gilman,

Physical Nature of Plastic Flow and

Fracture, General Electric Report

No. 60-RL-2410M, April, 1960,

p. 83.)

(c)

Fig. 8.6 Initiation of failure by

microcrack formation in tungsten

deformed at approximately

104 s−1 at room temperature.

(a) Twin steps. (b) Twin steps and

twin–twin intersection. (From T.

Dümmer, J. C. LaSalvia, M. A.

Meyers, and G. Ravichandran, Acta

Mater., 46 (1998) 959.)

development of stress concentrations at grain-boundary triple points

(where three grain boundaries meet). Cracks nucleate at such triple

points as shown schematically in Figure 8.7. Figure 8.8 shows a

Applied
stress

Sliding

Cavity

Fig. 8.7 w-type cavitation at a

grain-boundary triple point.
micrograph of copper in which such a crack nucleation has occurred.

This type of crack is called w-type cavitation or w-type cracking. Yet
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Fig. 8.8 w-type cavities

nucleated at grain boundaries in

copper; SEM.

another type of cracking occurs, characteristically, under conditions

of low stresses and high temperature. Small cavities form at grain

boundaries that are predominantly at approximately 90◦ to the stress

axis, as shown in Figure 8.9. This is called r-type cavitation or r-type

cracking. Figure 8.10 shows such intergranular voids in copper.

The most familiar example of ductile fracture is that in uni-

axial tension, giving the classic ‘‘cup and cone” fracture. When the

Applied
stress

Cavities

Fig. 8.9 r-type cavitation at a

grain boundary normal to the

stress axis.

maximum load is reached, the plastic deformation in a cylindrical

tensile test piece becomes macroscopically heterogeneous and is con-

centrated in a small region. This phenomenon is called necking (see

Section 3.2). The final fracture occurs in this necked region and has

the characteristic appearance of a conical region on the periphery

resulting from shear and a central flat region resulting from the voids

created there. In extremely pure metal single crystals (e.g., those free

of inclusions, etc.), plastic deformation continues until the sample

section is reduced to a point, a geometric consequence of slip, as

shown in Figure 8.2.

In practice, materials generally contain a large quantity of dis-

persed phases. These can be very small particles (1 to 20 nm) such

as carbides of alloy elements, particles of intermediate size (50 to

500 nm) such as alloy element compounds (carbides, nitrides,

Fig. 8.10 r-type cavities

nucleated at grain boundaries in

copper, seen through an optical

microscope.
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(a)

(b)

Obstacles

Slip
bands

Fig. 8.11 Nucleation of a cavity

at a second-phase particle in a

ductile material. (Adapted with

permission from B. R. Lawn and T.

R. Wilshaw, Fracture of Brittle Solids

(Cambridge: Cambridge University

Press, 1975), p. 40.)

carbonitrides) in steels, or dispersions such as Al2O3 in aluminum

and ThO2 in nickel. Precipitate particles obtained by appropriate heat

treatment also form part of this class (e.g., an Al--Cu--Mg system), as

do inclusions of large size (on the order of millimeters) -- for example,

oxides and sulfides.

If the second-phase particles are brittle and the matrix is ductile,

the former will not be able to accommodate the large plastic strains

of the matrix, and consequently, these brittle particles will break in

the very beginning of plastic deformation. In case the particle/matrix

interface is very weak, interfacial separation will occur. In both cases,

microcavities are nucleated at these sites (Figure 8.11). Generally, the

voids nucleate after a few percent of plastic deformation, while the

final separation may occur around 25%. The microcavities grow with

slip, and the material between the cavities can be visualized as a

small tensile test piece. The material between the voids undergoes

necking on a microscopic scale, and the voids join together. However,

these microscopic necks do not contribute significantly to the total

elongation of the material. This mechanism of initiation, growth, and

coalescence of microcavities gives the fracture surface a characteristic

appearance. When viewed in the scanning electron microscope, such

a fracture appears to consist of small dimples, which represent the

microcavities after coalescence. In many of these dimples, one can

see the inclusions that were responsible for the void nucleation. (See

Figure 8.12.) At times, due to unequal triaxial stresses, these voids are

elongated in one or the other direction. We describe the process of

fracture by void nucleation, growth, and coalescence in some detail

because of its great importance in metals.

Fracture by Void Nucleation, Growth, and Coalescence

Figure 8.13 shows the classic cup-and-cone fracture observed in many

tensile specimens with a cylindrical cross section. The configura-

tion is typical of ductile fracture, and upon observation at a higher

magnification (1,000× or higher, best done in a scanning electron

microscope), one sees the typical ‘‘dimple” features. The dimples are

equiaxal in the central portion of the fracture and tend to be inclined

in the sidewalls of the ‘‘cup.” The top two pictures show scanning elec-

tron micrographs of these two areas. In the central region fracture is




