
8 晶体的塑性形变

- •研究金属形变的意义;
- •本章涉及的内容; 强度、塑性两个重要性能指标; 其决定因素;与晶体缺陷的关系;

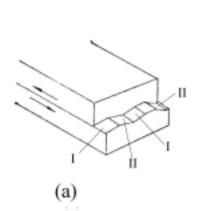
8.1 滑移的进一步讨论

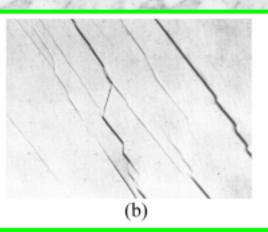
•关于临界分切应力

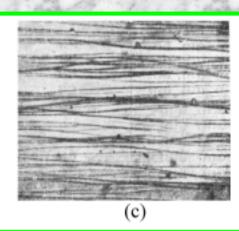
τ。对温度不敏感

τ。对温度敏感

位错核心结构对 塑性变形的影响

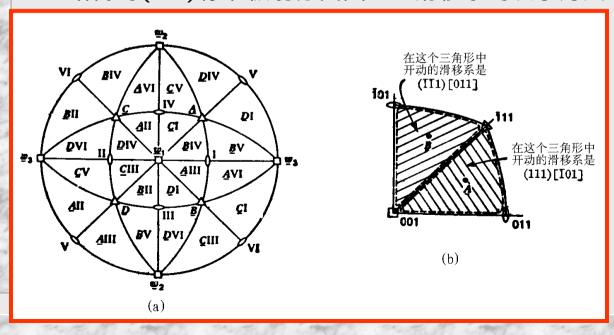

> 螺位错核心的非 共面扩展的难易

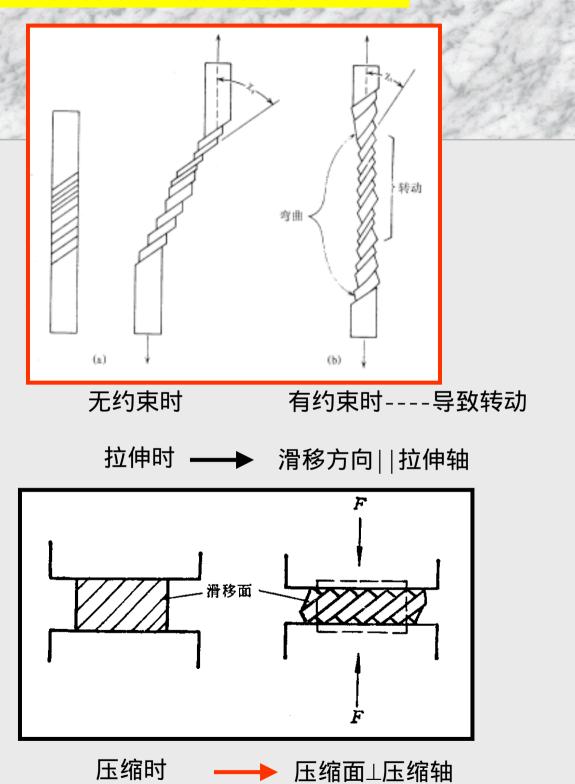



Tc与温度的关系

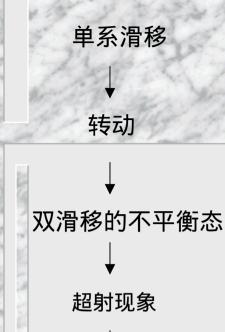
T。对温度的相关性及对应的位错能示意图

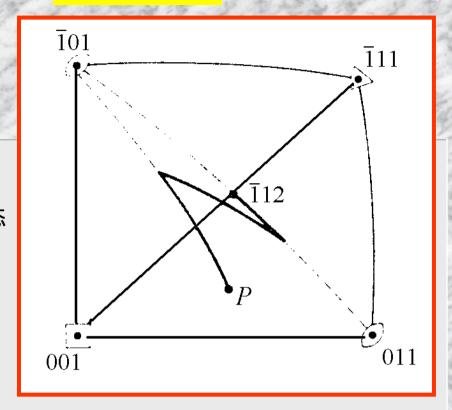
•交滑移



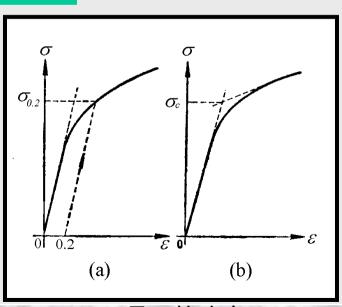

铝 Fe-3%Si 交滑移不是几个面"同时", 而是"顺序"滑动。

•多系滑移


fcc结构的(001)标准极射赤面图----滑移系的表示方法


8.1.4 拉伸和压缩时晶体的转动

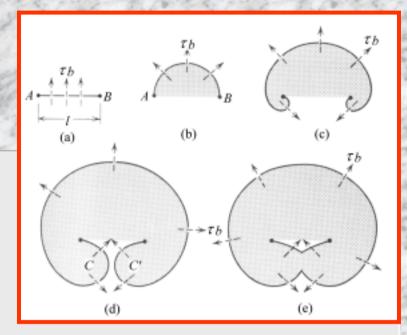
超射现象



稳定取向

8.2 起始塑性形变及流变应力

- •起始与可测的关系;
- •流变应力: 屈服以后的任一应力。
 - •条件屈服

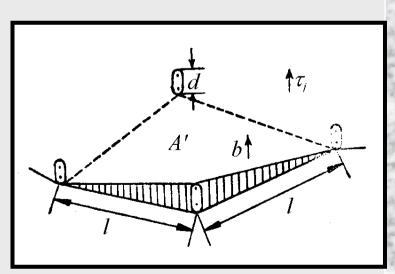


 $\sigma_{0.2}$ 及 σ_{c} 的确定

临界分切应力的估算

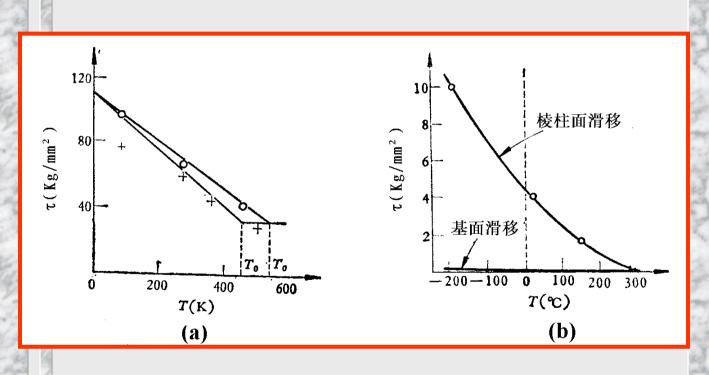
•以F-R源估算

$$au_{\rm e} = \frac{Gb}{l}$$


- •以位错间短程交互作用力估算
- 1个位错截过每个林位错, 外加切应力作功 τ_j b l d , 若位错能截过,则:

外力作功=割阶形成能

$$\tau_{\rm j}bld = \alpha Gb^3$$


$$\tau_{\rm j} = \alpha \frac{Gb}{l}$$

•位错密度与流变应力的关系:

$$au = \alpha Gb\sqrt{\rho_{\rm s}}$$
 可由 $au = \alpha \frac{Gb}{l}$ 导出

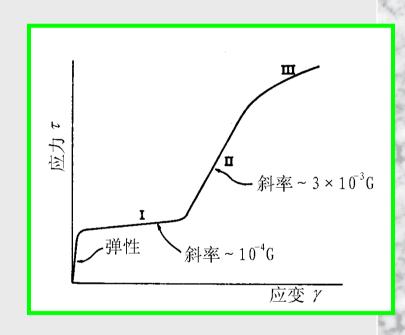
•临界分切应力与温度间的关系

镉单晶基面滑移

镁单晶

8.3 单晶体的应力-应变曲线及加工硬化

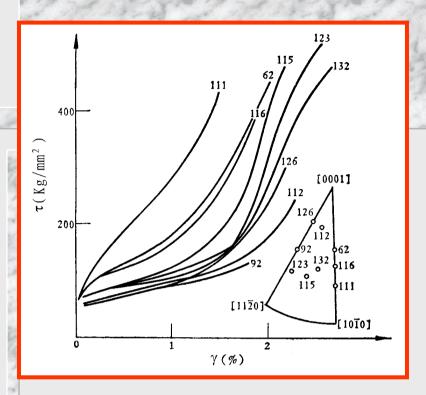
加工硬化现象:在加工时强度和硬度都会增加;

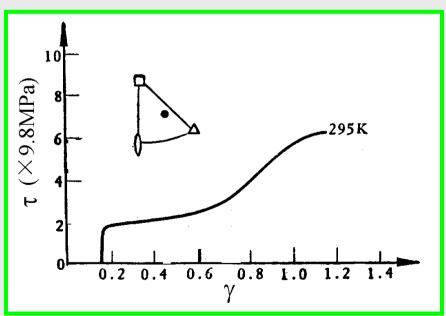

•应力-应变曲线

前提:初始取向下只有1个滑移系开动。

分为三个阶段:

第1阶段, 斜率*6*很低(~10⁻⁴*G*), ---易滑移阶段。 该阶段终止在应变 约0.05~0.2处。


第11阶段, 线性特征,斜率*θ*比 第1阶段约大30倍, 它与试样相对于力轴 的取向、温度甚至合 金度等关系不大, ---线性硬化阶段。

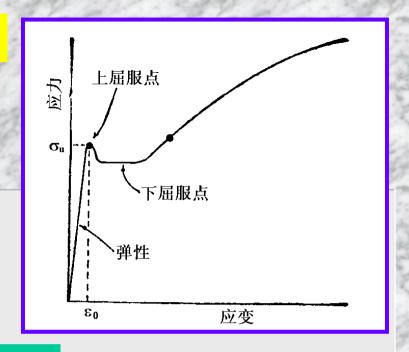

FCC单晶典型的 τ - γ 曲线

第111阶段, 抛物线;加工硬化率减少。 ---抛物线(动态回复)阶段。 在应变0.3~0.5处开始, 与试验温度有关。 温度高时,此值小。

•HCP金属 τ-γ曲线与力轴取向的关系

纯锌在294K 的*τ-γ*曲线

区域提纯铌单晶(BCC)室温下的 τ - γ 曲线(应变速率: 4.5 × 10⁻³s⁻¹)


•上下屈服点效应

原因:

间隙原子钉扎;

对性能的影响: 工件表面质量;

防止方法:

8.3.2 加工硬化理论

- •多种机制:
- (1)位错滑动和林位错交割,增加阻力。
- (2)林位错使F-R源产生割阶,带割阶的位错运动阻力加大。
- (3)形成的L-C不动位错增大了形变的抗力。
- (4)由局部应力场(短程交互作用)引起硬化。
- •影响加工硬化行为的因素

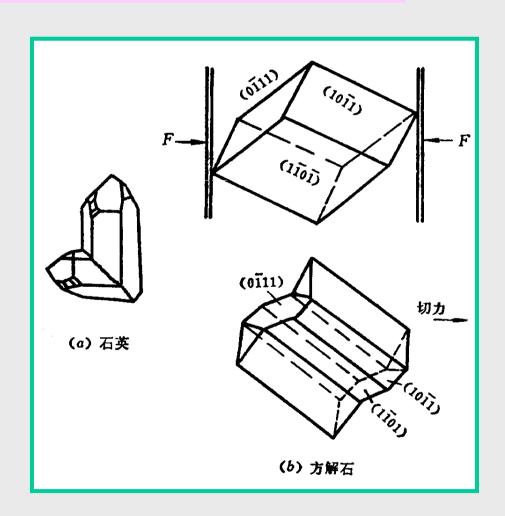
内部因素

晶体结构、晶体取向或织构、堆垛层错能、

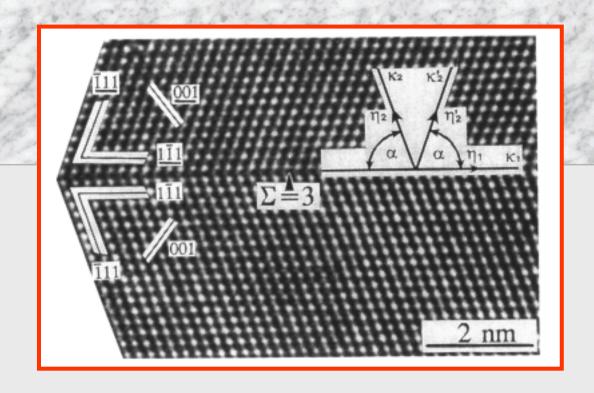
化学成分、显微组织的几何形状和尺寸以及位错亚结构。

外部因素

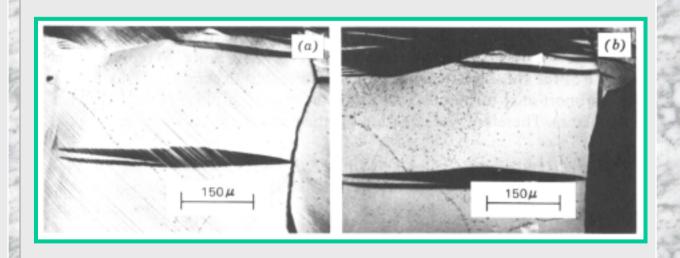
温度、应变速率、形变模式。


8.4 形变孪生

- •形变的另一种机制;
- •孪晶特点:

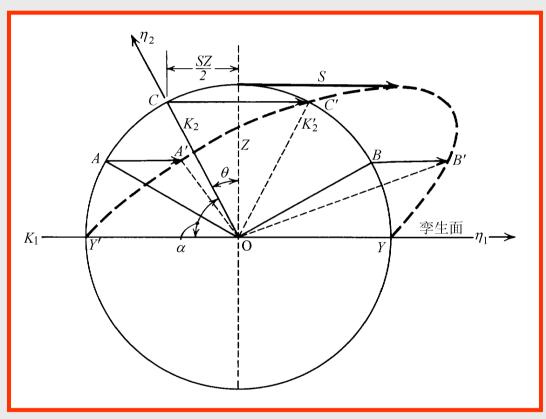

原子排列以某一晶面成镜面对称。

•孪晶形成过程:


形变、晶体生长、退火及相变。

(a)天然石英的孪晶的外形, (b)沿图中方解石体对角线加压力形成的孪晶。

面心立方晶体孪晶的高分辨率电镜照片


锌形变组织 (a)抛光后变形;(b)再抛光并浸蚀;

8.4.1 孪晶几何

第一、二不畸变面 K_1 、 K_2 孪生方向 η_1 ; η_2

孪晶要素

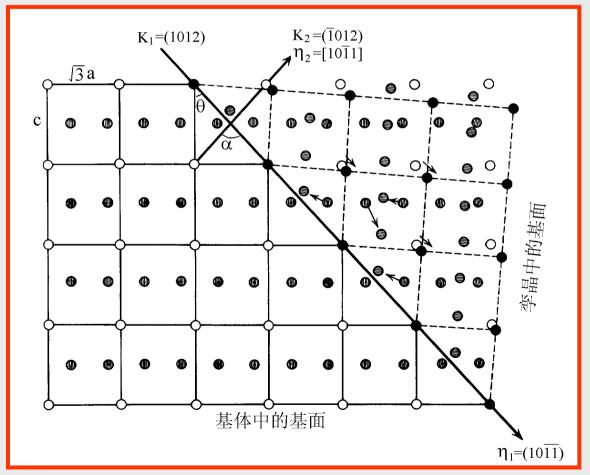
切变平面:垂直于K₁并包含η₁方向的平面。

说明孪生关系的单位球

切变量
$$\tan(90^{\circ} - \alpha) = \frac{SZ}{2} \frac{1}{Z} = \frac{S}{2}$$
$$S = 2 \cot \alpha$$

一些合金的孪生元素

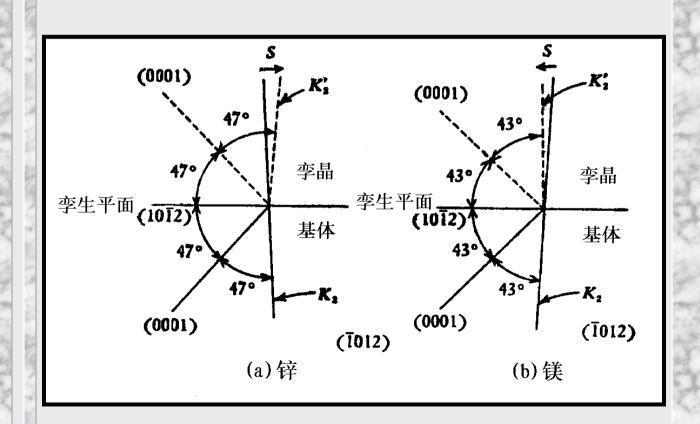
金属	晶体结构	c/a 轴比	K_1	K_2	$\eta_{_1}$	η_2	S	$(l'/l)_{\text{max}}$
Al, Cu Au, Ni	fcc		{111}	{111/1}	⟨112 ⟩	⟨112⟩	0.707	41.4%
Ag, <i>y</i> -Fe								
α-Fe	bcc		{112}	$\{\overline{1}\overline{1}2\}$	$\langle \overline{1} \overline{1} 1 \rangle$	$\langle 111 \rangle$	0.707	41.4
Cd	hcp	1.886	{ 1012 }	{ 1012 }	$\langle 10\overline{1}\overline{1}\rangle$	$\langle 10\overline{1}1\rangle$	0.17	8.9
Zn	hcp	1.856	$\{10\overline{1}2\}$	{ 1012 }	$\langle 10\overline{1}\overline{1}\rangle$	$\langle 10\overline{1}1 \rangle$	0.139	7.2
Mg	hcp	1.624	$\{10\overline{1}2\}$	{ 1012 }	$\langle 10\overline{1}\overline{1}\rangle$	$\langle 10\overline{1}1 \rangle$	0.131	6.8
			$\{11\overline{2}1\}$	{0001}	$\langle 11\overline{26} \rangle$	$\langle 11\overline{2}0 \rangle$	0.64	37.0
Zr	hcp	1.589	$\{10\overline{1}2\}$	{ 1012 }	$\langle 10\overline{1}\overline{1}\rangle$	$\langle 10\overline{1}1 \rangle$	0.167	8.7
			$\{11\overline{2}1\}$	{0001}	$\langle 11\overline{26} \rangle$	$\langle 11\overline{2}0 \rangle$	0.63	36.3
			$\{11\overline{2}2\}$	$\{11\overline{24}\}$	$\langle 11\overline{23} \rangle$	$\langle 22\overline{43} \rangle$	0.225	11.9
Ti	hcp	1.587	$\{10\overline{1}2\}$	{ 1012 }	$\langle 10\overline{1}\overline{1}\rangle$	$\langle 10\overline{1}1\rangle$	0.167	8.7
			$\{11\overline{2}1\}$	{0001}	$\langle 11\overline{26} \rangle$	$\langle 11\overline{2}0 \rangle$	0.638	36.9
			$\{11\overline{2}2\}$	$\{11\overline{24}\}$	$\langle 11\overline{23} \rangle$	⟨22 43 ⟩	0.225	11.9
Be	hcp	1.568	$\{10\overline{1}2\}$	{ 1012 }	$\langle 10\overline{1}\overline{1}\rangle$	$\langle 10\overline{1}1\rangle$	0.199	10.4


•六方结构晶体中的孪生

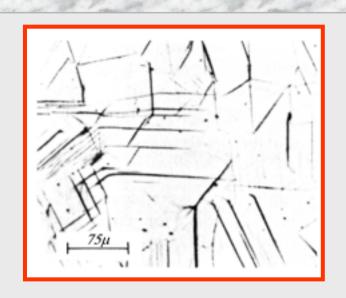
易出现孪晶的原因:

滑移系少;孪生应变5较低;

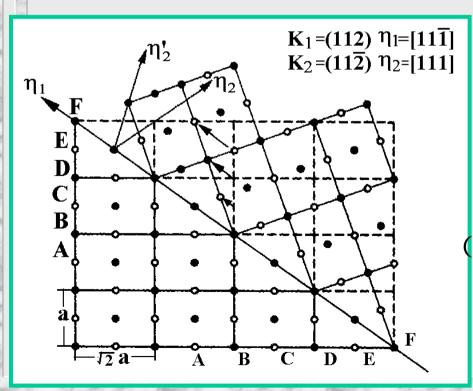
$$S = 2\cot\alpha = 2\frac{1}{\tan\alpha} = 2\frac{1}{\tan(180^\circ - 2\theta)} = -2\frac{1}{\tan 2\theta}$$


$$S = \frac{\tan^2 \theta - 1}{\tan \theta} = [(c/a)^2 - 3] \frac{\sqrt{3}a}{3c}$$

存在原子"扰动"


若外加力轴平行于基面

- •锌的孪生使晶体在平行于基面方向伸长, →锌在拉伸时形成孪晶;
- •镁的孪晶则使晶体在平行于基面的方向缩短, → 镁在压缩时形成孪晶。



•体心立方结构的孪晶

孪生要素: K_1 ={112} , K_2 ={11-2} , η_1 =<11-1> , η_2 =<111>。 K_1 与 K_2 的夹角 α =70.53° , 故孪生应变S=2cot70.53°=0.707。 孪生的切变平面是(1-10)。

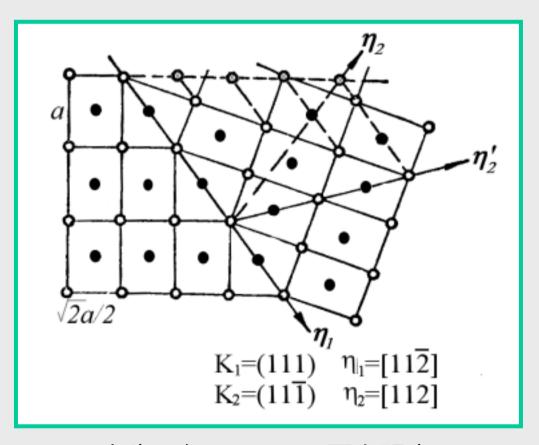
 α -Fe中的孪晶

孪生几何, 110)面上观察

•面心立方结构中的孪晶

层错能低的fcc晶体会出现形变孪晶;

fcc不易出现孪晶的原因:

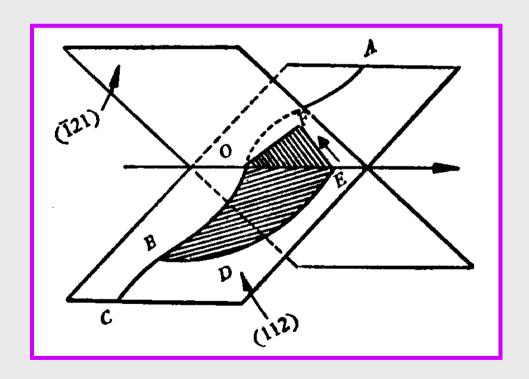

滑移系多;孪晶应变大(S=0.707),

孪生元素:

 $K_1 = \{1-11\}$, $K_2 = \{-111\}$, $\eta_1 = <-112>$, $\eta_2 = <1-12>$

 α =70.53°, 孪生应变*S*=2cot70.53°=0.707。

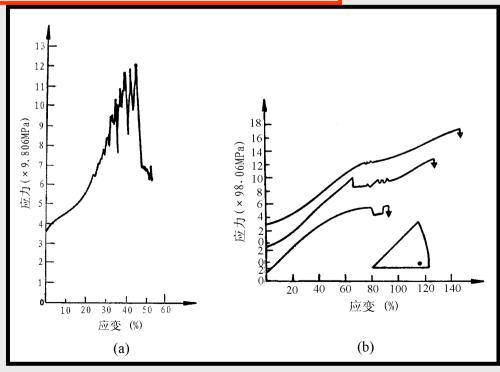
切变平面为(110)。


孪生几何,(110)面上观察

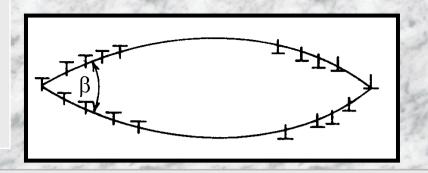
8.4.5 孪生的位错机制

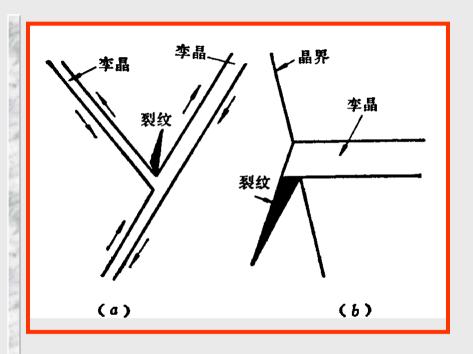
$$\frac{a}{2}[111] \to \frac{a}{3}[112] + \frac{a}{6}[11\overline{1}]$$

$$\frac{a}{3}[112] \rightarrow \frac{a}{6}[\overline{1}21] + \frac{a}{2}[101]$$


Bcc的孪生机制

8.4.6 孪生的一般特点


- (1)出现的频率和尺寸取决于晶体结构和层错能的大小。
- (2)常在高应力集中处形核,出现孪生时s-e曲线有突然下降。
- (3)根据孪晶几何的分析,孪生区域应由2个与基体共格的孪生面为边界。
- (4)由孪生提供的形变量是很小的,特别是在六方结构晶体中。

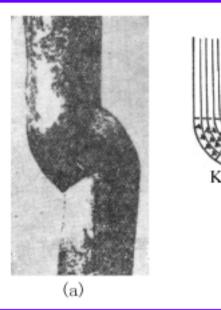

Cu-Si 合金中的 层错和孪晶fcc

σ-ε曲线突然下降(a)镉;(b)Au-Ag合金;

非共格孪晶界

孪生导致裂纹

孪生和滑移的差别:


- (1)滑移---相对滑动---完整平移矢量; 孪生---所有面滑动---滑动距离非完整平移矢量---和距 孪生面距离成正比。
- (2)滑移---晶体位向没改变;孪生---孪晶部分位向与基体对称。
- (3)滑移---表面出现台阶---重新抛光后,滑移线消失; 孪生与基体取向不同---表面重新抛光并浸蚀后仍能看到。

8.5 扭折带和形变带

•扭折:

塑性形变的一种形式。滑移和孪生困难时发生。

(b)

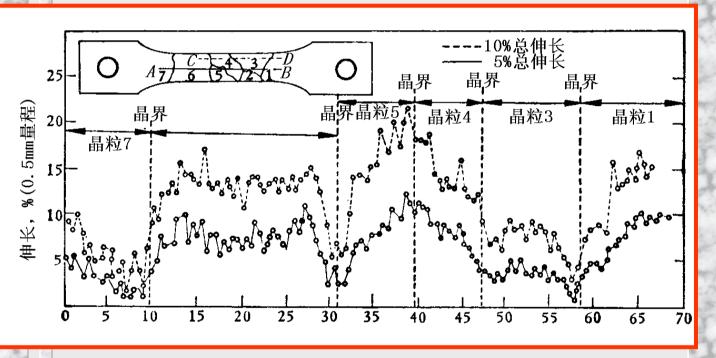


镉单晶体压缩 时出现扭折带 外貌及示意图

•形变带:

晶粒局部转动 使晶体从单一 的取向分裂成 两种互补的取 向的局部区域。

> 铝单晶压缩时 形成形变带



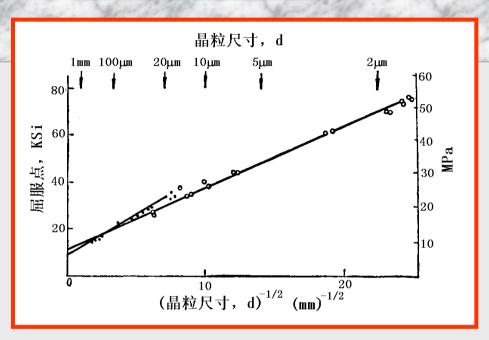
8.6 多晶体的塑性形变

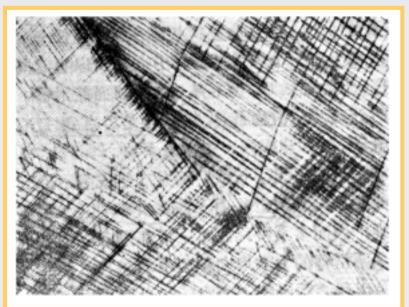
•多晶体形变的特点

不同于单晶;每一晶粒的取向"软"和"硬"不同,形变先 后及形变量也不同。

为保持整体的连续性,每个晶粒的形变必受相邻晶粒所制约。

铝多晶体


基本规律:


- (1) 跨过晶界的延伸率变化是连续的;
- (2) 靠近晶界处的延伸率较小;
- (3)细晶粒形变较均匀且强度高;相反,大晶粒形变不均匀,强度低。

•晶粒尺寸与屈服强度的关系

$$\sigma_{y} = \sigma_{0} + k_{y}d^{-1/2}$$

Hall-Petch关系

晶界附近的多系滑移

8.6.2 形变过程的宏观应变协调及宏观组织的变化

•多晶变形的两个基本模型

Sachs模型:

设各晶粒的形变是自由的,即多晶体各处的应力状态是连续的。这个假设和实际不符。

Tayl or模型:

形变时晶界保持应变连续而不产生空洞或张开(形变连续)。

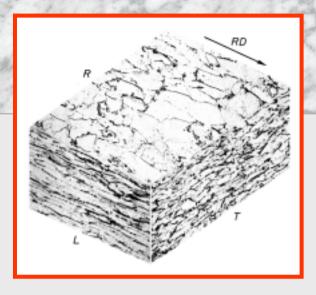
•实现任一变形的条件:

必须有5个独立的滑移系开动。

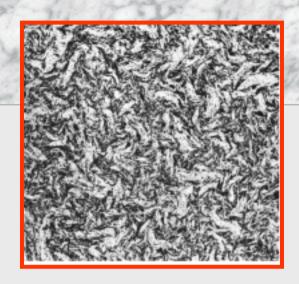
原因:描述任一应变状态用9个分量---对称张量,6个分量---形变体积不变,即3个正应变之和不变,只有5个是独立的。

形变时宏观协调的难易与晶粒尺寸相关:

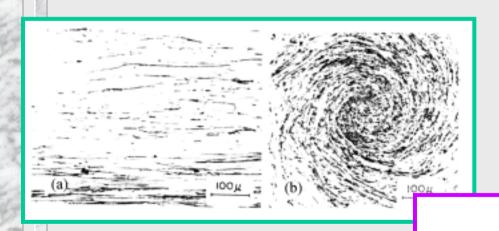
晶粒小时各晶粒间形变比较均匀。


晶粒越大,形变越不均匀,晶粒"碎化"的现象越强烈。

大晶粒形变要求局部开动比较少的滑移系(少于5个),


结果流变应力会降低。

这是小晶粒材料比大晶粒材料强和硬的原因。


•宏观组织的变化

低碳钢经65%冷轧后 在轧面、纵截面和横截面 的晶粒形状照片。

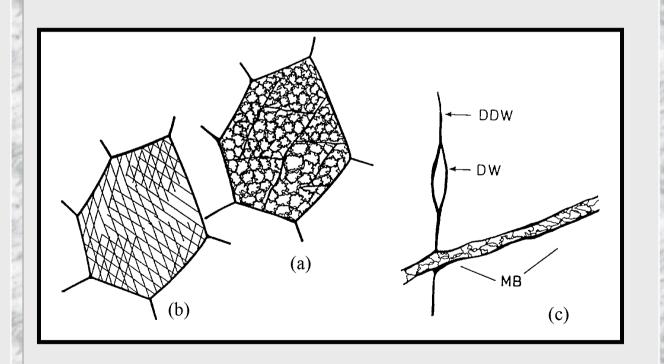
经2.7真应变拉拔的 铁丝在横截面观察到 的卷曲的晶粒结构。

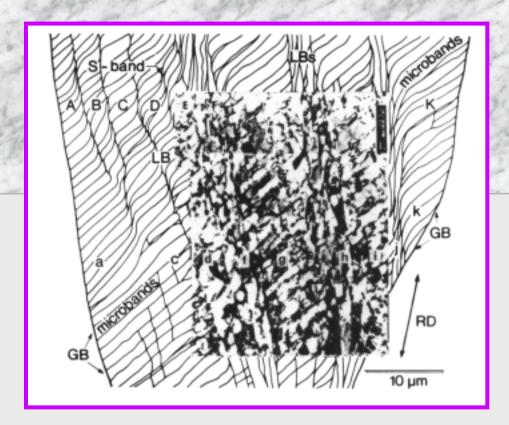
模锻件截面上 看到的流线

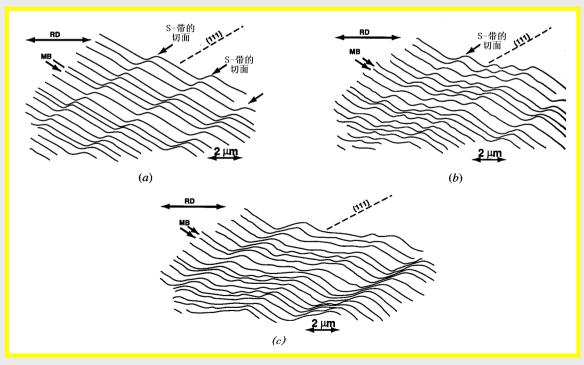
压缩量为87%的旋压钨丝的 纵截面和横截面的组织。

8.6.3 形变过程的微观应变协调与微观组织变化

晶粒内各区域开动的滑移系数目不同从而使晶粒"碎化";


"碎化"的各区域由过渡带或稠密位错墙(DDW)分隔开;


分隔开的每个区域称胞块(简称为CB)。


在胞块中含一般的位错胞状结构。

多晶形变"碎化"过程

60%轧制铝板纵截面组织及周围的组织结构示意图

MB/DDW与S带的交互作用,说明如何从S带产生层带(LB)

8.6.4 影响冷形变金属微观组织的因素

•层错能

层错能高---组织为胞状结构、DDW、MB及亚晶等。 层错能低---有扩展位错,不易交滑移和攀移---产生形变孪晶。

•晶粒大小

大晶粒比小晶粒表现更明显的不均匀形变,晶粒"碎化"更显著。

•第二相颗粒

造成更高的位错密度。

大颗粒---位错集中在颗粒附近可形成形变带及大小约为0.1μm 的亚晶。

小颗粒---位错环或位错缠结分布在粒子附近。弥散粒子钉扎位 错,使位错不易交滑移,阻碍普通胞状结构形成。

•溶质原子

偏聚在位错上形成气团,降低位错运动率及形成胞状结构的倾 向。

溶质原子可影响层错能而改变形变行为。溶入高价金属原子超过一定限度时降低层错能,不利于胞状结构的形成。

•形变温度

提高---有利于交滑移和攀移,胞状结构明显,胞尺寸增大。

---减少位错与第二相颗粒的交互作用,使大颗粒附近的形变带尺寸减小,形变带内的点阵转动减少。

•形变速率的作用

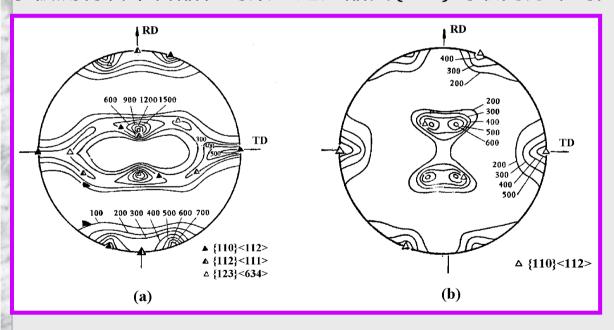
与温度的作用相反,提高形变速率相当于降低形变温度的作用。

8.7 形变织构

织构的概念:

多晶体晶粒取向集中分布在某一个或某些取向附近的现象。

出现织构的原因:


形变总是沿特定面,特定方向进行;

形变时的转动也有特定规律。

•取向分布的描述

极图:

表示被测材料中各晶粒的某一选定晶面{hk/}的取向分布的图形。

铜型

黄铜型

轧制极图

(a) 经95% 轧制纯铝的 {111} 极图;

(b)Cu-30%Zn合金经96%轧制的{111}极图

•形变织构的类型

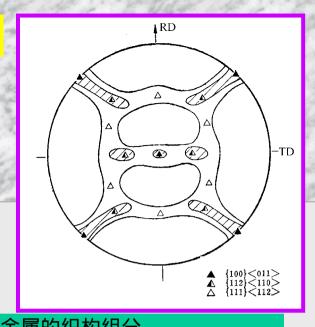

取决于形变金属的本质及加工方式。 分轧制织构、拉拔织构等。 轧制织构表示为{*hkI*}<*uvw*>。

表 8-2 轧制 fcc 金属的织构组分

组分,符号	$\{hkl\}$	<uvw></uvw>	$arphi_1$	ϕ	$arphi_2$
铜 , C	112	111	90	35	45
S	123	634	59	37	63
高斯 , G	011	100	0	45	90
黄铜, B	011	211	35	45	90
立方	001	100	0	0	0

•体心立方金属轧制织构

纯铁经98.5% 冷轧的200极图

$\{hkl\}$	<uvw></uvw>	$arphi_1$	ϕ	φ_2			
001	110	0	0	45			
112	110	0	35	45			
111	011	60	54.7	45			

90

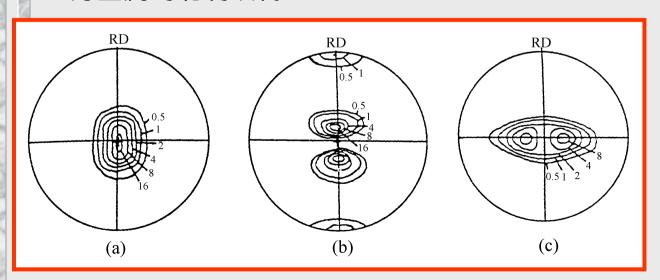
0

54.7

90

45

45


•六方金属的轧制织构

112

110

111

110

(0002极图), (a)镁c/a=1.62; (b)锌c/a=1.88; (c)钛c/a=1.59

8.8 复相合金的塑性形变

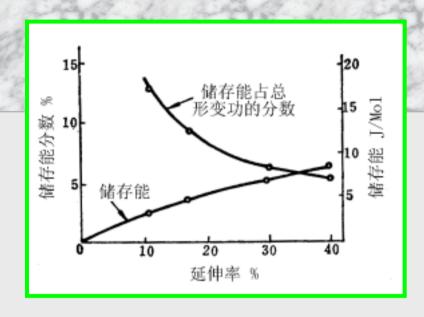
取决于基体的性能及第二相的性质、数量、形状和分布。

- 当两个相的塑性较好时,一般有两种近似处理方法:
- (1)设两相具有同样的应变, σ_1 和 σ_2 必不同,平均应力为:

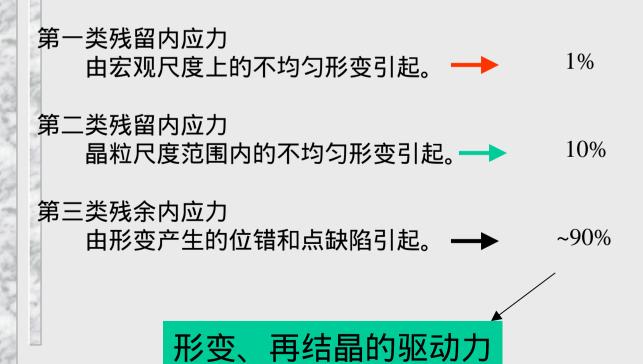
$$\overline{\sigma} = f_1 \sigma_1 + f_2 \sigma_2$$

(2)设两相应力相同,应变 ε_1 和 ε_2 必不同,平均应变为:

$$\overline{\varepsilon} = f_1 \varepsilon_1 + f_2 \varepsilon_2$$



- •另一相是脆性相,则除两相的相对量外,脆性相的形状和 分布对合金塑性起重大作用。
- 三种情况:
- (1) 脆性相连续地沿塑性相晶界分布;
- (2) 脆性相不连续地分布在塑性相的晶界上;
- (3) 脆性相不连续地分布在塑性相内。


实例:Bi在Cu、Au中的膜状分布;

Fe₃C在钢中的网状分布;

8.10 形变后的残余内应力

纯铜冷加工后的储存能

本章小结

•研究的意义;

σ-ε曲线特征;

•扭折带与形变带

•取向变化 💳 > 原因 💳 > 轧制 💳 > 表达 < 数字