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Fig. 37. Combined binary alloy phase diagrams for the light actinides (from YOUNG [1991]). 
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I .  Introduction 

The bulk properties of a metal depend directly on the bonding between the constituent 
atoms at the microscopic level. Thus, in order to provide a fundamental description of 
metals and alloys, it is necessary to understand the behaviour of the valence electrons 
which bind the atoms together. The theory which describes the electrons in metals is 
couched, however, in a conceptual framework that is very different from our everyday 
experience, since the microscopic world of electrons is governed by quantum mechanics 
rather than the more familiar cZussical mechanics of Newton. Rather than solving 
Newton’s laws of motion the solid state theorist solves the Schrodinger equation, 

AZ v2 -I- v(r) +(r) = E#(r), 
(-G 1 

where V2 = + a2/ay2 + a2/aZ, m is the electronic mass and A is the ubiquitous 
Planck constant (divided by 277). -(A2/2m) V2 represents the kinetic energy and v(r) the 
potential felt by the electron which has total energy E. +(r) is the wave function of the 
electron where [+(r) l2 is the probability density of finding the electron at some point r 
= (x, y, z). The power of the Schrodinger equation is illustrated by solving eq. (1) for the 
case of a single hydrogenic atom. It is found that solutions exist only if the wave 
function + is characterized by three distinct quantum numbers n, E and m whose signifi- 
cance has been discussed at the beginning of the preceding chapter. A fourth quantum 
number, ms, representing the spin of the electron results from a relativistic extension of 
the Schrodinger equation. Thus, the existence of different orbital shells and hence the 
chemistry of the Periodic Table follows naturally from quantum mechanics through the 
Schrodinger equation. 

WIG= and SEITZ [1933] were the first to apply the Schrodinger equation to the 
problem of bonding in metals. In their classic paper they studied the formation of the 
bond in monovalent sodium and obtained the cohesive energy, equilibrium lattice 
constant, and bulk modulus to within 10% of the experimental values. However, it took 
nearly another fifty years before the same accuracy was achieved for the polyvalent 
metals. Whereas WIGNER and SEITZ [1933] could assume that the single valence electron 
on a sodium atom feels only the potential due to the ion core, in a polyvalent metal a 
given electron will also feel the strong coulomb repulsion from other valence electrons 
in its vicinity. Thus the problem becomes much more complex. Firstly, the potential v(r) 
must be computed self-consistently in that v(r) now depends on the coulomb field of 
valence electrons whose wave functions and hence average charge distributions them- 
selves depend on v(r) through eq. (1). Secondly, it is necessary in order to obtain 
bonding to go beyond the average self-consistent field of the Hartree approximation and 
to include the correlations between the electrons. Pauli’s exclusion principle keeps 
parallel spin electrons apart, thereby lessening their mutual coulomb repulsion and 
lowering the energy by an amount called the exchange energy. These statistical correla- 
tions are described by the Hartree-Fock approximation. In addition, dynamical correla- 
tions also exist between the anti-parallel spin electrons, which lower the energy of the 

孙超
附注
        金属的体特性直接依赖微观水平上原子之间的键。因此，若想要从根本上描述金属和合金，就必须了解能将原子键合在一起的价电子的行为。描述金属中的电子的理论已比较成熟，可是，在电子的微观世界里起主导作用的规律是量子力学而非我们更熟悉的牛顿经典力学，因此这种理论的概念框架与我们的日常经验相距甚远。在解决关于金属中的电子的问题时，固态理论学者不利用牛顿运动定律，而是解薛定谔方程，（），其中▽2=（），m为电子质量，（）为普适普朗克常数除以2π。（）和υ（r）分别代表具有总能量E的电子的动能和所在处的电势。（）为电子的波函数，（）为在r=（x，y，z）处发现电子的概率密度。薛定谔方程的作用可已从对单个类氢原子解方程（1）来说明。在解方程时发现，仅当波函数（）可以由三个相异的量子数n、l和m（它们的意义已在上一章开头被讨论）表征时方程的解存在。第四个量子数ms代表电子的自旋，是在对薛定谔方程进行相对论修正时被引入的，为的是使不同的轨道壳层的存在和元素周期表能够自然地通过薛定谔方程由量子力学得出。
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附注
        WIGNER和SEITZ首先将薛定谔方程应用于有关金属内的化学键的问题。在他们经典的论文里，他们研究了单价钠金属中化学键的形成，得到了内聚能、平衡晶格常数和体弹性模量的数值，所得值与实验值的差别在10%以内。可是，近五十年之后才对多价金属得到了有同样准确度的结果。尽管 WIGNER和SEITZ能够假设在一个钠原子中单个的价电子只是处于离子实的电势场中，但是，在一个多价金属的原子中某一指定的价电子还会受到临近的其它价电子的强的库伦斥力的作用，因此问题变得复杂得多。其一，电势υ（r）的计算须自洽，因为υ（r）在这里与价电子的库仑场有关，而价电子的波函数以至平均电荷分布本身又与υ（r）有关（方程1）。其二，为了获得关于化学键的信息，必须通过考虑电子间的相关性来修正哈特里近似平均自洽场。泡利不相容原理指出，自旋平行的电子相分离从而减小了相互的库仑排斥作用并使体系的能量降低，降低的能量值称为交换能。这些统计相关性由哈特里-福克近似描述。此外，自旋反平行的电子之间也存在动态相关性，这种相关性使体系的能量降低，降低的能量值称为相关能。
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system by an amount called the correhtion energy. 
A major breakthrough in solid-state physics occurred with the realization that these 

very complicated exchange and correlation effects could be accurately modeled by adding 
a simple local exchange correlation potential uxc(r) to the usual Hartree coulomb potential 

I I I 
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Ca Ti Cr Fe Ni Zn Sr Zr M o  Ru Pd Cd 

Fig. 1. The equilibrium Wiper-Seitz radii, cohesive energies, and bulk moduli of the 3d and 4d transition 
series. Experimental values are indicated by crosses and the computed LDF values by the connected points. 
(From MORUZZI et QI. [1978].) 

References: p .  129. 
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        固态物理学的一次重要突破是通过在普通的哈特里库仑势（方程1中的υ（r））上加入一个简单的局域交换相关势υxc（r）建立了上述非常复杂的交换作用和相关作用的精确的模型。
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        图1：3d and 4d transition series的平衡Wigner-Seitz半径、内聚能和体弹性模量。实验值以“×”表示，LDF计算值以被连接的点表示。（数据来自MORUZZI等人【1978】。）
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in eq. (1). The resulting so-called local densityfunctional (LDF) equations (HOHENBERG 
and KOHN [1964] and KOHN and S w  [1965]) have been shown to yield a surprisingly 
good description of the energetics of atoms, molecules, and solids (GUNNARSSON and 
LVM>QUIST [1976], HARRIS and JONES [1978], MORUZZI et aZ. [1978], JONES and 
GUEMARSSON [1989] and Frms [1992]). The success of the LDF scheme is illustrated 
in fig. 1 by the results of MORUZZI et al. [1978] for the cohesive properties of the 
elemental metals across the 3d and 4d transition series. We see that for the nonmagnetic 
4d series the equilibrium Wigner-Seitz radius (or lattice constant), cohesive energy and 
bulk modulus are given to better than 10%. The large deviations in lattice constant and 
bulk modulus observed amongst the 3d series is due to the presence of magnetism and 
is removed by generalizing the LDF theory to include spin polarization (JANAK and 
W n ~ u m  [1976]). It must be stressed that there are no arbitrary parameters in the 
theory, the only input being the nuclear charge and crystal structure. 

This success of the LDF theory in describing the bonding between atoms allows the 
interpretation of the results within a band framework, since the motion of a given 
electron is governed by the one-electron Schrodinger equation (1). As is well-known, the 
energy levels, E, of the free atom broaden out into bands of states as the atoms are 
brought together to form the solid. In this chapter the nature of these energy bands in 
simple metals, transition metals and binary alloys is discussed, thereby unraveling the 
microscopic origin of the attractive and repulsive forces in the metallic bond. In $ 2.1 we 
begin with a detailed description of the constituent atoms, since we will see that many 
bulk properties are related to the relative position of the atomic energy levels and to the 
size of the ionic cores. In 0 2.2 the diatomic molecule is used to illustrate bond formation 
and in $2.3 the general principle of band formation in solids is outlined. The nature of 
simple- and transition-metal bands is then discussed in Q Q  3 and 4 respectively, the 
former being treated within the nearly-free-electron approximation, the latter within the 
tight-binding approximation. In $ 5 the knowledge of the energy band behaviour is used 
to provide a microscopic picture of metallic bonding which is responsible for the 
cohesive properties of the elemental metals displayed in fig. 1. In $ 6 structural stability 
is discussed both in the elemental metals and in binary intermetallic phases. In $7 the 
ideas on metallic bonding are extended to a discussion of the hats  of fornation, AH, of 
binary alloys. Finally in $ 8 the band theory of mugnetism is presented which accounts 
for the antiferromagnetism of Cr and Mn and the ferromagnetism of Fe, Co, and Ni 
amongst the 3d transition metals. 

2. Band formation 

2.1. The constituent atoms 

The hundred basic building blocks of nature, which are enshrined in the Periodic 
Table, lead to matter having a wide range and variety of physical properties. This 
diversity reflects the essential uniqueness of each element in the Periodic Table. For 
example, even though copper, silver and gold lie in the same noble-metal group, nobody 
except possibly a theoretician would be prepared to regard them as identical. In this 

孙超
附注
这一突破所提出的所谓的局域密度函数（LDF）方程（HOHENBERG和KOHN【1964】，KOHN 和SHAM【1965】）已被证明能够极好地描述原子、分子和固体的能量学（GUNNARSSON和LUNDQUIST【1976】，HARRIS和JONES【1978】，MORUZZI等人【1978】，JONES和GUNNARSSON【1989】，FINNIS【1992】）。MORUZZI等人对elemental metals across the 3d and 4d transition series的内聚性的研究结果显示了LDF理论的成功，如图1所示。由图可见，对于非磁性4d series金属，平衡Wigner-Seitz半径（或晶格常数）、内聚能和体弹性模量的计算值与实验值的差别小于10%。对于部分3d series金属，由于具有磁性，晶格常数和体弹性模量的计算值与实验值出现大偏差。通过考虑自旋极化以推广LDF理论，就可以消除这种偏差（JANAK和WILLIAMS【1976】）。必须强调的是，该理论中没有任意参数，需要输入的数据仅仅是核电荷和晶体结构。
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附注
        由于电子的运动满足单电子薛定谔方程（方程1），LDF理论在描述原子间的键方面的成功使得我们能够在能带理论框架内讨论所得结果。众所周知，单体原子的能级E在原子聚集形成固体时展宽成能带。本章讨论通过纯金属、过渡金属和二元合金中的能带的性质以求在微观层次上找出金属键中所包含的吸引力和排斥力的成因。在2.1节我们从对组分原子进行详细讨论开始，因为我们以后将看到许多体性质与原子能级的相对位置和离子实的尺寸有关。在§2.2我们以双原子分子为例来说明键的形成，在§2.3我们概括出了键形成的一般规律。之后在§3和§4我们分别讨论纯金属和过渡金属的能带，对前者的讨论是在近自由电子近似下进行的，对后者的讨论是在紧束缚近似下进行的。在§5我们利用对能带的性质的认识给出了造成elemental metals的内聚性（图1所示）的金属键的微观图像。在§6我们讨论了elemental metals和二元金属间相的结构稳定性。在§7，金属键的概念被延伸，我们讨论了二元合金的形成热（）。最后，在§8我们对磁学的能带理进行讨论，以解释3d过渡金属中的反铁磁性的Cr和Mn以及铁磁性的Fe、Co和Ni。

孙超
附注
        珍藏在周期表中的那百余个元素，是自然界的基本构件，由它们组成的物质表现出了丰富多样的物理性质。这种多样性反映了周期表中的各元素具有本质上的独特性。例如，虽然铜、银和金属同一贵金属族，但是只有理论家才可能会把它们看做是相似的，除他们以外的其他人不会这样做。在这一小节，我们通过讨论原子能级的性质和周期表中各元素的半径来量化元素间的差异。
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subsection the differences between the elements are quantiJied by discussing the 
behaviour of the atomic energy levels and the radii throughout the Periodic Table. 

The structure of the Periodic Table results from the filling-up of different orbital 
shells with electrons, as outlined in the previous chapter. The chemical behaviour of a 
given atom is governed by both the number and the angular-momentum character of the 
electrons in the outer partially filled shells. (We shall refer to these electrons as valence 
in contrast to the filled shells of core electrons.) The angular-momentum character is 
determined by the orbital quantum number 1, since the magnitude of the total orbital 
angular momentum L is given by quantum theory as: 

where 1 = 0, 1, 2, ... A free-atom electron can, therefore, take only discrete values of 
angular momentum (i.e. 0, A@,  A 6  ,...) unlike a classical particle which would have 
a continuous spectrum. However, as in the classical case, the angular momentum is 
conserved because the electron is moving in the central spherically symmetric potential 
of the free atom. Electrons with I = 0, 1,2 and 3 orbital quantum numbers are referred 
to as s, p, d and f electrons, respectively (after the old terminology of sharp, principal, 
diffuse and fine spectroscopic lines). 

Angular momentum is a vector. Therefore, in addition to the magnitude L of the 
orbital angular momentum L, the electronic state is also characterized by the components 
of the angular momentum. Within quantum theory the component in a given direction 
(say along the z-axis, specified experimentally by the direction of a very weak applied 
magnetic field) is quantized and given by 

L, = mi?, (3) 

where the magnetic quantum number, m, takes the (21+ 1) values 0, f 1, ..., f ( I -  l), f 1. 
Because the energy of the electron can not depend on the direction of the angular 
momentum in a spherically symmetric potential, these (21+ 1) states have the same 
energy and are said to be degenerate. Allowing for the additional spin quantum number, 
ms, which can take two values (corresponding to an up, t, or down, &, spin electron), 
each I-state will be 2(2E+ 1)-fold degenerate. Thus an s-shell can hold 2 electrons, a 
p-shell 6 electrons, a d-shell 10 electrons and an f-shell 14 electrons as discussed in ch. 
2, 0 1. 

The state of angular momentum of the electron determines the angular dependence of 
the wave function II/ and hence the angular dependence of the probability-density [+I2. 
The s-state has zero orbital angular momentum corresponding to a spherically symmetric 
probability density which is illustrated schematically in fig. 2a. The p-state, correspon- 
ding to 1 = 1, m = 0, has an angular variation given by cos 8, where is the polar angle. 
Because the Cartesian coordinates (4 y, z) can be related to the spherical polar 
coordinates (r, 0, +), and in particular z =  r cos 8 ,  it is customary to refer to the E =  1, 
m = 0 state as the p,: orbital. Its probability-cloud is illustrated by the left-hand diagram 
in fig. 2b. We see that it has lobes pointing out along the z-axis, in which direction there 
is a maximum probability of finding the electron (cos 28 = 1 for 8 = 0, T). On the other 

References: p .  129. 

孙超
附注
        如前一章所述，周期表之所以有这样的结构起因于不同的轨道壳层被电子填充。指定原子的化学性质由外侧部分填满的壳层中的电子的数目和角动量决定。（我们把这种电子称为价电子以区别于满壳层中的芯电子。）电子的角动量取决于轨道量子数l，而量子理论给出轨道角动量L的大小L为（），其中l=0、1、2......因此，单体原子中的电子与经典粒子不同，其轨道角动量只能取离散值（即0、、 ......）而不能取连续值。可是，电子在单体原子的中心球对称势中运动故电子的角动量守恒，这是与经典情况相同的。轨道量子数l为0、1、2、和3和电子分别被称为s电子、p电子、d电子和f电子（这些叫法与“尖锐（sharp）光谱线”、“主要（principal）光谱线”、“漫散（diffuse）光谱线”和“尖瘦（fine）光谱线”这些旧术语一致）。
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        角动量是矢量。因此，原子的电子态除了以轨道角动量L的大小L为特征之外还以轨道角动量的分量为特征。在量子理论中，沿某一指定方向（假定沿z轴方向，实验上用极微弱的外加磁场的方向表示）的分量是量子化的，由（）给出，其中的磁量子数m取0、±1、 ......、±（l-1）、±l共（2l+1）个值。因为电子的能量不依赖角动量的方向，所以这（2l+1）个状态具有相同的能量。我们说这（2l+1）个状态是简并的。考虑到另外还有可以取两个值（分别对应自旋向上和自旋向下的电子）的自旋量子数ms，每个l态应为2（2l+1）重简并，因此一个s壳层可容纳2个电子，一个p壳层可容纳6个电子d壳层可容纳10个电子f壳层可容纳14个电子，正如第二章§1中所讨论的那样。

孙超
附注
        电子的角动量的状态对波函数（）有角度依赖性，从而对概率密度（）有角度依赖性。s态的轨道角动量为零，这与球对称的概率密度一致，如图2a所示。l=1且m=0的p态的轨道角动量有角度变化，这个变化由（）给出，其中（）为极角。因为将球极坐标（）转换为笛卡尔坐标时有转换关系（），所以我们通常把l=1且m=0的轨道称为pz轨道。图2b中的左图所示的为pz轨道的概率云，可见它沿z轴凸起，在z轴方向上找到电子的概率最大（），而在x- y平面上找到电子的概率为零（）。
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hand, there is zero probability of finding the electron in the x-y plane (cos *8 = 0 for 
8 =.rr/2). Since we often deal with atoms in a cubic environment in which all three 
Cartesian axes are equivalent (e.g., fcc or bcc crystals), we form the p, and p,, orbitals by 
taking linear combinations of the two remaining states corresponding to in = + 1. They are 
illustrated in fig. 2b. The probability clouds of the five d orbitals corresponding to Z=2 
are shown in fig. 2c. We might expect from fig. 2 that the nature of the bonding between 
atoms will be very dependent on the angular momentum character of the atomic valence 
electrons. This will be discussed in 5 2.2. 

Historically it was the discrete lines of the atomic spectra and their ordering 
according to Balmer’s formula that led Bohr to postulate his famous model of the 
hydrogen atom from which he deduced that the energy levels were given by 

E, = -(me4/ 32.rr2t$d2) / n2, (4) 

S 

1.0 
m = O  

P Z Z b 

X 

d C 

dsz*-rZ dxz  ZY 
m =  0 m =?l 

Z 

Fig. 2. The probability clouds corresponding to s, p and d orbitals are shown in (a), (b) and (c), respectively. 
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        因为
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where e is the magnitude of the electronic charge, E,, is the permittivity of free space, and 
n is a positive integer. The corresponding radii of the so-called stationary orbits were 
given by 

a,, = (4m,-,~~/ m2)n2 .  (5) 

E,, = 2.1799 x 10-"/n2 J 

Substituting into eqs. (4) and (5) the SI values m=9.1096 x lod3' kg, e=  1.6022 x 
C, 4m0c2= lo7, c=2.9979 x 10' m / s  and R = 1.0546 x lo-% Js, we have: 

(6) 

and 

(7) 

The ground stute of the hydrogen atom, which corresponds to n= 1, has an energy, 
therefore, of 2.18 x lo-" J and an orbital Bohr radius of 0.529 x lo-'' m or 0.529 A. 
Because of the small magnitude of the energy in SI units, it is customary for solid-state 
physicists to work in atomic units, where the unit of energy is the Rydberg (Ry) and the 
unit of length is the atomic unit (au). The former is the ground-state energy of the 
hydrogen atom, the latter is the first Bohr radius. Thus, in atomic units we have 

2 a,, =n ail. 

E,, = -n-2 Ry (8) 

and 

(9) 

It follows from eqs. (4), (5), (8) and (9) that A2/2m = 1 in atomic units. Another frequent- 
ly used unit is the electron-Volt, where 1 Ry = 13.6 eV. In this chapter electronic energy 
levels, E, will be given in either eV or Ry, whereas total energies will be given in either 
eV/atom or Ry/aQm. Conversion to other units may be achieved by using 1 
mR~/atom=0.314 kcallmole= 1.32 kJ/mole. Length scales will be given either in au or 
in A, where 1 au=0.529 A. 

Solution of the Schrodinger equation (1) for the hydrogen atom leads directly to 
Bohr's expression (4) for the energy levels, E, where n is identified as the principal 
quantum number. For the particular case of the hydrogen atom where the potential v(r) 
varies inversely with distance r from the nucleus, the energy levels do not depend on the 
angular-momentum quantum numbers I and m. Figure 3 shows the energy levels of 
atomic hydrogen given by eq. (S), where use has been made of the quantum-theory result 
that for a given n the orbital quantum number I must be such that 0 I I I (n - 1). The 
total degeneracy of each orbital including spin, namely 2(2l+ l), is given at the bottom 
of the figure and accounts for the structure of the Periodic Table, discussed in the 
previous chapter. In practice, the energy-level diagram of elements other than hydrogen 
is different from fig. 3, because the presence of more than one electron outside the 
nucleus leads to the potential v(r) no longer showing a simple inverse distance behaviour, 
so that states with the same principal quantum number n but different orbital quantum 

2 a,, = n au. 
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Fig. 3. The energy levels of atomic hydrogen. 

numbers I have their degeneracy lifted. This is illustrated in fig. 4, where it is clear, for 
example, that the 2s level of the second-row elements B to Ne lies well below that of the 
corresponding 2p level. These atomic energy levels were taken from the tables compiled 
by HERMAN and SKILLMAN [1963] who solved the Schriidinger equation (1) self- 
consistently for all the elements in the Periodic Table. 

Figure 4 illustrates several important features to which we will be returning through- 
out this chapter. Firstly, the valence energy levels vary linearly across a given period. As 

0 . .  -I 

Li Be- B C N 0 F Ne 

\''..4s Rb Sr--'-Cd in  Sn Sb Te I Xe 

ES 

__ I 

Fig. 4. The valence s and p energy levels (after HERMAN ANDSKILLMAN [1963]). 
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the nuclear charge Ze increases, the electrons are bound more tightly to the nucleus. 
However, rather than varying as Z2, which would be the result for the energy levels of 
a hydrogenic ion of charge Ze, the presence of the other valence electrons induces the 
linear behaviour observed. Secondly, the valence s and p energy levels become less 
strongly bound as one moves down a given group, which is to be expected from the 
hydrogenic energy levels displayed in fig. 3. But there is an exception to this rule: the 4s 
level has come down and crosses below the 3s level to the left of group VB. This is a 
direct consequence of the presence of the occupied 3d shell (cf. table 2, ch. 2) whose 
electrons do not completely screen the core from the valence 4s electrons, which 
therefore feel a more attractive potential than their 3s counterparts in the preceding row. 
We will see in $6.2 that this reversal in the expected ordering of the valence s energy 
levels is reflected in the structural properties of binary AB compounds containing group 
IIIB elements. Thirdly, it is clear from fig. 4 that the energy diflerence Ep - E, decreases 
as one goes from the rare gases to the alkali metals, from right to left across a given 
period. This will strongly influence the nature of the energy bands and the bonding in the 
bulk, since if Ihe energy difference is small, s and p electrons will hybridize to form 
common sp bands. 

Figure 5 shows the valence s and d energy levels across the 3d and 4d transition 
metal series, after HERMAN and SKILLMAN [1963]. The energy levels correspond to the 
atomic configuration e%, where N is the total number of valence electrons, because this 
is the configuration closest to that of the bulk metal. Again there are several important 
features. Firstly, we see that the energy variation is linear across the transition metal 
series as the d shell is progressively filled with electrons. However, once the noble metal 
group IB is reached the d shell contains its full complement of ten electrons, so that any 
further increase in atomic number Z adds the additional valence electrons to the 

‘4 d 

I I IAE7AYAEIAZIA I6 IIB 

Sc Ti V Cr Mn Fe Co Ni Cu Zn 

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 

Fig. 5. The valence s and d energy levels across the 3d and 4d transition series (after HERMAN AND SKILLMAN 
[ 19631). 

References: p.  129. 



56 D. G. Pettifor Ch. 2, $ 2  

sp outer shell and pulls the d energy rapidly down as is evidenced by the change of slope 
in fig. 5. Secondly, whereas the valence s energy level becomes slightly less strongly 
bound as one moves down a given group, the valence 4d energy level becomes more 
strongly bound than the valence 3d away from the beginning of the transition-metal 
series. This behaviour appears to be related to the mutual coulomb repulsion between the 
negatively charged valence electrons. The 3d orbitals are much more compact than the 
4d orbitals, so that the putting of electrons into the 3d shell leads to a more rapid 
increase in repulsive energy than in the 4d shell. The Sd and 6s energy levels have not 
been plotted in fig. 5 because relativistic effects, which are not included in the 
Schrodinger equation (I), become important for heavy atoms in the Periodic Table. 
Relativistic corrections are discussed in ch. 2 of HERMAN and SKILLMAN [1963]. Thirdly, 
since E, - Ed is about 3 eV in copper but 6 eV in silver, it is not surprising that the 
noble metals display different physical characteristics. 

A concept that is often used in physical metallurgy to discuss and order properties is 
that of atomic size. The microscopic description of the atom, which is provided by 
quantum mechanics, should be able to give some measure of this quantity. We have seen 
that quantum mechanics replaces the stationary Bohr orbits of radius a, by orbitals which 
are not located with a fixed radius but are smeared out in probability-clouds described by 
]+I2. The angular dependence of these probability-clouds has been displayed in fig. 2. 
We now discuss their radial dependence. 

The solution of the Schrodinger equation for a central spherically symmetric potential 
can be written in separable form, namely: 

where r, 8 and 4 are spherical polar coordinates. As expected, the anguEar distribution 
depends only on the angular-momentum quantum numbers E and m, the functions 
Y,"(6 4 ) being the so-called spherical harmonics (see, e.g., SCHIFF [1968]). Y," is a 
constant and Yp is proportional to cos6 as we have already mentioned. The radiaE 
function &(r) depends on the principal and orbital quantum numbers, n and 1 respective- 
ly, and therefore changes with energy level E& For the hydrogen atom the first few 
radial functions are (in atomic units) 

R,, ( r )  = 2e-', (11) 

1 
&(r) = -(I - 3 r)e-'", 11z 

A conceptually useful quantity is the probability of finding the electron at some distance 
r from the nucleus (in any direction), which is determined by the radialprobability 
density, Pn, (r)  = r2Rzl (r). 

Figure 6 shows the radial function R,,, and the probability density, P,,, as a function 
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of r for the Is, 2s and 2p states of hydrogen. We see that there is maximum probability 
of locating the electron at the first Bohr radius a, for the Is state and at the second Bohr 
radius a2 for the 2p state. The average or expectation value of the radial distance r is 
given by: 

r;, = n Z [ l + f ( l - l ( ~ + l ) / n 2 ) ] ,  (14) 

so that fls= 1.5a,, FZs= 1.5% and F2p= 1 . 2 5 ~ ~  Therefore, the 2s orbital is more extended 
than the corresponding 2p orbital, as is evident from fig. 6. This is due to the fact that 
all solutions of the Schrodinger equation must be orthogonal to one another, Le., if &,,, 
and $,,,,m. are any two solutions and $* is the complex conjugate of @, then 

j $L+nlr’m* dr = 0. (15) 

If the states have dzperent angular-momentum character then the angular integration over 
the spherical harmonics [cf. (eq. lo)] guarantees orthogonality. But if the states have the 
same angular-momentum character then the orthogonality constraint implies that: 

Bohr radius a, 

Fig. 6. The radial function R,,, (dashed lines) and the probability density, P,,, (solid lines) as a function of r for 
the Is, 2s and 2p states of hydrogen. 
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j: Z& (I-) Rn,, ( I-),' dr = 0. 

j: R,, ( r )  R,, (r)r' dr = 0, 

(16) 

For the orbitals drawn in fig. 6, therefore, we must have 

(17) 

which can be verified by substituting eqs. (11) and (12) into this equation. This is the 
origin of the node at r = 2  au in R&), where the radial function changes sign. The 3s 
radial function must be orthogonal to the 2s and, therefore, has two nodes, the 4s has 
three nodes, etc. Just as the energetically lowest I s state has no nodes, so the 2p, 3d and 
4f states are nodeless since they correspond to the states of lowest energy for a given l 
(see fig. 3). 

The position of the outer node of the valence electron's radial function may be used 
as a measure of an I-dependent core size, since we have seen that the node arises from 
the constraint that the valence state be orthogonal to the more tightly bound core states. 
This relationship between node and core size has been demonstrated quantitatively for the 
case of the sp core of the 4d transition metals (PETTIFOR [ 19771 and 4 4.3) and has been 
discussed for other elements by BL~CH and SCHATTEMAN [1981]. A not unrelated 
measure of size has been adopted by ZUNGER [1980] who defined I-dependent radii R, 
by the condition (cf. ST. JOHN and BLOCH [1974]) that 

v;"(R,) = 0, (18) 

where v:"(r) is some effective angular-momentum dependent atomic potential (which is 
given by a first-principles screened pseudopotential, cf. 53.3). Figure 7 shows the 
resultant values of - RS-' and - R i l  for the sp bonded elements. We see a linear variation 
across a given period and a close similarity with the valence energy level behaviour 

Fig. 7. The negative of the inverse s and p pseudopotential radii (after ZUNGER [1980]). 
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illustrated in fig. 4. As expected, the s and p radii contract across a period as the nuclear 
charge Ze increases, and they expand down a column as additional full orbital shells are 
pulled into the core region. Figure 7 clearly demonstrates that the sizes of the second-row 
elements B, C, N and 0 are a lot smaller than those of the other elements in their 
respective groups, a fact which manifests itself in their different alloying behaviour (cf. 
fig. 38, below). 

2.2. Bond formation 

In this subsection we consider what happens to the atomic energy levels and wave 
functions as two atoms A and B are brought together from infinity to form the AB 
diatomic molecule. 

Suppose the A and B valence electrons are characterized by the free atomic energy 
levels EA and E, and wave functions @, and @,, respectively. Let us assume, following 
the experience of theoretical quantum chemists, that the rnoZecuZur wave function $M can 
be written as a linear combination of the atomic orbitals, 

(19) +AB = cA+. + cBk9 

where c, and c, are constant coefficients. Then it follows from the Schrodinger eq. (1) 
that 

( A  - EXCAICA + c,+B> = 0 (20) 

where fi is the Hamiltonian operator for the AB dimer, namely fi= - V2 + V,, where we 
have used the fact that A2/2m= 1 in atomic units. Multiplying by $, (or +,) and inte- 
grating over all space we find the well-known secular equation (taking +* = q!J as q!J is 
real) 

HAA - E  HAB - ESAB 

HBA - ES,, HBB - E 

where the Hamiltonian and overlap matrix elements are given by 

and 

~4 = j +a IC~  dr. (23) 

The Hamiltonian matrix elements can be simplified by assuming that the molecular 
potential VAB is given by the sum of the free atom potentials V, and V,. The diagonal 
elements HAA and HBB then take the free atom values EA and EB respectively, provided 
the energy shift due to the neighbouring potential fields can be neglected. The 
off-diagonal element Hm can be written 

HAB = J.t,9,vt,bB dr + ES (24) 
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where E =&(EA+EB) ,  V = * ( V A + V B ) ,  and S=S,. Substituting in equation (21) we obtain 
the secular equation 

= O  (25) 
- AE - (E - E )  

h - (E - E)s +AE - (E - E )  

where AE=(E, - EA) is the atomic energy level mismatch and h=h,hAV$Bdr is the 
hopping or bond integral between atoms A and B. For s orbitals h is negative since the 
average potential V is attractive. 

Equation (25) may be solved for the eigenvalues and eigenvectors. To first order in 
the overlap integral S 

E:, = E - h S f ( 1 + S 2 ) ' h  (26) 

c, i = k ' [1 T (6 + S)/(l+ 6 2 x x  ) ] 
7T 

with 8 =AE/2JhJ.  Therefore, as shown in Fig. 8 s valent diatomic molecules are 
characterized by bonding and anti-bonding states which are separated in energy by the 
amount w, such that 

(30) 

The formation of the bond is accompanied by a redistribution of the electronic 
charge. It follows from equation (27) that the electronic density which corresponds to 
occupying the bonding state with two valence electrons of opposite spin, namely 
PAB= 2 ( $ i B ) 2  may be written in the form 

wiB = 4hZ + (AE)*. 

PA, ('1 = (1 + ai)P, ('1 + (1 - ai)PB(r) + a c ~ b n d  (') 

PA(B)(') = [@A(B) ('11 

Pbond(') = 2$A(rl$B(') - S[PA(') + PB(')]' 

(31) 

where 
2 

(3 la) 

and 

(32) 

ai and a, are determined by the normalised energy level mismatch 6 through 
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cyi = S/(1+ S 2 ) K  

and 

g = 1/(1+ q. 
(33) 

(34) 

For the case of homonuclear diatomic molecules S =0, so that the change in the 
electronic charge distribution on forming the molecule is given solely by the bond charge 
contribution pbond in equation (31). This is illustrated in fig. 9 for the case of the 
hydrogen molecule where we see that, as expected, the electronic charge has moved from 
the outer regions of the molecule into the bond region between the atoms. We should 
note from equations (32) and (23) that the total charge associated with phnd over all 
space is identically zero. Equation (32) shows explicitly that the formation of the bond 
is a quantum interference effect, the charge piling up in the bond region because of the 
interference contribution +A +B. In practice, in order to satisfy the virial theorem, the 
formation of the bond is accompanied by some modification of the free-atom orbitals 
$A,B. which has been discussed by RUEDENBERG [1962] and SLATER [1963]. This leads 
to the energy levels EAB not being directly identifiable as thefree-atom energy levels, a 
point which will be discussed further in Q 5.2 on transition-metal bonding. 

For the case of a heteronuclear diatomic molecule 6 # 0, so that the electronic charge 
distribution in equation (31) contains the ionic contributions aipA and -qpB in addition to 

(a)  

Fig. 8. The bonding (lower lines) and antibonding (upper lines) states for (a) the homonuclear and (b) the 
heternnuclear diatomic molecule. 
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the covalent bond charge contribution aCpbond. cyi and a, are said to measure the degree 
of ionicity and covalency of the bond (see, for example, COULSON etal. [1962], PHILIPS 
[1970] and HARRISON [1980]). Note that a~+cy~=l .  

The term covalency will be used in this chapter to describe the bonding which arises 
from the quantum mixing of valence states on neighbouring sites into the final state wave 
function. It is not necessarily associated with pairs of electrons of opposite spin, as the 
lone electron in the hydrogen molecular ion Hi, for example, shows all the character- 
istics of the covalent homonuclear bond discussed above. 

A diatomic molecule has cylindrical symmetry about the internuclear axis, so that 
angular momentum is conserved in this direction. Quantum-mechanically this implies that 
the state of the molecule is characterized by the quantum number m, where mi? gives the 
component of the angular momentum along the molecular axis. However, unlike the free 
atom where the (21+ 1) different m values are degenerate, the degeneracy is lifted in the 
molecule. By analogy with the s, p, d, ... states of a free atom representing the orbital 
quantum numbers 1=0, 1, 2, ..., it is customary to refer to v, T,  6, ... states of a 
molecule as those corresponding to m=O, f l ,  32 ,  ... respectively. 

Figure 10 illustrates the different characteristics of the v, T and 6 bonds. We have 
seen from our previous discussion on the homonuclear molecule that a given atomic 
energy level will split into bonding and antibonding states separated by 2 Ih I ,  where h 
is the matrix element that couples states +A and t,hB together through the atomic potential 

INTERNUCLEAR AXIS 

Fig. 9. The electron density of the homonuclear molecule (upper panel) can be regarded as the sum of the non- 
interacting freeatom electron densities (lower panel) and the quantum-mchunicully induced bond density 
(middle panel). The dashed curve represents the first-order result, eq. (32), for the bond density. 
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n n  
- PP b 

Fig. 10. The formation of u, ?r and S bonds from s, p and d orbitals, see text. 

v. If are spherically symmetric s orbitals, then a sw bond is formed as shown 
schematically in fig. loa. If (cIkB are p orbitals whose probability clouds are drawn in fig. 
2, then the threefold degenerate free atom level (excluding spin degeneracy) splits into 
the singly degenerate ppa molecular state (m=O) and the doubly degenerate p p r  
molecular state (m=+l) shown in fig. lob. If +A,B are d orbitals, whose probability 
clouds are sketched in fig. 2, then the fivefold degenerate free atom level splits into the 
singly degenerate dda molecular state (m = 0) and the two doubly degenerate molecular 
states ddw (m=kl)  and dd8 (m=k2) as shown in fig. 1Oc. For the case of a hetero- 
nuclear molecule such as NbC where the carbon p orbitals overlap the niobium d orbitals, a 
pd bond will be formed from the pdu and pdm- states illustrated in fig. 1Od. It is clear from 
fig. 10 that the u bond is relatively strong since the angular lobes point along the molecular 
axis and can give rise fo a large overlap in the bonding region. On the other hand, the 
ppw and dds bonds will be relatively much weaker since their angular lobes extend in 
the plane perpendicular to the molecular axis. The importance of u, T and 6 bonding in 
determining the behaviour of the bulk band structure will be demonstrated in 0 4.1. 

The term covalency will be used in this chapter to describe the bonding which arises 
from the quantum mixing of valence states on neighbouring sites into the final-state wave 
function. It is not necessarily associated with pairs of electrons of opposite spin, as the 
lone electron in the hydrogen molecular ion H i ,  for example, shows all the character- 
istics of the covalent homonuclear bond discussed above. 

2.3. Band formation 

Figure 11 illustrates how the &-atom energy levels E, and Ep broaden into bands as the 
atoms are brought together from infinity to form the bulk. Just as the single atomic 
energy level splits into two energy levels on bringing two atoms together (cf. fig. Sa), so 
the single level on a free atom splits into N levels on bringing N atoms together, thereby 
conserving the total number of electronic states. These levels lie between the bottom of 
the band, which: represents the most bonding state, and the top of the band, which 
represents the most antibonding state. Since N = 10’’ for 1 cm3 of bulk material, these N 
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I 

VOLUME 

Fig. 11. Energy band formation. 

levels form a quasi-continuous band of states and it is customary to work with the 
density of states, n(E). where m= n(E) dE gives the number of states in the energy range 
from E to E + dE. The conservation of states requires that: 

n , ( E ) d E =  6 for a =  p, (35) I: {: ca J- 
where n,(E) is the density of states per atom associated with a given atomic s, p or d 
level. 

In metals at their equilibrium volume, the bands corresponding to different valence 
energy levels overlap and mix as shown on the left-hand side of fig. 11. The mixing or 
hybridization in simple metals is such as to produce nearly-free-electron-like behaviour 
of the energy bands and density of states, which is discussed in the following section. On 
the other hand, the density of states in transition metals is dominated by a well defined 
d band, which is accurately described within the tight-binding approximation by a linear 
combination of atomic d orbitals and is discussed in 5 4. 

3. Simple-metal bands 

3.1. The free-electron approximation 

It had been realized before the advent of quantum mechanics that some metallic 
properties such as electrical or thermal conductivity could be well understood by 
regarding the valence electrons as a non-interacting gas of particles which were free to 
travel throughout the metal without being affected by the parent ions. However, it 
remained for quantum mechanics to remove a striking failure of the classical model, 
namely its inability to explain the linear temperature dependence of the electronic heat 
capacity, since according to classical statistical mechanics a free particle has a constant 
heat capacity of 5, where kB is the Boltzmann constant. 

The SchriSdinger equation for a free-electron gas may be written in atomic units as 
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-(-$ + -$ + $) $(r) = E$(r) 

If the electrons are contained within a box of side L then a normalized solution of eq. 
(36) is the pZane wave: 

which can be seen by writing k w  as k s  + k,y + k j  and substituting eq. (37) into eq. (36). 

(38) 

Since the kinetic energy equals p2/2m where p is the electronic momentum, it follows 
from eq. (38) that 

This solution corresponds to an electron with kinetic energy E given by: 

E = k,’ + ky” + k,‘ = k Z .  

p z  = 2mE = 2mk2 = A2k2, 

p = Ak = h/A, 

(39) 

using h2/2m = 1.  Thus, we have recovered the de Broglie relation 

(40) 

because k=2rr/A where A is the wavelength of the plane wave. 
The wavelength, A, of the plane wave is constrained by boundary conditions at the 

surface of the box. For the case of the Bohr orbits in the hydrogen atom, de Broglie had 
argued that A must be such that integer multiples of the wavelength fit around the 
circumference of the orbit. Similarly, imposing periodic boundary conditions on the box, 
which in one dimension corresponds to joining both ends in a closed ring, we have that 

(41) n,A, = nyAy = n,A, = L, 

where nx, ny, n, are integers. Therefore, 

so that the allowed values of the wave vector k are discrete and fall on a fine mesh as 
illustrated in fig. 12. 

By Pauli’s exclusion principle each state corresponding to a given k can contain IWO electrons 
of opposite spin. Therefore, at absolute zero all the states k will be occupied within a sphere of 
radius kF, the so-called Fermi sphere, because these correspond to the states of lowest energy (cf. 
fig. 13a). The Fermi wave vector kF may be related to the total number of valence electrons, N, by 

4 & 2 ~ / ( 2 ~ ) ~  = N ,  (43) 

where V =  L3, since it follows from eq. (42) that unit volume of k-space contains V / ( ~ T ) ~  
states capable of holding two electrons each. Thus, 

k, = (37~’N/V)1‘~ (44) 
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Fig. 12. The fine mesh of allowed k values. At absolute zero only the states k within the Fermi sphere are occupied. 

and the corresponding Fermi energy, EF is given by 

EF = (37r*N/v)2/3. (45) 

The electron concentration, N N ,  for sodium, magnesium and aluminium at their equilibrium 
atomic volumes is such that the Fermi energy EF equals 3.2, 7.1 and 11.6 eV respectively. 

The free-electron densify ofstares n(E) may be obtained from eq. (43) by writing it 
in the form 

N ( E )  = (V/k2)E”2, (46) 

n(E) = ( V/2v2) E’’2, 

where N(E) is the total number of states of both spins available with energies less than 
E. Differentiating eq. (46) with respect to the energy gives the density of states: 

(47) 

which is illustrated in fig. 13b. We can now see why the experimental electronic heat 
capacity did not obey the classical result of #kB. By Pauli’s exclusion principle the 
electrons can be excited only into the unoccupied states above the Fermi energy EF. 

E, E 

Fig. 13. The free-electron energy dispersion E(k) (a) and density of states n(E) (b). 
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Therefore, only those electrons within about kBT of EF will have enough thermal energy 
to be excited acmss EF. Since kBT = 0.03 eV at room temperature, these electrons will 
comprise a very small fraction, f = kBT/EF, of the total number of electrons N. The 
classical heat capacity is accordingly reduced by this factorJ as is observed experimen- 
tally. Using the correct Fermi-Dirac statistics to describe the occupation of the electron 
states, we find (see, e.g., KITTEL [1971]): 

v' 
2 

C, = -k,(k,T/E,) (48) 

in agreement with the previous qualitative argument. 

3.2. Nearly-free-electron approximation 

The electrons in a real metal are affected by the crystalline lattice, since the potential 
which they feel is not uniform but varies periodically as 

v(r + R) = u(r) (49) 

where R is any lattice vector. (For simplicity we will be considering only those crystaI 
structures, such as fcc or bcc, in which there is only one atom per primitive lattice site, 
in contrast to hcp or the diamond structure, for example, which have a basis of two 
atoms, cf. KITTEL [1971].) Consider first an infinite one-dimensional periodic lattice of 
atoms with repeat distance a such that 

(50) v(x + nu) = 4.). 
Because all the atoms are equivalent, the probability of locating the electron about a site 
must be the same for all sites, so that: 

For n= 1 this implies that 

* (x  + a) = eik.+(x), 

where k is a number (in units of V u )  which specifies the phasefactor eika linking the 
wave functions on neighbouring sites. Repeating eq. (52) n times gives: 

+k(x +.a) = eih"+k(x), (53) 

which is the usual statement of Bloch 's theorem in one dimension. Thus the translational 
symmetry of the lattice leads to the eigenfunctions being characterized by the Bloch 
vector, k. However, k is only defined modulo ( 2 ~ / a ) ,  since k+m(2?r/a) results in the 
same phase factor in eq. (53) as k alone. It is, therefore, customary to label the wave 
function a,bk by restricting k to lie within the first Brillouin zone, defined by 

(54) - r / a  5 k I +r ia .  
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We note that in one dimension IM is a direct lattice vector, whereas m(21r/a) is a 
reciprocaE lattice vector. Their product is an integer multiple of 21r. 

Extending these ideas to three dimensions, Bloch’s theorem, eq. (53) may be written 
as: 

qk(r + R) = eikaRqk(r), (55) 

where R is any direct lattice vector which may be expressed in terms of the fundamental 
translation vectors a,, a,, a3 as: 

R = ?a2 + n2a, + $a3, 

G = m,b, + m2b2 + %b3, 

b, = (27i-/T)U, X U ,  

(56) 

where n,, n,, nj are integers. The corresponding reciprocaE lattice vectors are defined by: 

(57) 

where m,, in2, m3 are integers and the fundamental basis vectors are:* 

(58) b2 = (21r/T)U3 X U I  , 

b3 = (27i-/T)U, X U ,  

(59) 

1 
with T = lalo(a, x a,) 1 being the volume of the primitive unit cell defined by a,, a, and 
u3. It is apparent from their definition (58) that 

ai e bj = 2d,, 

where 6, = 1 for i = j but zero otherwise. 
The phase factor in eq. (55) only defines the Bloch vector within a reciprocal lattice 

vector G since it follows from eqs. (56)-(59) that G.R is an integer multiple of 21r. Just 
as in the one-dimensional case, it is customary to label the wave function by restrict- 
ing k to lie within the Jirst Brillouin zone which is the closed volume about the origin in 
reciprocal space formed by bisecting near-neighbour reciprocal lattice vectors. For 
example, consider the simple cubic lattice with basis vectors a,, a,, a3 along the Cartesian 
axes x, y, z respectively. Because a,=a,=a,=a it follows from eq. (58) that the 
reciprocal space basis vectors b,, b,, b, also lie along x, y and z respectively, but with 
magnitude (2m/a). Thus, the reciprocal lattice is also simple cubic and it is shown in fig. 
14 in the x-y plane. It is clear that the bisectors of the first nearest-neighbour (100) 
reciprocal lattice vectors form a closed volume about the origin which is not cut by the 
second or any further nearest-neighbour bisectors. Hence, the Brillouin zone is a cube of 
volume ( 2 ~ / a ) ~ .  From eq. (42) it contains as many allowed k points as there are 
primitive unit cells in the crystal. Figure 15 illustrates the corresponding Brillouin zones 
for the body-centred cubic and face-centred cubic lattices (see, e.g., Krrm. [1971]). 

The solutions Ek of the Schrodinger equation for k lying within the Brillouin zone 

* Note the additional factor of 29r compared to the definition of reciprocal lattice vectors in the appendix of ch. 11. 
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Zndzone 3rd zone 4th zone 

Fig. 14. The first four zones of the simple cubic lattice corresponding to k, = 0. The dotted circle represents the 
cross-section of a spherical Fermi surface. 

determine the band sfrucfure. Figure 16 shows the band structure of aluminium in the 
IlOO) and 1111) directions, after MORUZZI et al. [1978]. It is very similar to the free- 
electron band structure 

Ek =@+Cy (60) 

which results from folding the free-electron eigenvalues shown in fig. 13a into the first 
Brillouin zone. This “folding-in” is illustrated in fig. 14 for the case of the simple cubic 
lattice. For this two-dimensional cross-section we see that the four contributions to the 
second zone 2 may be translated through (100) reciprocal lattice vectors into the four 

fcc bcc 

Fig. 15. The fcc and bcc Brillouin zones. r labels the centre of the zone. The intersections of the 1100) and 
11 11) directions with the Brillouin-zone boundary are labelled X and L in the fcc case and H and P in the bcc 
case. 
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zones 2: which together completely fill the reduced Brillouin zone in the x-y plane. 
Similarly, the third and fourth zones shown in fig. 14 may each be translated through 
reciprocal lattice vectors to fill the first Brillouin zone. For the fcc lattice the two lowest 
eigenvalues given by eq. (60) in the I l00} direction are: 

E!) = k 2 ,  E?) = (k +g)2, (61) 

where k =  (k, 0,O) and g= (2?r/a)(Z, 0,O). These two eigenvalues are degenerate at the 
zone boundary X, where k=(2?r/a)( l ,  0, 0) because from eq. (61) they both take the 
value 4$/a2. For aluminium a=7.60 au and 4 d / a 2 = 9 . 3  eV, so that the two free- 
electron eigenvalues given by eq. (61) reflect the broad behaviour of the band structure 
shown along rX in fig. 16. 

However, in order to recover the energy gap at the zone boundary X, it is necessary to 
lift the free-electron degeneracy by perturbing the free-electron gas with the periodic potential 
of the crystalline lattice. Within the nearly-free-electron (NE) approximation this is 
achieved by writing the wave function Jlk as a linear combination of the plane-wave 
eigenfunctions corresponding to the two free-electron eigenvalues given by eq. (61); that is: 

(62) & = C , g p  + e’@, 

+f’ = v-“~ exp(ik r),  

where from eq. (37): 

(63) 

+f’ = v-”~ exp[i(k + g )  r].  

Substituting eq. (62) into the Schrtidinger equation (l), pre-multiplying by +:)* or$:)* 
and integrating over the volume of the crystal, V, yields the NFE secular equation: 

)[ ::) = 

k’ - E 4200) 

u(200) (k + g)’ - E 

4200) is the ( 2 ~ / a ) ( 2 ,  0, 0) Fourier component of the crystalline potential, where 

1 
V 

v(g) = -I v(r) eig”dr. (66) 

The energy, E in eq. (65) is measured with respect to the average potential ~(000). 
Non-trivial solutions exist if the secular determinant vanishes, i.e. if 

k’ - E ~(200) 
j = O .  

~(200) (k + g)2 - E 

This quadratic equation has solutions 

Ek = + [ k 2  + (k + g)2]  f +{[(k + 9)’ - k2]2 + [ 2 v ( 2 0 0 ) ~ ~ .  
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L r X 

Fig. 16. The band strufture of fcc aluminium (after MORUZZI etal. [1978]). 

Therefore, at the zone boundary X where k2 = (k +g)', the eigenvalues are given by 

(69) E, = 47.r2/u2 4 ~(200) 

and the eigenfunctions are given from eqs. (62) and (65) by: 

cos ( 2 4 4  
h = ( 2 W  { sin(2m/u) * 

Thus the presence of the periodic potential has opened up a gap in the free electron band 
structure with energy separation 

Because the energy gap at X in aluminium is about 1 eV (cf. fig. 16), the magnitude of 
the Fourier component of the potential within this simple IWE treatment is only 0.5 eV. 
This is small compared to the free-electron Fermi energy of more than 10 eV in 
aluminium and, therefore, the band structure Ek and the density of states n(E) are nearly- 
free-electron-like to a very good approximation. 

The NFE behaviour has been observed experimentally in studies of the Fermi surface, 
the surface of constant energy Ep in k-space, which separates filled states from empty 
states at T=O. For a free-electron gas the Fermi surface is spherical as illustrated in fig. 
12. However, in simple metals we have seen that the he-electron band structure is 
perturbed by the periodic lattice potential, and energy gaps open up across zone bound- 
aries. As illustrated in fig. 14 for the simple cubic lattice, a spherical free-electron Fermi 
surface (whose cross-section is represented by the circle of solid dots) will be folded into 
the first Brillouin zone by the relevant reciprocal lattice vectors. The states in the second 
zone 2, for example, are folded back into 2' in the reduced zone, thereby giving rise to 
the shaded occupied regions of k-space and the corresponding Fermi surface indicated in 
the lower panel of fig. 14. Similarly, the occupied states in the third and fourth zones are 
folded back into the reduced Brillouin zone as shown. Therefore, even though the 
crystalline potential may be very weak, it is sufficient to destroy the spherical free- 
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151 ZONE-FULL 2nd ZONE-POCKET OF HOLES 

3rd ZWIE-REGIONS OF EL'NS 4f i  ZWsE-POCKETS OF EL'NS 

Fig. 17. The free-electron Fermi surface of aluminium (after HARRISON [19591). 

electron Fermi surface and to create a new Fermi surface topology, as is illustrated in fig. 
14 by the appearance of the electron pockets in the third and fourth zones. A very simple 
procedure for constructing the Fermi surfaces of free-electron-like materials has been 
suggested by HARRISON [1959, 19601 and fig. 17 shows the resulting Fermi surface of 
fcc aluminium. A much more detailed treatment of Fermi surfaces may be found in 
HARRISON [1966], HEINE and WFAIRE E19701 and K I ~ L  [1971], where the interested 
reader is also referred for a discussion of transport properties and concepts such as holes 
and effective mass. 

3.3. Volume dependence 

Although the energy bands of simple metals appear to be describable by the NFE 
approximation as discussed in the previous subsection, there is a major difficulty. If the 
(200) Fourier component of the aluminium lattice potential is estimated from Jirst 
principles using eq. (66), then 

But the magnitude of this is ten times larger than the value we obtained byjtting to the 
first-principles band structure of MORUZZI et al. [1978], namely lv(200)I =0.5 eV. 
Moreover, by looking at the symmetry of the eigenfunctions at X, we see from fig. 16 
that the bottom of the band gap corresponds to X4, or p-like symmetry whereas the top 
of the band gap corresponds to X, or s-like symmetry (see, e.g., TINKHAM [1964]). It 
follows from fig. 2 and eq. (70) that the NFE states at the bottom and top of the band 
gap correspond to sin ( 2 7 4 ~ )  and cos (2TX/a), respectively. Therefore, in the state with 
lower energy the electron is never located in the planes containing the ion cores, which 
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correspond to x =: na/2 for the fcc lattice, since sin ( 2 w d a )  vanishes. Instead, the electron 
has maximum probability of being located midway between these atomic planes. This 
implies that the relevant Fourier component of the atomic potential is repulsive, thereby 
driving the electrons away from the ion cores, i.e. 

~“(200) = + O S  eV. (73) 

The origin of the discrepancy between eqs. (72) and (73) is easily found once it is 
remembered that the NFE bands in aluminium are formed from the valence 3s and 3p 
electrons. These states must be orthogonal to the s and p core functions as outlined in 
0 2.1 and they, therefore, contain nodes in the core region as illustrated for the case of 
the 2s wavefunction in fig. 6. In order to reproduce these very-short-wavelength 
oscillations, plane waves of very high momentum must be included in the plane-wave 
expansion of I)k, so that a linear combination of only the two lowest energy plane waves 
in eq. (62) is an extremely bad approximation. In 1940, HERRING circumvented this 
problem by starting at the outset with a basis of plane waves that had already been 
orthogonalized to the core states, the so-called orthogonalized plane-wave (OPW) basis. 
The OPW method led to a secular determinant for the eigenvalues that was identical to 
the hiFE determinant, except that in addition to the Fourier component of the crystal 
potential v(G) there is also a repulsive contribution coming from the core-orthogonality 
constraint. This tended to cancel the attractive coulomb potential term in the core region, 
thereby resulting in much weaker net Fourier components and hence nearly-free-electron- 
like behaviour of the band structure Ek for the simple metals. 

This led to the concept of the pseudopotential in which the true potential u(r) in the 
Schrodinger equation (1) is replaced by a much weaker potential ups@) which is chosen 
to preserve the original eigenvalues Ek so that 

(see, e.g., HARRISON [1966] and HEINE and WEAIRE [1970]). The pseudo-eigenfunctions, 
&, however, differ from the true eigenfunctions I)k because in general they do not contain 
the nodes in the core region as these have been pseudized-away by the inclusion of the 
repulsive core component in up. A plane-wave expansion of 4k therefore, leads to rapidly 
convergent eigenvalues .& in eq. (74). Thus, the NFE approximation will provide a good 
description of the band structure of simple metals provided the Fourier components of the 
pseudopotential rather than the true potential are taken in the NFE secular equation (67). 

Pseudopotentials are not unique, and certain criteria have been given for their choice 
(see, e.g., BACH~LET et al. [ 19821 and VANDERFIILT [ 19901). However, in this chapter we 
shall describe only the Ashcroft empty-core pseudopotential because of its simplicity. In 
1966, ASHCROFT assumed that the cancellation between the repulsive core-orthogonality 
contribution and the attractive coulomb contribution is exact within some ion core radius 
R,, so that: 

r c R, 
-2Z/r r > R, 

v?(r) = { O for (75) 
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Fig. 18. The Ashcroft emptycore pseudopotential. 

where the ionic potential falls off coulombically outside the core (cf. eZ=2 in atomic 
units). The Ashcroft empty-core pseudopotential is shown in fig. 18. The resulting ionic 
lattice has Fourier components given by eq. (66), namely: 

v: (4) = - (87rZ/fkq2) COS qR,, 

where SZ is the volume per atom. In the absence of the core R,=O and the Fourier 
components are negative as expected. However, in the presence of the core the Fourier 
components oscillate in sign and may, therefore, take positive values. For the case of 
aluminium the Ashcroft empty-core radius is about 1.2 au (cf. table 16-1 of HARRISON 
[ 19801) and uE(200) will, therefore, be positive. The corresponding Fourier components 
u&) are obtained from eq. (76) by allowing the free-electron gas to screen the bare 
ionic lattice. The resulting Fourier components of the aluminium potential are illustrated 
in fig. 19 for the more sophisticated HEINE and ABARENKOV [1964] pseudopotential. We 
see that the values of ups( 111) and ~ ~ ( 2 0 0 )  are in good agreement with the values, 0.17 
and 0.53 eV respectively, which are obtained from fitting the first-principles band structure 
within the NFE approximation (cf. fig. 16, eq. (71) and p. 52 of MORUZZI etal. [1978]). 

Figure 20 shows the densities of states, n(E> of the sp-bonded simple metals, which 
have been computed from first principles by MORUZZI et al. [1978]. We see that Na, Mg 

Fig. 19. The HEINEAND ABARENKOV [I9641 aluminium pseudopotential u,,(q). The two points give the values 
of u,(lll) and u,(200) deduced from fig. 16 using eq. (71). 
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Fig. 20. The density of states, nQ. of sp-bonded metals (after MORUZZI et al. [1978]). 

and A1 across a period and Al, Ga and In down a group are good NJ3 metals, because 
their densities of states are only very small perturbations of the free-electron density of 
states shown in fig. 13b. However, we see that Li and Be display very strong deviations 
from free electron behaviour. This is a direct consequence of these elements having no 
p core electrons, so that there is no repulsive core-orthogonality component to cancel the 
attractive coulomb potential which the valence 2p electrons feel. This leads to sizeable 
Fourier components of the potential and hence very large band gaps. For example, in fcc 
Be, Eg!p =5.6 e V  compared to the gap of only 0.34 eV in Al, where L is the point 
( 2 ~ / a ) ( i , i , i )  in fig. 15. In fact, the band gaps in different directions at the Brillouin zone 
boundary (cf. fig. 16) are nearly large enough for a gap to open up in the Be density of 
states, thereby leading to semiconducting behaviour. We note that the effective potential 
which the valence electrons feel in Li or Be depends on whether they have s- or p-type 
character, because there are 1s core states but no p core states. Such an 1-dependent 
potential is said to be non-local (cf. HARRISON [1966] and HEINE and WEAIRE [1970]), 
whereas the Ashcroft empty-core pseudopotential of fig. IS is local. 

The heavier alkalis K and Rb and alkaline earths Ca and Sr have their occupied 
energy levels affected by the presence of the respective 3d or 46 band which lies just 
above the Fermi energy (cf. the relative positions of the s and d free-atom energy levels 
in fig. 5). This leads to a more than free-electron admixture of 1 = 2 component into the 
occupied energy states, which requires the use of non-local pseudopotential theory for 
accurate agreement with experimental properties (see e.g., TAYLOR and MACDONALD 
[1980] and MOR.IARTY [1982]). It is clear from fig. 20 that Sr is not a simple NFE metal 
since the perturbation is very strong and the hybridized bottom of the d band has moved 
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below the Fermi energy. Just as in Be, a gap has nearly opened up at EF, and theoretical- 
ly it requires only 0.3 Gpa of pressure to turn Sr into a semiconductor, which is in 
reasonable agreement with high-pressure resistivity data (JAN and SKRIVER [1981]). The 
group-IIB elements Zn and Cd, on the other hand, have their valence states strongly 
distorted by the presence of the$lled d band. In fig. 5 we see that the 5s-4d energy 
separation in Cd is larger than the 4s 3d separation in Zn, which results in the Cd 4d 
band lying about 1 eV below the bottom of the valence 5sp band (p. 152 of MORUZZI 
et al. [1978]). Figure 20, therefore, demonstrates that not all simple metals display good 
NFE behaviour and particular care needs to be taken with Li, Be and the group-II 
elements on either side of the transition metal series. 

The presence of the ion core in simple metals determines the volume dependence of 
the energy bands. Wigner and Seitz had calculated the behaviour of the bottom of the 
NFE band in sodium in their classic paper of 1933. They argued that since the bottom of 
the band corresponded to the most bonding state, it satisfied the bonding boundary 
condition implicit in eq. (27), namely that the gradient of the wave function vanishes 
across the boundary of the Wgner-Seitz cell. This cell is formed in real space about a 
given atom by bisecting the near-neighbour position vectors in the same way that the 
Brillouin zone is formed in reciprocal space. The Wigner-Seitz cell of the bcc lattice is 
the fcc Brillouin zone and vice versa (cf. KI~TEL [1971]). Since there are 12 nearest 
neighbours in the fcc lattice and 14 first and second nearest neighbours in the bcc lattice, 
it is a very good approximation to replace the Wigner-Seitz cell by a Wigner-Seitz 
sphere of the same volume (cf. fig. 15). Imposing the bonding boundary condition across 
the Wigner Seitz sphere of radius S, where 

n = 471s3, (77) 
the energy of the bottom of the band rl is fixed by 

[dR,(r9 E)/drlr=s,E=r, = 0, 

where Rs(c E) is the 1 = 0 solution of the radial Schrodinger equation within the Wigner- 
Seitz sphere. The bonding boundary condition is determined by the 1=0 radial function 
because the bottom of the NF% band at rl is a pure s state (cf. fig. 16). 

Figure 21 shows the resulting behaviour of the bottom of the band rl, in sodium as 
a function of S after WIGNER and SEITZ [1933]. We see that as the free atoms are 
brought together from infinity, the bonding state becomes more and more bonding until 
about 3 au when r,. turns upwards and rapidly loses its binding energy. This behaviour 
is well described ut metallic densities by the Frohlich-Bardeen expression, 

ry = -(3z/s)[1- (RJS,’] (79) 

since the single valence electron of sodium is assumed to feel only the potential of the 
ion at the Wigner-Seitz sphere centre so that over the boundary 

v(s) = -2z/s, (80) 
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Fig. 21. The total energy, V, as a function of Wigner-Sei@ radius, S, for sodium (after WIG= and SEITZ 
[1933]). The bottom of the conduction band, I?,, is given by the lower curve, to which is added the average 
kinetic energy per electron (the shaded region). 

where Z =  1 for the monovalent alkali metals (see, e.g., 9 3.2 of CALLAWAY [1964]). R, 
may be identified as the radius of an Ashcroft empty-core pseudopotential, because the 
potential energy of one electron distributed uniformly throughout the WignerSeitz 
sphere with an Ashcroft ionic potential at its centre is given by eq. (79). It follows from 
eq. (79) that the maximum binding energy of this state rl, occurs for 

S, = *RC. (81) 

Since for sodium R, = 1.7 au (ASHCROFT and LANGRETH [1967] and HARRISON [1980]), 
eq. (81) predicts that rl, has a minimum at about 2.9 au. This is in good agreement with 
the curve in fig. 21, which was obtained by solving the radial Schrijdinger equation 
subject to the boundary condition eq. (78). 

WIGNER ancl Smz [1933] assumed that the valence electrons of sodium have free- 
electron-like kinetic energy and density of states, which from fig. 20 is clearly a good 
approximation. It follows from eqs. (45) and (77) that the Fermi energy EF may be 
written as: 

4 = rF + (9.rr/4)"/s2. (82) 

In 9 5 we follow up our understanding of the behaviour of the energy bands by discuss- 
ing the total energy of simple metals and the different factors influencing bulk properties 
such as equilibrium atomic volume and bulk modulus. 

4. Transition-metal bands 

4.1. Tight-binding approximation 

Transition metals are characterized by a partially filled d band, which is well 
described within the tight-binding (TB) approximation by a linear combination of atomic 
d orbitals, We shall illustrate the TB method (see, e.g., CALLAWAY [1964], PETTIFOR 
E19921 and SUTTON [1993]) by considering first the simpler case of a lattice of atoms 
with overlapping s-state atomic wave functions #, and corresponding free atomic energy 
levels E,. Generalizing eq. (19) for the diatomic molecule to a periodic lattice of N 
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atoms, we can write the crystal wave function t,bk as a linear combination of the atomic 
orbitals: 

where the phase factor automatically guarantees that satisfies Bloch's theorem, eq. 
(55). Assuming that the crystal potential is the sum of the atomic potentials v(r - R) and 
following the method and approximations outlined through eqs. (19)-(30), the eigenvalue 
Ek may be written as: 

Ek = E, + Ce"" [#:(r)~(r)#~(r - R) dr, 
R#O 

where the non-orthogonality and three-centre contributions have been neglected because 
they do not contribute to first order. Since the atomic s orbitals are spherically symme- 
tric, the SM hopping matrix elements in eq. (84) do not depend on the direction of R but 
only on the magnitude R (see fig. lo), so that 

Ek = E, + xeik'RssuR. 
R#O 

The TB band structure Ek for a simple cubic lattice with s orbitals may now be 
quickly found. Assuming that the hopping matrix elements couple only to the sixJirst 
nearest-neighbour atoms with position vectors R equal to (h, 0, 0) (0, & a, 0)  and (0, 0, 
+a) eq. (85) gives 

Ek = E, + ~ S S ~ , ( C O S  k.p + COS kyu + COS kp), (86) 

where k = (k, ,$, k,) Thus the eigenvalues vary sinusoidally across the Brillouin zone. The 
bottom, E and top, E+ of the s band correspond to the Bloch states at the centre of the 
Brillouin zone (0, 0, 0) and at the zone boundary ( v / u ) ( l ,  1, 1) respectively. It follows 
from eq. (86) that 

(87) 

because SM, is negative as can be deduced from fig. 10 and eq. (84). Comparing F with 
eq. (26) and fig. 8a for the diatomic molecule, we see that the most bonding state in the 
simple cubic lattice corresponds to maximum bonding with all six nearest neighbours 
simultaneously, which from fig. 10 is only possible for the spherically symmetric s 
orbital case. 

The structure of the TB p band may be obtained by writing I,%k as a linear combination 
of the three p Bloch sums corresponding to the atomic p,, py, and p, orbitals, where x, y 
and z may be chosen along the crystal axes for a cubic lattice. That is, 

E* = E, 1 G/ssu,~ 

#k(r) = N - ~  C caxeik*R+a(r - R), 
a=x,y.z R 

which leads to the 3 x 3 TB secular determinant for the p band, namely 
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where 

It is clear from fig. 10 that the hopping matrix elements in eq. (90) do depend on the 
direction of R btecause the px. p,., and p, orbitals are angular dependent. SLATER and 
KOSTER [1954] showed that they can be written directly in terms of the two fundamental 
hopping integrals ppo, and p p R  and the direction cosines (1, m, n) of R. 

For a simple cubic lattice with only first-nearest-neighbour hopping the matrix 
elements Taa. may be evaluated to give 

T, = 2ppv, cos k,a + 2pp~, (cos  k p  + cos k p ) ,  

with T, and T, obtained from T, by cyclic permutation. The off-diagonal matrix 
elements vanish for the simple cubic lattice. Therefore, at the centre of the Brillouin 
zone, r, the eigenvalues are triply degenerate (if spin is neglected) and given from eqs. 
(89) and (91) by 

This degeneracy is partially lifted along the 1100) symmetry direction, because from eq. 
(91) the band structure consists of the singly degenerate level 

E:) = E, + 4pp.rr, + 2ppv, cos k,a (93) 

and the doubly degenerate level 

E:) = E, + 2(ppv, + ppr,)  + 2ppn, cos kxa, (94) 

where the former results from the p, orbitals and the latter from the p,. and p, orbitals. 
The degeneracy is totally lifted along a general k direction as from eqs. (89) and (91) 
there will be three distinct non-degenerate energy levels. 

Finally, the structure of the TB d band may be obtained by writing +kk as a linear 
combination of thejve d Bloch sums corresponding to the five atomic orbitals illustrated 
in fig. 2. This results in a 5 x 5 TB secular determinant from which the d band structure 
may be computed (SLATER and KOSTER [1954]). Starting from first-principles band 
theory, ANDERSEN [ 19731 has shown that within the atomic sphere approximation (ASA) 
canonical d bands may be derived which depend neither on the lattice constant nor on 
the particular transition metal, but only on the crystal structure. This approximation leads 
to hopping integrals of the form 

ddu, =-6 

dd8, =-1 
(95) 
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where W is the width of the d band, which is obtained by imposing the bonding and 
antibonding boundary conditions over the Wigner-Seitz sphere of radius S .  It follows 
from eq. (95) that the hopping integrals scale uniformly with the band width W and do 
not depend on the lattice constant as it is the ratio S/R that enters. They fall off quickly 
with distance as the inverse fifth power. 

Figure 22 shows the resulting d band structure for the fcc and bcc lattices along the 
1111) and 1100) directions in the Brillouin zone (ANDERSEN E19731). We see that at the 
centre of the Brillouin zone, r, there are two energy levels, one of which is triply 
degenerate, the other doubly degenerate. The former comprises the xy, yz and xz, Tzg 
orbitals which from fig. 2 are equivalent to one another in a cubic environment. The 
latter comprises the 2 - y', 3 2  - ?Eg orbitals which by pointing along the cubic axes 
are not equivalent to the TQ, orbitals. The degeneracy is partially lifted along the 1111) 
and /loo) symmetry directions as indicated in fig. 22, because eigenfunctions which are 
equivalent at k = 0 may become non-equivalent for k # 0 due to the translational phase 
factor exp (ik0R) (see fig. 8.8 of TMKHAM [1964]). 

The band structure of NiO (MATTHEIS [1972]) is shown in fig. 23 because it illustrates 
s, p and d band behaviour. The three bands arise from the oxygen 2s, 2p and the nickel 3d 
valence levels, respectively, the ordering being determined by the relative positions of their 
atomic energy levels in figs. 4 and 5. The Brillouin zone is face-centred cubic since the NaCl 
crystal structure of NiO consists of two interpenetrating fcc lattices, one containing the 
sodium atoms, the other the chlorine atoms. In the 1100) direction along rX the s and p band 
structure is not too dissimilar from that given for the simpZe cubic lattice by eqs. (sa), (93) 
and (94). The d band structure along r X  in NiO is also similar to that of the fcc canonical d 
band in fig. 22, except that one level, which joins the upper state at I' to the bottom of the 
canonical d band at X, has been pushed up and runs across the top of the d band in NiO. This 
is the result of mixing or hybridization between the s, p and d blocks in the TB secular 
determinant (SLATER and K o m  [1954]), whose strength is determined for example by the 
non-vanishing pda and pdm hopping matrix elements shown in fig. 10. This mixing can 
only occur between Bloch states with the same symmetry (TINKHAM [1964]). At the zone 
boundary X there is only one d band state which has the same symmetry XI as the s 
band state. (There are no d band states with the same symmetry as the p band states at 
X.) The influence of the hybridization on the band structure is enhanced by orthogonality 
constraints which can add a further repulsive contribution to the d states because they 
must be orthogonal ta the valence s and p levels lying beneath them in energy. 

f c c  bcc 

Fig. 22. The fcc and bcc d band structure (after ANDERSEN [1973]). 
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d band 

p band 

s band 

Fig. 23. The band structure of NiO (after MAT~~IEISS [1972]). 

The bands in fig. 23 illustrate an apparent failure of one-electron theory. NiO is an 
insulator. However, adding the ten nickel and six oxygen valence electrons to the bands 
shown results in the d band containing only eight of its possible ten electrons [cf. eq. 
(35)]. Thus, the band structure presented in fig. 23 predicts that NiO is a metal. The 
origin of this dramatic failure of band theory was investigated by MOTT [1949], who 
considered what happens to a lattice of hydrogen atoms as the lattice constant is 
decreased from some very large value. Initially each atom has a single Is valence 
electron associated with it as in the free atom state. The system will, therefore, be 
insulating, because in order for an electron to hop through the lattice it requires an 
energy given by the difference between the ionization potential of 13.6 eV (correspon- 
ding to the atomic 1s level) and the electron affinity of 0.75 eV. This energy difference 
of about 13 eV is a measure of the coulomb repulsion U between two 1s antiparallel spin 
electrons sitting on the same atomic site. However, as the lattice constant decreases the 
atomic 1s level broadens into a band of states of width W so that the insulating gap will 
decrease like U - W. Therefore, for some sufficiently small lattice spacing W will be 
large enough for the system to become metallic and the hydrogen lattice undergoes a 
Mott metal-insulator transition. 

The very different conducting behaviour of the 3d valence electrons in metallic nickel 
and insulating nickel oxide can now be qualitatively understood. The width of the d band 
in NiO is about 2 eV (MATTHEISS [1972]), whereas in pure Ni it is about 5 eV 
(MORUZZI et al. [1978]) since the Ni-Ni internuclear separation is smaller than in the 
oxide. Because the value of the screened intra-atomic coulomb integral U in 3d transition 
metals is about 4 eV, U/ W is greater than unity for NiO but less than unity for Ni. Thus, 
we expect the former to be insulating and the latter metallic as observed experimentally. 

The breakdown of conventional band theory at large lattice spacings can best be 
illustrated by considering the hydrogen molecule (cf. fig. 8a). In the ground state the two 
valence electrons 1 and 2 occupy the same bonding molecular orbital +iB with opposite 
spin, so that the total molecular wave function may be written within the one electron 
approximation as 
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+(VI = + i B  (1) +A (2)- (96) 

Substituting from eq. (27), multiplying through and neglecting the normalization factor 
[2(1 + a]-' we have 

+(u) = (+A (1) +B (2) + #B (I)+* (2) + +A U)+A (2) + +B (I)+, (2)). (97) 

The first two contributions correspond to the two possible neutral atom states with a 
single electron associated with each atom, whereas the latter correspond to the two ionic 
states A-B' and A'B- respectively. Since the hydrogen molecule dissociates into two 
neutral atoms, we see that $( 1, 2) gives the wrong behaviour at large separations (see, 
e.g., SLATER [1963]). 

In practice, the Mott transition to the insulating phase is accompanied by the 
appearance of local magnetic moments (BRANDOW [ 19771) so that the band model must 
be generalized to allow for antiferromagnetic solutions of the Schrodinger equation 
( S u m  [1951a]; cf. 0 8). Within local spin density functional (LSDF) theory (cf. Q 1) 
this leads to a good curve of total energy versus internuclear separation for the hydrogen 
molecule because the theory now goes over to the neutral free-atom limit (GUNNARSSON 
and LUNDQUIST [ 19761). However, although the antiferromagnetic state leads to a band 
gap opening up at the Fermi level in NiO (SLATER [1951a]), a proper understanding of 
COO and the temperature-dependent properties of these insulators can only be obtained 
by using a more sophisticated non-local treatment of exchange and correlation 
(BRANDOW [1977], JONES and GUNNARSSON [1989]). Fortunately, the bulk properties of 
simple and transition metals considered in this chapter can be well understood within the 
local approximation, even though non-locality can play a role in the finer details of the 
band structure (see, e.g., Ni; COOKE et al. [1980]). 

4.2. Hybrid NFETB bands 

Transition metals are characterized by a fairly tightly-bound d band that overlaps and 
hybridizes with a broader nearly-free-electron sp band as illustrated in fig. 24. This 
difference in behaviour between the valence sp and d electrons arises from the d shell 
lying inside the outer valence s shell, thereby leading to small overlap between the d 
orbitals in the bulk. For example, from eq. (14) the average radial distance of the 
hydrogenic 3d and 4s wave functions are in the ratio 0.44 :l. Thus, we expect the band 
structure of transition metals to be represented accurately by a hybrid NFE-TB secular 
equation of the form (HODGES et al. [1966] and MUELLER [1967}): 

C-EI  H 

/H' D - E j - 0  

where C and D are sp-NFE and d-TB matrices respectively [cf. eqs. (67) and (89)l. H is 
the hybridization matrix which couples and mixes together the sp and d Bloch states with 
the same symmetry, and I is the unit matrix. 

A secular equation of this H-NFE-TB form may be derived (HEINE [1967], HUBBARD 
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Fig. 24. A schematic representation of transition metal sp (dashed curve) and d (solid curve) densities of states 
when sp-d hybridization is neglected. 

[1967] and JACOBS [1968]) by an exact transformation (PETTIPOR [1972a]) of the first- 
principle band structure equations of KORRINGA [1946], KOHN and ROSTOKER [1954] 
(KKR). They have solved the Schrtjdinger equation (1) by regarding the lattice as a 
periodic array of scattering sites which individually scatter the electrons with a change 
in phase qr. Transition-metal sp valence electrons are found to be scattered very little by 
the lattice so that they exhibit NFE behaviour with qo and q, close to zero. Transition- 
metal d electrons, on the other hand, are strongly scattered, the 1 = 2 phase shift showing 
resonant behaviour given by 

(99) 

where Ed and r determine the position and width of the resonance. This allows the KKR 
equations to be transformed directly into the H-NFE-TB form, in which the two centre 
TB hopping integrals and hybridization matrix elements are determined explicitly by the 
two resonant parameters Ed and r. The non-orthogonality contributions to the secular 
equation (MUELLER [ 19671) are obtained by linearizing the implicit energy-dependent 
matrices C, D and H in a Taylor expansion about E,. 

The nonmagnetic band structure of fcc and bcc iron is shown in fig. 25, being 
computed from the H-NFE-TB secular equation with resonant parameters Ed = 0.540 Ry 
and r =0.088 Ry (PETTIFOR [197Oa]). The NFE pseudopotential matrix elements were 
chosen by fitting the first-principle values of WOOD [1962] at the pure p states N,. 
~ ( ~ ~ ~ = 0 . 0 4 0  Ry), L,’ (unI=0.039 Ry) and X,. (u2,=0.034 Ry). Comparing the band 
structure of iron in the 1100) and Ill 1) directions with the canonical d bands in fig. 22, 
we see there is only the am d level with symmetry A, and A, respectively which 
hybridizes with the lowest NFE band, the remaining four d levels being unperturbed. 
Because of the canonical nature of the pure TB d bands (ANDERSEN [1973]), the band 
structm~ of all fcc and bcc transition metals will be very similar to that shown in fig. 25 
for iron. 

The transition-metal density of states, n Q ,  is not uniform throughout the band as 
shown schematically in fig. 24 but displays considerable struchlre that is characteristic of 
the given crystal lattice. This is seen in fig. 26 for the bcc, fcc and hcp densities of 
states, which were calculated by the H-NFE-TB secular equation neglecting non- 
orthogonality contributions with Ed = 0.5 Ry and r = 0.06 Ry (PETTIFOR [1970b]). These 
early histogram densities of states are displayed rather than more accurate recent 

tan 7)2 ( E )  = 4 r/( Ed - E), 
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Wg. 25. The H-NFE-TB band structure of fcc and bcc iron in the nonmagnetic state. The solid circles represent 
the first-principle energy levels of WmD [1962]. (From PETTIFOR [1970a].) 

calculations (see, e.g., RAm and CALLAWAY [1973], JEPSEN et al. [1975], MORUZZI et 
al. [1978], PAXTON et ul. [1990]) because they allow a direct comparison between the 
bcc, fcc and hcp densities of states for the sume model element. This will be important 
when discussing the relative stability of the three different crystal structures in 5 6.1 and 
the stability of the ferromagnetic state in the a, y and 8 phases of iron in 5 8. 

The structure in the calculated densities of states in fig. 26 is reflected in the 
behaviour of the experimental electronic heat constant, y, across the nonmagnetic 4d and 
5d transition metal series. It follows from eqs. (43, (47) and (48) that the electronic heat 
capacity may be written as 

C = yT,  (100) 

where 
y = 5 T?k&(E,). 

Therefore, ignoring any renormalization effects such as electron-phonon mass enhance- 
ment, the linear dependence of the heat capacity gives a direct experimental measure of 
the density of states at the Fermi level. Figure 27 shows that the H-NFETB densities 
of states in fig. 26 reflect the experimental variation in y across the series. 

4.3. Volume dependence 

Figure 28 illustrates the volume dependence of the energy bands of the 4d transition 
metals Y, Tc and Ag, which were calculated by PETTIFOR [1977] within the atomic- 
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Fig. 26. The density of states for the three structures (a) bcc, (b) fcc, and (c) hcp for a model transition metal. 
The dotted curves represent the integrated density of states. (From PETT~FOR [197Ob].) 

sphere approxinnation of ANDERSEN [1973, 19751. Similar bands have been obtained by 
GELATT et al. [ 19771 for the 3d metals Ti and Cu with the renormalized-atom approxima- 
tion of WATSON et aZ. [1970]. We see from fig. 28 that the bottom of the NFE sp band 
rl, which was evaluated within LDF theory, is well fitted by the Frohlich-Bardeen 
expression (79). The values of R, obtained are found to scale within 1% with the position 
of the outer node of the 5 s  free-atom radial wave function. This demonstrates quantitat- 
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Fig. 27. A comparison of the theoretical and experimental 4d and 5d heat capacities. The theoretical values 
were obtained directly from eq. (101) and fig. 26, neglecting any changes in the density of states due to band 
width changes or mass renonnalization. 

ively that it is the core-orthogonality constraint which is responsible for the rapid turn up 
in the energy of rl and that the outer node of the valence s electron is a good measure 
of the s core size. The free-atom d level broadens into a band of states of width W as the 
atoms come together from infinity to form the bulk (see figs. 24 and 28). BINE [1967] 
has shown that the Wigner-Seitz boundary conditions imply that W should vary approxi- 
mately as S-*, where S is the Wigner-Seitz radius. Assuming a power-law dependence 
of W on S, we can write 

w = K(So/S)”, (102) 

where Wo and So are the values of the d-band width and Wigner-Seitz radius respectively 
at the equilibrium lattice spacing of the transition metal. Table 1 gives the values of So, 
Wo and n for the 4d transition metals (PETTIFOR [1977]). Because of the more extended 
nature of the d wave functions at the beginning of the transition metal series, n takes a 
value closer to four than to five which we will see in 9 5.2 is reflected in their bulk 
properties. Values of the band width W for the 3d, 4d and 5d series may be obtained 
from the table in ANDERSEN and JEPSEN [1977] and are given explicitly in table 20-4 of 
HARRISON [1980]. The 3d and 5d band widths are approximately 30% smaller and 20% 
larger respectively than the corresponding 4d widths. 

The centre of gravity of the TBd band, Ed, in fig. 28 rises exponentially (PETTIFOR 
[ 19771) as the volume decreases because the potential within the Wigner-Seitz sphere 
renormalizes due to the increase in the electronic charge density (GELATT et al. [1977]). 
This renormalization in position of the free atomic d level plays an important role in 
transition-metal energetics and will be discussed further in 5 5.2. 

The different volume dependences of the NFE-sp and TB-d bands displayed in fig. 
28 will lead to changes in the relative occupancy of the two bands with volume. This is 
illustrated in fig. 4 of PETTIFOR [1977] where Y and Zr show a rapid increase in d-band 
occupancy under compression as the d band widens and the bottom of the sp band moves 
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Table 1 
Equilibrium values of Wiper-Seitz radius So and d band parameters W, n and IUS, for 4d series (from 

PETTIFOR [1977]). 

Quantity Element 

Y zr Nb Mo Tc Ru Rh Pd Ag 

So (au) 3.76 3.35 3.07 2.93 2.84 2.79 2.81 2.87 3.02 
W, (eV) 6.3 7.8 9.3 9.5 9.1 8.5 7.6 6.0 3.9 
n 3.9 4.0 4.1 4.3 4.5 4.6 4.8 5.1 5.6 
d S 0  1.03 1.19 1.33 1.47 1.58 1.65 1.71 1.77 1.84 

up (cf. fig. 28a). Eventually r, moves up through the Fermi level EF at which point all 
the NFE-sp states have been emptied into the TB-d states and Nd = N. On the other hand, 
the transition metals with more-than-half-filled d bands display a marked degree of 
constancy in N, for volumes about their equilibrium values, because the sp core effects 
are largely cormter-balanced by the rapid rise in Ed due to the increasing coulomb 
repulsion between the d electrons (cf. fig. 28c). However, under very high pressures the 
bottom of the sp band does eventually move up through the Fermi level, and transition 
metals with ten valence electrons (Ni, Pd and Pt) may become semiconducting 
(MCMAHAN and ALBERS [1982]). We will return to this dependency of the d-band 
occupancy on volume and core size when discussing crystal structure stability in 5 6. 

5. Bulk properties 

5.1. Simple metals 
Within the free-electron approximation the total energy per electron may be written 

(103) 

(see, e.g., HEINE and WEAIRE [1970]) as: 

Ueg = 2.21/$ - 0.916/~ - (0.115 - 0.0313 In q), 

-05:  I 

Fig. 28. The energy bands as a function of WignerSeitz radius S for (a) Y, @) Tc, and (c) Ag. The observed 
equilibrium Wigner-Seitz radii are marked eq. The dotted curve gives the Frohlich-Bardeen fit (eq. 79) to the 
bottom of the conduction band r,. Ed, E, and &, mark the centre of gravity, and top and bottom of the d band, 
respectively. (After PEITlFOR [1977].) 
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where r, is the radius of the sphere which contains one electron so that 

(104) 

for a metal with valence Z and Wigner-Seitz radius S. The first term in eq. (103) is the 
average kinetic energy of a free electron gas, namely ;EF, where EF is given by eq. (45). 
The second term is the exchange energy which is attractive, because parallel-spin 
electrons are kept apart by Pauli’s exclusion principle, thereby leading to weaker mutual 
coulomb repulsion. The third term is the correZation energy which gives the additional 
lowering in energy due to the dynamical correlations between the electrons. It follows 
from eq. (103) that the free electron gas is in equilibrium for r,=4.2 au with a binding 
energy per electron of 0.16 Ry or 2.2 eV. 

If the electron gas is perturbed to first order by the presence of the ionic lattice 
(HEN! and WEAIRE [1970], CIRIFALCO [1976] and HARRISON [1980]), then the total 
binding energy per atom may be written as: 

~ - 1 t 3 s  q =  

where 

The first and second terms in eq. (106) give the electron-ion [cf. eq. (79)] and the 
electron-electron potential energies, respectively. The potential energy has been evaluated 
within the WIGNER-SEITZ [ 19331 approximation of neglecting the coulomb interaction 
between different Wigner-Seitz cells as they are electrically neutral. Within the free- 
electron approximation the ion cores had been smeared out into a uniform positive 
background so that there was zero net potential energy and Vi, vanished. 

The equilibrium Wigner-Seitz radius, So, which is found from eq. (105) by requiring 
that U is stationary, depends explicitly on the core radius R, through the equation 

0.102 + 0.0035S0 0.491 -~ z PS,, ’ 

where the first four terms are coulomb, exchange, correlation and kinetic contributions 
respectively. GWFALCO [1976] has taken the experimental values of the Wigner-Seitz 
radius So to determine an effective Ashcroft empty-core radius R, from eq. (107). The 
resultant values are given in table 2 where, as expected, the core size increases as one 
goes down a given group in the Periodic Table. It is clear from table 2 that only sodium 
has an equilibrium value of r, that is close to the free-electron-gas value of 4.2 au. 

The bulk modulus (or inverse compressibility), which is defined by 

B = V(d2U/dV2), ( 108) 
may be written from eqs. (105) and (107) in the form 

B/B,, = 0.200 + 0.815Rz/rs 
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Table 2 
Equilibrium bulk properties of the simple and noble metals. 

Metal Quantity 

Li 
Na 
K 
Rb 
c s  
Be 
Mg 
Ca 
Sr 
Ba 
Zn 
Cd 
Hg 
AI 
Ga 
In 
T1 
c u  

Au 
Ag 

1 1.7 
I 1.1 
1 0.9 
1 0.9 
1 0.8 
2 1.7 
2 0.8 
2 0.9 
2 0.9 
2 0.9 
2 0.7 
2 0.6 
2 0.3 
3 1.1 
3 0.9 
3 0.9 
3 0.6 
1 3.5 
1 3.0 
1 3.8 

3.27 3.27 1.32 0.63 
3.99 3.99 1.75 0.83 
4.86 4.86 2.22 1.03 
5.31 5.31 2.47 1.14 
5.70 5.70 2.76 1.29 
2.36 1.87 0.76 0.45 
3.35 2.66 1.31 0.73 
4.12 3.27 1.73 0.95 
4.49 3.57 1.93 1.05 
4.67 3.71 2.03 1.11 
2.91 2.31 1.07 0.60 
3.26 2.59 1.27 0.71 
3.35 2.66 1.31 0.73 
2.99 2.07 1.11 0.69 
3.16 2.19 1.20 0.74 
3.48 2.41 1.37 0.83 
3.58 2.49 1.43 0.87 
2.67 2.67 0.91 0.45 
3.02 3.02 1.37 0.71 
3.01 3.01 1.35 0.69 

0.50 
0.80 
1.10 
1.55 
1.43 
0.27 
0.54 
0.66 
0.78 
0.84 
0.45 
0.63 
0.59 
0.32 
0.33 
0.39 
0.39 
2.16 
2.94 
4.96 

a From GIRIFALCO [1976]. 

at equilibrium, where the correlation contribution has been neglected since it contributes less 
than a few percent. Bke is the bulk modulus of the non-interacting free electron gas, namely 

It follows from eq. (109) and table 2 that the presence of the ion core is crucial for 
obtaining realistic values of the bulk modulus of simple metals, as was first demonstrated 
by ASHCROFT and LANGRETH [1967]. However, the simple Jirst-order expression eq. 
(109) is leading to large errors for the polyvalent metals with valence greater than two 
because the second-order contribution is not negligible and must be included (ASHCROFT 
and LANGRETH [1967]). Table 2 also demonstrates that the noble metals are not 
describable by the NFE approximation, the theoretical bulk moduli being a factor of five 
too small. We will return to this point in 55.2. 

The cohesive energy of the simple metals is observed in table 2 to be about 1 eV per 
valence electron. For example, Na, Mg and A1 have cohesive energies of 1.1,O.S and 1.1 
eV per electron respectively. These are an order of magnitude smaller than the corre- 
sponding binding energies given by eq. (105), the experimental values being 6.3, 12.1, 
and 18.8 eV per electron respectively. Although NFE perturbation theory can yield good 
estimates of bulk properties such as the equilibrium atomic volume, structural stability 
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and heat of formation, it can not provide reliable cohesive energies which require an 
accurate comparison with the free atom whose wave functions are not describable by 
weakly perturbed plane waves. It is necessary, therefore, to perform similar calculations 
in both the free atom and the bulk as, for example, WIGNER and SEITZ [1933] and 
MORUZZI et al. E19781 have done in their evaluation of the cohesive energies in figs. 21 
and 1 respectively. We should point out, however, that eqs. (103)-(106) do yield a bulk 
binding energy for sodium that is very similar to Wigner and Seitz’s [cf. eq. (82)], 
because the additional exchange, correlation and self-energy terms in eqs. (105) and 
(106) give a net contribution of less than 0.01 eV per sodium atom. CHELIKOWSKY 
[1981] has linked the cohesive energy of simple metals to a kinetic-energy change which 
accompanies the transformation of the exponentially damped free-atom wave function to 
plane-wave bulk states. As expected from table 2 and fig. 20, it is necessary to include 
an additional non-local bulk bonding contribution in order to obtain the stronger cohesion 
of Li and Be and the weaker cohesion of Zn, Cd and Hg. The anomalously large 
cohesion of the noble metals Cu, Ag and Au will be discussed in the next subsection. 

5.2. k s i t i o n  metals 

The theoretical points in fig. 1 were computed (~TORUZZI et al. [1978]) by solving 
the Schrodinger equation (1) with the potential u(r) given by 

where u, is the usual Hartree potential and u,, is the exchange-correlation potential 
evaluated within the local density functional (LDF) approximation of HOHENBERG and 
KOHN [1964] and KOHN and SHAM [1965], namely 

is the exchange and correlation energy per electron of a homogeneous electron gas 
of density p. It follows from eqs. (103) and (112) that the exchange contribution to the 
potential may be written as: 

eX(r)  = -1.477[~(r)]1’~. 

Thus the exchange potential varies as the third power of the local density, due to the 
exclusion of parallel spin electrons from the immediate neighbourhood (SLATER [ 1951bl). 

The total energy can not be written simply as the sum over the occupied one-electron 
energies Ei of the Schrunger equation, because the eigenvalue Ei of the ith electron 
contains the potential energy of interaction with the jth electron and vice versa. Thus, Ei 
+ Ej double-counts the coulomb interaction energy between electrons i and j .  The total 
LDF energy is, therefore, given by 
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U = Ei - 3 JJ 2p(r)p(‘ r’) drdr’ - p(r)[vxc - ~ ~ ~ ] d r ,  
i It - r’l 

where the second and third contributions correct for the “double-counting” of the 
coulomb and exchange-correlation energies respectively. The potential energy has been 
written down in eq. (1 15) within the Wigner-Seitz sphere approximation, the coulomb 
interaction between neighbouring Wigner-Seitz cells, or Madelung contribution, being 
neglected. (Note that e* = 2 in atomic units, which accounts for the factor of two in the 
integrand of the coulomb integral.) 

The presence of the double-counting contribution in eq. (115) does not allow for a 
direct interpretation of the total energy in terms of the one-electron eigenvalues Ei whose 
behaviour we have studied in the previous sections. For example, as can be seen from 
fig. 28b the oneelectron sum alone would lead to no binding in Tc because the d- 
electron eigenvalues at the equilibrium atomic volume are everywhere higher than the 
free-atom d level. The inclusion of the double-counting term is crucial for bonding since 
it counters to a large extent the shift in the centre of gravity of the d bands E,, due to the 
renonnalizution of the potential under volume change. In copper, for example, GELATT 
et al. [1977] found that the band-shift energy of 78.6 eV/atom, which accompanies the 
formation of the bulk metal, is almost totally cancelled by a change in the double- 
counting term of 77.7 eV/atom. The remaining net repulsive contribution of about 1 eV/atom 
is typical for the 3d and 4d transition metal series (see fig. 4 of GELATT et al. [1977]). 

The problems associated with double-counting can be avoided, however, by working 
not with the total energy, U, but with thefirst-order change in energy, SU, on change in 
the Wigner-Seitz sphere volume, Sa, for the bulk metal (PETTIFOR [1976]) or change in 
the internuclear separation, SR, for the diatomic molecule (PETTIFOR 11978al). By starting 
either from the virial theorem in the form derived by LIBERMAN [ 197 1 ] or from the total- 
energy expression (115) following NIEMINEN and HODGES [1976], PETTIFOR [1976, 
1978aI showed that the first-order change in total energy, SU, may be written, neglecting 
the Madelung contribution, as: 

SU = CSE,, 
i 

where SEi is the first-order change in the eigenvalue which accompanies the first-order 
volume or distance change while the potential is kept unrenormalized. The general 
applicability of this first-order result has been proved by ANDERSEN [1980] for force 
problems involving arbitrary atomic displacements and by NORSKOV [ 19821 for embedding 
problems involving a change in the local atomic environment (cf. 07). SKRIVER [1982], 
MCMAHAN and MORIARTY [ 19831 and PAXTON and PETTIFOR [ 19921 have demonstrated the 
applicability of eq. (1 16) to the evaluation of structural energy differences (cf. 5 6). 

The first-order expression (116) is important because it allows a direct identification 
of the different roles played by the valence sp and d electrons in bulk transition metal 
energetics. The eigenstates can be decomposed within the Wigner-Seitz sphere into their 
different angular momentum components, 1, so that eq. (116) may be written as: 
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su = -Pa2 = -x lp2, (117) 

where P is the pressure, given by P = - dU/dQ. By working within the atomic-sphere 
approximation of ANDERSEN [ 19731 the partial pressures Pl may be expressed (PETTIFOR 
[1976]) directly in terms of parameters describing the energy bands, namely: 

(118) 

(119) 

1 

3p,a = ~ N , ( T ,  - cxc) + 2u;, 

3 4 i - l ~  2Nd(Ed - &,)/md + 5Udbond, 

where 

Usp" = 1" ( E  - r,)nsp (E)dE, 

with E ~ ~ = E ~ ~ ( S ) .  md is the d-band effective mass which is related to the width W 
through W=25/(mdSz). Additional small contributions to eqs. (118) and (119) have been 
neglected for simplicity in the present discussion (cf. eqs. (13) and (14) of PETTIPOR 
[ 1978bl). 

The sp partial pressure consists of two terms which give the first-order changes in the 
bottom of the sp band, r,, and in the kinetic energy, respectively. In the absence of 
hybridization with the d band, nsp(E) is free-electron-like and eq. (118) is consistent with 
the pressure which would be obtained from the simple-metal expression (105) if 
correlation is neglected. This follows from eqs. (ill), (113) and (79) because within 
LDF theory the bottom of the band is given by 

r, =rY+2 .4z / s++ ,  (122) 

since the electron sees the average Hartree field of the valence electrons and the 
exchange potential v, in addition to the ion core pseudopotential. 

The d partial pressure also consists of two terms which give the first-order changes 
in the centre of gravity of the d band, Ed, and the d bond energy, respectively. In the 
absence of hybridization we may assume that nd(E) is rectangular as illustrated in fig. 24, 
so that from eq. (121) the d bond energy may be written 

upd = -6 WNd(l0 - Nd). (123) 

Assuming that $-Eltom and W vary inversely as the fifth power of S, Pd may be 
integrated with respect to volume to give the d contribution to the cohesive energy, 
namely: 

( 124) 

It follows from fig. 28a that for Tc at its equilibrium volume Ed-Eitom = 6  eV, $Ed"" 

- eXC = 1 eV and md = 5. Therefore, taking, from table 2, W= 10 eV and Nd = 6, we have 

u d  = N,j(Ed - Edm)/4md + Nd($ E,""" - EX,)/2fnd + upd. 
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U, = 1.8 .t 0.6 - 12 = -1OeV/atom, (125) 

which is in reasonable agreement with the LDF value of -8 eV/atom for the Tc 
cohesive energy in fig. 1. 

The dominant contribution to the cohesive energy of transition metals is, therefore, the 
d bond term in eq. (125) as emphasized by FRIEDEL [1964, 19691 and illustrated by 
GELATT et al. [I9771 in their fig. 4. From eq. (123) it varies parabolically with band 
filling and accounts for the observed variation of the cohesive energy across the 
nonmagnetic 4d and Sd series shown in fig. 1. It attains a maximum value of - 5 W/4 
for Nd = 5 when all the bonding and none of the antibonding states are occupied. Equation 
(124) shows that the shift in centre of gravity of the d band contributionN, (Ed-E,"t"") 
is reduced by at least an order of magnitude through the factor (4md)-', thereby account- 
ing andytically for the cancellation arising from the double-counting term in eq. (115). 

Figure 29 shows the sp and d partial pressures for Tc. As expected from eq. (123) 
there is a large attractive d bond contribution which is pulling the atoms together in 
order to maximize the strength of the bond. This is opposed for S < 4.0 au by a rapidly 
increasing repulsive d centre-of-gravity contribution which reflects the renormalization 
in Ed. The resulting total d partial pressure is attractive at the observed equilibrium 
volume of Tc (see fig. 29b). As expected from the behaviour of rl in fig. 28b the bottom 
of the sp band contribution is attractive for large values of S but becomes repulsive in 
the vicinity of the equilibrium volume as I', moves up in energy. Thus, whereas in 
simple metals this contribution is attractive because the ion cores occupy only about 10% 
of the atomic volume (see fig. 21 and table 3), in transition metals it is repulsive because 

5-0 .t.. 

Sloul 

Fig. 29. (a) The individual and (b) the total sp and d partial pressures as a function of the Wiper-Seitz radius 
S for T,. ''eq" marks the observed equilibrium Wigner-Seitz radius. (From PETTIFOR [1978b]). 
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Table 3 
The values of A for the 3d, 4d, and 5d transition metal series. 

sc a V cr Mn Fe co Ni 
1.08 1.23 1.37 1.49 1.61 1.74 1.88 2.07 

Y zr Nb Mo Tc Ru Rh Pd 
1 .OS I .23 1.37 1.49 1.60 1.72 1.85 2.02 

Lu Hf Ta w Re os Ir Pt 
1.11 1.25 1.38 1.49 1 .a 1.72 1.84 2.01 

Period I Element and value of A (in a d )  

the ion cores occupy a much larger percentage due to their smaller equilibrium atomic 
volumes (cf. fig. 1). Together with the sp kinetic energy contribution, the bottom of the 
sp band contribution provides the necessary repulsion to counter the attractive d partial 
pressure at equilibrium. 

The size of a transition-metal atom, which is defined by the equilibrium atomic 
volume of the pure metal, is not necessarily a helpful quantity for discussing alloy 
energetics. We have seen that it will be very sensitive to the nature of the local atomic 
environment, since it is the d bond contribution which is responsible in fig. 1 for the 
skewed parabolic behaviour of the equilibrium Wigner-Seitz radius across the nonmag- 
netic 4d series. This may be demonstrated by modifying the simple model of 
DUCASTELLE [1970] and approximating the total energy of a transition metal by 

where the Born-Mayer contribution, VP, is: 

with a being constant across a given series. This form is suggested by the nature of the 
repulsive d centre-of-gravity contribution in eq. (124) and fig. 29, although we have 
assumed that II"p is proportional to N2 rather than N,' as a reminder that the sp electrons 
also contribute to the repulsion. The d bond contribution, eq. (123), is proportional to the 
band width W which is assumed to vary exponentially as 

W = bA2e-* 

with b being constant across a given series. 

from eqs. (126)-(128) by: 
The cohesive energy, equilibrium Wigner-Seitz radius and bulk modulus are given 

u,, = 3 u y  , 

so[ '"(-2aNZ/u:d)] /2A, 

B = -(A2/ 12~s,)U,""~. 
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a and b for a given period are obtained from the known bulk modulus and band width 
of 3d Cr, 4d Mo and 5d W, the values of (a, b) being given in atomic units by (24.3, 
11.6), (77.2,25.0) and (98.9,31.9) respectively. A is found by fitting to the nonmagnetic 
Wigner-Seitz radius, assuming that the transition metals have only one sp valence 
electron. We see from fig. 30 and table 3 that although the equilibrium atomic volume 
has a minimum in the vicinity of N=8, A varies nearly Linearly across the series as 
expected for a parameter characterizing the free atom (cf. figs. 4, 5 and 7). Thus, 
although Mo and Ag have almost the same size factors with their equilibrium Wigner- 
Seitz radii of 2.93 and 3.02 au, respectively, they are immiscible because Mo will lose 
a large part of its attractive d bond contribution in a Ag environment. The logarithmic 
derivative of the band width, -A, predicted by this model is in good agreement at the 
equilibrium atomic volume with the first-principles value, -n/S,, as can be seen by 
comparing tables 1 and 3 for the 4d series. 

The simple model breaks down at the noble-metal end of the series because the 
Born-Mayer repulsive term in eq. (126) does not describe correctly the d electron 
behaviour. This can be seen in fig. 31 where the d partial pressure in Cu is attractive at 
the equilibrium atomic volume, the d electrons contributing about 25% to the cohesive 
energy (WILLIAMS et al. [l9SOa]). Thus, as first pointed out by KOLLAR and SOLT 
[1974], the filled d shells in copper interact attractively rather than repulsively as 
assumed by the Born-Mayer contribution (127). This is due to the second term in eq. 
(124) which dominates at larger atomic volumes. The sp partial pressure of Cu at its 
minimum is also more attractive than that of K due to the incomplete screening of the 
Cu ion core by the 3d valence electrons. The net result is that whereas the simple metal 
M has a cohesive energy of 0.9 eV/atom and a bulk modulus of 0.3 x 10" N/m2, the 
noble metal Cu has a cohesive energy of 3.5 eV/atom and a bulk modulus of 13.7 x 10" 
N/m2, which is reflected by the behaviour of the curves in fig. 31. 

6. Structural stability 

6.1. Elemental metals 

The crystal structure of the simple metals can be studied (see, e.g., HARRISON [1966], 
HEINE and WEAIRE [1970], HAFNER [1974,1989] and MORIARTY [1982,1983 and 19881) 
by perturbing the free electron gas to second order in the pseudopotential, thereby 
extending the first-order expression (105) considered in 5 5.1. The resulting binding 
energy per atom is given in the real-space representation (FINNIS [1974]) by 

where K% is the compressibility of the free electron gas. +(R=O; r,) represents the 
electrostatic interaction between an ion and its own screening cloud of electrons, whereas 
4(R # 0; rs) is a. central interatomic pair potential which for a local pseudopotential may 
be written as: 
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Fig. 30. The theoretical (open circles) and experimental (crosses) values of the equilibrium Wigner-Seitz radius, 
cohesive energy, and bulk modulus of the 3 4  4d, and 5d transition metals. 
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x = In (o/oo) 
oo = EQUILIBRIUM LATTICE CONSTANT 
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Fig. 31. (a) The sp and d partial pressures for Cu and (b) the sp pressure for K as a function of the Wigner- 
Seitz radius. The independent variable x is the logarithm of the ratio of the lattice constant a (or Wigner-Seitz 
radius S) to its equilibrium value a, (or S&, so that equilibrium corresponds to the zero value of x on the upper 
horizontal axis. The cohesive energy associated with a given pressure curve is the area between the curve and 
the axis, as illustrated in (b). From WILLIAMS et al. [198Oa].) 
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f$(q) is proportional to the Fourier component of the ionic pseudopotential, taking the 
value cosqR, for the Ashcroft potential [cf. eq. (76)l. x(q, rs) is the free-electron-gas 
response function which screens the ion cores (see, e.g., JACUCCI and TAYLOR [1981]). 
The first term in eq. (133) gives the direct ion-ion coulomb repulsion, the second the 
attractive ion-electron contribution. 

The interatomic potential (133) may be expressed analytically (PETTIFOR [1982]) at 
metallic densities as the sum of damped oscillatory terms, namely 

cb(R f 0; <) = (2Z2/R)c A, cos(2knR + an)eo"nR7 
n 

(134) 

Fig. 32. The analytic pair potential (solid curve) for Na, Mg, and AI, the three individual contributions being 
given by the dotted-dashed, dashed, and dotted curves respectively. The arrows mark the position of the twelve 
nearest neighbows in the close-packed fcc and hcp lattices. The values of R, and r, are Written (Rc, rs) for each 
element. (After F E r m R  and WARD [1984].) 
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where k, and K, depend only on the density of the free electron gas through r,, whereas 
the amplitude A,, and the phase CY, depend also on the ionic pseudopotential (through RJ.  
The interatomic potentials for Na, Mg and Al are illustrated in fig. 32, where the first 
three terms in eq. (134) have been retained and an Ashcroft empty-core pseudopotential 
used (PETTIFOR and WARD [1984]). We see that all three metals are characterized by a 
repulsive hard-core contribution (dotteddashed curve), an attractive nearest-neighbour 
contribution (dashed curve), and an oscillatory long-range contribution (dotted curve). 
For very Zapge interatomic separations the pair potential behaves asymptotically (FRIEDEL 
[1952]) as 

where from eqs. (44) and (104) I ~ ~ = ( 9 ~ / 4 ) ~ ’ ~ / r ~ .  
A cautionary note must be sounded concerning the use of interatomic pair potentials 

for describing the energetics of simple metals. It is clear from fig. 32 that the pair- 
potential contribution to the binding energy of sodium and magnesium is only about 0.25 
eV/atom, which is small compared to their cohesive energies of 1.1 and 1.6 eV/atom, 
respectively. Moreover, in aluminium the pair contribution acts against cohesion. Thus, 
there is no microscopic justification for describing the bonding in simple metals by pair 
potentials alone. Their cohesion is determined primarily by the volume-dependent terms 
in eq. (132). However, the pair potential description is valid for tackling problems 
concerned with structural rearrangement in which the volume remains fixed, for example 
in lattice dynamics or in determining the relative stability of the close- or nearly close- 
packed fcc, hcp and bcc lattices. 

Figure 33 compares the stability of the fcc, hcp and bcc lattices of Na, Mg and A1 as 
their volume is reduced from the equilibrium value by nearly an order of magnitude, 
which was computed by MORIARTY and MCMAHAN [ 19821 using a generalized non-local 
pseudopotential to second order. We see that under pressure Na, Mg and A1 are predicted 
to transform from hcp + bcc + hcp, hcp + bcc + fcc and fcc + hcp + bcc, respec- 
tively. The first of these structural transitions occurs at about 1,57 and 130 GPA for Na, 
Mg and Al respectively and should, therefore, be verifiable by modern high-pressure 
technology. The trends displayed in fig. 33 may be understood from the behaviour of the 
first three contributions to the pair potential in fig. 32 (Pcmpo~ and WARD [1984]; see 

LL 
E 

RELATIVE ATOMIC VOLUME 

Rg 33. The energy of the bcc and hcp lattices with respect to the fcc lattice for Na, Mg, and Al as a function 
of their atomic volume relative to the observed equilibrium volumes (after MORIARTY and MCMAHAN [1982]). 
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also MCMAHAN and MORIARTY [ 19831). Because the close-packed structures fcc and hcp 
have identical first and second nearest-neighbour distances their relative stability is 
determined by the position of their next few neighbours with respect to the long-range 
oscillatory tail which is drawn dotted in fig. 32. Since the phase a3 of this contribution 
depends on r,, under pressure the minima shift with respect to the neighbour positions 
and the close-packed phases can reverse their relative stability. On the other hand, the 
competition between the close-packed phases and bcc is determined primarily by the 
contribution from the twelve first nearest neighbours and fourteen first and second 
nearest neighbours respectively. Although at their equilibrium volume the first twelve 
close-packed neighbours fall at the minimum of the pair potential, thereby favouring the 
close-packed stnctures (cf. fig. 32), under pressure this minimum moves and the bcc 
phase may be sta.bilized (cf. fig. 33). 

The close-packed metallic behaviour of Na, Mg and A1 gives way to the open 
diamond structure of the semiconductor Si as one proceeds across the third row of the 
Periodic Table. This transition from close-packed to open structure is accompanied by a 
30% volume expansion so that the volume-dependent term in the binding energy cannot 
be neglected when determining structural stability. YIN and COHEN [1980] have solved 
the Schrodinger equation self-consistently for Si using an ionic pseudopotential, and have 
evaluated the LDF binding energy [cf. eq. (115)] as a function of volume for seven 
different crystal structures as illustrated in fig. 34a. They find that the diamond structure 
has the lowest energy with a predicted equilibrium atomic volume, cohesive energy and 
bulk modulus within 5% of the experimental values. Moreover, the relative ordering of 
the metallic bcc and hcp phases and their equilibrium energy of about 0.5 eV/atom with 
respect to the diamond structure is in good agreement with that deduced from experiment 
(KAUPMAN and NESOR [1973]). The transition to the open semiconducting phase, 
therefore, contributes about 10% to the total cohesive energy of 4.6 eV/atom. 

In moving down group IV we see from figs. 4 and 7 that Ge is very similar to Si 
with about a 10% larger core, whereas Sn and Pb have approximately 30% and 45% 
larger cores respectively. Thus the binding-energy-volume curves of Ge are found to be 
almost identical to those of Si except that the close-packed structures move down relative 
to the diamond structure by about 20% (compare figs. 34a and b; YIN and COHEN [1980, 
19811). The further increase in core size in going from Ge to Sn is probably responsible 
for the p-Sn structure being stabilized under only 2 GPA of pressure and the still much 
larger core of Bb at the bottom of group IV leads to the close-packed fcc structure being 
most stable. The structural trends across the sp-valent elements within the periodic table 
has recently been discussed by CRESSONI and PETTIFOR [1991] using the Tight Binding 
approximation. 

The crystal structure of the transirion metals can be understood by comparing the d 
bond contribution eq. (I  21) to the total energy, because we saw in 5 5.2 that it dominates 
the cohesive energy. Figure 35 shows that as the unhybridized tight-binding d band is 
filled with electrons the structure-trend predicted is hcp -+ bcc + hcp -+ fcc + bcc 
(PETTIFOR [ 1972b1). Apart from the incorrect stability of the bcc phase at the noble-metal 
end of the series., this trend agrees with experiment for the nonmagnetic 4d and 5d series. 
The stability of the bcc phase in V and Cr, Nb and Mo, Ta and W, when the d band is 
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Fig. 34. The binding energy as a function of volume of (a) Si and @) Ge for seven different crystal structures. 
The dashed line is the common tangent of the energy curves for the semiconducting diamond phase and the 
metallic /3-tin phase, the system moving from 1 + 2 + 3 + 4 under pressure. (from YIN and COHEN [1980, 
19811 and YIN {1982]). 

nearly half-full, is due to the strong bonding-antibonding separation which is manifest in 
the bcc density of states compared to the close-packed (cf. fig. 26). The appearance of 
the bcc phase in iron is due to the presence of ferromagnetism (see $ 8). The stability of 
different stacking-fault structures shows the same oscillatory behaviour as displayed by 
the fcc hcp curve in fig. 35 (PAPON er al. [1979]). 

The number of d electrons, Nd, also influences the structure of the heavier alkalis and 
alkaline earths (TAKEMURA et al. [1982] and SKRIVER [1982]) and the rare earths 
(DUTHIE and PETTIFOR [1977]). Nd increases on moving down the alkaZine eaplh group 
as the d band starts to fill (cf. fig. 20) so that Ca, Sr and Ba have 0.51, 0.59 and 0.87 
1 = 2 electrons within the Wigner-Seitz sphere, respectively (SKRIVER [ 19821). Similarly, 
under pressure N, increases as the NFE-sp band moves up with respect to the TB-d band 
(cf. $4.3). SKRIVER [1982] has computed the structural energy differences, using eq. 
(116), and has found that the trend hcp + fcc + bcc + hcp correlates with increasing 
Nd in agreement with the observed behaviour down group IIA (Be,Mg: hcp; Ca,Sr: fcc; 
Ba,Ra: bcc) and under pressure. The trivalent rare-eavth crystal structure sequence hcp 
+ Sm-type + double hcp + fcc, which is observed for decreasing atomic number and 
increasing pressure, can similarly be explained in terms of the change in number of d 
electrons accompanying valence s to d transfer (DUTHIE and PWOR [1977]). Due to 
the lanthanide contraction of the ion core La has a 20% larger core radius than Lu, which 
results in La having 0.6 d electrons more than Lu and taking the double-hcp rather than 
the hcp crystal structure even though they are both trivalent. 
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Fig. 35. The d bond energy of the bcc (solid line) and the hcp (dotted line) lattices with respect to the fcc 
lattice as a function of band filling Nd (from PETTIFOR [1972b]). 

Recently ab initio Local Density Functional (LDF) calculations have been used to study 
the transformation path from bcc to hcp in barium under pressure at the absolute zero of 
temperature (CHEN ef al. [1988]; Ho and HARMAN [1990]). As illustrated in fig. 36, the bcc 
to hcp transformation involves atomic displacements corresponding to the zone boundary 
[110] T, phonon mode and an additional lattice shear (BURGERS [1934]). The dashed lines in 
fig. 36b show that a displacement S = @a/12 in this bcc phonon mode creates a nearly 
hexagonal geometry, the perfect geometry being achieved in fig. 36c through a subsequent 
shear which changes the angle 8 from 109.47" to 120". Figure 37 displays the calculated total 
energy contours as a function of both co-ordinates 6 and 6 for barium at its equilibrium 
atomic volume flo, 0.793C10 and 0.705C12,, respectively. The latter volume corresponds to a 
pressure of 38.4 kbar. We see that at fl = flo the upper contour plot shows that bcc barium is 
more stable than hcp, in agreement with experiment. However, as pressure is applied, the hcp 
phase has its energy lowered with respect to bcc. The middle contour plot shows that at 
SZ = 0.79300 their energies are approximately equal, with an energy barrier between them of 
about 4meV/atom. The lower contour plot shows that at fl = 0.705f10 the energy barrier has 
gone and the bcc phase is no longer metastable. The predicted T = 0 transformation pressure 
is 11 kbar, corresponding to the bcc and hcp lattices having equal enthalpies. However, at low 
temperatures the system would not be able to overcome the energy barrier so that the bcc 
phase would probably remain metastable until the T, N-point phonon mode became soft at 3 1 
kbar. Experimentally the phase transformation occurs at a pressure of 55 kbar at room 
temperature so that the LDF predicted pressure appears too low, reflecting the intrinsic errors 
in the local approximation to density functional theory (see, for example, fig. 1). 
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Fig. 36. Illustration of the bcc to hcp phase transformation. The arrows in (a) and (b) indicate the atomic 
displacements in the bcc lattice corresponding to the polarisation vector of the T, N-point phonon mode. A final 
long-wavelength shear changes the angle from 109.47O to 120' to obtain the hcp lattice in (c) (from Ho and 
HARMON [1990]; reproduced with permission). 

6.2. Binary intermetallic phases 

The structural trends within binary intermetallic phases A,-xB, may be displayed by 
ordering the structural data base within a single three-dimensional structure map (AIA, 
flB, x) where &fl is a phemmemlogical co-ordinate which characterises each element in 
the periodic table (PETTIFOR [1988a]). The relative ordering number fl is obtained by 
running a one-dimensional string through the two-dimensional periodic table as shown in 
fig. 38; pulling the ends of the string apart places all the elements in sequential order, 
labelled by &I. 

The resultant two-dimensional isostoichiometric ground-state structure map (AIA, ,&) 
for the 5050 AB binary compounds is shown in fig. 39 using the experimental database 
of VILLARS and CALVERT [1985]. Similar maps for other stoichiometries may be found 
elsewhere (PEITIPOR [1988a], [1988b] and [1992])). The bare patches correspond to 
regions where compounds do not form due to either positive heats of formation or the 
competing stability of neighbouring phases with different stoichiometry. The boundaries 
do not have any significance other than they were drawn to separate compounds of 
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0 0.02 0.04 0.06 0.08 0.1 0.12 
Atomic displacement /&a 

0 0.02 0.04 0.06 0.08 0.1 0.12 
Atomic displacement /&a 

Atomic displacement /&?a 

Fig. 37. Contour plots of the LDF energy for barium as a function of the atomic displacement 6 corresponding 
to the T, N-point phonon mode and the angle 0 of the shear motion. The upper, middle and lower panels 
correspond to the volumes 4, 0.793 O,, and 0.705C10, where & is the observed equilibrium volume at ambient 
pressure. The energy contours are in steps of 0.5 mRy/cell (from Ho and HARMON [1990]; reproduced with 
permission). 
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Fig. 38. The string running through this modified periodic table puts all the elements in sequential order according 
to the relative ordering number. (PsmFo~ [1988a]). Note that group II A elements Be and Mg have been grouped 
with II B, divalent rare earths have been separated from trivalent, and Y has been slotted between Tb and Dy. 

different structure type. In regions where there is a paucity of data the boundary is 
usually chosen as the line separating adjoining groups in the periodic table. We see that 
excellent structural separation has been achieved between the 52 different AB structure 
types that have more than one representative compound each. The two most common 
structure types, namely B1 (NaC1) and B2 (CsCl), are well separated, the NaCl lattice 
being found only outside the region defined by &IA, &IB I 81, which encloses the main 
CsCl domain. There is only one exception, namely the very small region of Cs-contain- 
ing salts. The AB structure map successfully demarcates even closely related structure 
types such as B27 (FeB) and B33 (CrB); B8, (NiAs) and B31 (MnP); or B3 (cubic ZnS, 
zincblende) and B4 (hexagonal ZnS, wurtzite). Moreover, coherent phases with respect 
to the bcc lattice, namely B2 (CsCI), B11 (CuTi), and B32 (Nan) are also well separated, as 
too are the close-packed polytypes cubic L1, (CuAu) and hexagonal B19 (AuCd). 

The structural trends within the pd-bonded AB compounds in fig. 39 have been 
successfully explained by PETTIFOR and PODLOUCKY [1984, 19861 within a simple two- 
centre, orthogonal Tight Binding (TB) model. The upper panel of fig. 40 shows the 
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experimental structural domains for the seven most frequently occurring structure types, 
namely NaCI, CsC1, NiAs, MnP, FeB, CrB and FeSi respectively (using the socalled 
chemical scale ,y which orders the elements in a similar way to the relative ordering 
number fl in fig. 38, PETTIFOR [1984]). The lower panel shows the predicted AB 
structure map (N,, NJ where N, and N, are the number of p and d valence electrons 
associated with atoms A and B respectively. We see that the TB model predicts the 
broad topological features of the experimental map. In particular, NaCl in the top left-hand 
comer adjoins NiAs running across to the right and boride stability running down to the 
bottom. MnP stability is found in the middle of the NiAs domain and towards the bottom 
right-hand corner, where it adjoins CsCl towards the bottom. The main failure of this 
simple pd TB model is its inability to predict the narrow-tongue of FeSi stability of the 
transition metal silicides, which is probably due to the total neglect of the valence s 
electrons within the model. 

The theoretical TB calculations allowed the different roles played by relative atomic 
size, electronegativity difference, and electron per atom ratio in stabilizing a given 
structure type to be investigated directly (PETTIFOR and PODLOUCKY [ 1984, 19861). Fig. 
41 shows the fractional change in volume (AV)/V between a given structure type and 
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Fig. 40. The upper panel shows the structure map k,, x,) for 169 pd bonded AB compounds, where x, and xd 
are values for the A and B constituents of a certain chemical scale, x. which orders the elements in a similar 
way to the relative ordering number 41. The lower panel shows the theoretical structure map (Np. Nd) where 
N, and N, are the number of p and d valence electrons respectively on the CsCl lattice. (From PETTIFOR and 
PODLOUCKY [ 19841.) 
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Fig. 41. The fractional change in volume (AV)/V with respect to the CsCl lattice versus the relative size factor 
?3 (see text). The upper and lower NiAs curves correspond to c/a = 1.39 and (8/3)" respectively (PEITIPOR 
and PODLOUCKY [19841). 

the CsCl lattice as a function of the reZutive sizefactor X of the constituent atoms. 
Within the TB model, X had been defined through the relative strength of the pp 
repulsive pair potential compared to the dd repulsive pair potential. As expected, the 
NaCl lattice has the smallest volume at either end of the X scale, because as the size of 
either the p-valent atom or the d-valent atom shrinks to zero the repulsion will be 
dominated by one or other of the close-packed fcc sublattices. On the other hand, in the 
middle of the scale, where the nearest-neighbour pd repulsion dominates, the volume of 
the NaCl lattice with six nearest neighbours is about 13% larger than the CsCl with eight 
nearest neighbours. The packing of hard spheres rather than the softer atoms would have 
led to the much larger volume difference of 30%. 

The structural stability of the pd-bonded AB compounds may then be predicted by 
comparing the TIB band energy of the different structure types at the volumes determined 
by the relative size factor X .  Fig. 42 shows the resultant structural energies as a function 
of the electron per atom ratio or band filling N for the case where the atomic p level on 
the A site and the atomic d level on the B site are equal i.e. Epd = E, - E, = 0. As the 
electron per atom ratio increases we find the structural sequence CsCl + FeSi CrB 

Rr$erences: p.  129. 
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Fig. 42. The structural energy as a function of band filling N for the seven different crystal lattices with .Epd = 
0 (PETTIFOR and PODLOUCKY [ 19841). 

+= NaCl + NiAs + (MnP) -+ NiAs -+ NaC1, where MnP, a distorted NiAs structure, has 
been put in parentheses because it does not quite have the lowest energy for N = 9. The 
structural energy depends not only on the electron per atom ratio but also on Epd=Ep-Ed 
which is a measure of a Mulliken-type electronegativity diflerence. Curves similar to fig. 
42 have, therefore, been calculated for values of the atomic energy level difference in the 
range from -10 to 4-5 eV (in steps of 2.5 eV). Rather than plotting the most stable 
predicted structure on a structure map of E,, versus N, the lower panel in fig. 40 uses the 
rotated frame of Np versus N, in order to make direct comparison with the experimental 
results in the upper panel. 

The TB model has successfully accounted for the structural trends not only within the 
pd bonded AB compounds above but also within other families of AB, and AB, 
intermetallic phases (see, for example, JOHANNES et al. [1976], DUCASTELLE [1991], 
BIEBER and GAUTIER [1981], LEE [1991a and b], and OHTA and PETTIFOR [1989]). As 
expected, the structural stability of the binary phases is found to be controlled by four 
factors, namely the average number of valence electrons per atom (or band filling), a 
Mulliken-type electronegativity difference (or atomic energy level mismatch), the atomic 
size mismatch, and the angular character of the valence orbitals (or whether the bonding 
is pd, dd etc.). Classic ionic Madelung terms appear to play little role in determining the 
structures of intermetallic phases since the screening in a metal is perfect. 

The most famous example of the crystal structure correlating with the average 
number of valence electrons per atom or band filling N is the Hume-Rothery alloy 
system of noble metals with the sp bonded elements such as Zn, Al, Si, Ge and Sn (see 
ch. 4). Assuming that Cu and Ag have a valency of 1, then the fcc a-phase is found to 
extend to a N of about 1.38, the bcc P-phase to be stabilized around 1.48, the y-phase 
around 1.62 and the hcp &-phase around 1.75. MOTT and JONES 119361 pointed out that 
the fcc and bcc electron-per-atom ratios correlate with the number of electrons required 
for a free-electron Fermi sphere to first make contact with the fcc and bcc Brillouin-zone 
faces, N =  1.36 and 1.48, respectively. This condition corresponds to 2kF= /GI and 
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implies that the long-range Friedel oscillations (135) are in phase with the lattice, thereby 
giving an additional stabilizing energy. However, as found by STROUD and ASHCROFT 
[1971] this only leads to the fcc lattice being stabilized in the immediate vicinity of 
N =  1.36, the hcp lattice being the most stable for N e 1.3. The fcc noble metals with 
Z= 1 can, therefore, not be described by the NFE approximation. 

JONES [1937], on the other hand, started with a realisitic value for the Cu energy gap 
at L, namely 4 eV, which is an order of magnitude larger than that expected for simple 
NFE metals (cf. fig. 16). This large gap, which arises from hybridization and ortho- 
gonality constraints with the underlying d band (MUELLER [1967]), leads to a very non- 
spherical Fermi surface which already for Cu with N= 1 just makes contact with the fcc 
Brillouin-zone face in the <111> direction. Contact is made with the bcc zone for 
N = 1.23. The resulting fcc and bcc densities of states look very similar to those for Be 
(fcc) and Li (bcc) in fig. 20, because JONES [1937] neglected the presence of the copper 
d band (cf. fig. 26). Comparing the fcc and bcc band energies JONES [1937] found that 
the fcc lattice was indeed the more stable for 1 I N < 1.43. However, no comparison 
with the hcp lattice was made. 

Recently, PAKTON et al. [1992] extended Jones' calculations to include not only the 
hcp lattice but also a proper treatment of the valence d electrons within the Rigid Band 
Approximation (RBA). Fig. 43 shows the structural predictions where the expected trend 
from fcc (a phase) to bcc ( p  phase) to hcp (E phase) is found as a function of the 
electron per atom ratio or band filling N. This trend is a direct consequence of rigidly 
occupying the copper densities of states n(E) in the middle panel and comparing the 
resultant band energies, Le., 

AU = A[ :/En(E)dE] 

where 

EF 
N = n(E)dE. 

It follows from equation (136) that 

- d (AU) = A[% E,n 
dN dN 

since on differentiating equation (137) with respect to N we have immediately 

%"(E,) = 1. 
dN 

Further, it follows from equations (138) and (139) that 

(137) 

(139) 

( 140) 

References: p .  129. 
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Fig. 43. Analysis of fcc, bcc and hcp relative structural stability within the rigid band approximation for Cu-Zn 
alloys. (a) The difference in band energy as a function of band filling N with respect to elemental rigid copper 
bands. (b) The density of states at the Fermi levcl EF for fcc, bcc and hcp Iattices as a function of band filling 
N. (c) The difference in the Fermi energies AEF as a function of band filling N (from PAXTON, A.T., M. 
MhTHFEsSEL and D. G. PIT~IFOR [1992] unpublished). 

Thus, as first pointed out by JONES [1962], the shape of the band energy difference 
curves in fig. 43a can be understood in terms of the relative behaviour of the densities 
of states in the middle panel. In particular, from equation (138) the stationary points in 
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the upper curve correspond to band occupancies for which A& vanishes in panel (c). 
Moreover, whether the stationary point is a maximum or a minimum depends on the 
relative values of the density of states at the Fermi level through equation (140). In 
particular, the bcc-fcc energy difference curve has a minimum around N = 1.6, where the 
bcc density of states is lowest, whereas the hcpfcc curve has a minimum around 
N = 1.9, where the hcp density of states is lowest. The fcc structure is most stable around 
N= 1, where AEF 

The structural trends in these Hume-Rothery electron phases are thus driven by the 
van Hove singuladies in the densities of states which arise from band gaps at specific 
Brillouin or Jones zone boundaries as surmised earlier by MOTT and JONES [1936] and 
JONES [1937]. It is therefore not totally surprising that the NFE second-order perturbation 
theory results of STROUD and ASHCROFT [1971] and EVANS et al. [1979] found energy 
difference curves that are very similar to those in the top panel of fig. 43 away from the 
copper-rich end. The strong curvature of the bcc-fcc and hcpfcc curves as a function of 
band filling can be reproduced only by including explicitly the weak logarithmic 
singularity in the slope of the Lindhard response function at q = 2kP It is for this reason 
that these Hume-Rothery alloys are correctly termed electron phases since this singular- 
ity is driven solely by the electron-per-atom ratio (through 2kJ and does not depend on 
the particular chemical constituents (through the pseudopotential). The nesting of the 
Fermi surfaces of noble metal alloys and the implication for long-period superlattices 
(SATO and TOTH [1961]) have been examined quantitatively by first-principles KRR band 
calculations (GYORFFY and STOCKS [ 19831) assuming total disorder within the coherent- 
potential approximation (CPA, see, e.g., FAULKNER [ 19821). 

0 and the fcc density of states is lowest. 

7. Heat offormation 

A simple and successful semi-empirical scheme for calculating the heats of formation 
of binary alloys has been developed by MIEDEMA et al. [1980], who characterized each 
element in the Periodic Table by two co-ordinates 4* and p’”. The heat of formation of 
a binary AB alloy is then written (in the simplest case) as: 

AH = -P(A4 *)z + Q ( A P ” ~ ) ~ ,  (141) 

where P and Q are positive constants. The attractive term depends on the difference in 
the elemental work functions, A+, (later modified to A+*) and is similar in spirit to 
PAULING’S [ 19601 electronegativity contribution. The repulsive term depends on the 
difference in the cube root of the electron densities at the elemental Wigner-Seitz sphere 
boundaries, Ap‘”, and was argued to arise from the distortion of the charge density 
across the AB interface. Equation (141) has been useful in providing quantitative values 
for the heats of formation. In this section the microscopic origin of the attractive and 
repulsive contributions to AH will be examined in the light of our understanding of the 
cohesion of the elemental metals (cf. $8 5 and 6). 

Miedema’s expression (141) has been most successful in the treatment of binary 

References: p. 129. 
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transition-metal alloys, which are welldescribed by the tight-binding approximation. By 
analogy with FRIEDEL’S [ 19641 treatment of pure transition metal cohesion, the AB alloy 
band may be approximated (PETTIPOR [1979,1987]) by a rectangular density of states of 
width W, as shown in fig. 44. It follows from tight-binding theory (CYROT and CYROT- 
LACKMAN [ 19761) that: 

w: = w2 +3(AEd)*, (142) 

which generalizes the dimer result, eq. (30), to the bulk metal. The first term is the 
contribution to the square of the alloy band width that arises from nearest-neighbour 
bonding, whereas the second term reflects the increase in alloy bonding due to the 
ionicity which is measured by A Ed = Ef - E t .  Thus, the alloy bandwith is given by 

112 

w, = [1+ 3(AEd/W)’] w. (143) 

The heat of formation may now be evaluated explicitly. Filling up the alloy band with 
the average number of d electrons per atom, Ed, and comparing the resulting band 
energy with that obtained from pure metal bands of width W (as illustrated in fig. 44), 
one finds the contribution to the heat of formation AHo, given by: 

mO/w = -&(md)p - ~ ~ d ( ~ d / w ) - ~ ~ d ( l o - ~ d ) ( A E d / w ~ ,  (144) 

where eq. (143) has been expanded to second order, and A Nd = N f - N t .  In addition, 
there is a further contribution AH,, due to the fact that the elemental equilibrium atomic 
volumes V, and V, are in general different, so that the d bond energy of pure A and B 
is determined by W, and W,, respectively, and not by W as drawn in fig. 44. Assuming 
that the band width varies inverseiy with the volume to the five-thirds power (c.f. eq. 
(102); HEM [1967]) and that the alloy volume is V,= V =  1/2(VA + V,) by Vegard‘s 
law, then 

- 

AW = W, - W, = -3  W(AV/V). (145) 

+ EBP EA 

I 
WAB 

Fig. 44. The rectangular d band model representing AB alloy formation. The dashed line separates the partial 
density of states associated with atom A from that associated with atom B. 
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The resulting change in the bond energy due to the change in the band widths of the 
elemental metals from W to W,, W,, respectively is given by 

(146) 

Expressions (1.44) and (146) may be simplified still further for binary alloys from the 
same transition-metal series. Choosing the 4d series because the 3d row is complicated 
by the presence of magnetism (cf. 8 S), we can write AEd=-ANd eV from fig. 5 and 
V= V(Nb from fig. 30. Substituting into eqs. (144) and (146) and taking W = 10 eV from 
table 1, the heat of formation (in eV/atom) is given to second order by 

M , / W  = -- & (5 - Nd)ANd(AV/V). 

where 

and 

fi(Rd) = -&(5 - Nd (149) 

Equation (147) represents the second-order term in a Taylor expansion of A H(Nt, N f )  
in powers of hlvd as WILLIAMS et al. [198Ob] have emphasized. 

Figure 45 compares the results of the tight-binding theory with the MIEDEMA et aZ. 
[1980] semi-empirical values for k v d  I 4, where we see that reasonable agreement is 
obtained. The more attractive values of AH found by MIEDEMA et aZ. [ 19801 near Nd = 5 
reflect structural bonding effects which are not included in the present model with its 
uniform alloy density of states (cf. fig. 44). The dependence of the heat of formation on 
crystal structure has been demonstrated by the first-principles LDF calculations of 
WILLXAMS et aZ. [198Ob] who compared AH for the CuAu (fcc) and CsCl (bcc) lattices. 
It is clear from fig. 45 that the most stable AB alloys will be those for which the average 
d-band filling is close to 5.5 and k v d  is large, for example YPd. On the other hand, for 
average d-band fillings less than about 4 or greater than 7 the heat of formation will be 
positive. 

The attractive contribution in Miedema's expression (141) may be identified with AH, 
provided that 4* is interpreted as the eZectronegutivityX rather than the work function 4. 
Within the TB model the charge transfer Q is obtained by assuming partial densities of 
states n,(E) and itB(@ on the A and B sites in the alloy as illustrated in fig. 44. nA and 
nB have been skewed so that their centres of gravity correspond to E," and E t ,  respec- 
tively (PETTIFOR [1980]). The resulting d charge transfer is given by 

@ = 3 &: + gd(10 - Nd)(md/wm)' (150) 

The first term reflects the flow of electrons from right to left across the series due to 
increasing electron density and the second term reflects the flow from left to right due 
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Fig. 45. AH/(mJ2 as a function of the average band filling fid for the 4d series. The dashed curve is the AH, 
contribution, eq. (148). The squares represent the Miedema values for the 4d alloys with AN, 5 4 ,  the points 
with common N,, being connected by straight lines. (From PETTIFOR [1979].) 

to the increasingly attractive d level as one proceeds across the series (cf. fig. 5).  The 
flow of electrons is, therefore, not driven by the difference in the workfunctions A 4  
alone, because all the electrons throughout the band respond on alloying and not just 
those in the vicinity of the Fermi level. This can be seen by comparing, in fig. 44, the 
skewed partial density of states n,(E) in the AB alloy with the rectangular density of 
states in the pure metal A. 

By implication, the charge transfer is proportional to the difference in the electro- 
negativities, so that we may define a d-electronegativity X, by 
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Axd = Qd,, (151) 

Substituting into eq. (150) and integrating for the 4d series with AEd/w= AlV,/lO, the 
electronegativity is found to be 

xd = N ,  [ 1 - & Nd (15 - Nd )] + 1.8, (152) 

where the constant of integration has been chosen so that Mo with Nd=5 takes the 
PAULING [1960] value of 1.8. Equation (152) is plotted in fig. 46 and compares surpris- 
ingly well with the Pauling electronegativities across the 4d series. It follows from eq. 
(144) and eqs. (150)-(152) that AH,, can be expressed approximately as: 

AHo = -& W(AXd)’ (153) 

for I @, - 5 I I 5 / 6 .  Equation (153) gives the correct value of the dashed curve in fig. 
45 at the centre of the band and it vanishes at the correct cross-over points zd=5 & 
5 / 6 .  Since Miedema’s final choice of ordinate r$* is very similar to Pauling’s 
electronegativity X (MIEDEMA et QZ. [1980]), the attractive contribution in eq. (141) may 
be associated with AHo through eq. (153). The repulsive contribution in the semi- 
empirical scheme follows AH,, very closely numerically, but conceptually the latter 
reflects a mismatch in the d band width rather than the electron density (see also 
WILLIAMS et aZ. [1982]). The heats of formation of 3d, 4d and 5d transition metal AI3 
alloys have been tabulated by WATSON and BENNETT [1981] who used an optimized 
version of the d band model. 

The heats of formation of simplemetal binary alloys may be calculated within 
second-order perturbation theory provided the valence difference AZ=Z, - 2, is not too 
large (HAPNER [1976] and LEUNG et aZ. [1976]). Neglecting the structurally dependent 
pair-potential contribution and ignoring the density dependence of r$(R = 0; r,) in eq. 
(132), the heat of formation AH will be determined by the - volume-dependent free 
electron gas ternis alone. Assuming Vegard’s Law with V,= V=) (V, i VB), these give 
(PETTIFOR and CiELATT [ 19831) the contribution (in eV/atom): 

Fig. 46. The d-band electronegativity. X,, compared to PAIJLING’S [1960] values (squares) for the 4d series. 
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AHeg = Z&(;Trs)(Ap1/3)2, 

where 

&(pl") = -43.39 + 7.81/~"~ + 0.17/(~"~)2. 

(154) 

The three terms in eq. (155) are the kinetic, exchange and correlation contributions 
respectively, the flow of charge from the more dense to the less dense atom lowering the 
kinetic energy but raising the exchange and correlation energies. Equation (154) is 
reminiscent of the MIEDEMA etal. [1980] repulsive contribution in eq. (141). However, 
as is clear from fig. 47 the prefactorf, is not a positive constant Q but is dependent on 
the average cube root of the density p'". It changes sign from positive at low densities 
(where the exchange and correlation dominate) to negative at high densities (where the 
kinetic energy dominates). The first-principle LDF calculations of AH for the Na, Mg, 
AI, Si, P series with respect to the CsCl (bcc) lattice show the same trend in fig. 47 as 
eq. (155) although displaced somewhat from the free-electron-gas result because the 
explicit influence of the core through the last two terms in eq. (132) has been neglected. 
Figure 6.10 b of HAPNER [1987] shows that equation (154) represents the experimental 
heat of formation of liquid simple metal alloys extremely well. 

Fig. 47. AiY/[z(Ap'")]* as a function of the average cube root of the electron density p'" for the 3s and 3p 
series. The solid curve is the electron-gas Contribution, eq. (155). The open circles are the LDF results for the 
CsCl lattice. (From PFITIFoR and GELATT [1983]). 
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Fig. 48. The calculared heats of formation ( H m  [1977]) of A,B alkali-metal alloys for (a) the disordered 
bcc phase and (b) the ordered MgZn, Laves phase as a function of Rg/Ri  from table 2. The crosses give the 
electron gas contribution eq. (154) using the experimnral densities of the elemental metals. 

Structural effects can be important in determining the sign of AH of simple-metal 
alloys (cf. $2.3.2 of MIEDEMA et al. [1980]). This has been demonstrated by the second- 
order pseudopotential calculations of HAFNER [ 19771 on binary alkali metal alloys, which 
are illustrated in fig. 48 for the A,B stoichiometry. (His values of AH for the bcc alloys 
are approximately four times larger than the experimental, LDF or free-electron gas 
values, because his calculated density differences are larger than experiment.) Whereas 
the disordered bcc alloys have positive heats of formation, the ordered Laves phases 
Rb,Cs, KzCs and NqK have negative heats of formation due to the arrangement of the 
nearest-neighbour atoms with respect to the minimum in the pair potential. Therefore, 
provided the volume-dependent contribution to AH is not too large and positive, the 
structural contribution due to the pair potential can stabilize the phase. If a semi- 
conducting gap opens up in the alloy density of states, then this will provide additional 
stability (MIEDEIm et al. [1980]), which requires the theory to be extended beyond 
second order. 

The heats of formation of sp elements with transition metals is illustrated by fig. 49 
for the Li-row elements with the 4d transition metals. They were calculated by GELATT 
et al. [ 19831 using LDF theory for the AB stoichiometry with respect to the NaCl lattice. 
Their theoretical values agree broadly with the semi-empirical values of MIEDEMA et al. 
[ 19801 who found it necessary to include for sp-d alloys an additional attractive contribu- 
tion, -R, in their expression (141). R is written as the product of two numbers which are 
determined by the groups in the Periodic Table from which the sp and d constituents are 
drawn. GELATT et al. [1983] have interpreted their results in terms of an attractive sp-d 
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bonding contribution, which becomes increasingly ionic on proceeding across the sp 
series from Li to F, and a repulsive d-bond contribution. The latter reflects the loss of d- 
bond energy due to the narrower alloy d band width, which arises from the larger 
transition-metal-transition-metal nearest neighbour distance in the alloy as compared to 
the elemental metal. Curves similar to fig. 49 have been obtained by GELATT et al. 
[1978] for the 3d and 4d transition-metal hydrides. 

Figure 50 illustrates the reliability of LDF theory for predicting the heats of formation 
and structural stability of intermetallic phases. Figure 50a gives the LDF heats of 
formation of different ordered structures with respect to either the fcc or bcc lattices for 
the aluminium-lithium system (SLUITER et al. [1990]). We see that the B32 LiAl 
structure type is predicted to be much more stable than either the B2 or L1, equiatomic 
phases. Moreover, it is this strong stability of the B32 phase that is responsible for the 
known metastability of the neighbouring L1, W, and DO, Li,Al phases. Figure 50b 
gives the LDF heats of formation of different ordered structures with respect to either the 
fcc or hcp lattices for the aluminium-titanium system (VAN~CHILFGAARDE et al. [1990]). 
We see that the theory predicts the correct most stable ground state structure for Ti,Al 
and TiAl,, namely hexagonal DOl9 and tetragonal DO, respectively. Furthermore, 
whereas the metastable cubic L1, phase is very close to the ground state energy for 
TiAl,, it is much further removed for Ti,Al. This accounts for the fact that whereas Ti,Al 
has been stabilized as a cubic pseudobinary by suitable alloying additions, it has not been 
possible to stabilize the cubic phase of Ti,Al (Lm et al. [1989]). This demonstrates the 
importance of the first principles LDF calculations; they provide information not only 
about the ground state (which is usually already known experimentally) but also about 
the metastable phases (which have often not been directly accessed by experiment). 

The heat of solution of hydrogen and helium in metals may be calculated within the 
effective-medium approximation of STOTT and ZAREMBA [1980], N~RSKOV and LANG 
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Fig. 49. The heats of formation of 4d transition metals with Li row elements in the NaCl structure (GELATT et 
al. [1983]). 
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[1980j, and JACOIBSEN etal. [1987]. They assumed that the energy required to embed an 
atom at some given position R in a host metal which is characterized by an 
inhomogeneous density p(r), is the same as that required to embed the atom in a 
homogeneous electron gas of density p =fs(R), where p(R) is the average host electron 
density seen by the impurity atom at R. Then the energy of the impurity atom at position 
R in the host lattice is given to lowest order by 

The homogeneous embedding energy A U,,,,@) can be evaluated within LDF theory and 
the results for H and the rare-gas atoms He and Ne are shown in fig. 51a (PUSKA et al. 
[1981]). We see that the rare-gas atoms display a positive embedding energy at all 
densities because their full electronic shells repel the free electron gas through ortho- 
gonality constraints. On the other hand, the open-shell hydrogen atom shows a minimum 
at p = 0.0026 au-’ (i.e., p’” = 0.138 au-’) corresponding to an arrracrive embedding energy 
of -1.8 eV, although it is repulsive for typical transition-metal densities of 0.02-0.03 ar3 .  

The heats of solution of H and He across the 3d series are shown in fig. 51b after 
N@RSKOV [1982] and MANNINEN et al. [1982], respectively. The results include an 
important first-order electrostatic correction term to eq. (156), which reduces the slope 
of the He curve in fig. 51a by half and lowers the H curve by -120p eV au’ so that the 
H embedding energy is attractive throughout the entire range of metallic densities (cf. the 
solid circles in fig. 51b). The behaviour of the helium heat of solution across the 3d 
series mirrors that of the host metallic density which varies like the bulk modulus shown 
in fig. 1. The hydrogen heat of solution is measured with respect to the binding energy 
of the H2 molecule, namely -2.4 eV/atom. We see in fig. 51b that agreement with 
experiments is obtained only if a first-order hybridization correction is included from eq. 
(1 16) which reflects the bonding between the hydrogen impurity and the host nearest 
neighbour atoms (N@RSKOV [ 19821). The effective-medium approximation with first-order 
electrostatic and hybridization corrections included has been applied successfully to 
defect problems such as the trapping energies of H and He by interstitials, vacancies and 
voids (N@RSKQV et al. [1982] and MANNINEN etal. [1982]). The electron theory of point 
defects has been reviewed by JENA [1981]. 

The ordering energy of a binary A, B,, alloy is defined by 

Auod = uod-udis, ( 157) 

where U,, and U,,, are the energies in the completely ordered and disordered states 
respectively. By using second-order perturbation theory for the NFE simple metals 
(HAYES et al. [ 19681 and INGLES~LD [ 1 9691) or a generalized perturbation theory for the 
TB rransizion metals (DUCASTELLE and GAUTIER [1976]) the ordering energy eq. (157) 
can be expressed directly in terms of effective pair interactions $,, &, &,... between the 
first, second, third, ... nearest neighbour atoms. ($n depends explicitly on IAv,(q) 1’ for 
the simple metals and on lAEdI2 for the transition metals). The ordering energy for c I 
0.5 may be written (see, e.g., DE FONTAINE [I9791 and DUCASTELLE [1991]) as: 
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Fig. 50 (a). The predicted heat of formation of fcc- and bcc-based lithium-aluminium ordered compounds ( a e r  
SLUITER et a!. [ 19901). 
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Fig. 50 (b). The predicted heat of formation of fcc- and hcpbased titanium-aluminium ordered compounds 
(after VAN SCHILFGAARDE et al. [1990]). 

where z, and p,, are the number of nth nearest neighbour atoms and B-B atom pairs 
respectively. 



Ch. 2, 37 Electron theory of metals 121 

Fig. 51 (a) The homogeneous embedding energy for H and the rare gas atoms He and Ne in a free electron gas 
of density p (after PL'sKA et al. [ 19811). (b) The H and He heats of solution across the 3d series (after N@RSKOV 
[1982] and MANNINEN ef al. [1982] respectively). The solid circles include a first-order electrostatic con- 
tribution. The open circles include, in addition, a first-order hybridization correction. 

The effective pair interaction in transition metals with respect to an fcc lattice is 
illustrated by fig. 52a where 41 and q52 are plotted as a function of average band filling 
E d  for the TB d band alloy with c=O.25 and AEd/W = 0.45 (BIEBER etal. [1983]). As 
expected from the behaviour of the simple-metal pair potentials in Q 6.1, the transition- 
metal pair interactions display oscillations as a function of band filling, Ed, and nearest 
neighbour position, n. Figure 52b compares the ordering energy evaluated by the pair 
interaction of DUCASTELLE and GAUTIER [1976] with the exact TB energy difference 
from eq. (157). We see that for this particular alloy it is a good approximation in the 
band-filling region where ordering occurs. Moreover, because the second and further 
nearest neighbour interactions are at least an order of magnitude smaller than the first nearest 
neighbour interactions, the ordering energy is dominated by +1 through eq. (158). 

The pair interactions also determine the most stable ordered structure with respect to 
a given lattice (BIEBER and GAUTIER [1981]). For example, in fig. 53 the Cu,Au and 
A1,Ti structures are shown, which are built on the fcc lattice. They have the same type 
of first nearest neighbour atoms, so that their relative stability is determined by & and 
further nearest neighbour interactions. Since in fig. 52a is negative for 4.4 < Ed < 7.3 
when AJZd/ W =  0.45, the ordered structure with like second nearest neighbours will be the 
more stable, Le., Cu,Au. The stability reverses outside this band-filling region, thereby 
accounting for the nature of the structure map in fig. 53. This displays only a narrow 
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AEd/W 0.45 

Fig. 52. (a) The first and second nearest neighbour effective pair interactions, 4, and 42, as a function of the 
average band filling, N,, for an AB, transition-metal alloy with a AEJW = 0.45 on an fcc lattice. (b) A 
comparison with the exact result of the ordering energy evaluated using the effective pair interactions. (After 
BIEBER etal. [1983].) 

stability range for the A1,Ti phase, which is in agreement with empirical structure maps 
(BIEBER and GAUTIER [ 198 11). 

This chapter on Electron Theory has been concerned primarily with the cohesive and 
structural properties of metals and alloys at the absolute zero of temperature. However, 
the derivation of effective pair interactions +n within electron theory allows the first- 
principles prediction of phase diagram behaviour by using these in an Ising Hamiltonian 
and performing Monte Carlo or Cluster Variation Method simulations (see, for example, 
DUCASTELLE [1991] and references therein, and ZUNGER [1994]). Chapter 6 deals 
explicitly with Phase Diagrams. 

8. Band theory of magnetism 

The magnetic 3d elements have anomalously large equilibrium atomic volumes and 
small bulk moduli as evidenced by the deviations in fig. 1 between experiment and the 
non-magnetic LDF theory. In this section we will see that the STONER [1939] theory of 
band magnetism can explain this anomalous behaviour. 

A nonmagnetic system will become magnetic if the lowering in exchange energy due 
to the alignment of the electron spins more than compensates the corresponding increase 
in kinetic energy. This may be demonstrated by the rectangular d-band model of fig. 54. 
In the nonmagnetic state, the up and down spin electrons are equivalent and, therefore, 
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Fig. 53. The relative stability of the C u a u  and M3Ti structures as a function of the average band filling fid, 
and the renormalized difference in the atomic d levels, AEJW (after B m  and GAUTIER [19811). 

they have identical density of states nt and nJ as shown in fig. 54a. In the magnetic state, 
the presence of a local magnetic moment, m, produces an exchange field A on the atom, 
of strength 

d = im, ( 159) 

where I is the Stoner exchange parameter and m =N$-iVi in Bohr magnetons &J. In the 
ferromagnetic state, all the atomic moments are aligned in the same direction, so that an 
up-spin electron sees the atomic level Ed shifted by -$A a on every site, the down-spin 
electron by GA. Therefore, the densities of states nt and nJ are shifted rigidly apart by 
A as shown in fig. 54b. On the other hand, in the antiferromagnetic state, half the atoms 
have their moments aligned up, the other half have their moment aligned down, so that 
an electron sees two types of sites, with energies Ed *A. The problem is, therefore, 
analogous to that of the AB alloy discussed in the previous section (cf. fig. 44) and the 
densities of states nT and nJ (corresponding to an atom with net moment up) are obtained 
by skewing the rectangular nonmagnetic densities of states as shown in fig. 54c. 

The magnetic energy which accompanies the formation of a local moment m at each 
site, may be written as: 

u,, = s T - + i m 2 ,  

where the first term is the change in the kinetic energy and the second is the lowering in 
energy due to exchange. The ferromagnetic (fm) state is created by flipping i m  down- 
spin electrons from just below the nonmagnetic Fermi level into the unoccupied up-spin 
states just above the nonmagnetic Fermi level. This is accompanied by an increase in 
kinetic energy of (im)/n(EF) per electron, so that, to second order, 

U, = 4 m2/n(E,) - Im2 

where in this section n(E,) refers to the nonmagnetic density of states per spin. There- 
fore, the nonmagnetic state will be unstable to ferromagnetism if V, < 0, i.e. if: 
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Fig. 54. The rectangular d band model of the (a) nonmagnetic, (b) ferromagnetic, and (c) antifemmagnetic 
states (3fter -IFOR [1980]). 

In( EF) > 1 ( 162) 

which is the famous Stoner criterion. The equilibrium value of m in the ferromagnetic 
state is determined by the condition 

In( Nd , m) = 1, (163) 

where n (Nd, m) is the average of the nonmagnetic density of states per spin between the 
two energies corresponding to a band-filling of Nd and Nd respectively (see, e.g., 
GUNNARSSON [19761). 

The magnetic energy of the antiferromagnetic (afm) state can be obtained (PETTIFOR 
[1980]) by adding up the band energies in fig. 54c and subtracting off the exchange 
energy which has been double-counted, i.e.: 

.1 T 

v,, =-$(~ , -W)Nd(10-Nd)++1m2,  (164) 

where from eq. (142) 

W,, = (1 + 3(A/W)')112 W. 

Expanding eq. (1 65) to second order and using eq. (159), the nonmagnetic state is found 
to be unstable to antiferromagnetism if 

( 166) 

This is the rectangular d-band model criterion equivalent to the exact second-order result, 
namely 

I/W > [A Nd(10 - Nd)]'. 

' x q ( E F )  > (167) 

where x,(EF) is the response function corresponding to the afm ordering wave vector 4 
(see, e.g., BDDERS and MARTIN [ 19661). The usefulness of the present model is that eqs. 
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0 - 1  

(164) and (165) include terms beyond second order so that the equilibrium value of the 
magnetic moment and energy may be obtained explicitly. Equation (164) is stationary for 

Cr Mn Fe Co Ni 
I I I 

when 

u,, = [h ~nr,(10 - N ~ )  - + w'/z] - t zm2 

The first term in eq. (169) represents the change in kinetic energy, ST. The value of the 
moment given by eq. (168) is identical to that obtained by filling the up and down spin 
bands in fig. 54c and solving eq. (159) self-consistently. 

Figure 55 shows the regions of stability of the ferromagnetic and antiferromagnetic 
phases as a function of the renormalized exchange integral, I/ W, and band filling, Nd, for 
the rectangular d-band model (see also PENN [1966]). The fm and afm phases are stable 
for values of I/ W above the critical curves ABC (fm) and DBE (afm), which are defined 
by eq. (162) with n(E,)= 5/W and eq. (166), respectively. In the region where both 
phases are stable, the fm and afm state have the lower energy in region FBE and ABF 
respectively. 

The magnetic behaviour across the 3d series can be accounted for qualitatively (see 
also MORIYA [ 19651) by assigning the 3d transition-metals values of Nd in fig. 55 which 
fix Ni with 0.6 holes. Values of Z/W are chosen as marked by the crosses in fig. 55, the 
numbers lying in the range expected from first-principles LSDF calculations where Z = 
1 eV and W = 5 eV for the 3d series (see, e.g., KUBLER [1981]). Z is approximately 

constant across the series but W increases from Ni to Cr just as observed in table 1 for 
the corresponding 4d series from Pd to Mo. Therefore, we expect Z/W to decrease in 
moving from Ni to Cr, as shown in fig. 55. The positions of the crosses in fig. 55 imply 
that Ni and Co are strong ferromagnets with moments of 0.6 and 1.6 pB respectively, 

0-3  

I 
W 
- 

0 -2 
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whereas Fe (Z/W=0.180), Mn(Z/W=0.158), and Cr (Z/W= 0.136) are anti-ferromagnets 
with local moments from eq. (168) of 0.9, 1.6 and 0.7 p,, respectively. 

In practice, the rectangular d band model is not too bad a description of the close- 
packed fcc and hcp metals whose densities of states are fairly constant away from the top 
of the d band (c.f. fig. 26). This is demonstrated in fig. 56 by the band structure calcula- 
tions of ASANO and YAMASHITA [1973] who evaluated the fm and afm local moments 
across the 3d series. Their fcc results are similar to those obtained from fig. 55. In 
particular> fcc iron is unable to maintain a fm moment, being instead a weak antiferro- 
magnet. However, if I/ W were to increase (by volume expansion), then fig. 55 implies 
that fcc iron eventually stabilizes in the fm state as has been observed experimentally by 
GRADMANN and ISBERT [1980] and theoretically by the LSDF calculations of KOBLER 
[1981]. 

On the other hand, bcc transition metals have a very non-uniform density of states 
and are characterized by a very marked antibonding peak for N = 8 electrons (cf. fig. 
26a). n(&) is sufficient for the 3d transition metal iron to satisfy the Stoner criterion 
(162) and the resulting magnetic energy of - 0.3 eV/atom (JANAK and WILLIAMS [ 19761) 
stabilizes the bcc lattice with respect to the nonmagnetic or weakly afm close-packed 
lattices. Under pressure, however, the d band broadens and the density of states 
decreases, thereby leading to an increased kinetic-energy contribution in eq. (161). At 
just over 10 GPA the nonmagnetic structural energy contribution in fig. 35 wins out and 
ferromagnetic bcc a-iron transforms to the nonmagnetic hcp s-phase (MADSEN et al. 
[1976]). This is the most stable structure of the isovalent 4d and 5d elements Ru and Os 
at their equilibrium volume because their wider d bands prevent them from satisfying the 
Stoner criterion. At atmospheric pressure bcc a-iron transforms to the fcc ?-phase at 
1184 K and changes back to the bcc 8-phase at 1665 K just before melting at 1809 K. 
The occurrence of the a, y, 8 and s-phases in the temperaturepressure phase diagram 
of iron can be understood qualitatively (HASEGAWA and PETTIFOR [1983]) within a band 
theory of magnetism which extends Stoner theory to finite temperatures (CYROT [1970], 
HASEGAWA [ 19801 and HUBBARD [ 19811). 

The simple rectangular d band model of antiferromagnetism presented in fig. 54c 
does not include any Fermi-surface nesting effects which Lo- [1962] argued were 

Cr Mn Fe Co 
f cc bcc 

Fig. 56. The magnetic moments of the 3d metals in the ferromagnetic and antiferromagnetic states calculated 
as a function of band filling by &NO and YAMASHITA [1973] for the fcc and bcc lattices. The crosses mark 
the experimental values. 
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responsible for the observed periodicity of the bcc Cr spin deqsity wave. In practice, 
even though nesting provides only a small contribution to x,(,?&) in eq. (167), it is 
sufficient to take bcc Cr across the afm stability curve DBE in fig. 55 (WINDSOR [ 19721 
and SKRIVER C1981al). 

The anomalous behaviour of the equilibrium atomic volumes and bulk moduli of the 
3d series observed in fig. 1 is due to the magneticpressure, Pmg=- dU,,$dV, which 
accompanies moment formation (SHIGA and NAKAMURA [1969] and JANAK and 
WILLIAMS [ 19761). Assuming that I is volume-independent (MADSEN et al. [ 19761) and 
W varies inversely with volume to the five-thirds power (HEINE [1967]), it follows from 
eqs. (161), (164) and (169) that 

3P,,V = 56T, (170) 

because 6 Umd6m = 0 at equilibrium. 

approximated by the first term in eq. (161), so that 
In particular, for the ferromagneric state the kinetic-energy change, ST, may be 

34,V = % rn2/n(EF). (171) 

JANAK and WILLIAMS [1976] have shown that this simple expression accounts for the 
increase in equilibrium volume on going to the ferromagnetic state which the LSDF 
results display in fig. 57. For example, iron and nickel have moments of 2.2 and 0.6 pB, 
respectively, and LDF nonmagnetic density of states per spin of 1.5 and 2.2 states per eV 
atom respectively. Substituting into eq. (171) gives a magnetic pressure for iron and 
nickel of 21.2 and I GPA, respectively, which leads to an increase in the equilibrium 
volume of 7% and ;%, respectively. The increase in atomic volume reduces the bulk 
modulus because the valence s electrons are now no longer compressed to the same 
extent into the core region where they are repelled by orthogonality effects (cf. 5 5.2). 

Figure 57 shows that the experimental trend in the equilibrium atomic volume and 
bulk modulus across the ferromagnetic metals Fe, Co and Ni is well accounted for by the 
LSDF results (JANAK and WILLIAMS [1976]). Similarly, SKRIVER et al. [1978] have 
obtained good agreement with experiment across the 5f actinide series, where the LSDF 
calculations reproduce the sudden 30% volume expansion that is observed in going from 
Pu to Am, due to the formation of a 5f moment. The 4f rare earths Ce and Pr have also 
been studied within LSDF theory, by GLOTZEL [1978] and SKRIVER [1981b] respectively, 
as too has the permanent magnet Nd,Fe,,B (COEHOORN [1992]) and various magnetic 
mutilayers (EDWARDS [1992]). However, errors remain in figs. 1 and 50 (for the 3d 
metals in particular) which must be attributed to the Zocal approximation to the exchange 
and correlation energy functional. For example, LDF theory does not position the valence 
s and d bands in exactly the correct relative position (HARRIS and JONES [1978]) or 
provide the correct exchange splitting in nickel (WOHLFARTH [1980] and COOKE et al. 
[ 198 I}). Although the correlations can be treated perturbatively within a TB framework 
(FRIEDEL and SAYERS [1977]), a simple non-local extension of the LDF approximation 
will be required for the next generation of higher-accuracy first-principles calculations 
(see, e.g., JONES and GUNNARSSON [1989]). 
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Cr Mn Fe co Ni 

Fig. 57. The equilibrium Wigner-Seitz radius, S, and bulk modulus, B,  across the magnetic 3d transition metals. 
The crosses, circles. and squares are the experimental, spin-polarized LSDF and nonmagnetic LDF results, 
respectively. (After JANAK and WILLIAMS [1976].) 
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1. SoLid solubility 

A solid solution is obtained when atoms of different elements are able to share 
together, and with changing proportions, various sites of a common crystalline lattice. It 
is now generally recognized that all metals and compounds show some solubility in the 
solid state; a question of great interest is, however, the extent of solid solubility in a 
given case. For example, only 0.2 wt% of phosphorus can be dissolved in y-iron, but 
nearly 39 wt% of zinc can be dissolved in copper without changing its structure. On 
alloying copper with nickel, on the other hand, the same fcc structure is maintained 
throughout the entire alloy system (fig. la), providing an example of complete soZid 
solubility. The Au-Cu alloys have complete solid solubility at high temperatures, but 
show different behavior at low temperatures (see fig. l b  and 0 11). In the great multitude 
of phase diagrams now known, the above cases, and even the case of only a partial but 
extensive solid solubility (of several atomic percent), are relatively rare. Complete solid 
solubility can occur only if the structures of the elements involved are basically the same, 
but it need not always occur when this condition is fulfilled (Le., the system Cu-Ag 
which is a simple eutectic). In the case of close-packed hexagonal solid solutions 

Cu-Ni Phase Diagram 

Weight Percent Nickel 
0 IO rn 30 QJ 50 60 m 80 90 100 

CU Atomic Percent Nickel Ni 

Fig. la. Complete solid solubility in the system Cu-Ni which maintains fcc structure throughout the whole 
composition range (from MASSACXI [19!30].) 
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~~ ~~ 9 Au-CuPhaseDiagram 

Weight Percent Copper 
0 IO 20 30 40 50 80 70 80 WIM) 

B7.c 

0 10 20 90 40 50 Bo 70 80 80 LOO 

Au Atomic Percent Copper cu 

Fig. Ib. The Au-Cu system has complete solid solubility and fcc structure at high temperatures. At low 
temperatures superlattices form (see 8 11). (From MASSALSKI [1990].) 

considerable difference between the values of the axial ratio can usually be accommo- 
dated on changing from one element to another; for example, the axial ratio, C/Q, 

changes from 1.5873 for Ti to 1.5931 for Zr in the Ti-Zr system, and from 1.6235 for 
Mg to 1.8856 for Cd in the LZlg-Cd system. The phase diagrams of these systems are 
shown in figs. I C  and Id. In the case of Ti-Zr the pure elements exist in two allotropic 
forms (cubic at high temperatures and hexagonal at low temperatures), and complete 
solid solubility occurs between both modifications on alloying. In the Mg-Cd system, on 
the other hand, complete solubility occurs only at high temperatures and is interrupted at 
lower temperatures by the formation of superlattices (see 0 11). 

From the point of view of solid solubility, chemical compounds can be compared 
with pure metals and may be said to show alloying behavior if they exhibit wide solid 
solubility in a phase diagram. Since compounds are usually formed at fixed ratios of the 
numbers of atoms, the occurrence of solid solubility represents a departure from 
stoichiometry. If a compound is truly ionic in nature, the extent of such departure may 
be extremely small, amounting perhaps to a fraction of an at%; and for all practical 
purposes this is usually ignored and the compound is then drawn as a vertical line in the 
phase diagram. However, in typical metallic systems a large number of phases have been 

References: p .  199. 
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Weight Percent Zirconium 
0 10 20 30 4Q 50 60 70 80 

2ow 

Ti Atomic Percent Zirconium Zr 

Fig. IC. The Ti-Zr system has complete solid solubility, with cubic structure at high temperatures and 
hexagonal structure at low temperatures (from MASSAL~KI [1990].) 

observed at atomic compositions which bear no apparent relation to the rules of 
stoichiometry. Such phases frequently possess wide ranges of solid solubility and 
resemble the solid solutions obtained on initial alloying of pure metals. To an engineer 
concerned with materials the occurrence of wide solid solubility, both between pure 
metals and in compounds, is of great practical interest because it is often associated with 
relatively simple metallic structures which possess desirable mechanical and physical 
properties. 

In this chapter we shall examine some of the factors which determine the limits of 
solid solubility in metallic systems and then consider some properties of the structure of 
extended solid solutions, such as lattice spacings, defects, departure from randomness, 
size effects, etc. 

2. Terminology (types of solid solutions) 

Solid solutions are phases of variable composition, and in principle any number of 
components can be alloyed together to form a series of solid solutions. However, for 
simplicity we shall consider mainly the binary alloys. The replacement of copper atoms 
by nickel on the lattice of pure copper is an example of a substitutional solid solution. 
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~ ~~~ ~ 

Weight Percent Magnesium 
$9 

Me 
o IO 20 ~1 UI sn m 'IO 80 sa IW 
cd Atomic Percent Magnesium 

Fig. Id. In the Mg-Cd system complete solid solubility occurs at high temperatures. Superlattices form at low 
temperatures (see 5 11). (From MAWKI [1990].) 

Since the two elements can be substituted at all proportions throughout the whole system, 
they form a contipluous series of solid solutions. If the solid solubility is limited to only 
those portions of the phase diagram which are linked to pure elements, the resulting 
phases are known as primary (or terminal) solid solutions. Such solutions have, of course, 
the same structure as the elements on which they are based. All other phases are usually 
known as intermediate phases; they may be called intermetallic compounds or valence 
compounds if their solid solubility is unusually restricted around a stoichiometric 
composition. Intermediate phases typically possess structures which are different from the 
structure of either of the component elements. 

If the size-difference between the component atoms which participate in forming a 
solid solution is sufficiently large, it may become possible on alloying for the one kind 
of atoms to be merely deposited in the holes (or interstices) between the other atoms on 
their space lattice. An interstitial solid solution is then formed. Such solutions can occur 
for example when nonmetallic elements such as boron, oxygen, nitrogen or carbon are 
dissolved in a metal lattice. 

Both interstitial and substitutional solid solutions can be random, with statistical 
distribution of atoms, or they may be partially or completely ordered, in which case the 
unlike atoms show preference for one another. A fully ordered solid solution is some- 
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a b C d 
Fig. 2. Schematic models of solid solutions: (a) substitutional random; (b) substitutional ordered; (c) interstitial 
random; (d) solute clusters in solid solution. 

times known as a superlattice. Alternatively, the like-atoms may tend to associate 
together to form clusters within the solid solution. Again, the clusters may be dispersed 
randomly or they may be ordered or oriented in various ways, producing a variety of 
complex substructures within the solid solution. A diagrammatical illustration of the 
various types of solid solution is given in fig. 2. 

While it is possible to consider the case of a random solid solution as an idealized 
example, the mounting experimental evidence, based mainly on diffuse X-ray scattering, 
suggests that complete randomness (like perfect crystallinity) is probably never found in 
nature. Hence, solid solutions which are in a thermodynamical equilibrium (ch. 5 )  may 
be considered to be truly homogeneous on a macroscopic scale, but they need not be 
homogeneous down to the scale where atoms are considered individually. 

3. Energy of solid solutions and phase stability considerations 

The extent of solid solubility of phases, the stability of phases, the temperature 
dependence of stability, and the choice of structures that are actually observed in phase 
diagrams are the result of competition among numerous possible structures that could be 
stable in a given system. This competition is based on the respective values of the Gibbs 
Free Energy of each competing phase and the variation of this energy with temperature, 
pressure, composition and possibly other extensive parameters. The details are presented 
in chapter 5.  Here, we shall merely state that the most general form of the Gibbs energy 
(G) can be expressed as a function of the intensive parameters, enthalpy (H) and entropy 
(S), and the absolute temperature Q: 

G = H - TS. (1) 
As is well known, numerous factors contribute to the H and S parameters. The major 
contribution to the entropy is from statistical mixing of atoms (AS-), but there can be 
additional contributions from vibrational effects (ASvib), distribution of magnetic 
moments, clustering of atoms and various long range configurational effects. The main 
interest in this chapter is in the contributions to the enthalpy resulting from atomic 
mixing (AH-), which are in turn related to the interaction energies between neighbour- 
ing and further distant atoms in a given structure based upon electronic, elastic, magnetic 
and vibrational effects. Much progress has been made in measuring, calculating and 
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predicting many such effects, and hence progress continues to be made in the evaluation 
of the related thermodynamic quantities and ultimately the phase diagrams. 
Some recent reviews of these topics are listed in the bibliography for further reading (and 
in chapter 6). 

Typical values of the enthalpy of formation (AH) and its relation to the type of 
bonding are given as an illustration in table 1. As discussed in chapter 6, a change by 
10-2Q kJ/mole in the interaction parameter that determines the enthalpy of formation can 
profoundly affect the form of the resulting phase diagram. The estimation of the AH 
values, particularly for systems where the experimental data are meager or lacking, has 
been therefore of great practical interest to the workers in the area of phase stability. 
Semi-empirical values of the heats of formation have been predicted for many systems 
by Miedema and co-workers (MIEDEMA and NIESSEN [ 19881) and have found many uses. 

Along with the progress achieved in the measurements that established the details of 
phase diagrams and the associated phases, it is natural that the observed phase stabilities 
should be tested against basic theory. In this connection, two aspects stand out sharply 
([NLPhssk~sm 19891): 
(1) The need to calculate phase stability from “first principles” in order to understand 

the basic parameters that control the energy of a phase. 

Table 1 
Heats of formation at 2983 of some typical intermediate phases and compounds.* 

Compound or phase Structure** Predominant bonding Heat of formation 
-AH &T/g atom) 

MgSe NaCl (B2) Ionic 135.9 f 8.3 
MgTe ZnS (B4) Ionic 104.3 C 10.4 
ZnTe zms (B3) Ionic 60.0 C 2.1 

CaF, 0) Partially ionic 38.4 f 0.08 
c?$3 @5C) Partially ionic 30.9 f 0.8 

Mg2Si Cap, (Cl) Partially ionic 26.3 f 1.3 
InAs zns 033) Covalent 30.9 f 2.5 
GaSb ZnS (B3) Covalent 20.9 C 0.8 
InSb as 033) Covalent 14.6 C 0.4 
NiTe NiAs (B8) Partially metallic 18.8 f 6.3 
CoSn NiAs (B8) Partially metallic 15.0 f 1.3 
Co,Sn2 NiAs (B8) Partially metallic 11.3 f 0.8 
CaMg, MgZn, (CW Metallic 13.3 +- 0.4 
Ag& (0.61 a) Y-braSS (D&) Metallic 4.6 f 0.21 
A@ (0.50 Zll) &brass (B2) Metallic 3.1 f 0.21 

*Data taken from ROBINSON and BE- [1967]. 
**For meaning of the symbols, see ch. 4. 
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(2) The need to utilize the successful theories of phase stability for predicting phase 
diagrams in systems where measurements have not yet been done, or are particu- 
larly difficult. Here, progress will ultimately permit technologically relevant 
complex or multicomponent phase diagrams to be predicted. 

It was Hume-Rothery and his associates who more than a half century ago laid the 
foundations for a systematic study of phase diagrams and their interpretation. A suitable 
testing ground at that time was the stability of alloy phases based on the so-called noble 
metals, Cu, Ag, and Au (HUME-ROTHERY [1955]; HUME-ROTHERY et al. [1969]). From 
this work has emerged the emphasis on three general metallurgical parameters. Stated 
very broadly they are: 

(1) 
(2) 
(3) 
Their importance is often expressed in terms of the so called “Hume-Rothery Rules” (see 
section 4). 

Regarding the basic theory, the understanding and prediction of phase stability of 
alloys and compounds in terms of the electronic structure calculations is a subject of 
paramount importance in materials science. There has been much progress in the ‘‘first 
principles” (or the so called “ab initio” approach to the band theory of both ordered 
compounds and, more recently, also of random metallic alloys (STOCKS and WINTER 
[1984]). At the same time, because of the pressing need of technology, many semi- 
empirical or partially qualitative schemes of phase stability have been pursued, often very 
successfully. The results of such attempts are usually the estimated heats of formation 
(AH) (see also ch. 2, 06.2.). 

Basic theoretical guidelines are needed to classify phase diagrams, in order to be able 
to extrapolate from known binaries to higher order systems. A theoretical derivation of 
energies of specific structures and phase equilibria between them, eventually will yield 
reasonably accurate free energy and entropy changes, and a description of states of 
partial order, relative stability of metastable phases, etc. Clearly, the first step towards 
true theoretical determination of phase diagrams is to calculate the energies of phases 
involved in simple binaries and compare them with experimentally determined values, 
where possible. A number of theoreticians in excellent reviews (LOMER [1967], 
FAULKNER [1982]; HAWR [1983]) have outlined the different operations that must be 
performed to calculate a composition-temperature phase diagram of a binary alloy, 
starting first with the stability of individual phases. Essentially, these steps are as those 
enumerated in table 2. 

From the point of view of phase stability, the result of such a detailed calculation 
would be a sufficiently precise set of values of the enthalpies of the various competing 
alloy phases and their variations with composition. The calculation of the phase 
diagrams, including temperature and entropy, would be the next step. Clearly, from the 
point of view of phase stability, even these initial calculations represent a monumental 
task. Yet, a glance at table 3 quickly shows that theoretical assessments are our only 
reasonable hope of dealing with higher-order systems in the near future. In table 4, a brief 

the difference in atomic sizes of the components, 
the electrochemical differences among the components, and 
the “electron concentration” change on alloying. 
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Table 2 
Phase stability calculations.* 

(First principles) 
General procedure 

(1) 
(2) Fix alloy composition. 
(3) 
(4) Choose lattice parameters. 
(5) 

Result: total energy 

(6) 
(7) 
(8) 

Calculate self-consistent atomic potentials of components. 

Assume a possible crystal structure. 

Introduce the atomic potentials on the lattice, calculate selfconsistent band structure and ground 
state energy, and add interionic energy. 

Repeat (4) and (5 )  for different values of lattice constants. 
Repeat (3) through (6) for other possible crystal structures. 
Repeat (2) tlmugh (7) for other compositions. 

Result: enthalpy of the possible alloy phases as a function of composition. 

*Lorn [1967], FAIJLKNER [1982], HAFNnz [1983] 

summary is given of some of the more recent theoretical calculations that have been 
developed. This summary is not intended to be comprehensive or complete. (See also ch. 
5, Q 6.). 

Table 3 
Possible number of systems. 

binary 

ternary 

quaternary 

n! 
(rn! (n  - rn)! 

-- - 4,005 90! 
2!88! 

go! - I 17,480 
3!87! 

4!86! 

-- 

-- go! - 2,555,190 

n = number of elements (say 90) 
m = number of elements in a system 

As emphasized by many authors (MASSALSKI [1989]), the majority of existing models, 
from the semi-empirical to those providing detailed density maps and electronic 
parameters of alloys, have the same major drawback as far as phase diagrams are 
concerned: it is difficult to treat theoretically the temperature dependence of the energy. 
For example, the calculations that predict enthalpies at 0 K (for first principles calcula- 
tions), or at some undefined temperature (for the semiempirical models), rarely provide 
sufficient information about the thermal behavior of such enthalpies or the thermal 
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entropy contributions. Yet, for the purpose of phase diagrams determination the Gibbs 
free energies must be calculated by adding to each enthalpy derived from the static 
models the vibrational energy and the thermal entropy contributions. The latter in turn consist 
of vibrational and configurational parts. It is clear that the prediction of entropies, particularly 
for possible metastable phases in phase diagrams, will become the necessary step before the 
full potential of the theoretically calculated stabilities can be utilized. Only a few interesting 
examples of phase stability, compound stability and alloying effects are reviewed below. 

4. Factors governing solid solubility (Hume-Rothery rules for primary 
solid solutions) 

Since all interactions between atoms are a function of electronic forces, they should 
ultimately be subject to the laws of quantum mechanics. At the present time, however, 
the available theories of the solid state of the type summarized in table 4 are unable to 
incorporate or to account for the many factors which have been known to materials 
scientists as important in determining the structure and various properties of solid 
solutions. Such factors, for example, as chemical affinity or the size-difference between 
atoms can be considered only semi-empirically, and even the electronic structure, for 
which more elaborate theories exist., has been discussed satisfactorily only in a few rather 
simple cases. Nevertheless, mainly as a result of studies by Hume-Rothery and his 
associates (HUME-ROTHERY [ 1961al and HUME-ROTHERY et ul. [ 1969]), extending over 
more than thirty years, certain general rules have been formulated concerning the limits 
of primary solid solubility and, to some measure, also the width and stability of certain 
intermediate phases. As already mentioned above, these rules refer to the difference 
between the relative atomic radii of the participating elements, their electrochemical 
differences and their relative valencies. Hume-Rotheiy rules may be summarized as follows: 

(i) If the difference between the atomic sizes of the component elements forming an 
alloy exceeds about 14-15%, solid solubility should become restricted. This is known as 
the 15% rule. The general concept may be illustrated by reference to fig. 3 (HUME- 
ROTHERY [1961a]) in which the ranges of favorable atomic sizes with respect to copper, 
silver and y-iron are shown diagrammatically. If the atomic diameter of a particular 
solute element lies outside the favorable size zone for the solvent, the sizefactor is said 
to be unfavourable and the primary solid solubility will be restricted usually in some 
proportion to the increasing difference between the two atomic diameters. Within the 
favorable zone the size factor is only of secondary importance and other factors will 
determine the total extent of solid solubility. In a sense, therefore, the 15% rule is a 
negative rule stressing the role of size differences only when they restrict alloy forma- 
tion. In this connection, WABER et al. [1963] have shown that when the size rule alone 
was applied to 1423 terminal solid solutions, in 90.3% of the systems where little solid 
solubility was predicted, little solid solubility was in fact observed, but the prediction of 
extensive solid solubility on the basis of small size difference was only 50% successful. 
Theoretical justification for the 15% rule has been obtained from considerations of elastic 
strain energy in a solid solution (see below). 




