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Table 4 

Recent thwretical calculations of phase stability or phase diagrams. 

'Qpe of calculation Quantities calculated ?Lpicd references 

semi-empirical (charge density, 
size and electronegativity 
effects) 

enthalpy of mixing, AHf MIEDEMA et al. [1980] 
MIEDEMA and NIESSEN [1988] 

Pair potentials 

Mainly d-band effects 

Mainly valence band effects 

Cluster variation models 

First principles calculation 
using various atomic po- 
tentials: DFT, LSDA, 
KKR-CPA, LMTO 

alloy stabilities 
A L f  (at 0 K) 

maps of related structures 
and their stabdity, A& 

relative alloy stabilities 
density of states 

ordering energies, order-disorder 

AH, (at 0 K) of simple 
systems 

AHmr (at 0 K) lattice 
dynamics, ordered com- 
pound stabilities 

simple phase diagrams 

MACHLW [1981] 

PETTIFOR [1986, 19791 
WATSON and BENNETT [1979, 19831 
YUKAWA et al. [1985] 

Mom and JONES [1936] 
BREWER [1968] 
MASSALYKI and MIZUTANI [1978] 

DEFONTAINE [1983] 
R. KIKUCHl[1981] 

WILLIAMS et al. [1982] 

Ym and C o r n  [1982] 

Xu et al. [1987] 
&I et al. [ 19891 
Smms and WINTER [1984] 
HAFFNER [1983] 
TERAKURA et al. [1987, 19881 

(ii) Formation of stable intermediate compounds will restrict primary solid solubility. 
The likelihood of the formation of such compounds in an alloy system is related to the 
chemical affinity of the participating elements and will be increased the more 
electronegative one of the elements and the more electropositive the other. The general 
principle leading to the restriction of solid solubility is illustrated in fig. 4 using 
hypothetical free-energy curves for a primary solid solution and for an intermediate 
phase. The width of the shaded area represents the extent of primary solid solubility; it 
becomes more restricted the greater the stability of the intermediate phase. The above 
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Fig. 3. Illustration of the application of the sizefactor principle to solid solutions in copper, silver and y-iron. The ordinates show the atomic diameters as 
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Fig. 4. Restriction of primary solid solubility due to stability of an intermediate phase. 

principle has become known as the electmchemical effect, which is related to the 
difference in the electronegativities of the two components. 

(iii) Empirical studies have shown that in many alloy systems one of the most 
important factors determining the extent of solid solubility and the stability of certain 
intermediate phiases is the electron concentration. This parameter is usually taken to 
denote the number of all valence electrons per unit cell provided that all atomic sites 
within the structure are occupied. Alternatively, electron concentration may be taken as 
the ratio of all valence electrons to the number of atoms. It is then denoted as e /a .  

Following the early investigations by Hume-Rothery and his associates it was also 
suggested that the mutual solid solubility of two given elements was related to their 
respective valencies, namely, that the amount of the solid solution in the element of 
lower valency was always greater than vice versa. This general principle is sometimes 
known as the relative valency effect. It appears to be valid when copper, silver or gold, 
which are monovalent, are alloyed with the B-subgroup elements of the Periodic Table 
which possess valencies greater than one. It may be associated in part with the fact that 
the Brillouin zones of the noble metals are only partially filled with electrons; and, 
although they nre touched by the Fermi surface, they are not overlapped as are the 
Brillouin zones of the B-subgroup elements. A more likely cause, however, has its origin 
in the long-range charge oscillations around the impurity atoms as discussed by FRIEDEL 
[I9641 and BLANDIN [1965]. 

Subsequent appraisals by HUME-ROTHERY [1961a] and GSCHNEIDNER [1980] suggest 
that the relative valency effect is not really a general principle, and that when two 
elements which are both of high valency are alloyed together it is often not possible to 
predict which of the two will form the more extensive solid solution with respect to the other. 

5. The meaning of “electron concentration” 

In the study of alloys it is often convenient to use the electron concentration, rather 
than atomic or weight composition, as a parameter against which various properties can 
be plotted. In the case of the alloys of the noble metals, the use of electron concentration 
has been particularly successful since it almost never fails to bring about interesting 
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correlations when applied to experimental data. Nevertheless, the physical meaning of 
electron concentration is by no means as simple as that of chemical composition, and as 
time progresses it has become increasingly more difficult to “visualize” the process by 
means of which valence electrons which belong to the solvent and the solute atoms 
become a common property of the conduction band of an alloy. Usually only the s and 
p electrons are considered as taking part in such a process, but occasionally the total 
number of electrons outside the inert-gas core (Le., s+p+d  electrons) has been used to 
denote the electron concentration (see below). In the B-subgroup elements which follow 
the noble metals in the respective horizontal rows of the Periodic Table the d bands in 
the free atoms are fully occupied by electrons. It has been considered for a long time, 
therefore, that on alloying only the s and p electrons are involved, but the possibility of 
transfer of electrons from the d band to the conduction band, and the s-d hybridization, 
makes the situation more complex. There is no doubt that the presence of d-band 
electrons sufficiently near the Fermi level in alloys of the noble metals and the changes 
in the energy of the d-band electrons on alloying constitute an important contribution to 
the electronic structure. This contribution is at present not fully understood but progress 
continues to clarifj the picture. Calculations of the cohesive energy of the noble metals, 
using the assumption that only the s electrons are important, yield values which are far 
too low when compared with experimental data. In fact, as pointed recently by COTTRELL 
[1988], the cohesion of a metal like copper is mainly the result of attraction brought 
about by the sd hybridized electrons and the positive ions, while that part of the 
electronic system which corresponds to the classical free-electron gas is actually pushing 
the atoms apart (see below). 

On the other hand, on alloying, even if it is assumed that the d band may be ignored 
and that certain elements possess a well-defined valence (for example, copper = 1, zinc = 
2,  gallium = 3, etc.), it is not certain whether all of the (s + p) electrons of a solute 
element go into the conduction band of the alloy. FRIEDEL [ 1954al has suggested that in 
an alloy some of the s + p electrons may lie in bound stares near the solute nuclei. 
According to M m  [1952] such elements as zinc, gallium, germanium, etc., when 
dissolved in copper certainly contribute at least one electron to the conduction band. The 
next electron may or may not be in a bound state, while the additional electrons in 
gallium and germanium almost certainly are in bound states. Nevertheless, it has been 
suggested by FRIEDEL [1954a] and others that the valence-electron concentration rules 
may remain valid if one assumes that the potential acting on conduction electrons in an 
alloy “subtracts” from the bottom of the conduction band as many bound states as there 
are electrons in the bound atomic orbitals. Hence, the Elationship between the effective 
conduction electrons and the band structure may be such that the Brillouin-zone effects, 
associated with the stability of phases and certain other alloy properties, may remain 
relatively unaltered. For further discussion of this and related subjects see FRIEDEL 
[1954a], HUME-ROTHERY and COLES [1954], COTTRELL [1988], and the proceedings of 
recent symposia (RUDMAN etal. [1967], BENNETT [1980], G o ~ s  and STOCKS [1989]). 

In alloy systems which involve transition elements, rare earths, actinides, lanthanides 
and transuranic elements, the assessment of valence and the corresponding changes in 
electron concentration are open to quite wide speculation. Often they depend on the 
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nature of the particular problem to be considered. Thus, many striking regularities are 
frequently revealed in a group of related elements, or alloy systems, provided that some 
valence scheme is adopted against which various properties within the group can be 
compared. For example, a rather abrupt change occurs in the electronic specific heat, 
magnetic susceptibility, Hall coefficient, hydrogen absorption, etc., in the transition 
metals and alloys of the first long period at an electron concentration of about 5.7 @€on 
[1962]) provided that the numbers of electrons outside the inert-gas core are considered 
to represent their valence, Le., 4, 5, 6, 7, 8 and 9 for Ti, V, Cr, Mn, Fe and Co respec- 
tively. At the same time the valencies of these same elements when in dilute solution in 
the noble metals or aluminium are usually assessed according to a dimerent scheme in 
which only the predominantly s electrons are included. Considerations of phase stability 
(Hw-ROTHERY [1966] and RAYNOR [1956]) and changes of axial ratio (MASSALSKI 
[1958], MASSALSKI and KING [1960], COCKAYNE and RAYNOR [1961] and HENDERSON 
and RAYNOR [ 19621) suggest that the above transition elements possess much lower, and 
possibly variable, valencies in the range between 0 and 2. 

In a similar way, valence schemes have been suggested for other alloy groups, but 
will not be discussed here. 

5.1. Progress in the electronic theories of metals and alloys 

The distinction between metals, semi-metals and insulators, in terms of Brillouin 
zones, energy bands and the related overlapping or separation of bands, which has been 
for many years the basis in physics for defining what is a metal, has become somewhat 
blurred in recent years. COTTRELL [1988] points out that there are many substances that 
show metallic conductivity (or even superconductivity) even though clearly they are not 
metals in other aspects. (For example TCNQ, or certain ceramic oxides). When sufficient 
pressure is applied, electronic clouds of individual atoms are forced to overlap more and 
more, with the result that additional outer electrons in atoms will cease to belong to any 
particular atomic orbital and will behave as nearly free, contributing to metallic conduc- 
tivity and bonding. Thus, the traditional view that the outer electrons (Le., the valence 
electrons) become the “bonding glue” when atoms are assembled into crystals has 
become quite blurred. 

In the earlier theories of Brillouin zones and Fermi surfaces the Bloch wavefunctions 
were used as a basis for calculation. Metals and solid solutions were considered as 
regular arrays of ions immersed in a “sea” of conduction electrons. The potential in a 
crystal was considered to be a periodically varying quantity corresponding to the 
periodicity of the ionic lattice and being more or less atomic (i.e. rapidly falling) in 
character near each ion. Bloch was able to show that wave functions of the conduction 
electrons for which the potential energy was modulated by the periodicity of the lattice 
were valid soluiions of the Schr6dinger equation. The resulting Bloch model has served 
as a very successful basis for discussion of the motion of electrons in metals and alloys. 
Only the conduction electrons, moving without electrostatic interactions with one another, 
were considered, and their motion was described by one-particle functions. Hence only 
the kinetic energy of the electrons was involved. 
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Subsequent developments in the electron theory have introduced a number of 
important modifications to the above model. It was found that the description of 
electronic properties was more consistent with experimental data if only weak elecrron- 
ion interactions were assumed, i.e., if the periodical potential was not considered to be 
atomic in character near each ion but only weakly changing from ion to ion. At the same 
time the additional problem of having to allow for possible strong electron-electron 
interactions was removed by considering that the Bloch model describes the motion, not 
of one-electron particles but of more complex entities, called quasi particles, introduced 
by Landau. Quasi particles have an electron at the center, surrounded by a region of 
electron deficiency (correlation hole) and a further region containing electrons that have 
been pushed out by the Coulombic repulsion away from the central electron and “flow 
around it much as water flows around a moving particle” (COHEN [1965]). 

The problem of looking realistically at electron-atom interactions in order to reconcile 
the difference between the atomic and the effective potential in a metallic lattice has 
been tackled by introducing the notion of a pseudopotential. In this treatment the electron 
wave functions near the ions are ignored to some extent and substituted by pseudo wave 
functions which have the effect of statistically excluding the valence electrons from 
regions of space occupied by core electrons. (See ch. 2, 0 3.3.) The application of the 
theory of pseudo-potentials has been very useful to the understanding of some problems 
in the theory of alloys (HEN [1967] and STROUD [1980]). Other developments, as 
already mentioned in section 3, involve calculations of electronic energies “ab initio”, 
and various elaborate treatments of the atomic potentials in solid solutions (see for 
example, FAULKNER [1982] and COTTRELL [1988]). 

6. Termination of primary solid solubility 

6.1. Electronic theories of primary solid solutions based on noble metals 

A survey of binary systems of copper, silver and gold with a large number of 
elements, and in particular with the B-subgroup elements, has shown that the observed 
ranges of primary solid solubility may be correlated with electron concentration 
(HW-ROTHERY and RAYNOR [ 19401). In fig. 5 the maximum ranges” of primary solid 
solutions based on the three noble metals are indicated as linear plots in terms of e / a  for 
the cases where these solutions are followed by an intermediate phase with a close- 
packed hexagonal structure (fig. Sa) and, separately, when they are followed by an 
intermediate phase with the bodycentred cubic structure (fig. 5b). Apart from the 
systems Cu-In and Cu-Sn, the primary solutions followed by the cubic phase reach 
somewhat higher values of e / a  than when followed by the close-packed hexagonal phase. 

* It must be remembered that these maximum ranges occur at different temperatures in each system. Strictly 
speaking the melation with ela should apply only at the absolute zero of temperature. The fact that a significant 
correlation is observed at relatively high temperatures suggests that the electronic factors play a predominant role even 
at those high temperatures, although entropy considerations undoubtedly also play a role. 
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Fig. 5. Extent of the maximum primary solid solubility and of the following intermediate phase in alloys based 
on the noble metals (see text). 

Examination[ of fig. 5 reveals that in silver-based alloys the primary solid solutions 
terminate within a fairly close range of values near e / a  = 1.4, whereas in copper-based 
alloys the e /a  values show a wider scatter, but the range of maximum values is again 
only a little less than 1.4. In the case of gold-based alloys the primary solid solubility is 
further restricted ranging between 1.2 and 1.3. 

The above comlation between the primary solubility and e / a  does not lead to any 
unique value, but it is quite striking when compared with similar plots drawn as a 
function of composition. Hence, it has been suspected for a long time that there must be 
an important link between the primary solid solubility and the electronic structure. 
During the 1930s an attempt was made by JONES [1937] to calculate the primary solid 
solubility of alloys based on copper using the theory of Brillouin zones and Bloch 
functions. This approach, and subsequent developments, are extensively quoted in 
metallurgical literature and will be discussed briefly below. 

The main assumptions of the Jones model were: (i) that the nearly-pee-electron 
approximation could be extended from pure metals to random solid solutions, and (ii) 
that the rigid-bandcondition was applicable on alloying (i.e., that the shape of the density 
of states curve N(E) for a pure solvent remains unchanged on alloying and that the band 
gaps in the Brillouin zone do not change in magnitude, the only change being in the 
number of loosaly-bound electrons). The general idea regarding stability of alloy phases 
was that at certain values of the electron concentration the Brillouin zone of one structure 
may be associated with a high density of quantum states, N(E), at relatively low values 
of energy and thus “accommodate” the available electrons within lower total energy than 
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would be possible in the zone of some other structure. This condition is particularly 
likely to occur in the range of energies associated with contact between the Fermi surface 
and Brillouin-zone faces since it results in a peak in the density of states. The connection 
between phase stability and a peak in the density-of-states curve had been established 
earlier (JONES [1934a]) for the case of the y-brass structure. 

In 1937 JONES considered in detail the theory of the a+ phase boundary in the Cu-Zn 
system where the face-centred cubic primary solid solution (a) is succeeded by the body- 
centred cubic intermediate phase @). Using the same values of the atomic volume for both 
a and p phases and making them equal to that of copper, and using the same values of 
energy gaps as those obtained for copper from optical properties (AE=4.1 ev), Jones 
calculated the density-of-states curves for both phases in terms of energy expressed in 
electron volts. The result of the calculation is shown schematically* in fig. 6a. The first peak 
in the density-of-states curve for the a-phase occurs at about 6.6 eV. When compared 
with the free electron energy at the center of the { 111) faces in the Brillouin zone, 6.5 
eV, this suggested that the contact between the Fermi surface and these faces should 
occur in the a-phase already at an early stage of alloying. Many years later PIPPARD 
[ 19581 showed that this contact in fact already exists in pure copper. Interpreted in terms 
of e /a ,  the two peaks shown in fig. 6a correspond to e / a  = 1.0 for the CY phase and e /a  
= 1.23 for the p phase, respectively, and are therefore unlikely to be associated in a 
simple way with the termination of the primary solid solubility @/a = 1.4), or the 
optimum range of stability for the p phase (e /a  = 1.5). The diagram in fig. 6a is, 
nevertheless, of interest because of its general emphasis on the relationship between 
phase stability and the density of states. Actual electronic energy relationships are more 
likely to be like those shown in fig. 6b, according to which the largest differences 
between the Fermi energy of free-electron gas and the Fermi energies of electrons in the 
Brillouin zone of the a and /3 phases occur at some points to the right of the peaks 
{ 1ll)cw and { 1lO)p in the density of states (JONES [1962]). The actual a-p phase 
boundary will then be determined by the common tangent principle (BLANDIN [ 19651). 
Thus, it appears that while the e /a  parameter is indeed important in the a phases, as was 
thought by Hume-Rothery, their stability ranges also are very strongly influenced by 
additional factors. For example, each particular range strongly depends on the type of 
crystal structure that follows a given a phase in a given phase diagram (this is illustrated 
in fig. 5), as would be expected from phase competition. In addition, it has also been 
shown by AHLERS [1981] that the part of the configurational cohesive energy in the a 
phases, which is related to the third nearest neighbor interactions constitutes a large 
additional part of their total energy. Configurational energy is the difference between the 
ground state energy (at 0 K) and the heat of formation. While this complicates the simple 
original picture of a-phase stability in terms of e /a  (and the related notions connected 
with the density of states [N(E)] and Fermi surfaces), there is outstanding agreement 
between the experimentally determined behavior of the electronic specific heats (from 

* For actual curves, reference should be made to the original paper (JONES [19371]). Additional discussion may 
be found in a later review article (~~ASSALSKI and M~ZUTANI [1978]). 
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Fig. 6. Schematic models proposed to account for the primary solid solubility of alloys based on copper: (a) 
Jones model: band gap across the { 111)  faces of the zone for the fcc structure = gap across the [ 110) faces 
of the zone for the bcc structure = 4.1 eV; (b) total electronic energy E = e  N(E)dE, corresponding to the 
density of states as modified by the interactions with the respective Brillouin zones; (c) density of states for 
free electrons. 

which the density of states at the Fermi level can be derived) and the predicted density 
of states obtained f'rom a parameter-free calculation based on the KKR-CPA approxima- 
tion (FAIZKNER and STOCKS [1981]). This means that the electronic structure of the a 
phases is now well understood and the path is clear for a detailed stability calculation of 
these phases in the near future. 

Incorporation of the original Jones model into metallurgical literature has led to a 
good deal of confusion about the relationship between phase stability and the contact 
between the Fermi surface and the Brillouin-zone faces. One must appreciate the 
difference between the attempt by Jones to calculate the relative stability of two 
adjoining phases in terms of the contact between Fermi surfaces and certain Brillouin- 
zone faces with assumed large energy gaps and in terms of additional thermodynamic 
quantities, and similar attempts in terms of spherical Fermi surfaces. The use of spherical 
surfaces amounts to merely calculating the electron concentration at which an inscribed 
Fermi sphere would contact the zone faces. In the latter case, the zone faces by implica- 
tion should possess zero energy gaps. As pointed out by HUME--ROTHERY [1964], this 
important conclusion has been often overlooked in metallurgical literature. Free-electron 
calculation shows that contact of a Fermi sphere with the Brillouin zone would be 
obtained in the (Y phase at 1.36 electrons per atom and in the p phase at 1.48 electrons 
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per atom (see fig. 6c), and these values are strikingly close to the experimental observa- 
tion. This, however, must now be regarded as rather fortuitous, at least for the CY phases, 
because it has been proved beyond dispute that the Fermi surface is considerably 
distorted from a sphere in the [ 11 11 direction and touches the set of { 11 1 } Brillouin-zone 
faces in all three noble metals, Cu, Ag and Au (HARRISON and WEBB [1960]). Further 
comments of developments in this field may be found in a review article by MASSALSKI 
and MIZUTANI [1978]. 

6.2. Primary solid solubility in transition metal alloys 

Hume-Rotheq’s further work has shown that electron-concentration principles similar 
to those established for the noble metals and their alloys apply also to the solid solutions 
of a number of transition metals, particularly those with the fcc structure (HUME- 
ROTHERY [1966]). Figure 7 shows the limits of solid solutions in Rh, Pd, Ir and Pt in 
terms of the average group number (AGN) which denotes all electrons outside the rare 
gas shell. The general tendency appears to be for the fcc solid solutions to extend back 
to an AGN value of about 8.4. A similar effect is found for solid solutions of V and Cr 
in fcc y-Fe, and in Ni. The behavior in bcc metals has not been generally examined. 
However, similar correlations may exist. For example, the solid solubilities of Rh and Ru 
in bcc Mo terminate at a similar value of AGN of about 6.6 (HUME-ROTHERY [1967]). 

7. The atomic size in solid solutions 

On forming a solid solution of element A with element B, two different kinds of 
atoms come in contact on a common lattice. This inclusion of new centers of disturbance 
will affect the existing electronic force fields between atoms, both short range and long 
range; the resulting effects will be of several kinds. On the atomic scale some atoms of 
the solvent and the solute will be shifted from the mean atomic positions on the lattice 
and thns suffer a permanent static displacement. The resulting average distance between 
any two neighboring atoms in a solid solution will depend on whether they are of the 
like kind, either both solvent or both solute, or of the opposite kind. We may thus talk 
of the average AA, BB or AB bond distances which may, even for an identical pair of 
atoms, depend also on the direction in the lattice. 

In addition to local displacements, the average distances between lattice planes may 
also change and we may talk of the change in the lattice spacings and, related to them, 
the volume of the unit cell. Both the lattice spacings and the volume of the unit cell are 
not related to the actual size of any particular atom. 

The relationship between lattice spacings, space lattice and the individual position of 
atoms may be summarized as follows: the space lattice represents a repetition in space 
of an elementary unit known as the unit cell (fig. 8). The lattice spacings describe the 
linear dimensions of the unit cell. To a certain extent a unit cell may be chosen quite 
arbitrarily so that, for example, in the face-centred cubic structure shown in fig. 8b three 
different unit cells are possible - rhombohedral, face-centred cubic and body-centred 
tetragonal. The cell which reveals the essential symmetry is cubic; if the X-ray reflections 
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Fig. 7. The composition limits, in terms of AGN, of terminal solid solutions of Nb, Ta, Mo and W in Re, of 
Mo and W in Os, of Ta, Mo and W in Ru, and of the intermediate &-phases in the systems Mo-Rh, Mo-Ir, 
Mo-Pd, Mo-Pt, W-Rh and W-Ir (from HUME-ROTHERY [1966].) 

are indexed according to this cell, then the lattice spacing a is associated with the 
average spacing of atoms located at the comers of the cube and is larger than the 
spacings between the neighboring atoms within the cube or in other possible unit cells. 
The a spacing therefore exceeds the closest distance of approach of atoms. For example, 

References: p.  199. 



156 T. B. Massalski Ch. 3, 87 

-a- 

(b) 

Fig. 8. (a) The close-packed hexagonal structure, showing the tetragonal and orthorhombic unit cells, and (b) the face 
centred cubic structure, showing the rhombohedral, the face-centred cubic and the body-centred cubic unit cells. 

the closest distance of approach of atoms in fig. 8b is a/ 6. In a simple structure, one can 
easily calculate this distance from the known dimensions of the unit cell; but this may be 
very difficult if the structure is complex as, for example, that of y brass (fig. 16, below). 

In some structures there are considerable variations in the distance between pairs of 
atoms at their closest distance of approach, according to position and direction in the 
lattice; and in order to study these a more complex analysis, involving all average 
interatomic spacings, may become necessary. The cementite structure (fig. 9) provides a 
good example. In this structure the iron-carbon distances vary in the unit cell and the 
determination of spacings between specified pairs of atoms of iron and carbon requires 
the knowledge of X-ray line intensities in addition to the Debye-Scherrer analysis. (The 
nature of the bonding in cementile has recently been reexamined by COTTRELL [1993]). 

Throughout a range of solid solutions the average “sizes” of individual atoms may be 
expected to change depending on the degree and nature of local displacements. A change 
in the average lattice spacings may mean a contraction of solute atoms and expansion of 
solvent atoms or vice versa, and such local changes may bear little relation to the total 
macroscopic distortion of the unit cell. Therefore it is very desirable to be able to assess 
the changes in individual atomic sizes in a solid solution, whenever possible. For this 
purpose methods involving measurement of diffuse X-ray scattering or changes in the 
intensity of principal (Bragg) reflections have been developed. 

From a materials science point of view, the important questions regarding the atomic 
size are as follows: 
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Fe 

Fig. 9. The variable iron-carbon distances in the structure of cementite, Fe,C (from GOLDSCHMIDT [1948].) 

1) What is h e  actual size of an atom in a pure element and what are the best ways 
of estimating and defining that size? 

2) Having decided upon atomic sizes of pure elements, which is the best method of 
estimating the influence of atomic sizes in a solid solution? 

3) Can one assess this influence of the disparity between initial atomic sizes without 
additional measurements in a solid solution? 

One would like to know, for example, how successful can be the prediction of the 
influence of the size difference merely from the knowledge of the atomic sizes of the 
pure elements and perhaps one other physical properly, or whether it is always necessary 
to perform some kind of a measurement in a solid solution before the importance of the 
atomic size can be assessed more accurately. Yet another question concerns the relation- 
ship between the strain in the crystal lattice and the atomic size. The contribution of the 
strain energy to the total free energy affects the thermodynamical properties, and recently 
several attempts have been made to estimate the strain energy using methods of 
continuum elasticity. 

The empirical success of the 15% rule (84) already suggests that initial sizes of 
atoms can, in some cases, give a guide to the extent of solid solubility on alloying. 
However, when formulated in this way the atomic-size difference merely provides a 
guide to the hindrance which it may cause to the formation of extensive primary solid 
solubility. In some systems, for example in systems Ag-Sn or Ag-Sb, the limits of 
primary solid solubility are less than average (for silver-based alloys), yet the widths of 
the close-packed hexagonal intermediate phases are surprisingly large. In both systems 
the disparity beween atom radii is within the &15% range (i.e., the 15% rule is satisfied), 
and is appears that the actual value of the size difference may be of importance. 

7.1. The size factor 

The original formulation of the sizefactor concept for binary alloy systems involved 
the assumption that the atomic diameter of an element may be given by the closest 
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distance of approach of atoms in its structure * (see ch. 1). This approach to estimating 
atomic size often meets with difficulties when the structures are anisotropic, or complex, 
or when the coordination numbers are low. For example, when there are several close 
distances of approach in the structure (as in gallium with d, = 2.437, d, = 2.706, d3 = 2.736 
and d4=2.795 A), the closest distance of approach, d,,  does not adequately express the 
size of the gallium atom when in a solid solution. A similar consideration may apply 
even in the case of an element which crystallizes in a typically metallic structure. For 
example, in zinc, with the close-packed hexagonal structure but a high value of the axial 
ratio, four possible values can be considered to represent the size of a zinc atom: 
spacings between atoms in the basal planes which also correspond to closest packing 
(dl =2.6649 A); spacings between the nearest neighbors of the adjoining basal planes 
which strongly depend on the axial ratio (d2=2.9129 A); an atomic diameter derived 
from the average volume per atom of the unit cell of zinc (d3 = 3.0762 A); and finally an 
atomic diameter calculated for a hypothetical structure with coordination number 12 
(d4=2.7535 A). For the purpose of the 15% rule, d,, has been chosen to represent the 
size of the zinc atom. However, when the behavior of lattice spacings of solid solutions 

Fig. 10. Trends in lattice spacings and volume per atom in the Cu-Zn system; circles indicate closest distance 
of approach, d, squares indicate volume per atom. (From MASSALSKI and KING [1961].) 

* The size factor is given by [(d, - d,,)/dA] x 100 where dA and d, are values of the closest distance of 
approach of atoms in the solvent and solute respectively. For a detailed account of the possible role of the size 
factor as defined above reference may be made to a review article by RAYNOR [1956]. 
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containing zinc is studied in detail, it appears that frequently the lattice spacings expand, 
or contract, when an opposite behavior might be expected from the value of the closest 
distance of approach. In fig. 10 the changes with composition in the closest distance of 
approach, d, and volume per atom in Cu-Zn alloys are shown. Within the primary solid 
solution based on copper the lattice spacings follow a curve which indicates that zinc 
behaves as if it possessed a larger size than that derived from its a spacing, since the 
lattice spacings of the alloys show a positive deviation from a line joining the closest 
distances of approach of copper and zinc. On the other hand, within the primary solid 
solution of copper in zinc, addition of copper to zinc again expands the a spacing of the 
latter despite the fact that the value of d for copper is indicated to be smaller than that 
for zinc. Thus, on a finer scale there are often discrepancies between the behavior of 
lattice spacings in the alloys and the estimated atomic sizes. For such reasons other 
attempts have been made to derive the average atomic size. For example, in fig. 10 the 
trend in the cy lattice spacing within the cy phase may be extrapolated towards pure zinc 
to give a hypothetical size of a zinc atom for the case where the face-centred cubic 
structure is maintained throughout the Cu-Zn system and on the assumption that the 
behavior of lattice spacings is linear. The obtained value is marked AAD in the figure, 
and it is close to the d4 value mentioned above. This method of estimating apparent 
atomic diameters (AAD), is due to AXON and HUME-ROTHERY [ 19481. Another approach 
makes use of the trend in the volume per atom (MASSALSKI and KING [1961]). Compari- 
son between the atomic sizes estimated from the volume per atom in the pure elements 
and the behavior of the volume per atom trends in the Cu-Zn system is shown in the 
upper portion oof fig. 10. 

7.2. The measurement of atomic size in terms of volume 

By analogy to the use of the apparent atomic diameter, a measure of the size of a 
solute atom in any particular primary solid solution or an intermediate phase may be 
obtained by extrapolating to the solute axis the plot of the mean volume per atom within 
that phase. In ffig. 10 such a procedure is illustrated for the a, y and E phases of the 
Cu-Zn system, providing values of the effective atomic volumes (MASSALSKI and KING 
[1961]) or partiaE molar atomic volumes. The different effective atomic volumes 
estimated in this way for the solute in each phase are independent of the coordination 
number or the structural anisotropy effects mentioned above. Thus, when the 
coordination number changes, the atomic volume rather than the interatomic distance 
tends to remain constant (MOTT [1962]). An extensive study of solid solutions of various 
B-sub-group metals (Zn, Cd, In, Tl etc.) in late transition elements such as Ni, Pd or Pt 
has shown that often the initial effective atomic volume of a solute, extrapolated to the 
pure-solute side, is practically the same in a number of different solvents (ELLNER 
[1978,1980]). A good example is provided by the behavior of Ga, fig. 11. At the same 
time, it may be seen from fig. 10 that the effective atomic volumes of zinc in the 
different phases are smaller than the atomic volume of pure zinc. Since these effective 
volumes are different in each phase, it appears that the contribution of the atomic size is 
variable according to composition and hence it may be desirable to designate several size 
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Fig. 11. Changes of atomic volume with composition in the binary Pt-Ga, Pd-Ga and Ni-Ga (from ELL= 
[19781.) 

Table 5 
Effective atomic volume of solutes in electron phases of the noble metals 

(from MAssALsKr and KING [1961].) 

Sub- Solute as Effective atomic volume of solute (A3) 

Au 
group (A3) 

c u  Ag 
(&= 11.8) (Q,= 17.05) (ao= 16.95) 

%.B:w) %*e, %8'.r ,nu.e, .n,.,:, %.8) 

I I B  Zn 15.2 14.15 14.7 14.7 14.8 14.5 14.8 
Cd 21.6 18.8 - 19.95 20.7 19.25 n.m 

23.7 n.m. - 20.75 22.4 20.2 n.m. Hg 
III B (Al) 16.6 14.2 - 15.5 16.1 15.2 - 

Ga 19.6 14.7 n.m 16.2 16.7 16.2 - 
n.m. 21.4" 

22.9 20.5 - 21.4 20.8" 
26'15 21.3 In 

- n.m. - 
- n.m. - 

TI 28.6 n.m. - 23.85 

IV B (Si) 20.0 12.5 n.m. n.m. 
22.6 15.1 15.8 17.5 - 17.4 - Ge 

Sn 27.05 21.9 - 22.7 23.3 22.2 22.5 
F% 30.3 n.m. - 26.7 - n.m. 

V B As 21.5 16.5 n.m. 18.85 n.m. n.m. 
Sb 
Bi 35.4 n.m. - 29.3 - n.m. 

- 
- 

30.2 22.3 n.m. 24.8 25.5 23.5 - 
- 

'Alternative data 
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factors in each binary system. The values of the effective atomic volumes, C&, f&, a, 
for solutes in several noble metal electron phases are listed in table 5 together with the 
atomic volumes of pure solvents, Q,, and of pure solutes, a,. An examination of the 
table shows that without exception all solutes show a decrease of the volume per atom 
on alloying and that this decrease appears to be greatest with solutes of highest valency. 
Hence, the atomic sizes of such elements as aluminium, indium, thallium or lead, which 
are considered to be an exception when measured in terms of the closest distance of 
approach, are found to be typical of a general trend for the B-subgroup elements with the 
noble metals when considered in terms of atomic volume (MASSALSKI and KING [ 19611). 
This generalization does not apply to transition elements and other solvents. MOTT 
[1962] has pointed out that if the volume of a solute atom in the solid solution is nearly 
the same as in its own pure metal one can expect the heat of solution to be small. Why 
a solute atom when placed in a hole similar to its own volume in the solvent tends to 
retain its original energy, even when the valencies of solvent and solute are different, is 
not altogether clear. 

7.3. Combined effects of size and electronegativity 

In the early 1950s, DARKEN and GURRY 119531 suggested that the extent of solid 
solubility in a given solvent metal may be assessed by testing simultaneously both the 
size and electronegativity differences between solvent and solute elements. They showed 
that in a combined plot of electronegativity (ordinate) and size (abscissa), which they 
called a map (see fig. 12) each element can be represented by a point (see also ch. 5, 
0 1.5). The closer any two points are on the map, the more likely is a high mutual solid 
solubility between the elements involved. In a typical Darken-Guny (D-G) plot, as in 
fig. 12, substantial solubility is usually indicated by an ellipse drawn around a given 
solvent point. WABER et al. [1963] have shown subsequently, following a statistical 
survey of 1455 systems for which experimental data exists, that over 75% of the systems 
obeyed the prediction of solid solubility assessed on the basis of a D-G plot. The 
usefulness of the D-G method is particularly well demonstrated for the actinide metals 
and rare-earths (GSCHNEIDNER [1980]). 

7.4. Strain in solid solutions 

A simple model which takes into account the difference between atomic sizes, and 
which can yield estimates of lattice strain, may be constructed using basic ideas of 
continuum elasticity. Several such models have been considered (DARKEN and GURRY 
[1953], ESHJZLBY [1956] and FRIEDEL [1955]). The general approach is illustrated 
schematically in fig. 13. 

Consider a rubberlike elastic matrix of a large volume V, in which a very small 
cavity has been drilled away of volume VI. Then, through an infinitesimally small 
opening (shown as a capillary opening in the figure) an amount of incompressible fluid 
of volume (VI -t AVl) is introduced which, therefore, expands the cavity by the amount 
AV,. Both the fluid and the matrix are now under stress and the matrix suffers an 
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Fig. 12. The Darken-Guny map with an ellipse drawn about the solvent tantalum. The two vertical lines are 
the tangents to the ellipse at the termini of the minor axis (*lS% of tantalum’s radius). (From GSCHNEIDNER 
119801.) 

expansion AVz, shown in the figure by the shaded portion, which is related to the 
increase in the volume of the cavity by the relationship 

A& / A v  = 3(1- V )  / (1 + v), (2) 

where Y is Poisson’s ratio. As pointed out by DARKEN and GURRY [1953], for most 
metals Poisson’s ratio is about 0.3 and hence AVJAV,, equals about 1.6, i.e., the 
volume-increase of a metal bulk will be larger than the increase in the volume of the 
cavity. The above model can be related to a solid solution in which the expanded cavity 
is replaced by several solute atoms and the bulk by a metal solvent matrix. In analogy to 
the expanded volume of the elastic matrix we may expect that in a substitutional solid 
solution on replacing an atom of the solvent (a cavity) by a somewhat larger-sized atom 
of the solute (the incompressible fluid) we should obtain a net expansion of the entire 
unit cell. The estimates of the strain energy associated with such an expansion have 
enabled a number of authors (DARKEN and GURRY [1953], ESHELBY [1956]) to show a 
direct link between the limitation of primary solid solubility and Hume-Rothery’s 15% 
rule. Lattice spacing measurements in solid solutions are also in qualitative agreement 
with the above model, but sometimes a lattice expansion is observed even if the solute 
atoms are considered to be smaller than those of the solvent. This discrepancy is usually 
due to the difficulty of being able to assess correctly the sizes of atoms and to the fact 
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Fig. 13. Model of an incompressible particle in an elastic matrix. 

that, on alloying, other factors not included in a crude assessment of size come into play, 
to mention only that the size of the solute atom in the pure element may differ consider- 
ably from its size in solid solution because of such factors as electron concentration, 
electrochemical effects and static displacements, etc. 

Calculations based on simple elastic models permit one to relate the strain energy to 
composition and atomic volume. A general equation expressing strain energy in a solid 
solution may be written as (MASSALSKI and KING [1961]): 

where A is a numerical constant, p is the shear modulus, a is the mean atomic volume 
and c the composition. In many alloy phases the variation of atomic volume with 
composition is nearly linear and hence for dilute solutions (for which O0 = l2) one may 
write: 

where .no is the atomic volume of the pure solvent and a, the effective atomic volume 
of the solute in the a phase. The relationship (aa -Clo)/Cho represents a measure of a 
volume-size-factor (MASSALSKI and KING [1961]) within a given alloy phase and a 
comparison of eqs. (3) and (4) shows that the strain energy for dilute alloys is related to 
the square of the volume-six-factor. Volume-size-factors have been calculated for 
numerous solid solutions and are available in tabulated form (KING [1966]). It should be 
pointed out that the use of a volume-size-factor rather than one based on the closest 
distance of approach necessitates the knowledge of the extrapolated effective atomic 
volumes of the solute within different phases and hence necessitates additional measure- 
ments within solid solutions. 

Ellner’s studies, for example the plot shown in fig. 11, confirm that in many solid 
solutions the initial behavior of the atomic volume with composition is practically linear 
(usually in the composition range up to about 30-40 at% of solute). The corresponding 
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effective atomic volume obtained from extrapolation to the pure solute side provides 
a measure of the departure of the atomic volume trend from a possible linear behavior - 
between the atomic volumes of the pure components. If the difference (CIS,,,,, - CI,,u,) 
is plotted against the difference between the partial molar heats of mixing 
(AH,,,, - AHSoiute) obtained from measurements (or calculations), a nearly linear 
relationship is obtained (ELLNER [1978,1980]). Thus, size effects find their expression 
in the corresponding chemical manifestations. 

- 

7.5. Deviation from Vegard’s law 

A study of available systems based on copper, silver and gold with the B-subgroup 
elements indicates that, when volume-per-atom trends are considered, alloying between 
any two elements causes a decrease in the volume per atom from a straight line joining 
the two values for the pure elements. A similar behavior is observed also when various 
interatomic spacings are measured and plotted within a solid solution, although in such 
cases the deviation can have positive or negative sign. The trends usually observed are 
illustrated in fig. 14. 

The expected linear dependence on composition of lattice spacing trends, to follow 
a line joining the values for the pure elements, has come to be known as Vegurd’s Law, 
although this law has only been found valid for a number of ionic salts (VEGARD [1921, 
19281) and is never quite true in metallic systems. Nevertheless, it is tempting to be able 
to calculate deviations from assumed linear behavior, without actually performing any 
measurement in a solid solution, and using solely the knowledge of various parameters 
in the pure components. Such an attempt has been made by FRIEDEL [1955] for the cases 
of dilute and concentrated primary solid solutions. Friedel used the atomic volumes, 

Fig. 14. The commonly observed trends in latticespacingcomposition curves in three typical binary alloy 
systems: (a) complete solid solubility; (b) partial solid solubility, A has higher valency than B; (c) presence of 
an intemediate phase, large electrochemical interaction between A and B. (After MASALSKI 119581.) 
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Poisson’s ratio, bulk moduli, and compressibilities. The elastic model illustrated in fig. 
13 is extended to the case in which both the matrix and the introduced fluid are 
compressible with compressibility coefficients x1 andx,. The atoms of solvent and solute 
are represented by radii r,, and r, which are derived from the atomic volumes of the 
elements using the relationship R =$IT?. The holes in the matrix are represented by the 
atoms of the solvent with radius r, and the introduced distortions by atoms of the solute 
with radius r,. On replacing an atom of the solvent by an atom of solute both suffer an 
elastic adjustment which may be represented by an average radius a common to both. 
Freidel has shown that at infnite dilution 

where Y is again Poisson’s ratio and x,, and xz are the compressibilities of the solvent 
and solute respectively. At a finite concentration c the total volume of the solvent will 
suffer an increase and the average radius of an atom in the solid solution may now be 
represented by r (derived from average atomic volume) which will be different from the 
initial radii r, and r, of both the solvent and solute. Following Friedel, the initial 
deviation of the average atomic radius r in a solid solution from a line joining the atomic 
radii of the solvent and solute, may be expressed-as follows: 

Comparison between calculated deviations using the above elastic model and the 
observed deviations (FRIEDEL [1955]) from the assumed Vegard’s Law shows a good 
general agreement for the cases where the solute atoms are considered to be bigger than 
the solvent atoms, but usually not vice versa. 

7.6. Measurement of actual atomic sizes in solid solutions 

The static distortions in a solid solution which can be related to the individual atomic 
sizes may be estimated from a modulation in diffuse X-ray scattering (WARREN et al. 
[ 19511, ROBERTS [1954] and AVERBACH [ 19561) and from a quasi-temperature reduction 
in the Bragg reflections (HUANG [1947], HERBSTEM et al. 119561 and BORE [1957, 
19591). In the former case the modulations of the diffuse X-ray intensity diffracted by a 
solid solution are described by coefficients, cui, related to the nature of local atomic order 
of atoms, and by size effect coefficients, pi, related to the differences in the sizes of the 
component atoms. According to theory, 

ai = l - P i / X ,  (7) 

and 

where 
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and P i  =probability of finding an A atom in the I?' shell about a B atom; X,=mol 
fraction of A atoms; fA, fB = scattering factors of A and B atoms; ri = average interatomic 
distance to the ?' neighbor, calculated from lattice spacings; r L  =distance between two 
A atoms in the i* shell; riB =distance between two €3 atoms in the i* shell. 

8. Intermediate phases with wide solid solubility 

8.1. The electron phases 

Of all intermediate phases which possess wide solid solubility the most typically 
metallic are the ebctmnphases. Their discovery and studies have a historical aspect, and 
it is of interest to outline this briefly. 

.In the first quarter of this century, even before X-ray analysis had been applied to the 
study of such phases as the Cu-A1 and Cu-Sn &brasses, HUME-ROTHERY indicated the 
possibility that they possessed the same crystallographic structure as that of Cu-Zn p- 
brass. Systematic and detailed work of Westgren and his collaborators (WESTGREN and 
P H R A G ~ N  [1926], WESTGREN [1930]), has subsequently established the validity of this 
and similar suppositions. The circumstance that the formulas C a n ,  Cu,M and Cu,Sn 
could be ascribed to the three phases with identical p-brass structure caused Hume- 
Rothery to postulate the principle that the stability of these phases was in some way 
related to the ratio 3/2 between the number of valence electrons and the number of 
atoms. Following this empirical formulation many similarities between crystal structures 
of other intermediate phases have been noted and studied systematically particularly in 
systems based on copper, silver and gold; and they led to the recognition of the now 
well-established term electron compound. At present it is known that such phases are not 
compounds in the chemical sense and that they may exist over wide ranges of composi- 
tion. For this reason they should perhaps be called electronphuses. 

In the Cu-Zn system, which is somewhat typical of systems based on the noble 
metals, there are three characteristic electron phases commonly known as @brass, y- 
brass and &-brass. Although these phases possess quite wide ranges of homogeneity, it 
had been thought originally that their ranges of stability were in each case based upon a 
characteristic stoichiometric ratio of atoms, and the formulae suggested for the p-, 7- and 
8-brasses were CuZn, Cu,Zn, and C a n ,  respectively. From these formulae one obtains 
the electrodatom values of 3/2, 21/13 and 7/4 (1.50, 1.62 and 1.75) which have become 
widely accepted as characteristic of greatest stability of electron phases despite the fact 
that in some cases these values fall outside the range of stability of known electron phases. 

Following mainly the work of JONES [1934a,b, 1937, 19521, the stability of electron 
phases has been linked via a simple electronic theory of metals with possible interactions 
between the Fermi surface and the Brillouin zones, with the emphasis on the influence 
of such interactions on the density of states N(E) at the Fermi surface. The p-, y- and E- 

brasses possess the body-centred cubic, complex cubic and hexagonal close-packed 
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structures respectively; and it can be shown that at the onset of contact between the 
Fermi surface of free electrons and the principal faces of the respective Brillouin zones 
the zones are relatively full. The values of e /a  associated with the free-electron concept 
of the Fermi surface are: e/a = 1.48 for contact between the Fermi surface and the zone 
for p-brass, e/a  = 1.54 for contact between the Fermi surface and the { 300) and { 41 1 } 
faces of the large mne for y-brass, and e/a = 1.75 associated with the filling of the inner 
zone of 8-brass. These electrodatom values based on the Brillouin zone models bear 
similarity to the original e/a ratios based on chemical formulae (compare 1.5, 1.62 and 
1.75 with 1.48, 1.54 and 1-75), but it must be remembered that in both cases the actual 
values are derived from particular models put forward to interpret the stability of electron 
phases. The chemical formulae are now known not to be applicable, and the simple 
Brillouin-zone models suffer from the limitation already mentioned before that for the 
e / a  values quoted above the band gaps across the Brillouin zone must be assumed to be 
zero or near zero. Thus, as in the case of the theory of primary solid solutions, we are 
left with two possibilities: (i) The band gaps in the Brillouin zones are relatively large, 
and the Fermi surfaces are not spherical, but the stability may be described qualitatively by 

Table 6 
?Lpical electron phases based on noble metals, zinc and cadmium, and some transition elements. 

disordered bcc smc~ure y-brass ~ m a ~ e  P-Mn c/a = 1.633 c/a = 1.57 
e/a  range 1.36-1.59 e/a  range structure e/arange e / a  range 

1.54-1.70 e/a range 1.22-1.83 1.65-1.89 
1.40-1.54 

B Y P c E 

Cu-Be 
Cu-Zn 
CU-A1 
CU-Ga 
cu-In 
C u S i  
CuSn  
Mn-zn 

Ag-Zn Au-Al Cu-Zn 
Ag-Cd Cu-Cd 
Ag-A1 Cu-Hg 
Ag-In Cu-AI 

CU-Ga 
Ci-In 
M i  
M n  
Ag-Li 
Ag-Zn 
Ag-Cd 

Ag-In 

Zu-Cd 
Au-Ga 
Au-In 

Ag-Hg 

Au-% 

Mn-Zn 
Mn-In 
Fe-Zn 
CO-Zn 
Ni-Zn 
Ni-Cd 
Ni-Ga 
Ni-In 
Pd-Zn 
Pt-zn 
Pt-Cd 

CuSi  CU-Ga Cu-Zn 
Ag-A1 CuSi  Ag-Zn 
Au-AI CU-Ge Ag-Cd 
Co-Zn CU-AS Au-Zn 

CuSb  Au-Cd 
Ag-Cd Li-Zn 
Ag-Hg Li-Cd 

Ag-Ga 
Ag-In 
A g s n  

AgSb 
AuCd 

Au-In 
AuSn 
Mn-Zn 

Ag-A1 

Ag-As 

AU-Hg 
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a model as that shown in fig. 6b which points to the existence of a relationship between 
the density of states and phase stability. (ii) The band gaps in the Brillouin zone are 
variable with composition and are small in the range of electron phases so that the nearly 
spherical model of the Fermi surface describes the situation adequately. Experimental 
estimates of the Fermi surfaces in alloys are still limited, but some measurements have 
been made in both dilute and concentrated solid solutions, and they indicate that the 
Fermi surface is distorted from the spherical shape, but not substantially (see for example 
PEARSON [1967], Massalski and MIZUTANI [1978] and KOLKE etal. [1982]). Although 
the details are still not clear, one is left with indisputable experimental correlations that 
show e/a to be an important factor in the stability of electron phases. Modelling of such 
stability in terms of electronic energy alone suggests that very small differences of the 
order of a few hundred cal/mole are involved between respective competing electron 
phases (MASSALSKI and MIZUTANI [ 19781). 

A list of typical electron phases is shown in table 6 in which are also shown the 
experimentally established ranges of stability of these phases. 

83. Electron phases with cubic symmetry 

The range of stability of the P-phases is shown in fig. 5b, above. The disordered 
&phases are stable only at high temperatures and upon cooling or quenching they usually 
decompose, unless they become ordered as in the Cu-Zn system. In all cases the range 
of homogeneity of the disordered P-phases decreases with the fall of temperature, 
causing the phase fields to have the characteristic V-shape as illustrated in fig. 15. The 
electronic structure of the @-phases appeacsto be closely linked with the Brillouin zone 
for the bcc structure formed by 12 { 110) faces, which constitute a rhombic dodeca- 
hedron. As mentioned in the preceding section, in the free electron approximation a 
spherical Fermi surface would just touch these faces at e /a=  1.48 (see fig.6~). If the 
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Fig. 15. The typical V-shaped phase fields of the disordered &phases (from MASSALSKI and KING [1961].) 
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Brillouin-zone faces have a finite discontinuity, the density-of-states curve should show 
a peak near the value of e/a associated with the contact between the Fermi surface and 
the Brillouin zone. This possibility has been made the basis of a theory of the occurrence 
and stability of the #%phases (JONES [1937, 19521). However, as pointed out above, if the 
gap across the faces of the Brillouin zone is assumed to be about 4.2 eV, the position in 
terms of e/a of the calculated peak in the density-of-states curve appears to occur at 
relatively low values of e /a  and bears no relation to the actual ranges of stability. 
Nevertheless, it is remarkable that the most stable compositions of the P-phases, 
represented by eutectoid points at the tips of the V-shaped portions of the phase fields 
(see fig. 15), veq nearly correspond to electron-concentration values associated with the 
free-electron model. More recent developments have centered on the measurement of 
properties, such as electronic specific heats, or the de Haas van Alphen effect (dHvA), 
that can be more directly related to the electronic structure. They show that the band 
gaps in the Brillouin zone are relatively small (- 3.5 eV), and that the Fermi surface 
contours approximate a free-electron sphere. However, the stability of the P-phases is 
undoubtedly related to the total electronic energy integrated from the density-of-states 
trends from the bottom of the energy band to the Fermi level, and not just to some 
specific condition such as an initial contact between the Fermi surface and the Brillouin 
zone (MASSALSKI and MIZUTANI [1978]). 

O Z n  O C u  x None 

( b )  

Fig. 16. The stn~~tur~? of y-brass. (a) Planar view. The structure is built up from 27 bcc cells stacked in three 
dimensions. Distances above the projection plane are indicated in terms of the large cell edge. (b) The gamma- 
brass structure derived from (a) by removing the comer and central atoms and displacing others. (From 
BARREIT and MASSALSKI [1966].) 
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The range of stability of the y-phases appears to be associated with no particular 
single value of electron concentration (see table 6) although there does seem to be a 
strong connection between the stability of y-phases and the large (Brillouin) zone (see 
JONES [1934a,b, 19601). The y-phases have a complex bcc structure with approximately 
52 atoms per cell (see fig. 16). They are usually ordered, certain related atomic sites 
being occupied by solute atoms and others by solvent atoms. The electronic structure of 
the y-phases and certain of their physical properties have been reviewed by MASSAJSKI 
and KING [1961] and MASSALSKI and MIZUTANI [1978]. On the whole, the y-phases are 
brittle and they are therefore of no primary metallurgical interest. However, from the 
point of view of electronic theories the y-phases are of historical interest because they 
were the first to be identified with a possible peak in the density-of-states curve 
associated with the contact of the Fermi surface with the Brillouin zone. Detailed 
calculations show that actually two closely positioned peaks are involved, corresponding 
to small band gaps, of the order of 1-2 eV. It is not surprising, therefore, that the Fermi 
surface associated with the y-phases appears to be nearly spherical. The interaction of 
such a spherical Fermi surface with a Brillouin zone which itself resembles a sphere (the 
zone is bounded by 48 faces), should produce a rapid decrease in the density of states 
once contact has occurred between the Fermi surface and the zone. This is indeed 
confirmed by experimental measurements of electronic specific heats which show a rapid 
decrease of the electronic specific heat coefficient y with composition. A similar effect 
is also observed in the cubic p-phases which possess the p-Mn structure (MASSALSKI and 
MIZUTANI [1978]). 

8.3. Electron phases with hexagonal symmetry 

Apart from the more complex v-, p- and certain other phases which possess cubic 
symmetry (see, e.g., MASSALSKI and KING [1961]), the remaining group of electron 
phases possess the close-packed hexagonal structure. These phases are most numerous of 
all intermediate phases based on the noble metals, and they may occur anywhere within 
the electron-concentration range between 1.32 and 2.00 except for the narrow region 
1.89-1.93. Together with the close-packed hexagonal primary solid solutions of zinc and 
cadmium with the noble metals (the q-phases) the close-packed hexagonal phases fall 
into three natural groups and are usually denoted by the Greek symbols y, E and q on the 
basis of electron concentration, axial ratio and solute content. The known s-phases 
always contain zinc or cadmium as their principal constituents (MASSALSKI and KING 
[1961]) and their range of stability varies between e /a=  1.65 and e /a  = 1.89 (see table 6). 
The stability of close-packed hexagonal electron phases again appears to be intimately 
linked with both contact and overlap of electrons across the Brillouin zone. 

The Brillouin zone for the close-packed hexagonal structure is shown in fig. 17 for 
an ideally close-packed structure. This zone is bounded by twenty faces, six of the 
{ 10.0) type, two of the I00.2) type, and twelve of the { 10.1) type. The energy discon- 
tinuity vanishes across certain lines in the {OO.l} faces (JONES [1960]) unless the 
structure is ordered, and hence these planes do not form a part of the energy zone. 
However, the I00.l) faces together with the { 10.1) faces may be used to obtain a 
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slightly smaller zone for the structure as described by JONES [1960]. Many of the 
measured electronic properties in hcp structures may be related to the Brillouin zone. The 
dHvA (de Haas van Alphen) data for pure hcp metals, for instance, are often interpreted 
in terms of the reduced zone scheme, while the low-temperature specific heat data can 
be more conveni.ently discussed in terms of the extended zone. If the extended "roofs" 
formed beyond the { 10.0) planes by the intersection of the { 1O.lj planes are removed, 
the resulting zone is still surrounded by energy discontinuities in all directions except 
along the lines of intersection between the { 10.1) and { 10.0) zone planes (line HL in 
fig. 17a). This smaller zone is sometimes known as the Jones zone and its electron 
content per atom is: 

where c /a  is the axial ratio. 
The importance of the electron concentration, e /a ,  as the major parameter controlling 

the properties and behavior of the hcp phases became clearly evident only after the 
relationship between c/a  and e /a  was established in detail. When e/a is constant, for 
example in a ternary system, c /a  also remains constant. However, when e / a  is allowed 
to change c / a  changes accordingly. In binary systems, the axial-ratio trends of all known 

and E phases conform to a general pattern as shown in fig. 18. Consideration of this 

00 2 overlap electron 'lens' 

I. ,00.2 . ( d )  

Fig. 17. The Brillouin zone of the hcp structure in the extended scheme (a) and in the reduced scheme (b). The 
possible contours of the Fermi surface in the vertical section of the corresponding Brillouin zone are shown in 
(c) and (d). The shaded areas correspond to the holes in pure Zn. The hole in (d) is known as a portion of the 
"monste?. (After MASSALSKI et al. [ 19751.) 
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behavior suggests a direct dependence of the structural parameters a and c on the 
interaction between Fermi surface and Brillouin zone (FsBz interaction): as the electron 
concentration increases, the resulting contacts and overlaps of the Fermi surface with 
respect to different sets of zone planes cause a distortion of the Brillouin zone. This in 
turn affects the lattice parameters in real space. The earlier models of the electronic 
structure of the hcp phases have been derived mainly from the interpretation of the trends 
in lattice parameters, but more recently the electronic structure has also been explored by 
additional techniques using, e.g., electronic specific heat, superconductivity, magnetic 
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Fig. 18. The trend of the axial ratio as a function of the electron concentration in various hcp alloy systems 
(from MASSALSKI and MIZUTANI 119781.) 
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susceptibility, thermodynamic activity and positron annihilation. 
The distance from the origin to the respective zone plane in k-space is given by: 

and hence depends on the axial ratio. In the range of c / a  higher than 6, the I00.2) 
zone planes are closest to the origin, leading to the sequence b.2 e k,o.o e k,,, which 
holds in the r)-phases, where c /a  exceeds 1.75. The sequence k,o,o e k,,,,2 c k,,, holds for 
all c- and .+phase structures. The corresponding Jones zone holds, at most, only 1.75 
electrons per atom. Therefore, overlaps of electrons from the Jones zone into higher 
zones are expected at relatively low values of e/a. The interpretation of the lattice- 
spacing trends in the [-phase Ag-based alloys, whose axial ratios vary between 1.63 and 
1.58, strongly suggests that overlaps of electrons across the { 10.0} zone planes already 
occur at about 1.4 electrons per atom. The occurrence of possible overlaps across the 
{ 00.2) zone plane within the range of the €-phases has been inferred from measurements 
of the lattice spacings, electronic specific heat coefficient, the Debye temperature, the 
superconductivity transition temperature, the magnetic susceptibility and the thermo- 
dynamic activity (MASSALSKI and MIZUTANI [1978]). This is shown in fig. 19. In each 
case the onset of electron overlaps across the I00.2) zone planes has been proposed for 
the range of e / a  exceeding approximately 1.85 electrons per atom. All such measure- 
ments imply the occurrence of FsBz interactions that should be reflected also in the 
corresponding density-of-states changes on alloying. 

The available calculated density-of-states curves for the hcp structure are at the 
moment limited to several pure metals, such as Mg, Zn or Be. All these metals have two 
valence electrons per atom and may be represented by relatively similar features in the 
corresponding density-of-state curves. The positions of peaks and subsequent declining 
slopes occur more or less at the same electron concentration for all three cases, in spite 
of a large difference in the axial ratios, atomic volumes and electronic interactions. This 
strongly indicates that the main features of the respective density-of-states curves 
originate from the FsBz interactions in which e /a  plays an essential role. From this, one 
can conclude that a density-of-states curve for a disordered hcp alloy may also have 
essentially the same characteristic features. This is confirmed by experiments involving 
the measurement of electronic specific heats, which are directly proportional to the 
density of states at the Fermi level (fig. 20). 

The experimental coefficients y plotted in fig. 20 as a function of e / a  show that, 
irrespective of the solute or solvent species, all available y,,, values follow a very similar 
general trend over a wide range of electron concentrations. An increasing trend is evident in 
the lower e /a  range, culminating in a broad maximum at about 1.5 electrons per atom, and 
followed by a decreasing trend at higher e / a  values. The theoretical density-of-states curve 
for the hcp Zn, shown in units of &/mole K2 in the same figure allows a direct comparison 
between a relevant calculation and the experimental data. This shows that the large peak in 
the theoretical curves more or less coincides with the experimental peak on the abscissa. 

References: p.  199. 
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Fig. 19. Behavior of various physical properties in the &phase Ag-Zn alloy system: electronic specific heat 
coefficient y; Debye temperature 8,; axial ratio c/a; magnetic susceptibility due to conduction electrons ,y& 
second derivative of the free energy with respect to concentration (d*F/dX;) (in units of 4.2 ki/mol); 
superconducting transition temperature T,. prom MASSALSKI and MIZUTANI [1978].) 

The combination of contacts and overlaps with respect to a large number of zone 
planes is clearly responsible for the large peak in the N(E) curve in hcp metals. The 
distance of the { 10.1) planes from the origin of the zone is relatively insensitive to the 
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Rg. 20. Trends of electronic specific heat coefficients as a function of electron concentration for hcp Hume-Rothery 
alloys, shown against the band calculation for pure Zn (from MASSALSKI and MIZUTANI [1978].) 

axial ratio (eq. 9). Hence, the large peak may be expected to occur at similar e /a  values 
in most hcp structures. Once contact with the { 10.1) planes occurs, additional electrons 
will be allocated in the remaining hole regions of the Brillouin zone until overlaps across 
the { 10.1 1 or {0.2} zone planes become possible. Thus, until a sufficiently high e / a  is 
reached, a progressive decrease in the N(E) curve is expected as is actually seen in fig. 
20. Based on the above interpretation the likely Fermi surface topography for a typical 
hcp Hums-Rothery phase may be expected to be like that shown in fig. 21. The recent 
positron-annihilation studies of the Fermi surface in the g-phase Cu-Ge alloys, by 
SUZUKI et al. [ 19761 and K o m  et al. [ 19821 are entirely consistent with the conclusions 
drawn from the electronic specific heat data and earlier work on lau.ice spacings and 
axial ratios. Indeed, because of zone contacts and overlaps that are likely to occur in all 
hcp alloy phases, this particular group of alloys offers a most challenging research area 
for the positron-annihilation method. For the first time it has become possible to provide 
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Fig. 21. A very likely Fermi surface topography in an hcp Hume-Rothery electron phase alloy. The 101 contact 
and 100 overlap are assumed to be present. (From MASALSKI and MIZUTAM [1978].) 

a direct evidence for the existence of the Fermi-surface concept in disordered electron 
phases, precisely along the lines predicted by numerous earlier interpretations based on 
indirect data. 

8.4. Laves phases 

An important group of related intermediate phases is obtained by alloying of elements 
whose atomic diameters, du and dBB, are approximately in the ratio 1.2 to 1. The exact 
lattice geometry requires that dM/dBB should be 1.225, but in known examples of this 
type of intermediate phases the ratio varies from about 1.1 to about 1.6. Much of the 
original work concerning the above phases is due to Laves and his co-workers. For this 
reason they are often called Laves phases (see ch. 4). 

Laves phases are close packed, of approximate formula AB,, crystallizing in one of 
the three structural types: 

1) C,, structure, typified by the phase MgZn,, hexagonal, with packing of planes of 
atoms represented by the general sequence ABABAB etc; 

2) the C,, structure, typified by the phase MgCq, cubic, with packing ABCABCABC; 
3) the C, structure, typified by the phase MgNi,, hexagonal, with packing ABACABAC. 
The main reason for the existence of Laves phases appears to be one of geometrical origin 

- that of filling space in a convenient way. However, within the given range of atomic 
diameters which satisfy the space-filling condition, it appears that often the choice as to which 
particular modification will be stable is determined by electronic considerations. The evidence 
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for this is particularly striking in the magnesium alloys studied by LAVES and Wrrm [1935, 
19361. The experimental results concerning the three modifications occurring in several 
ternary systems based on magnesium are shown in fig. 22 and are plotted in terms of electron 
concentration. Witte and his co-workers have carried out experiments suggesting that the 
phase boundaries on the electron-rich side of typical Laves structures occur at very nearly the 
same d a y  suggesting that the homogeneity of a particular structure may be restricted by an 
appropriate Brillouin zone. Measurements of the changes in magnetic susceptibility and 
hydrogen solubility of several alloys within the pseudobinary sections MgCu,-MgZn,, 
MgNi,-MgZn,, MgCu,-MgAl, and MgZn,-MgAl,, appear to support this hypothesis. The 
changes of the magnetic susceptibility in the pseudo-binary MgCu,-MgZn, system are shown 
in fig. 23. KLEE and W I ~  [I9541 proposed that they may be interpreted in terms of 
interactions between the Fermi surface and the Brillouin zone, the dip in the susceptibility 
prior to the termination of solid solubility indicating a dip in the density of states. 

Measurements of the electronic specific heats, that can be related to the density of 
states at the Fermi surface, have provided a further evidence of the importance of 
electronic factors in Laves phases. Examination of the trends of the electronic specific 
heat coefficient 71, as it varies in pseudobinary systems of MgCu, with polyvalent metals 
such as Zn, Al m d  Si, has shown that a sharp decrease of the density of states oaurs  
near the phase boundary before the MgCu, structure is replaced by a two-phase field. A 
possible interpretation of this is that an appropriate Brillouin zone becomes filled with 
electrons. In this respect the electronic specific heat data and the magnetic susceptibility 
data shown in fig. 23 are very similar (SLICK et al. [ 19651). 

+ + + + + + I +  ++ 
Mg-Cu- A I 

Mg-Cu-Zn 

Mg-Ag-Zn 

Mg-Cu-SI 

Mg-Co-Zn 

Mg-Zn-A' 

Mg-Cu-Ag 

Mg-Ag-AI 

1.33 1.4 1.6 1.8 2.0 2.2 

MgCu2-Type + ++++ MgNt,-Type m MgZn2-Type 

Fig. 22. The ranges of homogeneity in terms of electron concentration of several ternary magnesium alloys 
which possess the three typical Laves structures (from MASSALSW [I9561 after LAVES and W r m  [1936].) 
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Fig. 23. Variation of hydrogen solubility and magnetic susceptibility with electron concentration in quasi-binary 
systems MgCu,-MgZn, (from MASSALSKI [1956] after KLEE and W m  [1954].) 

8.5. Phases with wide solubility formed by the transition elements 

A number of intermediate phases formed by the transition elements possess wide 
ranges of solid solubility. They are often designated by various Greek or Latin symbols 
such as u, p, 8, x, P or R. For details reference may be made to TAYLOR [1961], NEVITT 
[1963] and ch. 5 which deals specifically with alloy compounds. 

The a-phase, the unit cell of which is tetragonal with c /a  = 0.52 and 30 atoms per 
cell, has received much detailed attention, chiefly because of the detrimental effect which 
the formation of this phase has on mechanical properties of certain steels. In the system 
Fe-Cr, for example, the a-phase separates out of the femtic matrix and causes 
brittleness, but in more complex steels such as Fe-Cr-Mn a-phases can also precipitate 
from the austenite phase. 

X-ray and neutron diffraction studies have shown that many of the phases listed 
above are structurally related to one another because they can be built up from layers 
that show close similarities. Thus, undoubtedly, atomic packing plays an important role 
in determining their stability. At the same time studies of stability ranges, particularly in 
ternary systems, have shown that the contours of the phase fields of the above phases 
often bear relation to the value of the average group number (AGN). Hence, much 
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speculation has been advanced about the electronic nature of their stability that might be 
similar to the electron phases of the noble metals. In fig. 24 the ternary phase relation- 
ships of some 19 ternary systems are shown at various temperatures as collected by 
NIEMIEC [1967]. The relationship between AGN and the contours of the cr-phase fields 
is particularly noticeable. It must be kept in mind however, that since the d-electrons 

Mn hln Fe 

V Fe V co v co  v N I  
hln CO co Fe 

W Fe M O  

Cr <.o Mo Lo Cr Cr C O  

Cr I'r 

Mn Mn 

hlo Ft. Mo CII Mo C O  
\\ Fr Co 

Cr Fr hlo Ni 

Fig. 24. Isothermal sections through a number of ternary phase diagrams between transition elements showing 
phase fields of phases with wide solid solubility. Values of average group number are indicated by dashed 
lines. (From NIEMIEC [1966].) 
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unquestionably contribute to e / a  in these phases, and since the d-bands are incompletely 
filled, the details of possible electronic interactions are bound to be complex and not 
necessarily related solely to some simple Brillouin-zone-Fermi-surface effects. For 
example, some of the bonding forces may be highly directional, or the number of 
“d-band vacancies” rather than electrons, may play a role. 

9. ktt ice spacings in solid solutions 

The measurement of precise values of lattice spacings in solid solutions has contrib- 
uted to the understanding of a number of factors which influence their stability and 
properties. Since the introduction of the Debydcherrer powder method some sixty years 
ago, the interest in the knowledge of lattice spacings in alloys has developed in three 
distinct directions: 

1) in connection with precision measurements of lattice parameters for studies of 
systematic structural similarities between related alloy phases; 

2) in connection with studies of relationships between lattice spacings, composition, 
electronic structure, size effects, local order, magnetic effects and numerous other 
properties of solid solutions; 

3) in connection with the use of the lattice-spacing method as a tool for determining 
phase boundaries in alloy systems. 

Detailed measurements of lattice spacing trends within individual alloy phases date 
back to the early 1930s. They were done mostly in terminal solid solutions of the noble 
metals and a few intermediate phases *. Today the available data fill large volumes 
(PEARSON [1958, 1967]), and further additions are rapidly growing. The importance of 
the behavior of lattice spacings in hcp electron phases, in connection with their electronic 
structure, has already been discussed in 0 8.3. Some additional aspects are discussed below. 

9.1. Lattice spacings in primary solid solutions 

The problem of lattice distortion in primary solid solutions of the monoralent noble 
metals has been considered by Hume-Rothery and by Owen and their associates 
(HTBE-ROTHERY [1964] and OWEN [1947]). The relationships obtained by OWEN [ 19471 
between the percentage lattice distortion and the solute valency in binary systems based 
on a common solvent are shown in figs. 25 and 26. The importance of valence difference 
is clearly demonstrated in the figures, but there appear to be departures from the general 
trends which have not been explained. In order to gain further insight into the particular 
role of the difference beween valencies of the component elements, RAYNOR [1949a] 
attempted to eliminate size contributions by assuming that the electronic and size effects 
in certain solid solutions are additive and can be analyzed separately. Raynor’s analysis 
was based on the assumption that a h e a r  Vegard‘s Law may be applied to the sizes of 

* For a review of some of these measurements see MASSALSKI [1958]. 
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Fig. 25. Percentage lattice distortion as a function of solute valency in solid solutions. Cu, Ag and Au with Zn, 
Ga, Ge and As. (From PEARSON [I9581 after OWEN [1947].) 

atoms as given by the closest distance of approach and is therefore open to some doubt 
(MASSALSKI and KING [1961]). 

Nevertheless, a detailed analysis of numerous solid solutions has shown that, after the 
assumed size contribution has been subtracted, the remaining lattice-spacing variation 
appears to be proportional to (V, - V,J2 for solutes (so) and solvents (sv) of the same 
period, and to (V, - Vs,)2+(V, - V,,) for solutes and solvents from different periods. 
Subsequently, PEARSON [I9821 has shown that a more general correlation is obtained, 
valid for a larger number of systems, if a size-effect correction, E, is calculated from a 
relationship of the form a =fE + k, where a is the lattice parameter, E is the average 
atomic diameter calculated from a linear relationship involving initial atomic diameters 
based on coordination 12, andfand k are constants. If an additional assumption is made 
that Ga, Ge, Sn, As, Sb and Bi contribute only two electrons to the conduction-electron 
concentration when alloyed with the noble metals, fifteen more systems appear to obey 
a uniform correlation. 

Studies of binary systems have been extended to ternary systems where it is found 
that lattice spacings of ternary alloys may often be calculated from binary data using 
empirical additive relationships. An example of a linear relationship between lattice 
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pig. 26. Percentage lattice distortion as a function of solute valency in solid solutions. Cu, Ag and Au with Ag, 
Cd, In, Sn and Sb. (From PEARSON [1958] after O w  [1947].) 

spacings and composition in the system Cu-Al-In (STIRLING and RAYNOR [1956]) is 
shown in fig. 27. ARGENT and WAKEMAN [1957] have shown that the expansion of the 
copper lattice by additions of zinc and gallium or zinc and germanium is additive in the 
respective ternary systems. Similar results hold also for additions of gallium and 
germanium to copper. Additive linear behavior suggests that in simple ternary solid solutions 
there is no appreciable solute-solute interaction, at least in dilute solutions where atoms of 
copper can effectively prevent contact beween solutes. Even in the system Ag-MgSb (HILL 
and AXON [1956-71) the strictly additive behavior of lattice spacings is still observed despite 
the fact that strong electrochemical differences between magnesium and antimony, and the 
tendency towards compound formation (Mg,SbJ, might be expected to favor clustering of 
magnesium and antimony atoms which should lead to the contraction of the lattice. However, 
when magnesium and silicon are dissolved in an aluminium lattice, contractions are observed 
which point to electrochemical interactions (HILL and AXON [ 195651). 

The lattice spacings of solid solutions of lithium, magnesium, silicon, copper, zinc, 
germanium and silver in aluminium have been studied and discussed by AXON and 
HUME-ROTHERY [1948] whose data are plotted in fig. 28. It may be seen from the figure 
that apart from silver, which produces virtually no change of lattice spacings, the 
aluminium lattice is expanded by magnesium and germanium and contracted by lithium, 
silicon, copper and zinc. Aluminium is an example of a trivalent solvent with a face- 
centered cubic structure. The first Brillouin zone can hold only two electrons per atom and 
must therefore be overlapped; but it has been shown (HARRISON 119591 and HARRISON 
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Fig. 27. Lattice spacings of (1 solid-solution alloys in the Cu-AI-In system along lines of constant copper 
content (from MASSALSKI [1958] after STIRLING and RAYNOR [1956]). 

and WEBB [196Q]) that the various portions of the overlapped and unoverlapped Fermi 
surface, when assembled together, resemble a free electron sphere. Hence, although 
overlaps exist in the aluminium structure and its alloys, their influence upon lattice 
spacings may be small. 

AXON and Hw-ROTHERY [1948] have shown that the extrapolated AAD (0  6.1) 
values for various elements dissolved in aluminium are influenced by the interplay of a 
number of factors such as relative volume per valence electron in the crystals of the 
solvent and the solute, the relative radii of the ions, and the relative difference in the 
electrochemical affinities. 

The changes in the lattice spacings in the system magnesium-cudmium at tempera- 
tures at which complete solid solubility occurs in this system (see fig. 1) have been 
studied by HUME-ROTHERY and RAYNOR [1940]. When magnesium is alloyed with 
cadmium, no change occurs in the nominal electron concentration, both elements being 
two-valent. The initial additions of cadmium to magnesium cause a contraction of the a 
lattice spacing but only a very slight increase in the axial ratio because the c lattice 
spacing decreases at about the same rate as does the u lattice spacing. When magnesium 
is added to cadmium at the opposite end of the phase diagram, both u and c also 
decrease, but c more rapidly, causing a rapid decrease of c/u. The presence of at least 
two electrons per atom in this system means that there must exist overlaps from the first 
Brillouin zone (see fig. 17) since the alloys are conductors of electricity. It is now known 
from direct measurements of the Fermi surface that in both pure cadmium and pure 
magnesium overlaps exist across the horizontal and vertical sets of planes in the Brillouin 
zone, and although the amounts of these overlaps are different in both cases the nature 
of the overlaps is similar. Hence the relationship between overlaps and trends in the 
lattice spacings and the axial ratio in the Mg-Cd system is open to speculation. 

In a similar way, because of the complexity of factors involved, the interpretation of 
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Fig. 28. The lattice-spacingcomposition curves of alloys based on aluminium as solvent (from MASSALSKI 
[1958] after AXON and HUME-ROTHERY 119481.) 

the lattice spacings of alloys of transition elements may be expected to meet formidable 
difficulties. The inner-core d-band shells are incomplete, and it is known that electrons 
from these shells can contribute both to bonding and to conductivity. 

The trends in the lattice spacings of the transition ekments of the Second Long 
Period (zirconium, niobium, molybdenum, rhodium and palladium), when dissolved in 
the hexagonal close-packed ruthenium, have been studied by HELLAWELL and H w -  
ROTHERY [1954]. In all cases the parameters c and c/a are increased by the formation 
of a solid solution and, at equal percentages of each solute, the increases are in the order 
zirconium 4 niobium + molybdenum + palladium 4 rhodium. The a parameters are 
diminished by zirconium and rhodium and increased by palladium, niobium and 
molybdenum. The axial ratio of ruthenium (1.5824) is considerably less than the ideal 
value (1.633), and the interatomic distance in the basal plane is greater than the distance 
between an atom and its nearest neighbor in the plane above or below. Hellawell and 
Hume-Rothery interprete the observed lattice spacings on the basis of “size differences” 
between component atoms as expressed by the minimum distance of approach between 
atoms in the pure elements and by a possible directional sharing of the electron cloud of 
zirconium which may take place on alloying. 

9.2. The relationship between lattice spacings and magnetic properties 

A survey of the lattice spacings of transition metal alloys as a function of composi- 
tion shows (PEARSON [1958]) that there are many inflections in the lattice spacing curves 
reflecting changes in the magnetic properties. The magnetic properties of metals and 
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alloys depend on the arrangement and separation of atoms in a structure, and therefore 
such changes as the ferromagnetic-paramagnetic transition might be expected to be 
related to some changes in the lattice spacings and the volume of the unit cell. 

The ferromagnetic-paramagnetic changes (F-P) and the antiferromagnetic- 
paramagnetic changes (A-P) are second-order transitions in which the ordering of the 
spin orientation develops gradually on cooling below the transition temperature, T,. Such 
changes are usually accompanied by a sharp change in the slope of the lattice-spacing 
curve as a function of temperature, such that the derivative dddT is discontinuous at T, 
(WILLIS and ROOKSBY [ 19541). Ferromagnetic-antiferromagnetic changes (F-A), on the other 
hand, are a first-order transition involving a discontinuous change of electron spin orientation 
and are accompanied by a discontinuous change in lattice spacing (WILLIS and ROOKSBY 
[1954]). The second order F-P and A-P changes are truly reversible while the first order 
changes are accompanied by the usual thermal hysteresis in the transition region. 

An example of the lattice-spacing changes accompanying an F-P transition is shown 
in fig. 29a for the system Mn-Sb (WILLIS and ROOKSBY [ 19541). In cases of a first-order 
transition at the Curie point, the discontinuous change in the lattice spacings may also be 
associated with some displacements of the different types of atoms in a structure, so that 
in such a case the change in the lattice spacing represents two processes occurring at the 
same time. According to ROBERTS [1956], the first-order transition at the Curie point is 
associated with a movement of about 10% of the manganese atoms into interstitial 
positions. The actual trend in the lattice spacings with temperature in the Mn-Bi system 
as determined by WILLIS and ROOKSBY [1954] is shown in fig. 29b. 

A definite anomaly is found in the temperature variation of the lattice spacings 
accompanying the F-P transition of pure nickel, but no pronounced anomalies are 
observed in the slope of the lattice spacings as a function of composition in nickel alloys 
at compositions at which the F-P change should occur (PEARSON [1958]). COLES [1956] 
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Fig. 29. (a) Lattice spacing of MnSb, which has a B8, type of structure as a function of temperature. (b) Lattice 
spacing of MnBi, which has a B8, type of structure as a function of temperature. (From PEARSON [I9581 affer 
WILLIS and ROOKSBY [1954].) 
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has reported a slight change of slope accompanying the F-P change in an alloy of 
nickel-35at. copper. This composition corresponds to alloys in which the Curie point 
occurs at room temperature. 

10. Defect structures 

In addition to the occurrence of clustering or ordering of atoms, which constitutes a 
departure from randomness, solid solutions can contain various imperfections which can 
be of three general types: point-, line- and surface imperfections, according to whether 
they are vacant sites or interstitial atoms, various types of dislocations, stacking faults, 
or small-angle boundaries. The nature of dislocations, their interactions and their 
properties are discussed in ch. 20. Below we shall briefly consider some aspects of 
vacancies in solid solutions and the presence of various stacking disorders. 

From the point of view of energy relationships, the presence of vacant sites in solid 
solutions may enhance stability, owing to their association with the entropy, the strain 
energy, or the electronic energy. Vacancies may be introduced by quenching from higher 
temperatures where their equilibrium number, due to entropy considerations, is higher 
than at lower temperatures, or they may be introduced by various irradiation processes, 
plastic deformation or, finally, by alloying. The calculation of the energy associated with 
the formation of vacancies or interstitials in a solid solution at finite concentrations 
presents several difficulties (see, for example, FUMI [1955], FRIEDEL [1954b], BROOKS 
[1955] and MANN and SEEGER [1960]). The subject is presented in great detail in ch. 18. 

-.  

10.1. Vacancies and vacant sites in structures of alloys 

From the point of view of the theory of alloys, vacancies are believed to be produced 
on alloying under certain conditions when the number of electrons per atom is kept 
constant or reduced. Evidence of this is provided by terminal solutions or electron phases 
with lattice defects. With the increase or decrease in the number of solute atoms a 
change can occur in the number of atoms per unit cell in a way which produces vacant 
lattice sites. It is believed that this takes place in order to maintain optimum electronic 
energy. Such vacancy populations, determined by composition and not by temperature, 
are distinguished as constitutional vacancies. (CmN [ 19791, AMELMCKX [ 19881). 

The work of BRADLEY and TAYLOR [1937] and TAYLOR and DOYLE [1972] on Ni-A1, 
and of LIPSON and TAYLOR [1939] on some ternary alloys based on this phase, are first- 
known examples of this phenomenon. The Ni-A1 alloy may be regarded as an electron 
phase analogous to &brass if nickel, a transition element, is assumed to have zero to 
near zero valency. At 50 at% this phase possesses a Cs-Cl ordered structure in which 
one kind of atoms, say nickel, occupy cube centers and the other kind of atoms, cube 
comers. The diameter of a nickel atom is smaller than that of an aluminium atom and 
hence, if nickel content is increased above 50 at%, the lattice parameter of the structure 
decreases in the expected manner while the density is increased. However, when the 
aluminium content is increased above 50 at%, an anomalous behavior is observed since 
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Fig. 30. (a, b) Lattice spacing and density of p-AlNi as a function of composition. (c) Lattice spacing of 
p-AlCo as a function of composition. (From PEARSON [1958] after original work of BRADLEY and TAYLOR 
[1937] and BRADLEY and SEAGER [1939].) 

the lattice spacing of the Ni-Al phase does not increase but actually decreases, and the 
fall in the density is much more rapid than would be expected from the replacement of 
nickel atoms by aluminium. This behavior is shown in fig. 30 in which the lattice 
spacing data for Co-Al (BRADLEY and SEAGER as quoted by PEARSON [1958]) are also 
included. BRADLEY and TAYLOR [1937] concluded that the observed anomalies could be 
explained if one supposed that in the aluminium-rich alloys there are less than two atoms 
per unit cell and that omission of atoms occurs from some lattice points with the creation 
of vacancies. On the nickel-rich side, the extra nickel atoms substitute in the usual way 
for aluminium atoms on the aluminium sublattice. The aluminium-rich side, however, is 
quite different: hardly any aluminium substitutes on the nickel sublattice; instead nickel 
atoms disappear from the nickel sublattice, leaving nickel vacancies. For instance, 
according to the most recent measurements (KOGACHI et al. [ 1992, 19951) at 46 at% Ni, 
10% of the nickel sites are vacant, most of the aluminium sites are filled. In this way the 
number of electrons per unit cell is kept constant and equal to approximately 3, 
corresponding to an e/a ratio of 3/2 characteristic of the &brass structures. Several other 
studies showed that a stoichiometric /3-NiAl quenched from a high temperature (as 
opposed to that slowly cooled) contained a high concentration of fhennaE vacancies; the 
most recently cited figure is 1.08% of vacancies at 1600°C. This is a very much larger 
thermal vacancy concentration than is found in other metals or alloys, even just below 
the melting temperature; so large that on cooling the vacancies will separate out into a 
population of voids visible in the electron microscope (EPPERSON et al. [1978]). 501.50 
NiAl containing such vacancies, all on the nickel sublattice, must also contain 
substitutional defects - that is some nickel atoms in the aluminium sublattice, also called 
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nickel antistructure atoms - to preserve the overall chemical composition: specifically, 
two vacancies must be accompanied by one substitutional defect. Such a trio of l i e d  
defects is now termed a triple defect. Parallels for the behavior of the NiAl alloys at high 
temperatures are found in other systems isomorphous with NiAl (see CAHN [1979]). 

The conclusion related to the dependence of constitutional vacancies on electron 
concentration has been criticized on the basis that the omission of atoms could also be 
interpreted in terms of size-effects. Since there is only one atom of aluminium in the unit 
cell of the Ni-A1 alloy, it appears possible that the omission of atoms with addition of 
aluminium in excess of 50% occurs as a result of an inability to squeeze an additional 
large aluminium atom in the place of a small nickel atom. A possible differentiation 
between an interpretation in terms of electronic considerations and one in terms of size 
considerations could be made by introduction of a further element into the Ni-Al alloy. 
The size-effect spatial theory requires that the loss of atoms should take place when the 
concentration of aluminium exceeds more than one per unit cell whereas the electronic 
theory requires that it should occur when a definite electron concentration, approximately 1.5, 
is exceeded. LIPSON and TAYLDR [1939] have shown that in two ternary systems, Fe-Ni-Al 
and Cu-Ni-Al, the general shape of the phase field of the ternary alloys based on Ni-A1 falls 
into the composition regions which indicate that electron concentration, rather than size, 
is the main factor determining the phase stability. A detailed analysis of constitutional 
vacancies in Ni-AI based on band energies has just been published by COTTRELL [1995]. 

The interpretation of the lattice spacings and density behavior in alloys based on 
Ni-A1 is limited by the fact that nickel, a transition element, must be assumed to possess 
zero valency in order to make it possible to assume that the above phase is an electron 
phase of the 3/2 type. However, further evidence of omission of atoms from sites in a 
unit cell has also been obtained in the study of some y-brasses (HUME-ROTHERY etal. 
[1952]) and AI-Zn primary solid solutions (ELLWOOD [1948, 1951-2]), in which no 
transition elements are involved so that the valence of the participating atoms is more 
definite. In the case of y-brass two particular binary systems were studied, Cu-A1 and 
Cu-Ga (HTJME-ROTHE~RY et al. 119521). In the former system, lattice spacing work and 
density data show that the number of atoms in the unit cell of the y-phase remains 
constant at about 52 as aluminium is increased to approximately 35.3 at%, after which 
the number steadily decreases. A similar effect has been observed in the Cu-Ga y-brass 
to occur at about 34.5 at% gallium. The data for Cu-A1 and Cu-Ga alloys are shown in 
fig. 31. HUME-ROTHERY et al. [1952] have interpreted the creation of vacant sites in 
y-brass structures in terms of the Brillouin zone of the y-brasses, suggesting that both the 
normal and the defect y-structures can hold no more than about 87-88 electrons per cell 
in order not to exceed an electron concentration of about 1.68-1.70. It appears that the 
high-temperature S-phase in the Cu-Zn system resembles a defect y-brass structure in 
that it possesses numerous lattice defects and vacant atomic sites. Other constitutional 
vacancies in brass-type alloys have been discussed by N o m  and SCHUBERT [1980]. 

Creation of lattice defects in which vacancies or excess atoms are involved occurs in 
intermediate phases probably more frequently than it was thought likely in the past. For 
example, in intermediate phases which crystallize in structures closely related to the 
NiAs structure, the basic structure, corresponding to the formula AB, can gradually 
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Fig. 31. The number of atoms per unit cell in the y-phases of the system Cu-Ga and &-AI as a function of 
electron concentration (after HW-ROTHERY etaL [1952].) 

change in the direction of compositions A2B by a gradual filling of certain vacant 
spaces* in the structure by the excess atoms of one of the components. In the series of 
phases such as NiS + NiSe + NiAs + Ni,Sb2 + Ni,Sn, -+ Ni2Ge + Ni,In. The 
number of nickel atoms becomes greater than 50 at% and X-ray work has shown that 
this is accomplished by nickel atoms gradually filling certain interstitial positions in the 
ideal NiAs structure. The typical NiAs structure may be regarded as based on a close- 
packed hexagonal lattice of metalloid atoms in which the metal atoms occupy the 
octahedral spaces between the close-packed hexagonal layers (see ch. 5). As the structure 
becomes filled with the excess of the more metallic atoms, it gradually acquires a 
pseudo-cubic symmetry and the metallic character increases considerably so that, for 
example, in the series quoted above the NiJn phase is almost indistinguishable from the 
Cu-A1 or Cu-Ca y-brasses. 

Constitutional vacancies in large concentrations have also been found in a number of 
oxides, especially those of the transition metals, and in some hydrides (e.g., TiHJ and 
carbides. In some instances there is also evidence of vacancy ordering. 

10.2. Stacking faults 

The possibility of the formation of stacking faults in typically metallic solid solutions 
has recently come to play an ever-increasing role in the understanding of many properties 
of solid solutions, particularly those with the face-centred cubic and the close-packed 
hexagonal structures. Such phenomena, for example, as the changes in electrical resistivity, 
work-hardening, recrystallization, creep, deformation texture, crystallography of phase 
transformations, corrosion, phase morphology and a number of others have been shown 
to be related to the presence of stacking faults and therefore to the stacking-fault energy. 

The face-centred cubic and close-packed hexagonal structures are closely related and, 
being both close packed, differ essentially only in the way in which the closest-packed 
planes are staclced together. It has been shown originally by BARRETT [1950] that 
stacking disorders exist in a cold-worked metal. Subsequently, several authors (PATERSON 

* These are analogous to the octahedral, tetrahedral and other vacant spaces which exist in the simple metallic 
structures as discussed in ch. 2. 
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[1952], WARREN and WAREKOIS [1955], WAGNER [1957], WILKENS 119571 and JOHNSON 
[1963]) developed theories which relate the effect of the presence of various types of 
stacking faults to the changes in the X-ray diffraction pattern of the face-centred cubic 
structure. The normal sequence of { 11 1 } planes in a face-centred cubic structure can be 
described as ABCABCABC using the usual A, B, C notation. The three typical stacking 
errors are illustrated by the characteristic stacking patterns shown in fig. 32. They are: 
(1) the intrinsic fault, corresponding to the removal of a close-packed layer of atoms, (2) 
the extrinsic fault, corresponding to the insertion of an extra close-packed layer of atoms, 
and (3) the twin (growth) fault, produced at the interface between two perfect crystallites 
which are in twin relation (see &AD [1953]). The intrinsic faults have received the most 
attention, and calculations based upon idealized models suggest that such faults should 
produce broadening and shifts in X-ray peak positions. This prediction has been verified 
experimentally in a number of pure metals (Cu, Au, Ag, Pb, Ni, etc.) and alloy systems 
(mostly based on the noble metals Cu, Ag and Au). Theoretical considerations of the 
influence of twin faults and extrinsic faults indicate that the corresponding X-ray line- 
broadening should be asymmetric in both cases and that the peak shifts resulting from 
the presence of extrinsic faults should occur in a direction opposite to the shift produced 
by intrinsic faulting (JOHNSON [1963]). Published work to date indicates that in metals 
intrinsic faults predominate. However in other materials, for example in silicon (AERTS 
et al. [1962a, b]), the stacking-fault energy of intrinsic and extrinsic faults may be of 
about equal magnitude. If, in addition, one considers the less idealized cases in which the 
distribution of stacking-fault density is variable in a specimen, the prediction of the over- 
all X-ray pattern becomes very complex (see for example, BARRETT and MASSALSKI 
[1966] p. 4.64). Nevertheless, the X-ray work has served as a useful means for compari- 
son between various metals and alloys and for the studies of trends in faulting probability 
with composition and temperature. 

In addition to the above mentioned X-ray analysis a direct estimate of stacking-fault 
energy y can also be made by studies of certain annealing or deformation features in 
metals and alloys and their changes with temperature, by studies of twinning frequency 
in metallographic samples (FULLMAN [1951] and BOLLING and WINEGARD [1958a, b]), 
by interpretation of dissociated dislocations (nodes) in transmission electron 
photomicrographs (HOWIE and SWANN [1961] and CHRISTIAN and SWANN [1965]) and 
other features such as cross-slip, creep, texture etc. [GALLAGHER [1970]). 

The possibility of the existence of stacking faults in hcp and bcc structures has been 

A B C A A  
C A B  B B  

B C A  c c  
A B  B A A  

B B B B C 
C A A A  A 

(a) (b) (c) (d) (e) 

C C C B 

Fig. 32. Planar view of atomic positions and stacking sequences for: (a) perfect fcc crystal; @) intrinsic fault; 
(c) extrinsic fault; (d) twin fault: (e) twin crystal. (After JOHNSON [1963].) 
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considered in a number of publications both from the experimental and the theoretical 
point of view. In bcc and hcp metals stacking faults do not produce line shifts (see 
WARREN C1959al). In hexagonal metals they produce broadening of certain reflections, 
which has been observed experimentally, particularly in the case of cobalt (EDWARDS 
and LIPSON [ 194.21). 

A number of attempts have been made to elucidate the factors which influence the 
changes of stacking-fault energy upon alloying. Although all such factors must be 
electronic in nature, it appears at the moment that a detailed interpretation is not possible. 
In a number of publications the changes of stacking-fault energy have been related to the 
electron concentration, certain size effects, the changes in the density of stat.es, and the 
changes in the topology of the Fermi surface (See GALLAGHER [1970].) 

In the case of fcc metals, recent measurements of the rate of loop annealing, the 
stability of tetrahedra introduced by deformation, of faulted dipoles, and of texture 
developed by rolling have led to the availability of quite precise information on the 
magnitude of y for materials in which extended nodes or extrinsic-intrinsic fault pairs 
cannot be observed. Thus, it is no longer essential to estimate the fault energy of such 
metals as Cu, Au, Al, and Ni by extrapolating node data or normalized X-ray faulting 
probability results, although the extrapolation procedures, too, have been improved and 
now lead to more reliable results. Reasonable estimates of y, probably accurate to SO%, 
are: yAg = 21.6 mT/m2, yPh = 30 d i m 2 ,  yAu = 50 d/m2,  ya = 55 mJ/m2, yAI = 200 d / m 2  
and yN, = 250 mJ/m2. Estimates of y in other elements from scaled rolling-texture data are 
subject to rather larger errors, but are the best values available at the present time: ye< 
5 mJ/m2, 7% e 10 dim2,  ym = 70 d /m2 ,  yR, = 75 d/m2,  Ypd = 130 mJ/m2 and yRh = 330 
d / m 2  (GALLAGHER [1970]). Advances have been made in theoretical estimates of y for 
pure materials (]BLANDIN ef aZ. [1966]), but difficulties are still experienced in applying 
the treatments to noble metals on account of their complex electronic structure. 

In fcc solid solutions, a satisfactory amount of numerically accurate information is 
now available for the variation of y (effective) with alloying, particularly in systems with 
copper, silver, and nickel as solvents. The form of the variation with E-group solutes in 
all cases follows the pattern established in the earliest studies in that y decreases with 
increasing solute concentration, and a considerable normalization of the data is achieved 
in plots with the electrodatom ratio as abscissa. 

Several authors have noted that straight-line relationships for the change of y with 
alloying can be obtained if y is plotted on a log scale and the abscissa is expressed in 
terms of a composition-dependent function [c/( 1 + c)]*, where c= (alloying concentra- 
tion)/(solubility limit) at high temperatures. Expressing the abscissa in this form appears 
to provide a normalizing effect similar to that which arises by using the e / a  ratio, but 
with the advantage that the solubility limit is in some systems more accurately known 
than is the effective valence of the solute. The relationship obtained for the fcc Cu-Si 
alloys is shown in fig. 33. Recent studies also suggest that in alloys of two fcc elements 
having complete mutual solubility, all compositions have y intermediate in value between 
the fault energies of the component metals. Such noble-metal-transition-metal alloys as 
have been studied have y of the same order as in the pure noble metal. Contrary to early 
studies, considerable extrinsic-intrinsic faulting has recently been observed in copper-, 
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Fig. 33. Semi-log plot of y versus [c/(l +c)J2 in the Cusi series (from GALLAGHER [1970]). 

silver-, and gold-base alloys, and measurements on fault pairs have revealed that the 
extrinsic and intrinsic fault energies are approximately equal (GALLAGHER [ 19701). 

10.3. Metastable structures* 

Many solid solutions whose properties have been outlined in the preceding sections 
can exist in a metastable condition at temperatures which fall outside the equilibrium 
range of stability but at which the rate of approach to equilibrium is so slow as to be 
negligible. One of the most frequently used methods for producing metastability is rapid 
quenching from a high temperature. During quenching a single-phase solid solution may 
be retained untransformed, or it may transform by changing its crystal structure, either 
by a martensitic or a “massive” process (see BARRETT and M A ~ ~ A L ~ K I  [1966]). 
Metastable solid solutions have also been obtained by a rapid cooling from the liquid 
state, using the “splat” or “crusher” cooling techniques (DUWEZ [1965,1967]), by a rapid 
cooling from the vapor state, using vacuum deposition techniques (MADER etal. [1963]) 
or sputtering (~MAssALsKI and Rrzzo I: 1988]), by various methods involving the quench- 
ing of liquid metals on a rapidly revolving copper wheel, and by surface melting methods 

* See also chapter 19. 
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using laser beams, electron beams, etc. (See D m z  [1978] and also ch. 7, $ 9.1.). 
Following these procedures, enhanced solubilities, non-equilibrium phases and 

unusual crystalline and amorphous structures have been obtained. For example, a 
continuous series of metastable solid solutions can be obtained in the Cu-Ag system in 
place of the well-known eutectic phase diagram corresponding to equilibrium conditions. 
In other instances solid solutions have been obtained that are amorphous, resembling a 
frozen liquid. A large number of metastable phases obtained by the various rapid-cooling 
techniques have most unusual crystalline (or non-crystalline) electrical, semiconducting, 
superconducting, magnetic and thermal properties. The research area of metallic glasses, 
in particular, has seen very rapid growth during the past two decades and numerous 
symposia and reviews on this subject have been published (see, e.g., MASUMOTO and 
SUZUKI 119821, PEREPEZKO and B O ~ I N G E R  [1983]; TORNBULL [1981]; JOHNSON 
119861). In order to produce a metallic glass, crystallization has to be prevented during rapid 
cooling of the liquid. Cooling rates exceeding lo6 K/s are usually needed to achieve this, and 
the most likely regions in phase diagrams where metallic glasses can be produced are the 
deep eutectic regions. The reason for this has been discussed in numerous publications. 
One of the possibilities is that, in deep eutectics, the crystallization competing with 
metallic-glass formation must be of a multi-phase form, which is kinetically difficult. 
Here, the To concept provides a very useful guide to the search for glass formation 
regions in metallic systems (MASSALSKI [ 19821). Hence, the chilled liquid becomes more 
and more viscous without crystallization until a glass transition temperature is reached 
when the liquid becomes a solid. The subject is discussed more fully in ch. 7, $9.1. 

11. Order in solid solutions 

The phenomena related to orderdisorder (0-D) changes in solid solutions comprise 
a very extensive literature and a detailed review of these is beyond the scope of this 
chapter. Nevertheless, the tendency for unlike atoms to occupy adjoining sites of a 
crystalline lattice, leading towards formation of superlattices, is a very prominent feature 
of many solid solutions; and we shall briefly consider this subject from the structural 
point of view. 

On the basis of thermodynamics (see ch. 5 )  it can be shown that an ordered arrange- 
ment of atoms in an alloy may produce a lower internal energy compared to a disordered 
arrangement, particularly if the segregation of atoms to designated atomic sites occurs at 
relatively low temperatures where entropy, associated with randomness, plays a lesser 
role. The condition of perfect order, such that the like atoms are never nearest neighbors, 
could be achieved only in a perfect single crystal with a simple metallic lattice and at 
compositions corresponding to stoichiometric ratios of atoms like AB, AB, AB,, etc. 
Actually, the presence of various imperfections and grain boundaries precludes this 
possibility in most cases. In addition, it is known that an ordered solid solution consists 
of ordered domains which may be perfectly ordered within themselves but which are out 
ofstep with one another. This results in more contact between like atoms at the bound- 
aries of adjacent domains. Ordered domains are sometimes called antiphase domains and 
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usually their number is quite large within each grain of the material. With the develop- 
ment of electron microscopy techniques, the presence of antiphase domains has been 
confirmed by direct observation in thin films (GLDSSOP and PASHLEY [1959], SATO and 
TOTH [1961]). 

A further departure from maximum order occurs in solid solutions whose composi- 
tions deviate from the optimum stoichiometric ratios of atoms. This is often associated 
with the fall of the ordering temperature on both sides of the ideal composition and by 
the change of other properties such as hardness, electrical resistivity, etc. 

When the interaction between unlike atoms is very strong, the critical temperature 
T,, at ,which disordering occurs, may lie above the melting point of the material. Alloys 
with this characteristic closeIy resemble chemical compounds. When the interaction 
forces are less intense, an ordered solid solution may become disordered at a critical 
temperature even though the composition corresponds to a stoichiometric compound-like 
formula. Many typical alloy phases show this behavior with temperature. Finally, if the 
ordering forces are weak, as for example at low atomic concentrations in terminal solid 
solutions, the critical temperature may lie below the temperature at which attainment of 
equilibrium is possible within a reasonable time. One may then speak of the disordered 
state being frozen in. It has been found that the activation energy necessary to switch 
atoms into disordered positions in a fully ordered alloy is of the same order of magnitude 
as the heat of activation for diffusion or for recovery from cold work, usually about 1.5-2 
eV. References to recent work on long range order in alloys are given by LAUGHLIN [1988]. 

11.1. Types of superlattices 

Simple superlattices in binary alloys with cubic structure occur near compositions 
corresponding to formulas A3B, AB and AB,. The Cu-Au system (see fig. lb, above) 
provides a well-known prototype of ordered solid solutions based on the fcc structure. 
The superlattices Cu3Au, CuAu and CuAu, have been investigated in great detail. In the 
case of Cu3Au the low-temperature structure, (fig. 34a) is cubic, but in the case of CuAu 
(fig. 34.4 alternate (002) planes contain either all copper or all gold atoms and a 
contraction occurs in the c direction, presumably as a result of attraction between atoms 
in these planes. This results in a tetragonal fcc structure with c/a ratio of 0.92. 

Order in bcc alloys again depends on composition. At 50 at% of solute the AB type 
of order results in the well-known CsCl structure (fig. 34b) which occurs, for example, 
.in ordered p-brass. When the composition is between approximately 25 and 50 at% of 
solute, a sequence of ordered structures based on the simple body-centred cube some- 
times becomes possible and such structures have been studied in detail (e.g., RAPACIOLI 
and AHLERS 119771, for p-Cu, Zn, Al). The superlattices that occur in the Fe-AI system 
(fig. 34d) and the Heusler alloys (Cu,MnAl), which are ordered when in the 
ferromagnetic condition, have received particular attention (see, for example, TAYLOR 
[1961]). With solute contents exceeding 50 at% the y-brass type of order and other more 
complex superlattices are possible. 

By analogy with the cubic structures, ordered superlattices occur frequently in close- 
packed hexagonal solid solutions. For example, in the Mg-Cd system the continuous 
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Fig. 34. Various types of ordered superlattices: (a) ordered cubic superlattice Cu3Au; (b) disordered and ordered 
stcuchlres of &brass; (c) the tetragonal superlattice of AuCu; (d) the structure of Fe,AI and FeAI: Al atoms fill 
the X sites in Fe+l  and the X and Y sites in FeAl. 

series of solid solution at high temperatures is broken at lower temperatures by the 
formation of ordered superlattices at compositions MgCd,, MgCd and Mg,Cd (see fig. 
Id, above). MgCd, orders to form the type of structure which is distorted from 
close-packed hexagonal, while the Mg,Cd is closepacked hexagonal but with the a axis 
doubled and the basal layers so arranged that each cadmium atom is in contact with three 
magnesium atoms in the adjacent layers. Cooling of alloys in the MgCd composition 
region produces an ordered orthorhombic structure. 

11.2. Long-period superlattices 

As mentioned in the previous section, the low-temperature annealing of CuAu alloys 
(below 380°C) produces a face-centred tetragonal structure whose unit cell is shown in 
fig. 34b. This structure is usually referred to as CuAu I. In the temperature interval 
between 380410°C another ordered structure has been detected (by JOHANSSON and 
LINDE [1936]) which is often described as CuAu II. The superlattice CuAu II is a 
modification of CuAu I and the unit cell of this structure is orthorhombic as shown in 
fig. 35a. The long cell is obtained by stacking five CuAu I unit cells in a row in the 
direction of one of the long-cell edges (6) and then repeating this unit at five cell 
intervals with a simultaneous out-ofstep shift at the boundary through a distance equal 
to the vectorial &stance$(a+c). The distance between each antiphase boundary may thus 
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Fig. 35. Long-period superlattices: (a) the structure of CuAu II; (b) the structure of Au-Zn. (After SCHUBERT 
et al. [1955].) 

be specified by Mx b where M denotes the domain size or the period. For CuAu II, 
M =  5. This superlattice is therefore called a one-dimensional long-period superlattice 
with a period equal to five. OGAWA and WATANABE [ 19541 have shown that a repulsive 
force arises at the junction of the long antiphase domains, which leads to a small local 
lattice-parameter increase in the direction of the long axis. This has the effect of a small 
periodic error in the diffracting lattice in this direction, and in electron-diffraction 
patterns it produces “satellite” reflections around the normal reflections. 

Many other long-period superlattices have been discovered in cubic alloys, particulq 
at the A3B compositions. Long-period superlattices have also been reported in hexagonal 
alloys (SCHUBERT et al. [1955]). The structure shown in fig. 35b corresponds to the 
orthorhombic structure Au3Zn. This long-period superlattice is based on Cu,Au and 
consists of four face-centred cells stacked together with a half-diagonal shift as shown in 
the figure. Most of the long-period superlattices at compositions A3B retain the cubic 
symmetry of atomic distribution and they can be either one-dimensional long-period 
superlattices or two-dimensional superlattices. Much of the recent work in this field is 
due to SCHUBERT etal. [1955] and to SATO and TOTH [1961,1962,1965]. 

The discovery of the long-period superlattices has presented a challenge to the theory 
of alloys because the usual atom-pair interaction models adopted for explanation of the 
order-disorder phenomena cannot be used unless one assumes extremely long-distance 
interactions. The most successful interpretation at the moment appears to be that such 
superlattices are a result of a complex interaction between the Fermi surface and the 
Brillouin zone (SATO and TOTH [1961,1962,1965]) and is therefore connected with the 
collective behavior of the free electrons. The Brillouin zone for the CuAu alloys is 
shown in fig. 36. The thin lines represent the zone for the disordered fcc structure. This 
zone is bounded by the octahedral { 111) and cubic (200) faces and can hold two 



a. 3, Q 11 Structure of solid solutiom 197 

Fig. 36. The Brillouin zone of the disordered (thin lines) and ordered (thick lines) fcc structures (from SATO 
and Tom [1962].) 

electrons per atom. The thick lines represent the zone for the ordered CuAu I super- 
lattice. This zone, as a result of order in the lattice, is now bounded by the {OOl) and 
{ 110) faces and is therefore no longer symmetrical, the {loo} faces being much closer 
to the origin than the { 110) faces. The free-electron energies at the centers of the { 100) 
and { 110) faces are 2.4 eV and 4.8 eV respectively, while the energy at the Fermi 
surface corresponding to one electron per atom (Cu-Au system) is 6.5 eV. Therefore 
electrons should overlap into the larger zone. The existence of “satellite” reflections 
around the normal reflections in the b direction, corresponding to the long-range 
periodicity in the CuAu II superlattice, suggests that the Brillouin zone would show a 
slight splitting of certain faces. This is illustrated in fig. 37b and c which represents a 
horizontal section in the reciprocal lattice throught the zone shown in fig. 36. SATO and 

0 ‘\O O V 
0 O .  \ . .  

fa) ( b )  (e) 

Fig. 37. Horizontal section in reciprocal space through the Brillouin zone of fig. 36, showing possible Fermi surface 
contours for the Cu-Au superlattice: (a) CuAu i; (bc) CuAu II. (From BARRETT and MASSALSKI [1966].) 

References: p .  199. 
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T o m  [1962] have proposed that at one electron per atom, the Fermi surface comes 
rather close to the { IlO} faces and, when the CuAu 11 superlattice is formed, the 
interaction between the Fermi surface and these split faces produces extra stabilization 
of the long-period structure. Since the period M governs the extent to which the satellite 
spots are separated in the reciprocal lattice, there should be a relationship between M and 
the electron concentration which governs the volume of the Fermi “sphere”. It can be 
shown that as e/a  increases, the Fermi “sphere” would fit better with respect to the 
{ l l O )  faces if their splitting were increased. This requires that the period M should 
decrease. SATO and TOTH [1961] have shown that additions of alloying elements to the 
CuAu II superlattice, resulting in changes of e /a ,  also poduce changes of the long-range 
period in the direction suggested by the above model. Furthermore, the model makes also 
possible the explanation of other characteristics of the long-period superlattices such as 
the nature of the distortion of the lattice, the concentration and temperature dependence 
of the distortion and of the periods, and the question whether or not the superlattice will 
be one-dimensional or two-dimensional. (Ordering in CuAu is treated by RAPSON 
[ 19951 .) 

11.3. Long-range order and short-range order 

Attempts to formulate a theory of ordering date back to the 1930s and are associated 
with the names of Borelius, Johansson and Linde, Dehlinger, Bragg and Williams, Bethe, 
Peierls, Takagi and others. Several comprehensive reviews exist on both the mechanisms 
of ordering and on various treatments of the subject, and they may be consulted for details; 
for example, those of NIX and SHOCKLEY [1938], LIPSON [1950] and GUTTMAN [1956]. 

The essential condition for a solid solution of suitable composition to become ordered 
is that dissimilar atoms must attract each other more than similar atoms in order to lower 
the free energy upon ordering. In terms of interaction energies between pairs of atoms of 
two atomic species A and B this condition is usually expressed as follows: 

where EM and EBB represent energies of l i e  pairs of atoms and Em represents the 
energy of the unlike pair. If this condition is satisfied for a given alloy of a 
stoichiometric composition, then at some suitably low temperature the structure will 
become perfectly ordered, the A and B atoms occupying designated sites in the lattice, 
which may be called the a and /3 sites. On warming up the energy will be supplied in 
the form of heat and will cause some A atoms to migrate into “wrong” p sites and vice 
versa, causing the atomic distribution to become more random. With perfect order at a 
low temperature the mathematical probability of finding an A atom on an a site and a B 
atom on a p site is unity. At higher temperatures, however, the probability that an a site 
is occupied by an A atom will be reduced to a fraction of unity, say p.  BRAGG and 
WILLIAMS [ 19341 have used this description to define the long-range orderparameter, S,  

S = ( p  - r) / (1 - r), 
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where r is the fraction of A atoms in the alloy. According to eq. (ll), S varies from one 
to zero as order decreases. 

The order-disorder change, like the magnetic change, is a cooperative phenomenon. 
As more atoms find themselves in “wrong” atomic sites due to thermal agitation the 
energy difference indicated by eq. (10) decreases and it becomes easier to produce 
further disorder. Eventually a critical temperature is reached, Tc, at which all distinction 
between different sites is lost. 

The simple approach as outlined above does not allow for the possibility of the 
existence of magnetic domains and other types of interruptions in the ordered array of 
atoms that may cause a departure from perfect order (as mentioned in a previous section) 
which makes it possible for a high degree of local order to exist even though its 
perfection is not absolute on a large volume scale. In order to describe such situations an 
alternative method of defining the state of order is possible which, instead of considering 
the probability of finding A or B atoms on designated a or p lattice sites, takes into 
acount the number of unlike nearest neighbors around a given atom. For example, the 
BE-M-LE [1935] short-range orderparameter, u, is defined by: 

where q denotes the fraction of unlike nearest neighbors at a given temperature and qr 
and qm correspond to the fractions of unlike nearest neighbors at conditions of maximum 
randomness and maximum order. As may be seen, u is defined in such a way that it 
would become unity for perfect order and zero for randomness. 

Actually, instead of reaching zero on disordering, u usually remains a definite value 
above T,. In terns of the relationship between atoms, u measures the state of order in the 
immediate vicinity of a given atom unlike the long-range order parameter, S, of Bragg 
and Williams which deals with the whole lattice. The description of the immediate 
surroundings of a given atom can be extended further to include several successive 
concentric shells corresponding to the first, second, third, etc., nearest neighbors 
(COWLEY [1950]). 
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Further reading 
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E LAVES, in. Advances in X-ray Analysis, eds. W.M. MUELLER and M.F. FAY, 6 (1962) 43. For electron 
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STOCKS and B.L. GYOPPRY, 1991, Phys. Rev. Lett., 66,766. 
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recently in the NATO Symposium on Alloy Phase Stability listed under (g). 

(f) Stability and electronic structure of metallic glasses are discussed by: 
U. MIZUTANI, Prog. Mater. Sci. 28 (1983). 

(g) Recent concepts related to the electronic interactions in metals and alloys are discussed in a NATO 
Symposium on “Alloy Phase Stability” G. M. S ~ K S  and A. G~NIS, eds., Kluwer Academic Publishers, vol. 
163, series E, (1989); and in a book by Alan H. C O ~ L ,  “Introduction to the Modem Theory o Metals”, 
Institute of Metals, London (1988). Interested readers should perhaps consult first the chapter on electronic 
theories in this book. 
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1. Introduction 

1.1. Preliminary remarks and definition of an intermetallic phase 

In the field of solid state chemistry an important group of substances is represented 
by the intermetallic compounds and phases. A few general and introductory remarks 
about these substances may be presented by means of figs. 1 and 2. In binary and multi- 
component metal systems, in fact, several crystalline phases (terminal and intermediate, 
stable and metastable) may occur. 

Simple schematic phase diagrams of binary alloy systems are shown in fig. 1. In all 
of them the formation of solid phases may be noticed. In fig. l a  we observe the 
formation of the AB, phase (which generally crystallizes with a structure other than those 
of the constituent elements) and which has a negligible homogeneity range. Thermody- 
namically, the composition of any such phase is variable. In a number of cases, however, the 
possible variation in composition is very small (invariant composition phases or stoichiometric 
phases, or “compounds” proper, also called “point compounds” in binary alloys). 

In fig. l b  and IC, on the contrary, we observe that solid phases with a variable 
composition are formed (non-stoichiometric phases). In the reported diagrams we see 
examples both of terminal (lb, IC) and intermediate phases (IC). These phases are 
characterized by homogeneity ranges (solid solubility ranges) which, in the case of the 
terminal phases, include the pure components and which, generally, have a variable 
temperature-dependent extension. (In the older literature, stoichiometric and non- 
stoichiometric phases were often called “daltonides” and “berthollides”, respectively. 
These names, however, are no longer recommended by the Commission on the Nomen- 
clature of Inorganic Chemistry (IUPAC), LEIGH [1990]. 

More complex situations are shown in fig. 2, where some typical examples of 
isobarothermal sections of ternary alloy phase diagrams are presented. In the case of a 
ternary system, such as that reported in fig. 2a, we notice the formation of several, binary 
and ternary, stoichiometric phases. In the case shown in fig. 2b, different types of 
variable composition phases can be observed. We may differentiate between these phases 
by using terms such as: “point compounds” (or point phases), that is, phases represented 
in the composition triangle, or, more generally, in the composition simplex by points, 
“line phases”, “jeld phases”, etc. 

As a summary of the aforementioned considerations, we may notice that several types 
of substances may be included in a preliminary broad definition of an intermetallicphase. 
Both stoichiometric (compounds)phases and variable-composition (solid so1utions)phases 
may be considered and, as for their structures, both fully ordered or (more or less 
completely) disordered phases. 

For all the intermetallic phases the identification (and classification) requires 
information about their chemical composition and structure. To be consistent with the 
other field of descriptive chemistry, this information should be included in specific 
chemical (and structural) formulae built up according to well-defined rules. This task, 
however, in the specific area of the intermetallic phases (or more generally in the area 
of solid state chemistry) is much more complicated than for other chemical compounds. 



Ch. 4, 5 1 Structure of intermetallic compounds and phases 207 

T I  liquid 
a’ I 

A 

C) 
liquid 

at.%B - B A at.%B - B A 

Fig. 1. Examples of simple binary diagrams. 
a) A stoichiometric, congruently melting, compound is formed at the composition corresponding to the AB, 

formula. 
b) No intermediate phase is formed. The components show a certain limited mutual solid solubility. 
c) The two components show limited mutual solid solubility (formation of the a- and &phases). Moreover, 

an intermediate phase (7) is form& it is homogeneous in a certain composition range. 

This complexity is related both to the chemical characteristics (formation of variable 
composition phases) and to the structural properties (the intermetallic compounds are 
generally non-molecular in nature, while the conventional chemical symbolism has been 
mainly developed for the representation of molecular units). As a consequence there is 
not a complete, or generally accepted, method of representing the. formulae of 
intermetallic compounds. 

References: p. 363. 



208 Riccanlo Fern and Adrirma Saccone 

t e  

Ch.4,§1 

Ba 

a) 

BabAIS Ba,Al, BaAl, AI 

AI 

Ti Ti& TiAu TiAu, TiAu, Au 

b) 

Fig. 2. Isobarothermal sections of actual ternary systems (from Ternary Alloys", PETZOW and EFFENBERG, 
[I988 et sen.1). 

Ba-AI= system. A number of binary compounds are formed in the side binary systems. Moreover, a few 
ternary phases have been observed. 
7,: =Ba(A1,Ge,J2, line phase, stable for 0.41 cxc0.77; 
T ~ :  Ba,Al,G%, r3: Ba,,,Al,Ge,, r4: BaAI2-, point phases. 
Ti-Au-AI system. The binary systems show the formation of several intermediate phases, generally 
characterized by certain composition ranges (ideal simple formulae are here reported). Two ternary field 
phases are also formed. Their homogeneity ranges are close to TiAhAI (6,) and TiAuAl(8J. respectively. 
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Some details on these points will be given in the next sections. These will then be 
used for a descIiption of selected common phases and a presentation of a few character- 
istic general features of intermetallic crystallochemistry. For an exhaustive description of 
all the intermetallic phases and a comprehensive presentation and discussion of their 
crystallochemisltry, general reference books and catalogues, such as those reported in the 
list of references, should be consulted. More references to specific topics will be reported 
in the following sections. 

Those who are interested in the historical development of the intermetallic compound 
concept and science may refer to the review written by WESTBROOK [1977] on the past 
and future potential of intermetallic compounds. In this review Westbrook selected the 
following topics for the examination of their historic roots: 

a) the development of the modem concept of the intermetallic compound; 
b) the development of the phase diagram; 
c) the role of electron concentration in determining intermetallic phase stability; 
d) the role of geometrical factors in determining intermetallic phase stability; 
e) the point defect concept and its relation to non-stoichiometric compounds; 
f) the unusual role of grain boundaries in intermetallic compounds. 
Me reported information on the chronological growth in the number of binary metallic 

phase diagrams studied (starting from the year about 1830 with the systems Pb-Sn, 
Sn-Bi, etc.,) an'd of the intermetallic compounds. 

The first problems encountered while studying these substances are pointed out: 
typically that simple valence concepts were not applicable for rationalizing compound 
formulation and that several compounds seemed to exist over a range of composition and 
not at some specific ratio as with ordinary salts. The development of the systematics of 
the intermetallic phases and of their applications is then discussed and compared with the 
history of the rise of thermodynamics and crystallochemistry. 

The complexity and variability of solid state phenomena add to more practical 
reasons of interest in defining the peculiar approach to a systematic investigation of solid 
intermetallic phases. * 

1.2. Identification of the intermetallic phases 

The identification and crystallochemical characterization of an intermetallic solid 

a) Chemical composition (and the homogeneity composition range and its temperature 
phase requires the definition and analysis of the following points: 

and pressure dependence). 

* This chapter, as previously stated, will highlight the particular subject of the intermetallic solids. It may be 
worth reminding, however, that intermetallic substances can be found also in different aggregation states. (For 
the liquid state see, for instance, fig. 1). Important contributions to understanding systems in the liquid state 
(experimental measurements, thermodynamic properties forecasting, liquid state structure, theories and models) 
were brought about, for instance, by HOCH, ARPSHOFEN and PREDEL [1984], SOMM'ER [1982] and SINGH and 
SOMMER [1992]). A systematic description of the structure of amorphous and molten alloys (basic equation for 
the description of the structure of nou-crystalline systems, experimental techniques and elements of systematics) 
has been presented 'by LAMPARTER and S m  [1993]. 

References: p .  363. 
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b) Structure type (or crystal system, space group, number of atoms per unit cell and 
list of occupied atomic positions). 

c) Values of a number of parameters characteristic of the specific phase within the 
group of isostructural phases (unit cell edges, occupation characteristics and, if not fixed, 
coordinate triplets of every occupied point set). 

d) Volumetric characteristics (molar volume of the phase, formation volume 
contraction, or expansion,, space filling characteristics, etc.). 

e) Interatomic connection characteristics (local atomic coordination, long distance 
order, interatomic distances, their ratios to atomic diameters, etc.). 

Clearly, not all the data relevant to the aforementioned points are independent of each 
other. The strictly interrelated characteristics listed under d) and e), for instance, may be 
calculated from the data indicated in b) and c), from which the actual chemical composi- 
tion of the phase may also be obtained. 

For each of the aforementioned points (and for their symbolic representation) a few 
remarks may be noteworthy: these will be presented in the following. Crystallographic 
conventions, nomenclature and symbols will be used. For a summary of these and of the 
corresponding definitions the most important reference book is “International Tables for 
Crystallography”, HAHN [1989]. Several books, mentioned here in the reference list, 
contain, more or less detailed, introductions to the crystallographic notations. A few 
remarks on these points will be presented in this chapter (see especially table 3 and Sec. 
3.1 and 3.5.5); some examples moreover have been given in chapter 1. 

2. Chemical composition of the intermetallic phase and its 
compositional formula 

Simple compositional formulae are often used for intermetallic phases; these (for 
instance, Mg,Ge, ThCr,Si,, ...) are useful as quick references, especially for simple, 
stoichiometric, compounds, The following remarks may be noteworthy: 

Order of citation of element symbols in the formula 
The symbol sequence in a formula (LaPb, or Pb,La) is, of course, arbitrary and, in some 
particular cases, may be a matter of convenience. Alphabetical order has often been 
suggested (for example by IUPAC, LEIGH [1990]). A symbol sequence based on some 
chemical properties, however, may be more useful when, for instance, compounds with 
analogous structures have to be compared (Mg,Ge and Mg,Pb). Recently, in 1990, & 
international group of materials scientists coordinated by the Max Planck Institute for 
Metals Research of Stuttgart (Germany) (the so-called MSIT: Materials Science 
International Team) performing the critical assessment of a new series on ternary alloys 
edited by PETZOW and EFFENBERG [1988 et seq.] decided to adopt a symbol quotation 
order based on a parameter introduced by PETTIFOR [1984, 1986al In fact, in order to 
stress the chemical character of the elements and to simplify their description, PETTIFOR 
[1984, 1985, 1986a, 1986bl (see also chapter 2) created a new chemicalscale (x) which 
orders the elements along a simple axis. The progressive order number of the elements 
in this scale (the so-called Mendeleev number) may also be considered. The Mendeleev 
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numbers M (which, of course, are different from the atomic numbers) start, according to 
Pettifor, with the least electronegative elements He 1, Ne 2, ... and end with the most 
electronegative ones ... N 100,O 101, F 102 up to H 103. The Mendeleev Number (M) 
and the correlated “chemical scale x’’ are shown in table 1. The chemical meaning of 
these parameters may be deduced not only by their relation to the Periodic Table. By 
using them, in fact, excellent separation of similar structures is achieved for numerous 
&Bn phases with a given stoichiometry within single two-dimensional MA/MB maps, 
(see Sec. 8.7.). Notice, however, that in subsequent papers, on the basis of a progressive 
improvement of the structure maps, slightly different versions of the chemical scale had 
been reported. 

On the basis of the Pettifor’s scale, the suggestion has been made that the element E 
with a lower value ME (or ,yB> is quoted first in the formulae of its compounds. This will 
be generally adopted here. 

Indication of constituent proportions 
No special comments are needed for stoichiometric compounds (LaPb,, ThCr2Si2, ...). 

More complex notation is needed for non-stoichiometric phases. Selected simple 
examples will be given below and more detailed information will subsequently be 
reported, when discussing crystal coordination formulae. 
a) Ideal formulae 
While considering a variable composition phase, it is often possible to define an “ideal 
composition” (imd formula) relative to which the composition variations occur (or are 
considered to occur). This composition may be that for which the ratio of the numbers 
of different atoms corresponds to the ratio of the numbers of the different crystal sites in 
the ideal (ordered) crystal structure (as suggested by IUPAC, LEIGH [1990]). These 
formulae may be used even when the “ideal composition” is not included in the 
homogeneity range of the phase (Nb,AI for instance, shows a homogeneity range from 
18.6 at% Al which hardly reaches 25 at% Al. At the formation peritectic temperature of 
2060°C the composition of the phase is about 22.5 at% Al). 
b) Approximate formulae 
A general notation which has been suggested by IUPAC when only little information has 

Table 1 
Chemical order of the elements, according to PETTIFOR [1986a] 

la. For the elements, arranged here in alphabetical order, the values of the so-called Mendeleev number are reported. 

Ac 48 
Ag 71 
Al 80 
Am 42 
A r 3  
As 89 
At 96 
Au 70 
B 86 
Ba 14 

Be 77 
Bi 87 
Bk 40 
Br 98 
C 9s 
Ca 16 
Cd 75 
Ce 32 
Cf 39 
c1 99 

Cm 41 
c o  64 
Cr 57 
Cs 8 
Cu 72 
DY 24 
Er 22 
Es 38 
Eu 18 
F 102 

Fe 61 
Fm 37 
Fr 7 
Ga 81 
Gd 27 
Ge 84 
H 103 
He 1 
Hf 50 
Hg 74 

Ho 23 
I 97 
In 79 
Ir 66 
K 10 
K r 4  
La 33 
Li 12 
Lr 34 
Lu 20 

Md 36 No 35 
Mg 73 Np 44 
Mn 60 0 101 
Mo 56 Os 63 
N 100 P 90 
Na 11 Pa 46 
Nb 53 Pb 82 
Nd 30 Pd 69 
Ne 2 Pm 29 
Ni 67 Po 91 

h 31 
Pt 68 
Ftl 43 
Ra 13 
Rb 9 
Re 58 
Rh 65 
Rn 6 
Ru 62 
s 94 

Sb 88 
Sc 19 
Se 93 
Si 85 
Sm 28 
Sn 83 
Sr 15 
Ta 52 
Tb 26 
Tc 59 

Te 92 Yb 17 
Th 47 Zn 76 
Ti 51 Zr 49 
TI 78 
Tm 21 
u 45 
v 54 
w 55 
Xe 5 
Y 2s 

References: p. 363. 
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lb. The elements are arranged in the order of the Mendeleev Number M (and of the related chemical scale x). 
M 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Element 
He 
Ne 
Ar 
Kr 
Xe 
Rn 
Fr 
cs 
Rb 
K 
Na ' 
Li 
Ra 
Ba 
Sr 
Ca 
Yb 
Eu 
sc 
Lu 
Tm 
Er 
Ho 
DY 
Y 
Tb 
Gd 
Sm 
Pm 
Nd 
Pr 
Ce 
La 
Lr 
No 

X M 
0.00 36 
0.04 37 
0.08 38 
0.12 39 
0.16 40 
0.20 41 
0.23 42 
0.25 43 
0.30 44 
0.35 45 
0.40 46 
0.45 47 
0.48 48 
0.50 49 
0.55 50 
0.60 51 
0.645 52 
0.655 53 
0.66 54 
0.67 55 
0.675 56 
0.6775 57 
0.68 58 
0.6825 59 
0.685 60 
0.6875 61 
0.69 62 
0.6925 63 
0.695 64 
0.6975 65 
0.70 66 
0.7025 67 
0.705 68 
0.7075 69 
0.71 

Element 
Md 
Fm 
Es 
Cf 
Bk 
Cm 
Am 
Pu 
NP 
U 
Pa 
Th 
Ac 
Zr 
Hf 
Ti 
Ta 
Nb 
V 
W 
Mo 
Cr 
Re 
Tc 
Mn 
Fe 
Ru 
os 
c o  
Rh 
Ir 
Ni 
Pt 
Pd 

X M 
0.7 125 70 
0.715 71 
0.7 175 72 
0.72 73 
0.7225 74 
0.725 75 
0.7275 76 
0.73 77 
0.7325 78 
0.735 79 
0.7375 80 
0.74 81 
0.7425 82 
0.76 83 
0.775 84 
0.79 85 
0.82 86 
0.83 87 
0.84 88 
0.88 89 
0.885 90 
0.89 91 
0.935 92 
0.94 93 
0.945 94 
0.99 95 
0.995 96 
1.00 97 
1.04 98 
1.05 99 
1.06 100 
1.09 101 
1.105 102 
1.12 103 

Elemenl 
Au 
Ag 
c u  
Mg 
Hg 
Cd 
Zn 
Be 
Tl 
In 
Al 
Ga 
Pb 
Sn 
Ge 
Si 
B 
Bi 
Sb 
As 
P 
Po 
Te 
Se 
S 
C 
At 
I 
Br 
c1 
N 
0 
F 
H 

X 
1.16 
1.18 
1.20 
1.28 
1.32 
1.36 
1.44 
1 S O  
1.56 
1.60 
1.66 
1.68 
1 .80 
1.84 
1.90 
1.94 
2.00 
2.04 
2.08 
2.16 
2.18 
2.28 
2.32 
2.40 
2.44 
2.50 
2.52 
2.56 
2.64 
2.70 
3.00 
3.50 
4.00 
5.00 

to be conveyed and which can be used even when the mechanism of the variation in 
composition is unknown, is to put the sign = (read as circa or approximately) before the 
formula; for instance = CuZn. 
c) Variable composition formulae 
(Ni,Cu) or Ni,Cu,, (0 S x I 1) are the equivalent representations of the continuous solid 
solution between Ni and Cu, homogeneous in the complete range of compositions; other 
examples are: Ce,,L%Ni, (0 I x I 1); (TiI-,Crx)& (0 I x I 0.69); etc .... 

Similar formulae may also be used in more complicated cases to convey more information: 
A,,,+xB,Cp (... e x  < ...) (phase involving substitution of atoms A for B). 
A,,B may indicate that there are A-type vacant sites in the structure. 
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LaNi,H, (O< x a: 6.7) indicates the solid solution of H in LaNi,. 
d) Site occupation formulae 
According to the Recommendations by the Commission on the Nomenclature of 
Inorganic Chemistry, (LEIGH [ 1990]), additional information may be conveyed by using 
a more complicated symbolism; suggestions have also been made about the indication of 
site occupation and of their characterization. These points will be discussed in more 
detail in the following sections; in the meantime we may mention that, for the indication 
of site occupation, the following criteria have been suggested by the Commission: 

The site andl its occupancy is represented by two right lower indexes separated by a 
comma. The first index indicates the type of site, the second one indicates the number of 
atoms in this sit(:. (AA, for instance, means an atom A on a site occupied by A in the ideal 
structure, whereas AB represents an atom A in a site normally (ideally) occupied by B). 

A formula such as: 
MM,l-xNM,xM N,xNN,l-x or (M1-xNx)M(MxN1-x)N represents a disordered alloy (whereas the 

ideal composition is MN with an ideal MMNN structure). In this notation vacant sites may 
be represented by 0 or by v-. 

Mg,~,2~xSn,,xMg,~,xSn,,,~x shows a partially disordered alloy with some of the Mg atoms 
on Sn sites, and vice versa; 
( B i 2 - ~ T e x ) B , ~ ~ i * ~ e ~ - ~ ) ~ ~  shows the composition changes from the ideal Bi,Te, formula; 
Al~,lPdN,xPdpd,+x OPd,Px which shows that in the phase (corresponding to the ideal 
cornposition PdAl), every A1 is on an A1 site, but x Pd atoms are on A1 sites (1-x Pd 
atoms in Pd sites) and 2x Pd sites are vacant. 

This type of formula may be especially useful when discussing thermodynamic 
properties of the phase and dealing with solid solution models and quasi-chemical 
equilibria between point defects. 
e) Polymorphism descriptors 
Several substances may change their crystal structure because of external conditions such 
as temperature and pressure. These different structures (polymorphic forms) may be 
distinguished by using special designators of the stability conditions. (If the various 
crystal structures are known, explicit structural descriptors may obviously be added). A 
very simple, but systematic notation has been introduced by the MSIT (see before) which 
in the meanwhile has been adopted worldwide (see Introduction of all volumes on 
“Ternary Alloys” edited by PETZOW and EFFENBERG, [1988 et seq.]). The different 
temperature moijifications are indicated by lower case letters in parenthesis behind the 
phase designation, with (h) = high temperature modification, (r) room temperature 
modification and (1) = low temperature modification; (hl, h,, etc. represent different high 
temperature modifications). In the description of a number of modifications which are 
stable at different temperatures, the letters are used in the sequence h,, h,, r, l,, l,, ..., in 
correspondence to the decreasing stability temperature. 

Table 2, taken from Volume 3 of the series edited by PETZOW and EFFENBERG 
[1988], shows a few examples of this notation. (In this case, of course, the temperature 
and composition ranges of stability explicitly indicated for all the phases give additional, 
more detailed information). 

The following examples of alloy formulae have been reported: 

References: p .  363. 
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Table 2 
An example of crystallochemical description of alloy system. 

Binary solid phases in the Ag-A1 system 
(from R T ~ W  and EFFENBERG [1988 eiseg.] and h&4SSALSKI [19!%]). 

Phase Pearson Lattice Maximum Composition 
Trivial Name, Ideal Formula, Symbol/ Parameters Range (at% A1) 

Temperature Range ("C) Prototype Om) 
_ _ ~  - 

cF4 a=408.53 (23°C) 0 to 20.4 
cu (at = 450'C) 

(h) CI2 a=330.2 (700°C) 20.5 to 29.8 
778-605 W (at 726°C) 

=21 to 24 

hP2 a = 287.1 (27at%A1) 22.9 to 41.9 
Mg c = 466.2 

a= 288.5 (Al-rich 
c-458.2 limit) 

cF4 a=404.88 (24°C) 76.5 to 100 
cu (at 567"C, AI-rich 

eutectic temperature) 

In connection with this group of descriptors we may perhaps remember indicators such 
as (am), (vt), etc. for amorphous, vitreous substances. For instance: 
SiO,(am) amorphous silica; Si(am)H, amorphous silicon doped with hydrogen. 

3. Crystal structure of the intermetallic phase and its representation 

3.1. Unit cell description (general remarks, lattice complexes) 

The characterization of a phase requires a complete and detailed description of its 
structure. As examples of such a description, we may consider the data (as obtained, for 
instance, from X-ray diffraction experiments) reported in table 3 for stoichiometric and 
variable composition phases. (For an explanation of the various symbols used in the table 
see the International Tables of Crystallography (HAHN [1989]. See also the examples 
reported in chapter 1). 

Following information is included in the table: 
- Crystallographic system, that is the coordinate system (and metrical relationships 
between the lattice parameters of the adopted unit cell: for instance, cubic: a =  b=c, CY =p 
= y = 90"; tetragonal: a = b # c, a =p = y = 90", etc.); and the specific values (in pico- 
meters) of the unit cell dimensions. 
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Table 3 
Examples of crystallographic description of phase structures 

(from VILLARS and CALVERT 119911). 

215 

~ ~ ~~~ 

CsCI (stoichiometric compound); 
Primitive cubic; a=:411.3 pm; space group Pmgm, No. 221, 
1 Cs in a): O,O,O; 
1 C1 in b): &,:; 
(The two special a) and b) Wyckoff positions have no free coordinate parameter.) The two occupancy 
parameters are 100%. 

Mg2Ge (stoichiometric compound): 
Face-centered cubic; a=638.7 pm; space group Fmgm, N. 225, 
Equivalent positions (O,O,& O,;,;; ;,O,#;$,+,O) + 
4 Ge in a): O,O,O 
8 Mg in c): $,$,i; &$,$ 
(No free parameters in the atomic positions of Mg and Ge. In this case the two occupancy parameters have 
been found to be 1130%.) 

MoSi, (nearly stoichiometric compound): 
body-centered tetra,gonal; a=319.6 to 320.8 pm and c=787.1 to 790.0 pm, according to the composition; space 
group 14/mmm, No. 139, 
Equivalent positions (O,O,O; i,i,i) + 
2 Mo in a): O,O,O 
4 Si in e): O,O,z; O,O,-z ; z=0.333 
(The Si position has the free parameter z, for which, in this particular case, the value 0.333 has been 
determined, the two occupancy parameters are loo%.) 

= CeaiSi, (ddisordt:red structure): 
hexagonal; a=406.1 to 407.1 pm; c=414.9 to 420.2 pm; space group P6/mmm, N. 191 
1 Ce in a): O,O,O, 
2 (Ni + Si) (in a ratio 1:3) in d): $, $, 4; $, J, $; 
(In this case the atomic sites corresponding to the d) Wyckoff position are randomly occupied by Ni and Si 
atoms in the given ratio and the overall composition correspond to 1Ce + 2 x (0.25 Ni + 0.75Si)). 

Cr,,P, (simple structure showing partially occupied sites): 
hexagonal; a=898.1 pm; c=331.3 pm; space group P6Jm, No. 176. 
2 P in a): O,O,i; O,O,$; (occupancy 50%) 

6 Cr in h): x,y,$; -y,x-y,$; -x+y,-x$; -x,-y,:; y,-x+y,:; x-y,x,$ (x= 0.5109, y=0.3740); (occupancy 100%) 
6 Cr in h): x,y,$; -y,x-y,i; -x+y,-x$; -x,-y,$; y,-x+y,j; x-y,x,i (x= 0.2108, y = 0.0144); (occupancy 50%) 

In this case several groups of atoms have the same type of Wyckoff positions: the h) position which has free 
parameters. These, of course, have different values for the different groups of atoms. The parameter values 
experimentally determined in this case for each atom group are reported. 

The partial occupancies found for the different positions are also reported. In this case in the a) Wyckoff 
position, for instants, only half of the sites are randomly occupied by P atoms; the others are vacant. The total 
number of atoms iri the unit cell is: P: 0 . 5 ~ 2 + 6 = 7 ;  Cr: 6 + 0 . 5 ~ 6 + 0 . 5 ~ 6 = 1 2 .  

6 P in h): XJ,~;  -Y,X-Y,.; -x+y,-~,f; -x,-Y,$; Y,-X+Y,;; x-Y,x,$ (x= 0.2851, ~ ~ 0 . 4 4 6 2 ) ;  (OCCUPEUICY 100%) 

6 Cr in h): X,Y,~; -!f,X-y,& -x+Y,-x$; -x,-Y,$; Y,-X+Y,;; X-Y,X$ (x= 0.2638, y=0.0137); ( O C C U P ~ ~ C Y  50%) 

- Bravais point lattice and space group (this describes the spatial symmetry of the 
structure on a rnicroscopic (atomic) level, and is represented by means of the Hermann 
-Mauguin symbol, composed by a letter representing the lattice type (P =primitive, 
I=body centered, etc., see table 4) followed by the symbols of the symmetry elements 
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Table 4 
Pearson Symbols 

System symbol 
a triclinic (anorthic) 
m monoclinic 
o orthorhombic 
t tetragonal 
h hexagonal (and trigonal 

and rhombohedral) 
c cubic 

Lattice symbol 
P primitive 
I body centred 
F all-face centred 
C side face centred * 
R rhombohedral 

* Instead of C, in the future, the symbol S wiIl probably be adopted according to the recommendation of the 
International Union of Crystallography. 

ordered according to their positions relative to the axes (for instance Pm3m is the symbol 
of the space group of the CsCl structure). 

As usual, the space group is also identified by the serialnumber (221 for Pm3m) 
reported in several compilations such as the “International Tables” which is the funda- 
mental reference book for crystallography (HAHN [ 19891). 

A list of the atoms contained in the unit cell and their coordinates (fractional 
coordinates related to the adopted system and unit cell edges) are then reported. These 
are usually presented in a format as M EZ in n: x,y,z. In the MoSi, structure, also reported 
in table 3, we have, for instance, four silicon atoms (that is: M El = 4 Si) in the position 
set coded as e and corresponding to the 4 coordinate triplets O,O,O; O,O,z; $,+,$ + z; 

well-defined site symmetry and by a multiplicity M. For each Wyckoff position M, is the 
number of equivalent points (positions) in the unit cell with the same site symmetry. The 
highest multiplicity M, of the given space group corresponds to the lowest site 
symmetry (each point is mapped onto itself only by the “identity operation”). This is the 
“general position”: the coordinate triplets of the M, sites include the reference triplet 
indicated as x,y,z (having three variable parameters). In a given space group, moreover, 
it is possible to have several specialpositions. In this case points are considered which 
are located on symmetry elements (without translations) or at the intersection of several 
such symmetry ,elements. Each point will be mapped onto itself by at least one of these 
symmetry operations: we will have as a consequence a reduction in the number of 
different equivalent points in the unit cell generated by all the characteristic symmetry 
operations. The multiplicity of these positions will be lower than M- (M in a special 
position is a divisor of that of the general position). We may also say that specific 
costraints are imposed on the coordinates of each point of a special position leading to 
triplets such as x,y,O (that is z = 0) or x,x,z (that is x = y), with two variable parameters, 
or x,$,$ or x,x,O (with one variable parameter) or O,O,O or &,&,O (with no variable 
parameter). In the International Tables of Crystallography, for each of the 230 space groups, 
the list of all the positions is reported. For each of the positions (the general and the special 
ones) the coordinate triplets of the equivalent points are also given. The different positions are 
coded by means of the Wyckoff letter, a, b, c, etc., starting with a for the position with the 
lowest multiplicity and continuing in alphabetical order up to the general position. 

--_ i,;,; - z. Such entries correspond to the so-called Wyckofpositions characterized by a 
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In the examples reported in table 3 it is also shown that for the positions withfie 
parameters the specific values of the parameters themselves have to be experimentally 
determined in order to present a complete description of the structure. 

Notice that, for instance, in the case of the MoSi, structure the different atomic 
positions in the unit cell are the following: 2 Mo in O,O,O, and in ;,$A and 4 Si in O,O,z; 
in O,O, - z; in ;,I, -+ z and in $,;,$ - z (corresponding, on the basis of the experimental 
value z = 0.333, to 0,0,0.333; 0,0,0.667; f,i,0.833; $,4,0.167). These positions have been 
described, according to the International Tables of Crystallography conventions, explicitly 
indicating the centring translations (O,O,O; h,;,;) + before the coordinate triplets. The 
symbol+means that, in order to obtain the complete Wyckoff position the components 
of these centring translations have to be added to each of the listed triplets. 

A similar presentation has been used for the Mg,Ge structure description. Notice that 
the coordinates are formulated modulo 1: thus, for instance, -x,-y,-z is written rather 
than 1-x,l-y,l-z. 

Finally, in the table, some more examples are reported as an introduction to more 
complex, partially disordered structures (random distribution of different atom types in 
the same positions, partially occupancy of certain positions). 

Considering now the simple structure of CsCl as an example we see that the 
“crystallographic description” reported in table 3 corresponds to the atom arrangement 
presented (with alternative representations) in fig. 3 and, in more details, in sec. 6.1.2). 

More generally, we may say that, from descriptions, such as those reported in table 3, the 
interatomic distances may be computed and, consequently, the coordinations and grouping of 
the various atoms may be derived: an example of this computation will be presented in sec. 
3.5.5. (A systematic listing of the crystal data relevant to all the known phases has been 
reported in a number of fundamental reference books such as (PEARSON [ 19671, LANDOLT- 
BORNSTEIN [1971], VILLARS-CALVERT [1985], VILLARS-CALVERT [1991], etc). 

For the criteria to be followed, especially when complex structures are involved, in 
the preparation and presentation of coordinate lists see PARTHE and GELATO [1984]. 
Their paper describes a proposal for a standardized presentation of inorganic crystal 
structure data with the aim of recognizing identical (or nearly identical) structures from 
the similarity of the numerical values of the atom coordinates. Different, equivalent (but 
not easily recognizable) descriptions could, in fact, be obtained by shift of origin of the 
coordinate system, rotation of the coordinate system, inversion of the basis vector triplet. 
(See also PARTHE etaE. [1993]). 

A description which in some simple cases could in a way be considered alternative 
to those exemplified in table 3 is based on the lattice complex concept. (Listing the 
symbols of the lattice complexes occupied by the different atoms in a structure, for 
instance, symbol P for the point O,O,O, and its equivalent points, provides in fact a means 
of describing arid classifying structures. This may be especially convenient for relatively 
simple structures particularly in the cubic system). 

A lattice complex may be defined as an arrangement of equivalent points that are 
related by space group symmetry operations including lattice translations (PEARSON 
[1972]). The sa.me lattice complex may occur in different space group types and may 
have more than one location in regard to a chosen origin for the unit cell. The number 
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a) b) 

Ch. 4, 0 3 

Fig. 3. Alternative representations of the unit cell of the CsCl compound. The two types of atoms are 
represented by means of the differently coloured spheres. 

the positions of the centers of the atoms in the unit cell are indicated. 
projection of the unit cell on the base plane. The values of the 3” (vertical) coordinate are given. 
the shortest interatomic distances are presented. 
packed spheres model. 
a group of 8 cells is represented in order to show that the actual structure of CsCl corresponds to a three- 
dimensional infinite repetition of unit cells. Notice the coordination around the white atom; it is similar to 
that around the black atom shown in e). 
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of degrees offieedom of a lattice complex, normally, is the same as that of any of its 
Wyckoff positions and is the number of coordinate (free) parameters x,y,z, that can vary 
independently. According to its number of degrees of freedom a lattice complex is called 
invariant, uni-, bi-, or trivariant. 

The invariant lattice complexes in their characteristic Wyckoff positions are repre- 
sented mainly by capital letters. Those with equipoints at the nodes of the Bravais lattice 
are designated by their appropriate lattice symbols. (Lattice complexes, from different 
crystal families that have the same coordinate description for their characteristic Wyckoff 
positions, receive the same symbol: for instance, lattice complex P corresponding to 
coordinate O,O,O. In such a case, unless it is obvious from the context which lattice is 
meant, the crystal family may be stated by a small letter, preceding the lattice-complex 
symbol as follows: c =cubic, t = tetragonal, h = hexagonal, o = orthorhombic, m = mono- 
clinic, a = anodhic = triclinic). Other invariant complexes are designated by letters that 
recall some structural features of a given complex, for instance D from the diamond 
structure, E from the hexagonal close-packing. Examples of two-dimensional invariant 
complexes are G (from graphite layer) and N (from kagomB net). (See table 4 and sec. 
3.5.2.) 

A short list of invariant lattice complex symbols is reported in the following. (For a 
complete list, for a more systematic description and formal definition, see chapter 14, 
Vol. A, of the International Tables of Crystallography, HAHN [1989]). 

- Lattice coqdex P:  (multiplicity, that is the number of equivalent points in the unit 
cell, 1); 
coordinates O,O,O; 
(crystal families: c, t, h, 0, m, a). 

coordinates O,O,O; $,$,$; 
(crystal families: c, t, 0). 

- Lattice complex I: (multiplicity 2); 

- Lattice cum,pZex J: (multiplicity 3); 
coordinates 0 11. 1 0 I* 1 L 0- ,2921 2 ,  $2,  212,  9 

(crystal families: c). 
- Lattice complex F: (multiplicity 4); 

mr&mtes  O,O,O; 0 .L Le 1 0 1. 11.0. 9292’ 2, 92, 292, , 
(crystal families: c, 0). 

- Lum’ce complex D: (multiplicity 8); 
(D from “Diamond”, see sec. 6.3.1) 
coordinatesOO0.”0.101- O L 1 * 1 L ~ . ~ 3 ~ *  

9 9 9 2321 I 2 ,  Y2* 9 2 9 2 ,  49474, 4’4949 
3 1 3 .  1 3  3 .  
4,494) 4,4947 
_ _ -  - - _  

(crystal families: c, 0). 

coordinates +,$$; a,$$; 
(crystal families: h). 

- Lattice complex E: (multiplicity 2); 
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- Lattice complex G: (multiplicity 2); 
(G fom “Graphite” layer, see sec. 6.3.4). 
coordinates $,$,O; 
(crystal families: h). 

coordinates O,O,O; id,$; $,i,i; 
(crystal families: h). 

The coordinates indicated in the reported (partial) list of invariant lattice complexes 
correspond to the so called “standard setting”. Some of the non-standard settings of an 
invariant lattice complex may be described by a shifting vector (defined in terms of 
fractional coordinates) in front of the symbol. The most common shifting vectors have 
also abbreviated symbols: P‘ represents $ 3 $ P (coordinates i,;,;), J’ represents $ 3 ; J 
(coordinates ;,O,O,; O,i,O; O,O,$); F” represents 4 4 F (coordinates 1 494949 11. 474949 2 2- 3 494949 1 2.2 4$474 2 i) 
and F”‘ represents $ # $ F. (The following notation is also used J* =J+J’ (complex of 
multiplicity 6). It can be seen, moreover, that the complex D corresponds to the 
coordinates F + F“. 

Simple examples of structure descriptions in terms of combination of invariant lattice 
complexes, may be: CsCl type P+ P’ (Cs in O,O,O; C1 in $,$,;), see table 3 and sec. 6.1.2.; 
NaCl type structure: F + F ,  see sec. 6.4.1; ZnS type structure: F+F”, see sec. 6.3.2.; 
NaTl type structure: D+D’, see sec. 6.1.4. 

Such combination of, original or transformed, invariant lattice complexes, are also 
indicated as connection patterns or constmction patterns or frameworks (or Bauverbade 
in the German literature, according to LAVES [1930]). These patterns are homogeneous 
if they may be described by the parameters of one point position, heterogeneous if, for 
their description, the parameters of two or more independent point positions are 
necessary. This terminology may give a short informative description of the crystal 
structure and is specially useful for cubic substances. (For its use in a systematic 
description and classification of cubic structures see HELLNER [ 19791). For non-invariant 
complexes and/or in crystal systems with symmetry lower than cubic, the geometrical 
configuration of the complex (and the coordination) may change significantly with free 
parameter value and with axial ratios and angles between the crystal axes. 

- Lattice complex R: (multiplicity 3); 

32. Structuraltypes 

Several intermetallic phases are known which have the same (or a similar) 
stoichiometry and crystallize in the same crystal system and space group with the same 
occupied point positions. 

Such compounds are considered as belonging to the same structure type. The 
reference to the structure type may be a simpler and more convenient way of describing 
the structure of the specific phase. The structure type is generally named afer the formula 
of the $rst representative identified: the “prototype”. Trivial names and symbols are also 
used in some cases (see sec. 3.4.). 

The various representatives of a specific structure type generally have different unit 
cell edges, different values of the occupancy parameters and of the free coordinates of 
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the atomic positions and, in the same atomic positions, different atoms (see, for instance, 
Sec. 3.5.5.). 

If these differences are small, we may consider the general pattern of the structure 
unaltered. 

On the other hand, of course, if these differences become larger, it might be more 
convenient to describe the situation in terms of a “family”, instead of a single structural 
type, of different (more or less strictly interrelated) structural (sub) types. According to 
Pmm and GELATO [1984], some structures may not really be isotypic but only 
isopointal, which means that they have the same space group and the same occupation 
of Wyckoff poisitions with the same adjustable parameters but direrent unit-cell ratios 
and difSerent atom coordinations (andor different values of Wyckoff free parameters). 

An interesting example may be given by the structures of MoSi,, reported in table 3, 
and CaC2 In this compound, Ca and C are respectively in the same positions as Mo and 
Si in the same space group 14/mmm: 
2 Ca in a): O,O,O; ;,+,;; 
4 C in e): O,O,z; O,O, - z; $,$,+ + z; 
The unit cell dimensions, however, correspond to a = 388 pm, c = 638 pm (c/a= 1.644 
instead of 2.463 as in MoSi,) and the free parameter z has the value 0.4068 (instead of 
0.333). These differences result in two different space arrangements (see fig. 4). 
Diatomic groups, such as C2, clearly evident in CaC, (and in a number of isostructural 
dicarbides and peroxides) are not formed in MoSi,. 

Very interesting general comments and definitions on this question have been 
proposed, for instance, by PEARSON [1972], and more recently by LIMA DE FARIA et al. 
[ 19901 According to these authors, two structures are isoconJigurationaZ 
(configurationally isotypic) if they are isopointal and are similar with respect to the 
corresponding Wyckoff positions and their geometrical interrelationships (same or similar 
positional coordinates, same or similar values of the unit cell axial ratios, c/a, a/b, b/c 
and cell angles a, p, y). 

Isotypism is found particularly with inorganic compounds. This behaviour has been 
discussed by PARTWE et al. [1993]. It has been underlined that to explain why two 
compounds adopt the same atom arrangement is not always simple. Following examples 
have been presrmted: 
- The isotypism of Gd4Ni,A1,3 and Y4Ni,A1,, may be easily explained because Gd and 
Y (elements of the same group of the Periodic Table) have comparable electron 
configuration and nearly the same atomic dimensions. 
- Li2Si03 and LiSi,N3 are isotypic (even if not in a rigorous sense owing to slightly 
different distorsions of the coordination polyhedra). They adopt an adamantine structure 
type (see sec. 6.3. and 7.2.1.) for which particular values of the electron concentration 
may be relevant even if obtained with elements from different parts of the Periodic 
Table. 
- GdNi and NiB represent another couple of isotypic compounds. The role (the position 
in the crystal structure), however, of the same atom, Ni, in the two compounds is 
exchanged. In IViB, the Ni atoms are those centring the trigonal prism (formed by Gd 
atoms). A reason for the existence of this structure type could possibly be related to the 

- z. 
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Mo or Ca 

0 Si or c 
Fig. 4. MoSi, (a) and CaC, (b) type structures: an example of isopointal  structure.^. Notice that, due to the 
different values of the c/a ratios and of the z parameters, there are different coordinations and atomic groupings 
(formation in CaC, of C-C, dumb-bell, discrete groups). 

atomic size difference of the elements involved (or, perhaps, to their relative position in 
Pettifor’s chemical scale). 
- The last (and most intriguing) example reported by PARTHE etal. [1993] is the couple 
of compounds Pu,,Rh, and Ca,,Sn,. For the present, the isotypism of these compounds 
of unusual stoichiometry cannot be expected and explained. 

As a conclusion to these comments, we may mention that two structures are defined 
crystal-chemically isotypic if they are isoconfigurational hnd the corresponding atoms 
(and bonds) have similar chemicaVphysica1 characteristics. 

Those interested in these concepts and in their historical development may refer also 
to a contribution by LAVES [1944], translated and reported by HELLNER [1979]. Condi- 
tions to be defined for calling crystal structures “equal” (isotypism), “similar” (homeo- 
typism) or “different” (heterotypism) were suggested, discussed and exemplified. 

We have finally to observe that, when considering phases having certain polar 
characteristics (salt-like “bonding”), the concept type and antitype may be useful. 
Antitypic phases have the same site occupations as the typic ones, but with the cation- 
anion positions exchanged (or more generally some important physicallchemical 
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characteristics of the corresponding atoms interchanged). As examples the structure types 
CaF, and CdI, .and their antitypes reported in sec. 6.4.2. and 6.5.2. may be considered. 
Notice, however, that for a structure such as the CsCl type, it does not matter whether 
we describe it a.s 1 Cs in O,O,O and 1 C1 in +,&,;, or as 1 Cs in +A,;. and 1 C1 in O,O,O. In 
this case the two descriptions are undistinguishable (see fig. 3): they correspond to a 
mere shift of the origin of the reference axes. The CsCl type is its own antitype. Similar 
considerations are valid also for other structures such as the NaC1, ZnS types, etc. 

3.3. Unit cell Pearson symbol 

The w e  of the so-called Pearson notation (PEARSON, [ 19721) is highly recommended 
(IUPAC, LEIGH 119901, “Ternary Alloys”, PETZOW and EFFENBERG [1988 et seg.]) for the 
construction of a compact symbolic representation of the structure of the phase. As fax 
as possible, it should be completed by a more detailed structural description by using the 
prototype formula which defines (as previously mentioned) a certain structure type. 

The Rearson symbol is composed of a sequence of two letters and a number. The first 
(small) letter corresponds to the crystal system of the structure type involved; the second 
(capital) letter represents the lattice type (see table 4). The symbol is completed by the 
number of the atoms in the unit cell. A symbol as tP10, for example, represents a 
structure type (or a group of structure types) corresponding to 10 atoms in a primitive 
tetragonal cell. 

In this chapter, the Pearson symbol will be used throughout; the convention has been 
adopted indicating in every case the number of atoms contained in the chosen unit cell. 
In the case, therefore, of rhombohedral substances for which the data of the (triple 
primitive) hexagonal cell are generally reported, the number of atoms is given which is 
in the hexagonal cell and not the number of atoms in the equivalent rhombohedral cell 
(FERRD and GIRGIS [1990]). So, for instance, at variance with VILLARS and CALVERT 
[1985, 19911, hR9 (and not rP3 or hR3) for the Sm-type structure. 

If the structure is not known exactly, the prototype indication cannot be added to the 
Pearson symbol. In some cases, moreover, only incomplete Pearson symbols (such as 
0?60, cF?, etc.) can be used. 

A criterion similar to Pearson’s for the unit cell designation was used by SCHUBERT 
119641 in his detailed and systematic description of the structural types of the 
intermetallic phases and of their classification. 

A slightly more detailed notation, moreover, for the unit cell of a given structure has been 
suggested by FREVEL [1985]. Four items of information are coded in Frevel’s notation: 
- the number o f  different elements contained in the compound, 
- the total number of atoms given by the chemical formula, 
- the appropriate space group expressed in the HERMANN-MAUGUIN notation and 
- the number of formulae for unit cell. 
The notation for the CaF, structure, for instance, is: 
2,3 F m h  (4). 

classification and cataloguing the different crystal structures suggested. 
Possible augmentation of the notation has been discussed by Frevel and its use for 

References: p .  363. 



224 Riccardo Ferm and Adriana Saccone Ch. 4, 9 3 

According to PARTHE et al. [ 19931, a standardization procedure is at first necessary 
in the presentation of the relevant data characteristic of a crystal structure (see also 
PARTHE and GELATO [1984]). A convenient description of the structure types is then 
possible using the ‘‘Wychff sequence” (the letters of the occupied Wyckoff sites). This 
allows a finer classification of structure types and offers suggestions not only for 
recognizing isotypic structures but also possible structural relationships (substitution, 
formation of vacancy or filled-in structure variants). 

3.4. Structure trivial names and symbols 

A number of trivial names and symbols have been used (and are still in use) both as 
indicators, of a single phase in specific systems or as descriptors of certain structural 
types (or of families of different interrelated structural types). 

Among the trivial symbols, we may mention the use of Greek (and Roman) letters to 
denote phases. These have often been used to indicate actual phases in specific systems, 
for instance in a given binary system, phase a$, y, etc., in alphabetical order according 
to the increasing composition from one component to the other, while in a unary system 
the a, p, etc., symbols have often been used to denote different allotropic forms. 

Obviously ‘this notation (or other similar ones such as T,, 72 ,  T ~ ,  denoting “lSt”, “2nd”, 
etc., phase) may be useful as a quick reference code while discussing and comparing 
phase properties of alloys in a single specific system, but in general cannot be used as 
a rational criterion for denoting structural types. In a few cases, however, certain Greek 
(and Roman) letters have assumed a more general meaning (as symbols of groups of 
similar phases): for instance, the name “y-phases” which is an abbreviation of a sentence 
such as phases having the y-brass (the y-Cu-Zn) type structure. A short list, taken from 
LANDOLT-B~RNSTEIN [1971], of (Greek and Roman) letters which have also been used 
as descriptors of structural types, may be the following: 
y : y-brass type or similar structures 
E : Mg type 

7 : W,Fe,C or Ti,Ni type 

cr : cr phase or a-CrFe type 
x : a-Mn or Ti,Re, type 
w : w2 -(Cr,Ti) type (similar to the AlB, type) 
E : PbC1, or Co2Si type 
G : G phase, ThMn,, or CU#g& 
P : P phase or P-(Cr, Mo, Ni) 
R : R phase or R-(Co, Cr, Mo) 
TI : W$i, type 
T2 : Cr,B, type 
In a number of cases, names of scientists are used as descriptors. We may mention the 
following groups of structures (some of which will be described in more detail later). 
Chevrel phases. A group of compounds having a general formula such as KMo,S, 

5 : Mg type 

P : W,Fe, type 
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(M = Ag, As, Ca, Cd, Zn, Cu, Mn, Cr, etc.). Many representatives of these structure types 
are superconducting with critical T, as high as 10-15 K. 
Frank-Kasper phases. (For all of which the structure can be described as composed of 
a collection of distorted tetrahedra which fill the space: see sep. 6.6). This family of 
phases includes those of the structural types: Laves phases (a family of polytypic 
structures including the hP12-MgZn2, cF24-Cu2Mg and hP24-Ni2Mg types), tP30 
a-phases, oP56-P phases and hR39-W6Fe, type phases. 
H a g  phases. According to HAGG [1931], a number of compounds of the transition 
metals with small non-metal atoms (H, €3, C, N) have structures which can be described 
as “interstitial”, These correspond, generally, to a simple structures in which the small 
non metal atoms occupy interstices in a face centered cubic or body centered cubic 
framework of mletal atoms or, the interstices in other close packed structures. In the Hagg 
interstitial phases the relative atomic size of the two elements is of particular importance 
to the stability of the structure. 
See sec. 6.2.2. for a classification of the interstices (“holes”) in close packed structures, 
sec. 6.4.1. for NaC1-type related phases and sec. 6.5.5. for WC-type phases. 
Heusler phases. Magnetic compounds of the cFldMnCu,Al-type. (See sec. 6.1.3. on 
this structure which can be considered “derivative” of the CsCl type). 
Hume-Rothery phases. These designations can be connected to the research carried out 
as far back as 1926 by HUME-ROTHERY, WESTGREN and PHRAGMEN, etc. They observed 
that several compounds (electron compounds) crystallize in the same structural type if 
they have the average number of valence electrons per atom (the so-called VEC: valence 
electron concentration) included within certain well-defined ranges. Some groups of these 
phases (brasses. etc.) will be presented in sec. 6.1.5. and 7.2.2. (See also ch. 3, 9 8.1.) 
Nowotny phases. Chimney-ladder phases (see sec. 4.4.). 
Samson phases. Complex intermetallic structures with giant unit cells, based on 
framework of fused truncated tetrahedra (see sec. 6.6.5.) 
ZintI phases. This term was first applied to the binary compounds formed between the 
alkali or alkaline-earth elements and the main group elements from group 14 on, that is 
to the right of the “Zintl boundary” of the Periodic Table. These combinations not only 
yield some Zintl anions (homopolyatomic anions) in solution but also produce many 
rather polar or salt-like phases. A simple example may be a classical valence compound 
in which the more “noble” member achieves a filled “octet” and an 8-N oxidation state 
in salt-like structure (for example Na,As, Mg,Sn) (CORBETT [1985]). An important 
intermetallic structure discovered by Zintl (ZINTL and WOLTERSDORF [ 19351) was that of 
the cF16-NaTl-type (superstructure of the bcc lattice, see sec. 6.1.4.). The Na and T1 
atoms are arranged according to two (interpenetrating) diamond type sublattices; each 
atom is tetrahedrally coordinated by four like neighbours on the same sublattice and has 
four unlike neighbours on the other sublattice. This could be interpreted as a T1- array, 
isoelectronic wtth carbon in the limit of complete charge transfer. For a critical dis- 
cussion on the lVaT1-type structure, its stability, the role of the size factor, the compara- 
tive trend of the stabilities of CsCl and NaTl type structures, the application of modern 
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band-structure techniques, see HAFNER [1989]. Subsequent applications of the term “Zintl 
Phases” have been based on the structural characteristic of such polar phases. A review 
on this subject has been published by CORBETT [1985]. In this paper several phases are 
mentioned starting from compounds such as hR1 8-CaSi2 (containing rumple double 
layers of Si atoms resembling those of the As structure), mP32-NaGe and mC32-Nasi 
(respectively containing Ge, or Si atom, tetrahedra with the Na atoms arranged in the 
intervening spaces), up to complex alkali metal-gallium compounds exhibiting complex 
structures containing large interconnected usually empty gallium polyhedra, reminiscent 
of boron chemistry. It may be added that the concept of Zintl ions has been used also in 
the description of selected liquid alloys. It was proposed (VAN DER LUGT and GEERTSMA 
[1984], REIJERS et aE. [1990]) that in the equiatomic liquid alkali alloys with Sn and Pb 
the liquid consists of poly-anion clusters, such as Pb:- tetrahedra, formed by covalent 
bonding which are separated by alkali ions. 
Within the group of trivial names we may also include a few ‘)personal’’ names such as 
austenite (solid solution of C in y-Fe),ferrite (solid solution of C in a-Fe), martensite 
(see sec. 6.1.5.), etc., and a few mineralogical names such as pyrite, blende, cinnabar, 
etc. According to the IUPAC recommendations (LEIGH [1990]), mineralogical names 
should be used to designate actual minerals and not to define chemical composition. 
They may, however, be used to indicate a structure type. They should be accompanied 
by a representative chemical formula: 
cF8-ZnS sphalerite, hP4-ZnS wurtzite, cF8-NaC1 rock salt, cP12-FeS2 pyrite, etc. 

In closing this section we have to mention the Strukturbericht designation adopted 
from pre-war time by the editors of the Strukturbericht publications (and later Structure 
Reports) in abstracting crystal-structure determination. This designation is no longer 
recommended by the International Union of Pure and Applied Chemistry, but it is still 
used. 

According to this designation, each structure type is represented by a symbol 
generally composed of a letter (A,B,C,etc.) and a number (possibly in some cases 
followed by a third character). The letter was related to the stoichiometry according to 
the following form: A unary phases (or believed to be unary), B: binary compounds 
having 1:l stoichiometry, C: binary 1:2 compounds, D: binary m:n compounds, E...K 
types: more complex compounds; L: alloys, 0: organic compounds and S: silicates. 

In every class of stoichiometries, the different types of structures were distinguished 
by a,number andor a letter. (For instance, in the element class the frequently encoun- 
tered fcc structure, cF4-Cu-type, was called Al ,  in the 1:l group the common cF8-NaC1 
type was represented by B1, etc.). Equivalence tables between the Strukturbericht 
designation and the Pearson symbol-prototype may be found in PEARSON [1972], 
MASSALSKI [ 19901. 

The following is a partial list of these old Strukturbericht symbo2s for some types 
frequently occurring in metallic systems: 
AI: cF4-Cu; A2: cI2-W, A3: hP2-Mg; A3’: h P k L a ;  A4: cF8-C (diamond); AS: 

tI-Sn; A 6  t12-In; AT: hRG-cuAs; ...; A9: hp4-C (graphite); ...; A12: c I 5 k M n ;  ... 
; A15 cP8-Cr3Si; .... The A15 structure was previously considered to be that of a W 
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modification (and therefore a unary structure): later on the substance concerned was 
recognized to be a W oxide: W30 (isostructural with Cr3Si); ... ; A,: tP30+?U, ...; A,,: 

B1: cF8-NaC1; B2: cP2-CsC1; B3: cF8-ZnS (sphalerite or zinc blende); B4: hP4-ZnS 
(wurtzite); ...; BS,: hP4-NiAs; BS,: hP6-Ni,In; ... ; B11: tP4-yCuTi; ...; B19: 
oP4-AuCd; .B20: cP8-FeSi; ... ; B27: oP8-FeB; ...; B31: oP8-MnP; B32: cF16-NaT1; 
...; B35: hF’6-CoSn; ...; B,: cI16-UCo; ...; B,: oC8-CrB; ...; B,: hP2-WC; ...; Bi: 
hP8-TiAs; ... 

C1: cF12-CaF2; c1,: cF12-AgMgAs; C2: cP12-FeS, (pyrite); ... ; Cll,: t16-CaC,; 
C11,r t16-MoSi2, (the two C11, and c11b structures are closely interrelated, see fig. 
4); ...; C14: hP12-MgZn,; C15: cF24-Cu2Mg; C15,: cF24-AuBe5 (this structure is 
a derivative structure of the cF24-ChMg, C15 type, see figs. 42 and 44); (216: 
tI12-CuA12; ...; C22: hP9-Fe ,e...; (232: hP3-AlB2; ...; C36: hP24-Ni2Mg; ...; C38: 
tP6-ChSb; ...; C,: hP18-NiMg,; c b :  oF48-CuMg2; C,: t112-ThSi2; ... 

DO,: cI32-CoAs3; ... ; DO,: hP&Na3As; ... ; Dl,: tIlO-MoN4; D1,: o12&UA14; ...; Dl,: 

cPl-LYPo; ...; 4: llR3-pPo; ... 

tI1&Bd&;...; D2b: tI26-ThMnI2; ...; D81: c152-Fe3Zn,,; DS2: cI52-cU,Zn8; DS3: 
cP52-Cu&L,; DS4: cF116-Cr,C6; ... 

El,: OC 16-MgCuA1,; ...; E9,: tP4&FeCu2Al,;.. 

kl,: tP2-AuCn (I); L1,: cP4-AuCu3; L2,: cF16-MnCu2Al; Ll,: cF32-CuPt3; ...; 
En4: cP8-Cu3VS,;.. 

L2,: tP24CuTi;. .. ; L60: tP4-CuTi3. 

3.5. Rational crystal structure formulae 

We know that all of the requisite structural information for a solid phase is contained 
(either explicitly or implicitly) in its unit cell and this can be obtained from the Pearson 
symbol-prototype notation (complemented, if necessary, by data on the values of lattice 
parameters, atomic positions, etc.). A number of features, however, which are especially 
relevant for chemical-physical considerations, such as local coordination geometries, the 
existence of clusters, chains or layers, etc., are not self-evident in the aforementioned 
structural descriptions and can be deduced only by means of a more or less complicated 
series of calculations. It should, moreover, be pointed out that the same structure can be 
differently viewled and described (FRANZEN [ 19861, PARTHE and GELATO [ 19841). The 
simple rock-salt structure, for instance, (see sec. 6.4.1.) can be viewed as cubic close 
packed anions with cations in octahedral holes, as XY, octahedra sharing edges, as a 
stacking sequence of superimposed alternate triangular nets respectively of X and Y 
atoms or as a cubic-close packed structure of a metal with non-metals in octahedral 
interstices, As a further example we may consider the Cu structure which, for instance, 
could be conveniently compared with those of Mg, La and Sm, or from another point of 
view, with the AuCu and AuCu, structures. In the two cases, as we will see in sec. 6.2, 
one would choose a different description and representation of the aforementioned Cu 
structure. 

In the different cases, some criteria may therefore be useful in order to give (in a 
systematic and simple way) explicit information on the characteristic structural features. 
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In the following sections some details will be given on a few complementary, 
alternative notations. 

3.5.1. Coordination and dimensionality symbols in the crystal coordination 
formula 

Several attempts have been carried out in order to design special formulae (crystal 
coordination formulae) which (in a convenient linear format) may convey explicit 
information on the local coordination geometry. A detailed discussion of these attempts 
and of their development (through the work, inter alios, of NIGGLI [1945, 19481, 
MACHATSCHKI [1938,1953], LIMA DE FARIA and FIGUEIREDO [1976,1978], PARTHE 
[1980a] and JENSEN [1984]) may be found in a review by JENSEN [1989], who presented 
and systematically discussed a flexible notation for the interpretation of solid-state 
structures. A short description of Jensen's notation will be given below. The different 
symbols used will be briefly presented. For the notation concerning the common 
coordination geometries a summary is reported in table 5. A report by the International 
Union of Crystallography Commission on Crystallographic Nomenclature (LIMA DE 
FARIA et al. [1990]) presents a concise description of similar alternative notations, a 
summary of which is also presented in table 5. 

The symbols suggested by Jensen, based on Niggli's proposals, indicate the local 
coordination environments by means of coordination number ratios. For instance, a 
formula AE,,,,* will indicate a binary compound where rn is the coordination number (the 
nearest neighbour number) of atoms E around A and n will be considered the coordi- 
nation number of E by A. The ratio m/n will be equal to the stoichiometric com- 
positional ratio. For instance, we will write NaCl,, to represent the hexa-coordination 

Table 5 
Suggested notations for common coordination geometries. 

a) from JENSEN [I9891 

1 Terminal 7" Monocapped trigonal prism 
2 Bent CN 2 8 Cube 
2' Linear CN 2 8' Square antiprism 
3 Pyramidal or in general non-planar CN 3 8" Dodecahedron 
3' Trigonal planar 8"' Bicapped trigonal prism 
3" T - p l m  8 Hexagonal bipyramid 
4 Tetrahedral 9 Tricapped trigonal prism 
4' Square planar 10 Bicapped square antiprism 
4" Base of a square pyramid with the 11 Monocapped pentagonal antiprism 

5 Trigonal bipyramid 12' Hexagonal close-packed or twinned 
5' Square based pyramid with the cuboctahedron 

central atom inside 12'' Isocosahedron 
6 Octahedron or trigonal antiprism 12 Hexagonal prism 
6' Trigonal prism ii Complex, distorted n-hedron 
6" Hexagonal planar ii Disordered structure in which it is 
7 Pentagonal bipyramid possible to define only an average 
7' Monocapped octahedron coordination number n 

central atom as the apex 12 Cubic closest-packed or cuboctahedron 
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Table 5-Continued 
~ -- 

b) from LIMA 1x3 FARIA et al. [ IggO] 

Coordination polyhedron around atom A 

Single neighbour 
lbo atoms collinear with atom A 
Two atoms non-collinear with atom A 
Triangle coplanar with atom A 
Triangle non-coplanar with atom A 
Triangular pyramid with atom A in the centre of the base 
Tetrahedron 
Square coplanar with atom A 
Square nonaplanar with atom A 
Pentagon coplanar with atom A 
Tetragonal pyramid with atom A in the centre of the base 
Trigonal bipyramid 
Octahedron 
Trigonal prism 
Trigonal antiprism 
Pentagonal bipyramid 
Monocapped trigonal prism 
Bicapped trigonal prism 
Tetragonal prism 
Tetragonal antiprism 
Cube 
Anticube 
Dodecahedron with triangular faces 
Hexagonal bipyramid 
Tricapped trigonal prism 
Cuboctahedron 
Anticuboctahedron (twinned cubooctahedron) 
Icosahedron 
Truncated tetrahedron 
Hexagonal prism 
Frank-Kasper polyhedra with 
14 vertices 
15 vertices 
16 vertices 

(in this case octahedral coordination) of C1 around Na (and vice versa) in sodium 
chloride. Similarly we will have: ZnS,; PH,,; CsCl,,; CaFw4; UCG/,,,; etc. According 
to one of Jensen's suggestions it is possible to add modifiers to the coordination numbers 
in order to specify not only topological but also geometrical characteristics of the 
primary coordination sphere. (For examples, 6: octahedral, 6': trigonal prismatic; 6": 
hexagonal planar; etc., see table 5a. 

Similar symbols were proposed by DONNAY et al. [ 19641 who suggested adding to the 
coordination number, one or two letters to indicate the geometry: y, pyramidal; 1, planar; 
c, cubic; etc. Detailed descriptions of the coordination polyhedra are obtained by means 
of the LIMA DE FARIA et al. [ 19901 symbols presented in table 5b. An advantage of the 

Refemnces: p ,  363. 



230 Riccardo Ferro and Adriana Saccone Ch. 4, $3 

Lima de Faria symbolism may be the existence of two alternative sets of symbols: 
complete and simplified. The simplified symbols give only a. numerical indication, 
without any distinction between different geometries; the complete symbols (clearly 
distinguishible from the previous ones) contain beside the numeric indication a descrip- 
tion of the coordination polyhedron. A selection of the Lima de Faria symbols, together 
with the Jensen’s suggestions, will be used here. 

According to Jensen, the dimmionaZity of a structure (or of a substructure of the same) 
is indicated by enclosing its compositional formula in square brackets and prefixing an 
appropriate SymboZ 8. The dimensionality index, d, may be d = 0 for a discrete molecular 
(cluster, ring) structure, d = 1 for a one-dimensional, infinite chain structure, d = 2 for a 
two-dimensional, infinite layer structure and d = 3  for an infinite three dimensional, 
framework structure. These are the Machatschki symbols (MACHATSCHKI [1947]). 

More complex symbols such as d;d or d‘&’d will represent intermediate dimension- 
ality (between d and d‘) or, second, the dimensionality indexes of different substructures 
(d’ and d”) followed by that of the overall structure (d). A few examples: 
Molecular structures 
Linear structures 1 [BeCl,] 
Layer structures 
Framework structures 3, [C] diamond, 
Substructures QCa[CO,] (finite ions); 

etc ...... 
If, in a A-B structure, one wishes to show not only the M B  coordination but also the 
B/B, or M A ,  self-coordinations this is done, according to the suggestion by Jensen via 
the use of a composite dimensionality index and the relative positions of the various 
ratios and brackets in the formula, with the last unbracketed ratio always refemng to the 
B/A coordination. So, for instance, 0_[(H,0)4,4] is a compact form for 
02 [(H,O)(H,O),,] to indicate the molecular packing in the ice structure. The formula 
2_3 Al[B,,,],,, or 323 [Aleby/sby][B3v3,]1zp~p/6p correspond to a more or less detailed descrip- 
tion of the AlB, type structure where the coordination of B around A1 is 12 (12p: 
hexagonal prismatic) and that of Al around B is 6 (6p: trigonal prismatic). The self- 
coordinations are bipyramidal for AVAl (8by: hexagonal bipyramidal) and trigonal-planar 
(31) for BIB (the B atoms form a two-dimensional net). 

Considering as a further example the compounds AB having the CsCl type structure, 
we may mention that according to Jensen, the two descriptions 3_33[AJ[Bw1],8 and 
3_[AB,,] (with and without the indication of the self-coordination) may also be used to 
suggest the bonding type (metallic if the A-A and B-B interactions contribute to the 
overall bonding, ionic, or covalent, if only A-B interactions have to be considered). 

More complex examples of the use of this notation may be given by the structures of 
typical fluorides for which ionic type, coordination formulae are here reported 
0P16 YF, : 3,[YF,,F,,,]; 
hP8 LaF, : 3_[LaF8,4Fy,]; 
cF16 BiF,: 3, [BiF&&J. 

Q [HI], Q [CO,], 

[C] graphite, 2 [As] 

lK[PO,] (infinite anionic PO; chain) 
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In all these cases the sum of the numerators of the coordination ratios gives the total 
coordination (of two groups of F atoms) around the metal atom. (The sums of the ratios 
give, of course, the stoichiometric coefficients). 

Another example may be represented by the hP6-Ni21n structure (3, [InNiw6Ni5,5]) 
described in sec. 6.5.3. 

A detailed example (AuCu,) of the application of the aforemtmtioned notation to the 
description of a simple intermetallic structure will be presented in sec. 3.5.5. (with the 
pertinent figs. 12 to 15). 

A few more examples will be reported in the following descriptions of a number of 
typical structures. 

In conclusicln to this description of “crystal coordination formulae” we have, 
however, to notice that the term “coordination number” (CN) may be used in two ways 
in crystallography (FRANK and KASPER [1958]). According to the first the coordination 
number, as previously mentioned, is the number of nearest neighbours to an atom. 
According to the other way, the definition of the coordination should be based on an 
”intelpretation” of the structure which depends not only on an evaluation of the inter- 
atomic distances to assign bonding versus non-bonding contacts but on considerations on 
the bonding mechanism (JENSEN [ 19891). These considerations are particularly important 
when thinking of metallic phases where it may be difficult to make distinctions between 
X-X, X-Y or Y-Y contacts. So, for instance, when considering the bc cubic structure of 
the W type, some authors define the coordination number as 8 (in agreement with the 
nearest-neighboms definition) but others prefer to regard it as 14 (including a group of 
6 atoms at a slightly higher distance). Further considerations on this subject is delayed 
to a discussion, in sec. 7.2.6., on alternative definitions of coordination numbers 
(weighted coordination number, effective coordination number). In sec. 7.2.7., on the 
other hand, the (atomic-environment types will be introduced, their codes presented and 
the results of tlheir use in the classification of the selected groups of intermetallic 
structure types summarized. 

3.5.2. Layer stacking sequence representation 
A large group of structures of intermetallic phases can be considered to be formed by 

the successive stacking of certain polygonal nets of atoms (or, in more complex cases, 
by the successive stacking of characteristic “slabs”). These structural characteristics can 
easily be described by using specific codes and symbols, which can be very useful for 
a compact presentation and comparison of the structural features of several structures. 
Many different notations have been devised to describe the stacking pattern (for a 
summary see PARTHE [1964], PEARSON [1972]). A few of them will be presented here. 
As an introduction to this point we may consider figs. 5-7 where typical simple close- 
packed structures are shown and presented as built from the superimposition of close- 
packed atomic layers. If spheres of equal sizes are packed together as closely as possible 
on a plane surface they arrange themselves as shown in fig. 5. (Their centres are in the 
points of a triangular net.) Each sphere is in contact with six others. Such layers may be 
stacked to give three-dimensional close packed arrays. If we label the positions of the 
(centres of the) spheres in one layer as A, then an identical layer may be superimposed 
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C 

Fig. 5. Close-packed bidhensional arrangement of equal spheres. The A, B, C coding used to indicate different 
relative positions is shown. (See also fig. 8.) 

on the first so that the centres of the spheres of the second layer are vertically above the 
positions B (for two layers, it is insignificant whether we choose the positions B or the 
equivalent position C). When we superimpose a third layer above the second (B) we 
have two alternatives: the centres of the spheres may be above either the A or the C 
positions. The two simplest sequences of layers correspond to the superimpositions 
ABABAB ... and ABCABCABC ... (more complex sequences may of course be con- 
sidered). The sequence ABAB.. ., corresponding to the so-called hexagonal close-packed 
structure (Mg-type structure) is shown in fig. 6. The sequence ABCABC ... having a 
cubic symmetry, is shown in fig. 7. It is the cubic (face-centered cubic) close-packed 
structure (also described as cF4-Cu type structure). 

A more complete representation of different layer sequences (which can be used not 
only for the description of close packed structures) may be obtained by using stacking 
symbols such as those shown in fig. 8, together with layer stacking indications. Fig. 8a 

bl 

Fig. 6. Hexagonal close-packing. 
a) A few spheres of three superimposed layers are shown. In this structure, the spheres of the layer III are just 

above those of the first one. 
b) Lateral view of the same arrangement. The stacking symbols corresponding to the Mg unit cell description 

reported in sec. 6.2.6. (Mg in $$,$ and f,$,:) are shown. (The ... BCBCBC ... sequence description is 
identical to a ... ABABAB ... or ... CACACA ... symbol). The heights of the layers are reported as fractions 
of the repeat unit along the z axis of the hexagonal cell (that is of the distance between levels 0 and 1). 
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Fig. 7. Face-centered cubic close-packed structure of equal spheres. 
a) Sphere-packing: a group of eight cubic unit cells is shown. (One of the unit cell is indicated by the black 

atoms). 
b) A section of the same structure shown in a) is presented; it corresponds to a plane perpendicular to the 

cube diagonal. The typical arrangement of layers similar to that shown in fig. 5 is evidenced. 
c) A lateral view of the stacking of the layers in the fcc structure is presented. The layer positions along the 

superimposition direction (which corresponds to the cubic cell diagonal) are shown as fractions of the 
repeat unit (cell diagonal)). 

shows a network. of atoms which can be considered as a triangular net, T net, that is the 
36 net. We may incidentally notice that this notation, the Schlafli notation PN, describes 
the characteristics of each node in the network, that is the number N of P-gon polygons 
surrounding the node. In the reported 36 net all the nodes are equivalent: their polygonal 
surrounding corresponds to 6 triangles. (More complex symbols are used for nets 
containing non equivalent nodes: for instance, the symbol 3'434 + 3242 (2: 1) means that, 
in the given net, two type of nodes, 32434 and 3242, occur with a relative 2:l frequency. 
A symbol such as 3'4' means that the given node is surrounded, in this order, by 2 
triangles and 2 squares). 

In the case of the simple, 3', triangular net the aforementioned stacking symbols A, B, 
C, as can be seen in fig. 8c relate the positions of the nodes to the origin of the cell 
(which is defined as in fig. 8b). In the layer stacking sequencefull symbol, the component 
atoms occupying the layers are written on the base line, with the stacking symbols as 
exponents and the layer spacings in the form of suffixes, denoting the fractional height 
of the repetition constant along the direction perpendicular to the layers. In the case of 
Mg, for instance, With reference to the standard choice of the unit cell origin (two 
equivalent atomic positions for the two Mg atoms in $,+,$ and f ,$ ,&) ,  the symbol will be 
Mg:,4MgF,4 (which, with a zero point shift, is equivalent to M&gy,z). The symbol 
Cu$u~,,Cu$,, on the other hand, represents the cubic Cu structure as a stacking 
sequence of triangular layers viewed along the direction of the unit cell diagonal (which 
is perpendicular to the layers themselves). 

A few other nets, based on the hexagonal cell, are of frequent structural occurrence. 
Following Pearson's suggestions, the corresponding sequences of stacking symbols which 
have a wide application are here presented. Fig. 9 shows the hexagonal (honeycomb) net 
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O 8 O  
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Fig. 8. Triangular net of points. 
a) and b) The 36 net and the corresponding (bidimensional) cell are shown. Notice that, in this case, the 

selected coordinate system corresponds to an interaxial angle of 120’. 
c) Different point positions (relative to the cell origin) and corresponding coding: 

A) the representative point, in the x,y plane (a, b plane with a=b), has the coordinate 0,O; 
B) with reference to the a, b constants the coordinate “doublet” of the representative point is f f; 
C) the representative point is in f. #. 

(H net) and the stacking symbols (a, b, c) used for relating the different positions of the 
nodes to the cell origin. (Notice that two nodes are contained in the unit cell.) 

A simple structure which can be described in terms of superposition of (even if far 
away, not close-packed) hexagonal layers is that of graphite: C!,,CC,,,. The hexagonal net 
is also called “graphitic” net. (see sec. 6.3.4. and fig. 33). 

Fig. 10 shows the three-ways bamboo weave net, known as kagomg, a net of triangles 
and hexagons (K net, the 3636 net of points). The different positions of the nodes (three 
nodes in the unit cell) are represented by the symbols (a, /3, y)  shown in fig. lob. 

Several (especially hexagonal, rhombohedral and cubic) structures may be convenient- 
ly described in terms of stacking triangular, hexagonal and/or kagomk layers of atoms. 
Examples will be given in the following sections. The specification of the spacing 
between the layers is useful in order to compare different structures, to recognize the 
close-packed ones (A, B, C symbols with appropriate layer distances) and to deduce 
atomic coordinations. 

We have to notice, however, that the A, B, C notation previously described is not the 



Ch. 4, $ 3  Structure of intermetallic compounds and phases 235 

I 
0 

\/ \o/ 

I I 

0 0 0 
Lo/ \o/ \o/ \o, 

I I I I 
o/o\o/o\ 

I I I 

0 
0 0 

0 O Q C) 

Q 0 
0 

Q 
b) 

0 0 
0 

0 0 L\ 
0 \A 0 

b 

0 

0 

O A  0 

YY? 0 

0 0 

C 

0 

0 

Fig. 9. Hexagonal (6’) net of points. 
The net is shown in a). In b) the different positions of the points in the unit cell are indicated with the stacking 
symbols a, b, c. Notice that the unit cell contains two points. (Every point in the corner is in common with 
(belongs to) four adjacent hexagonal cells). 

only one devised. Several different symbols have been suggested to describe stacking 
patterns. (For a description of the more frequently used notations see PARTJB [19641, 
PEARSON [1972])1. 

A very common notation is that by JAGODZINSKI [1954]. This notation involving h 
and c symbols is applicable only to those structure type groups which allow not more 
than three possible positions of the unit layer (or more generally of the “unit slabs”. See 
sec. 4.3. on polytypic structures). The h, c notation cannot therefore be applied, for 
instance, to disiljcide types. The letters h and c have the following meaning: 

References: p .  363. 
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Fig. 10. The 3636 (kagom6) net of points. 
The net is shown in a). In b) the different positions (relative to the hexagonal cell origin) are indicated by the 
symbols a, p,  y. Three points of the net are contained in the unit cell: notice that every point in an edge 
belongs to two adjacent cells. 

- the letter h is assigned to a unit slab, whose neighbouring (above and below) unit 
slabs are displaced sideways, in the same direction for the same amount: 
for instance ABABA or CBCBCB 

(h comes from hexugonu2: this is the stacking sequence of simple hexagonal structures 
such as hP2-Mg, hP4-ZnS wurtzite and hP12-MgZn2 types). 
- the letter c, on the other hand, is assigned to unit slabs whose neighbouring slabs 

hhh hhhh 
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have different sideways displacements: 
for instance AIBCABC or CABCAB 

(c comes from cubic: this is the stacking sequence found in cubic structures such as 
cFLCCU, cF8-ZnS sphalerite and cF24-Cu2Mg types). 

To denote the stacking sequence of the different structures it is sufficient to give only 
one identity period of the h, c symbol series. For instance: 
c F M u ,  c (instead of ABC); cF8-ZnS sphalerite, c; hP4-ZnS wurtzite, h; hP4-La, hc; 
hR9-Sm, hhc. 

As can be seen from the previously reported examples, the identity period of the h, 
c symbols is generally shorter than the A, B, C... letter sequence. The h, c...symbols may 
be condensed, e.g., hcchcchchc to (hcc),(hc),. (If the number of c letters in a Jagodzinski 
symbol is divided by the total number of letters one obtains the percentage of “cubic 
stacking” in the total structure). 

Another, common, notation for describing stacking of close-packed 36 nets (T nets) 
is that devised by ZHDANOV [1945] (a number notation equivalent to Jagodzinski’s 
notation). A short description of the Zhdanov symbol is the following: a “+” is assigned 
if the order between a layer and its previous partner follows the sequence corresponding 
to any two subsequent layers in the face-centered cubic type structure, that is 

A + B, B -+ C, C + A. Otherwise a “-” is assigned. For instance, the sequence 
“+++ - - -” (shortened 3 3  corresponds to ABCACB. 

Finally, as another simple example of description (and symbolic representation) of 
structures in terms of layer stacking sequence we may now examine structures which can 
be considered as generated by layer networks containing squares. A typical case will be 
that of structures, containing 44 nets of atoms (Square net: S net). The description of the 
structures will be: made in term of the separation of the different nets (along the direction 
perpendicular to their plane) and of the origin and orientation of the unit cell). 

Fig. 11 shows the different symbols (in this case numbers) suggested by FEARSON 
[1972] which will be used to indicate origin and orientation of the nets. These numbers 
will be reported as exponents of the symbols of the atoms forming the different nets. In 
this case too the relative height of the layers will be indicated by a fractional index. A 
few symbols of square net stacking sequences are the following: 
Po:: the simple cubic cell of Po (containing 1 atom in the origin) corresponds to a 

stacking sequence of type 1 square nets. 
WAWf,2: the body-centered cubic structure of W (1 atom in O,O,O and 1 atom in i,i,i) 

corresponds to a sequence of type 1 and type 4 square nets at the heights 0 and i, 
respectively. 
For more complex polygonal nets, their symbolic representation and use in the 

description, for instance, of the Frank-Kasper phases, see FRANK and KASPER [ 19581 and 
PEARSQN [1972]. (Brief comments on this point will be reported in sec. 6.6.) 

CCCC cccc 

3.5.3. Assembly of polyhedra 
A complemenitary approach to the presentation and analysis of the intermetallic phase 
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Fig. 11. A bidimensional square (44) net is shown in a). 
b) Different positions of the representative point in the unit square are presented and coded (net of points 

aligned parallel to the cell edge). 
c) Codes used for different positions of a square net of points refemd to a larger squari cell with axes at 45O 

to the net alignment (and edges equal to d times the repeat unit of the net). 
In b) one point of the net is contained in the unit square, in c) there are two. 

structures consists of their description with Coordination polyhedra as building blocks. 
A classification of types of intermetallic structures based on the coordination number, 

configurations of coordination polyhedra and their method of combination has been 
presented by KRIPYAKEVICH [1963]. 

According to Kripyhkevich, a coordination polyhedron of an atom is the polyhedron, 
the vertices of which are defined by the atoms surrounding this atom: a coordination 
polyhedron should have a form as close as possible to a sphere, that is, it should be 
convex everywhere and have the maximum number of triangular faces. At the vertices 
of a coordination polyhedron of a given atom (in addition to atoms of different elements) 
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there can also be atoms of the same kind. A considerable variety of coordination 
polyhedra exists. In some cases, plane coordination polygons have to be considered. The 
number of vertices may vary from, say, 3 to 24. Generally, the structure consists of 
atoms with different coordination numbers; according to Kripyakevich, structures are 
most conveniently classified considering the type of coordination polyhedron of the 
atoms with the lowest coordination number. (For a general approach to the classification 
of atomic environment types and their description and coding in terms of coordination 
polyhedra see also sec. 7.2.7.). 

An important contribution to the structure analysis of intermetallic phases in terms of 
the coordination polyhedra has been carried out by FRANK and KASPER [1958]. They 
described several structure types as the result of the interpenetration of a group of 
polyhedra, which give rise to a distorted tetrahedral close-packing of the atoms. (The 
Frank-Kasper s iructures will be presented in sec. 6.6). 

In particular. SAMSON 11967, 19691 developed the analysis of the structural principles 
of intermetallic phases having giant unit cells. These structures have been described as 
arrangements of fused polyhedra rather than the full interpenetrating polyhedra (see a 
short description in sec. 6.6.5.). 

The principles of describing structures in terms of polyhedron-packing has been 
considered by GIRGIS and VILLARS [1985]. To this end they consider, in a given 
structure, the coordination polyhedra of all the atomic positions; structures are then 
described by packing the least number of polyhedra types. All the atoms in the unit cell 
ace included in the structure-building polyhedra. The polyhedra considered should not 
penetrate each other. 

According to GIRGIS and VILLARS [ 19851 structures are then classified mainly on the 
basis of the following criteria: 
- Number of polyhedra types employed in the description of the structure, 
- Characteristics of the polyhedra (number of vertices, symmetry), 
- Types ofpolyhedra packing (either three-dimensional distribution of discrete polyhedru 

As examples of structures described by packing of one polyhedron type we may mention: 
cP4-AuCu3 type:, three-dimensional arrangement of cubooctahedra (coordination number, 

tP3k(Cr,Fe) type, layer-like arrangement of icosahedra (CN 12). 

sharing corners, edges or faces, or layer-like distribution of polyhedra). 

CN, 12); 

For a general approach to the problem of structure descriptions in term of polyhedron 
packing a paper by HAWTHORNE [1983] should also be consulted. The following 
hypothesis is proposed: crystal structures may be ordered or classified according to the 
polymerization d those coordination polyhedra (not necessarily of the same type) with 
the higher bond valences. The linkage of polyhedra to form “clusters” is then considered 
from a graph-theoretic point of view. Different kinds of isomers are described and their 
enumeration considered. According to Hawthorne, moreover, it has to be pointed out that 
many classifications of complex structures recognize families of structures based on 
different arrangements of a fundamental building block or module (see the sec. 3.5.4. and 
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4.5. on recombination structures). Ifthis building module is a tightly bound unit within the 
structure it could be considered, for instance, as the analogue of a molecule in an organic 
structure. Such modules can be considered the basis of structural hierarchies that include, 
for instance, simple and complex oxides and complex alloy structures. These modules 
may be considered as formed by polymerization of those coordination polyhedra that are 
most strongly bonded and may be useful for a classification and systematic description 

As a conclusion to this section we may mention also the “environment polyhedra”, 
defined and coded by DAAMS et al. [1992]. A short decsription of this topic will be 
presented in sec. 7.2.7. 

of crystal structures. 

3.5.4. Modular aspect of crystal structure 
A very general, mainly geometric, approach to the description and classification of 

the different inorganic structures may be based on a systematic “Construction ofcomplex 
structural types” by means of a few operations applied to some building units. As has been 
suggested by ANDERSSON andHYDE [ 1982, 19891 a formal description and classification 
of the various crystal structures could be obtained in terms of a classification of the 
building units and of the construction mechanism. Building units may correspond to 
packets ofpoints (atoms) (blocks, clusters, bounded in three dimensions) or to groups of 
lines (rods, columns bounded in two dimensions, infinite in the third) or to groups of 
planes (slabs, sheets, layers, lamellae bounded in only one dimension, infinite in the 
other two). Structures may then be constructed from such portions by (discontinuous) 
symmetry operations (translation, reflection, or their combinations) repeated in a parallel 
way or by similar symmetry operations repeated in a cyclic way (involving rotation) (see, 
for instance, fig. 36). 

Emphasis to similar approach has been given by ZVYAGIN [1993]. He pointed out that 
many crystal structures can be represented as a composite of certain standard “construc- 
tion modules” and various combinations, distributions and arrangements of them. The 
simplest example of a modular structures is the densest packing of identical atoms (the 
atomic planes represent the construction modules forming various structures owing to a 
variation of the two possible placements of the successive plane relative to the preceding 
one). 

- module types (sheets, rods, blocks), 
- dimension of the modules, 
- variety of module type (single or mixed-module structures), 
- relative number of module types, 
- arrangement of adjacent modules (variations in these arrangements, periodicity/ 

Strictly related to this kind of description may be the concepts of “Recombination 
Structures’’ and of “Zntergrowth Structure Series” which will be presented in sec. 4.5. 

A classification of the different structures may be based on: 

aperiodicity of successive variations, etc.). 
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3.5.5. An exercise on the use of alternative structural notations (AuCu, type as an 

In the following, data concerning a few selected structures, will be presented. In this 
section, by using a simple structural type (cP4-AuCu3, 333 [ A U ~ ~ ] [ C U ~ ~ ] ~ ~ ~ ,  or, in more 
detail, 333 [ A U ~ , , ] [ C ~ ~ , ] , ~ , , )  a presentation will be given on the different ways of 
describing the structure. 

AuCu, is primitive, cubic. The space group is Pm3m (N. 221 in the International 
Tables for Crystallography, HAHN [1989]). In the unit cell there are 4 atoms in the 
following positions: 
1 Au in a) O,O,O; 

Several phases me known which have this structure; in the VILLARS and CALVERT 
compilation [I95111 there are around 450 listed: 1.7 % of all the reported phases. This 
structural type is the 8” in the frequency rank order (see sec. 7.1.). A short selection is 
presented in the following list: 
=HfPt3 a = 398.1 pm 
LaIn, a=473.21 pm 
La31n a = 509.0 rim 
Mn,R a=383.3 pm 
M a n ,  a =  386 pm 
Ni,Al a =  357.0 pm 
(Note that, in this structure type, in some cases, according to the phase stoichiometry, the 
same element mity occupy either the a) or the c) Wyckoff position). 

In the reported list the unit cell edges have been given. In the following, while 
discussing the characteristics of this structural type, we will consider the data referring 
to the prototype itself (a= 374.84 pm). 

e structure is shown in fig. 12, where the tridimensional sequence of the atoms is 
suggested by presenting a small group (eight) of contiguous cells. The unit cell itself is 
shown in figs. Kla and I3b, by using two different drawing styles. 

The subsequent figures 14a, 14b, 14c, 14d correspond to an analysis of the structure 
carried out in order to show the different local atomic arrangements (coordinations 
around the atoms in the two crystal sites). 

In the analysis of a structure, however, it is also necessary to take into consideration 
the values of the interatomic distances. It may be useful to consider both absolute and so 
called “reduced” values of the interatomic distances. In the case of the AuCu, phase, the 
minimum interatomic distance corresponds to the Au-Cu distance (Au in 0, 0, 0 and Cu 
in 0, +, i) which is the same as the Cu-Cu distance between Cu in 0, 3,; and Cu in 3.0, 
f. This distance is given by afi/2. 

For the AuCii, phase a = 374.8 pm and, therefore, (a, = 265.0 pm. This value could 
be compared, for instance, to the value 272 pm, sum of the radii of Cu and Au (as 
defined for a coordination number of 12) or to the value 256 pm of the Cu-Cu distance 
in the metal (Cu atom “diameter”). Reduced interatomic distances (d, = d/dmi,J may be 
defined as the ratios of the actual distance values to the minimum value. 

exam $e) 

3 Cu in c) 01-1- 1-01. 110. 
,2929 2, 97.9 2 9 2 9  9 

Pt,Al a =  387.6 pm. 
Ti,Hg a = 416.54 pm 
TiZn, a = 393.22 pm 
UPb, a=479.3 pm 
YAI, a=432.3 pm 
Y3AI a=481.8 pm 
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Fig. 12. cP4-AuCu3 type structure. A group of eight cells is shown. The light spheres represent Au atoms. In 
order to get a better view of the structure inside, the atomic diameters are not to scale. 

A$rst set of interatomic distances (and coordination) which can be considered in the AuCu, 
phase is that corresponding to the Au coordination around Au atoms (see fig. 14a): 

Considering as the reference atom, the atom Au in O,O,O, the next neighbours Au 
atoms are the six Au shown in fig. 14a, corresponding to the same Wyckoff position and 
having, in comparison with the reference atom, the coordinates 0,0,1; O,O,i; 0,1,0; O,i,O; 
1,0,0; T,O,O; all at a distance d = a =  374.8 pm, corresponding to a reduced distance 
&=d/d,,,,,= 1.414. 

In the same group of Au-Au interatomic distances a subsequent set is represented by 
distances such as those between Ab,os and Akj.1 (or AU,JJ  , A%,l.i, Au , etc.). This 
set corresponds to a group of 12 atoms (all at an absolute distance of a$?=530.1 pm, 
that is, at a reduced distance 4=d/dmin=2.000). 

A second set of interatomic distances (and coordination) corresponds to the Cu 
coordination around Au atoms: 

Considering as the reference atom, the atom Au in O,O,O, the next neighbours - -  Cu 
atoms are the 12 Cu reported in fig. 4-14b, in the coordinates: O&$; O,i,i; O,$,i; Ow,%; 
&O,&; z,O,i; $,O,$ +,$,@ $,T,O; z,i,O; $,$,to; all at a distance d =  a@/2= 265.1 pm, 
corresponding to a reduced distance d/d,, = 1.000. 

Considerin also the subsequent sets of Au-Cu distances, 24 atoms at d = 459.1 pm 
(4=d/dmin= f 3 = 1.732), 24 Cu at d=592.7 pm (dr=2.236), etc. we obtain the histo- 
gram reported in fig. 15b. 

A third group of interatomic distances (and coordination) which has to be considered is 
that corresponding to the Cu coordination around Cu atoms (see fig. 14c): 

Considering as the reference atom, the atom Cu in $,$,O, the next neighbours Cu 

A compact representation of these data is given by means of the bar-graph in fig. 15a). 
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bl 

Fig. 13. The cP4-AuCu3 unit cell is presented in different drawing styles. In a) an (approximate) indication of 
the packing and space filling is given. In b) the positions of the different atoms are reported in a perspective 
view of the unit cell and in c),  in some typical sections of the same at different heights: notice the square net 
arrangement. The first (and the third) section corresponds to the height 0 or 1 * c. The second to the height 
4 * c. For the first sxtion the position codes of the two atom, in the square net, are 1 and 4; for the second the 
code is 5. (Compare with fig. 11.) 

- 
atoms &e ~ c u  atoms in 1-01. 011- 111. 111- 101. 011- 111. 111- 2, 921 ,2rZ,  ,232y  2, 9 2 1  2 9  r2,  ,2,2, ,2.2, 2 ,  ,29 a11 at a 
distance d=  a42/2= 265.1 pm, corresponding to a reduced distance d/L= 1.OOO. 

The subsequent sets of Cu-Cu distances correspond to 6 Cu atoms (in coordinates 
such as $,i91; ;-,;,I: ;,;,O; etc.) at a distance d=  374.8 pm (4= 1.414), 16 Cu atoms at 
d = 459.1 pm (4 = 1.732), 12 Cu atoms at d = 530.1 pm (d, = 2.000), 16 Cu atoms at 592.7 
pm (4=2.236), etc. The corresponding histogram is presented in fig. 15c). 
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Fig. 14. cP~AuCU, type structure. Different fragments of the structure (of a few unit cells) are presented in 
order to show the various typical coordinations. (Cu atoms are represented by small dotted spheres) 
a) Au - 6 Au (octahedral); b) Au - 12 Cu (cuboctahedral); 
c) Cu - 8 Cu (tetragonal prismatic); d) Cu - 4 Au (square). 

The 8 Cu+4 Au at the same distance from Cu form a heterogeneous cuboctahedron. (Compare also with 
fig. 25.) 

The fourth (and last) type of interatomic distances (and coordination) characteristic of the 
AuCu, structure is given by Au coordination around Cu atoms (see fig. 14d). 

Considering as the reference atom one of the three equivalent atoms Cu in c), for 
instance, the atom in O,;,;, the next neighbours Au atoms are 4 Au in O,O,O; 0,0,1; 0,1,0; 
O,l, 1, respectively; all at a distance d = a @/2 = 265.1 pm, corresponding to a reduced 
distance Ud,, = 1 .OW. 

Subsequent sets of Cu-Au distances correspond to a group of 8 Au atoms (in 
coordinates such as 1,0,0; l ,O , l ;  l,l,O; etc.) at a distance d=459.1 pm (reduced distance 
Wd- = 1.732), to a group of 8 Au (in coordinates such as O,O,i; O,l,i; 0,0,2; etc.), at a 




