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environment types) of hitherto unknown high pressure and high temperature modifica- 
tions (see sec. 8.4.). 

8. Semi-empirical approaches to the prediction of (intermetallic) 
compound formation 

8.1. General remarks on procedures of prediction of compound and structure 
formation in alloy systems 

In the previous sections a brief sampling of some correlations has been given which 
relate crystallochemical characteristics of the phase to the properties of the component 
elements. This group of correlations may be considered as a first reference point for a 
number of methods of predicting the formation, in a given system, of a compound and/or 
of a certain structure. It is well known that, in scientific literature, more and more space 
is dedicated to the question of the forecast of chemical equilibria in simple and complex 
systems. A clear indication of this interest, both from a general and a technological point 
of view, may be seen in the development and success of a number of monographs and 
periodic publications and proceedings on this subject. Several approaches to this problem 
have been considered: we may mention, with special attention to metal systems, the 
explicit over-all summary already presented by KAUFMAN et al. (see KAUFMAN and 
BERNSTBIN [1970]) and the more recent discussion by MASSALSKI [1989]. 

The role of a thermodynamic approach is well known: a thermodynamic control, 
optimization and prediction of the phase diagram may be carried out by using methods 
such as those envisaged by KUBASCHEWSKI and EVANS [1958], described by KAUPMAN 
and NESOR [1973], ANSARA et al. [1978], HILLERT [1981] and very successfully 
implemented by LUKAS et al. [1977, 19821, SUNDMAN et al. [1985]. The integration of 
phase diagram calculations into the design of multicomponent alloys, and performance 
prediction, has been discussed by MIODOWNIK [ 19931. The knowledge (or the prediction) 
of the intermediate phases which are formed in a certain alloy system may be considered 
as a preliminary step in the more general, and complex, problem of assessment and 
prediction of all the features of phase equilibria and phase diagrams. (See also ALDINGER 
and SEIFERT [1993]). 

Evidence has to be given to the phase stability problem (MASSALSKI [1989]). The 
significant progress and the limits, of the first principles calculations may be mentioned 
(HAFNER [1989], PETTIFOR, chapter 2), the usefulness, however, of a number of 
semiempirical approaches has to be pointed out. Several schemes and criteria have been 
suggested to forecast and/or optimize the data concerning certain properties. In the 
following a short outline will be reported on some prediction methods based on selected 
correlations between elemental properties and structure formation. 

8.2. Stability diagrams, structure maps 

Several authors have tried to classify and order the numerous data concerning the 
different intermetallic substances by using two (or three) dimensional structure maps 
(stability, existence diagrams). 
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These maps were prepared by selecting coordinates based on those parameters 
(generally properties of the component elements) which were considered to be determi- 
nant factors of the structural stability and phase formation control. 

As an introductory example to this subject we may remember the well known 
diagrams developed by DARKEN and GURRY [ 19531 for soZid solution prediction. In such 
diagrams (as shown in fig. 57) all elements may be included. The two coordinates 
represent the atomic size (generally the radius corresponding to CN 12) and the 
electronegativity of the elements. It is well known that the first table of electronegativity 
values was introduced by PAULING [ 19321. Several alternative definitions have since 
been proposed. A reliable compilation extensively used in discussing the metallurgical 
behaviour is that by TEATUM et al. [1968]. References to other scales will be reported later. 

To determine the solid solubility of the different elements in a given metal, in the 
Darken and Gurry map, the region with the selected metal (Mg, for instance, in fig. 57) 
in the center can be considered. Generally we observe that elements which have high 
solubility lie inside a small region around the selected metal. As a rule of thumb an 
ellipse may be drawn in the diagram (with the selected metal in the center), for instance, 
with f 0.3 electronegativity unity difference in one axis and f 15% atomic radius 
difference on the other axis. For those elements for which there is a low (or a negligible) 
solubility a larger region has to be considered. 

For a review of the application of the Darken and Gurry method to predict solid 
solubilities see GSCHNEIDNER [1980]. An improvement of the method by means of 
simultaneous use of rules based on the electronic and crystal structures of the metals 
involved, is also presented. 

The diagrams reported in figs. 50 and 58 are examples of other structure stability 
maps which have been suggested and successfully used in order to obtain a good 
separation (classification) of typical alloying behaviours (compound formation, crystalli- 
zation in a certain structure type, etc.). 

As an outline of more general approaches along these lines we may mention a 
selection of a few methods proposed by several researchers. 

83. Savitskii-Gribulya-Kiselyova method (cybernetic computer-learning 

Cybernetic computer-learning methods have been proposed by SAVITSKJI et aZ. [ 19801 
for predicting the existence of intermetallic phases with a given structure and/or with 
certain properties. The computer learning, in this case, is a process of collecting 
experimental evidence on the presence (or absence) of a property of interest in various 
physicochemical systems (defined by means of a convenient selection of the properties 
of the components). 

As a result of machine learning a model is produced of characteristic exhibition of a 
property (for instance, the formation of a particular type of chemical compound) which 
corresponds to a distribution “pattern” of this property in the multidimensional represen- 
tative space of the properties of the elements. The subsequent pattern recognition 
corresponds to a criterium for the classification of the hown compounds and for the 

prediction system) 
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Radius (CN12) 
Fig. 57. Darken and Gurry diagram for the element Mg. (Solubility in Mg greater (m, or less (0) than 5 atom 
% is indicated.) 

prediction of those still unknown. 
Examples of this approach reported by Savitskii are the prediction of the formation 

of Laves phases, of CaCu, type phases, of compounds XY,Z4 (X, Y any of the elements, 
Z = 0, S, Se, Te), etc. (Data on the electronic structures of the components were selected 
as input). 

The main principles and applications for the cybernetic prediction of inorganic 
substances which would have pre-defined properties have been summarized and 
discussed by KISELYOVA 119931. 

8.4. Villars, Villars and Girgis approaches (analysis of the dependence of the 
behaviour of alloy systems on the properties of the component elements) 

In an examination of the binary structure types (containing more than five representa- 
tives, VKLARS and GIRGIS [1982] observed that 85% exihibited the following reg- 
ularities: 
a) linear dependence of interatomic distances on concentration weighted radii; 
b) narrow ranges of the space-filling parameter and of the unit cell edge ratio c/a (and 

c) dependence between the position of the elements in the Periodic Table (in the s, p. 
b/a) for the representatives of a given structure types; 

d, f blocks) and their equipoint occupation in the structure; 
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Fig. 58. Kubaschewski’s plot of the regions of preference for formation of certain type of binary equilibrium 
diagrams (R,, & and X, are atomic radius, heat of sublimation and electronegativity of element i). 

d) narrow grouping of the phases pertaining to a given structure type, in isostoichio- 
metric diagrams based on the positions of the components in the Periodic Table. 

These relationships have been used to predict the existence and/or the structure type (and 
the unit cell characteristics) of binary intermetallic compounds. 

By using a systematic procedure to find the relevant element properties representing 
the alloying behaviour of binary systems VILLARS [1983, 19851 defined three expressions 
for atomic properties which enable systems that form compounds to be separated from 
those that do not. 

A systematic elimination procedure was also used by VILLARS [1982] to find atomic 
property expressions which could be used to distinguish the crystal structures of 
intermetallic compounds. 182 sets of tabulated physical properties and calculated atomic 
properties were considered. These were combined, for binary phases, according to the 
modulus sums, differences and ratios. The best septtrations were obtained by using three- 
dimensional maps, which, for a binary &By, x<y compound, were based on the 
following variables (VILLARS and HULLIGER [1987], VILLARS etal. [1989]): 
ZVE, averaged sum of the valence electrons of the elements A and B, defined by 

ZVE = ( x  VE, + y VEB) / ( x  + y ) ,  (24) 

AX, electronegativity difference, according to the MARTYNOV-BATSANOV [ 19801 scale 
defined by 
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L u  = [2 x / (x + Y)](XA - XB) 

A (r, -I- r&, difference of Zunger’s pseudo-potential radii sum (ZUNGER [ 1981]), defined by 

The relevant data concerning the different elements have been reported in table 9 (from 
VILLARS [1983]). 

Several structural types, corresponding to about 5500 binary compounds and alloys, 
were considered. 147 structure types were classified as 97 coordination types. The 
applications of these maps (which, in the most favorable cases, make it possible to 
predict not only the coordination number and polyhedron but also the structure type or 
a limited number of possibilities) were discussed. The possible extension to ternary and 
quaternary phases was also considered. 

As an example of an investigation of a selected group of ternary alloys we may 
mention a paper by HOVESTREYDT [1988]. In analogy with the work of V i h  a three- 
dimensional structure stability diagram was constructed. For the equiatomic RETX 
compounds formed by the rare earth metal (RE) with transition metal (T) and Ga, Si or 
Ge (X) the variables considered were: the difference in atomic radii r, - r,, the 
Martynov-Batsanov electronegativity of the T metal and the expression GT + G, + Px, 
related to the position in the Periodic Table of the T and X elements, where G is the 
group and P the period number. A good separation was obtained for the 8 structural 
types considered (corresponding to 202 compounds). 

Special, modified, structure stability diagrams have been used for the elements by 
VILLARS and DAAMS [1993]. Maps were built by using the variables valence electron 
number and Zunger pseudopotential radius and reporting the atomic environment types 
(see see. 7.2.7) found in the element structures. A simple separation into different 
stability domains was observed. By including the high temperature, high pressure crystal 
structure data, a prediction was made of the atomic environment modifications, hitherto 
unknown for several elements, to be found under high pressure, high temperature 
conditions. (See sec. 7.2.7.). 

An empirical relation between band gap and Zunger’s orbital electronegativity in 
sp-bonded compounds has been determined by MAKINO [ 1994al using a formula derived 
from the bond orbital model. Based on the bond orbital model and Zunger’s orbital 
electronegativity, new structural maps of AB, AB, and AB, compounds between transi- 
tion metals have been successfully constructed (MAKINO [1994b]). 

8.5. Miedema’s theory and structural information 

The model for energy effects in alloys suggested by Miedema and coworkers is well 
known. By assigning two coordinates (@ and nws) to each transition element it was 
possilbb to separate all those binary alloys with positive heats of formation from those 
with negative values (MIEDEMA [ 19731). 

Successive steps in the formulation of the model have been described, for instance, 
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Table 9 
Valence Electron Number (VE), Martynov-Batsanov electronegativity 

and Zunger’s pseudo potential sum R, (from VILLARS [1983]). 

H 1  
2.10 
1.25 

Li 1 Be2 El VE 
0.90 1.45 X M B  
1.61 1.08 Rz 

Nal Mg2 
0.89 1.31 
2.65 2.03 

K 1  Ca2 Sc3 Ti4 V 5  Cr6 Mn7 Fe8 Cog Nil0 Cu Zn 

B 3  C 4  N 5  0 6  F 7  
1.90 2.37 2.85 3.32 3.78 
0.795 0.64 0.54 0.465 0.405 

A13 Si4 P 5  S 6  C17 
1.64 1.98 2.32 2.65 2.98 
1.675 1.42 1.24 1.10 1.01 

2 Ga3 Ge4 As5 Se6 Br7 
0.80 1.17 1.50 1.86 2.22 2.00 2.04 1.67 1.72 1.76 1.08 1.44 1.70 1.99 2.27 2.54 2.83 
3.69 3.00 2.75 2.58 2.43 2.44 2.22 2.11 2.02 2.18 2.04 1.88 1.695 1.56 1.415 1.285 1.20 

Rbl Sr2 Y 3  Zr4 Nb5 M06 Tc7 Ru8 Rh9 Pd10 Agl l  Cd12 In3 Sn4 Sb5 Te6 I 7  
0.80 1.13 1.41 1.70 2.03 1.94 2.18 1.97 1.99 2.08 1.07 1.40 1.63 1.88 2.14 2.38 2.76 
4.10 3.21 2.94 2.825 2.76 2.72 2.65 2.605 2.52 2.45 2.375 2.215 2.05 1.88 1.765 1.67 1.585 

C s l  Ba2 La3 Hf4 Ta5 W6 Re7 Os8 Ir9 R10  Au11 Hg12 T13 Pb4 Bi5 Po6 At7 
0.77 1.08 1.35 1.73 1.94 1.79 2.06 1.85 1.87 1.91 1.19 1.49 1.69 1.92 2.14 2.40 2.64 
4.31 3.402 3.08 2.91 2.79 2.735 2.68 2.65 2.628 2.70 2.66 2.41 2.235 2.09 1.997 1.90 1.83 

R 1  Ra2 Ac3 
0.70 0.90 1.10 
4.37 3.53 3.12 

Ce3 Pr3 Nd3 Pm3 Sm3 Eu3 Gd3 Tb3 Dy3 Ho3 Er3 Tm3 Yb3 Lu3 
1.1 1.1 1.2 1.15 1.2 1.15 1.1 1.2 1.15 1.2 1.2 1.2 1.1 1.2 
4.50 4.48 3.99 3.99 4.14 3.94 3.91 3.89 3.67 3.65 3.63 3.60 3.59 3.37 

Th3 Pa3 U 3  Np3 pU3 Am3 
1.3 1.5 1.7 1.3 1.3 1.3 
4.98 4.96 4.72 4.93 4.91 4.89 

For a few elements, such as the rare earths, the Martynov-Batsanov electronegativity was not available, Pauling values were reported. 

w 
8 
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by NIESSEN et al. [1983] and by DEBOER et al. [1988]. 

proportional to the expression: 
The enthalpy of formation of solid and liquid binary alloys was described as 

f [ - P ( A @  *)’ + Q(hn,”3)2 - R] 

where f is a concentration (and molar volumes) dependent function, A@* = @:- @; where 
@i* is the work function of each element, closely related to its electronegativity, (the 
values tabulated by Miedema, however, have been slightly readjusted by amounts 
comparable to the experimental uncertainty of work function values), nws is the electron 
density at the boundary of the Wiper-Seitz cell for each element. P, Q and R are 
constants for specific groups of elements (their values are related to the position in the 
Periodic Table of the elements involved). In the same model (MIEDEMA and NIESSEN 
[ 19821) the volume variation in the formation of the intermetallic compound is evaluated 
as proportional to (A@*)[(A(n,>-’]). 

Although the way to predict formation enthalpies of alloys was introduced as an 
empirical one it is important to observe that the model incorporates basic physics. A 
quantum-mechanical interpretation of Miedema’s parameters has already been proposed 
by CHELIKOWSKY and PHILLIPS [1977, 19781. 

Extensions of the model to complex alloy systems have been considered. As an 
interesting application we may mention the discussion on the stabilities of ternary 
compounds presented by DEBOER et al. [1988]. In the case of the Heusler type alloys 
XYT, for instance, the stability conditions with respect to mechanical mixtures of the 
same nominal composition (XY, + Z, X + Y2Z, X Y  + YZ, etc.) have been systematically 
examined and presented by means of diagrams. 

The Miedema’s parameters, A@*, An,”, moreover, have been used as variables for 
the construction of structural plots of intermetallic phases (ZUNGER [ 1981]), 
WASEKHARAN and GIRGIS [1983]). According to Rajasekharan and Girgis on a A@*, 
AnWsm map, considerable resolution is obtained among the binary systems in which 
different structure types occur. The points corresponding to the systems in which the 
Laves phases (or the phases of types as Cr,Si, TiAl,, etc.) occur show linear relationships 
on the map. (The good separation, moreover, between the line connecting the Cr,Si type 
phase points and that of the Laves phase points, can be related to the almost total 
exclusion of the Cr$i type phases from the 250 binary systems containing Laves phases 
and that of the Laves phases from the about 90 binary systems in which a Cr,Si type 
phase occur). (See also ch. 2, 0 7). 

8.6. Prediction of the properties of selected families of alloys: 
Gschneidner’s relations as an example 

Stability maps and/or correlation diagrams may be especially simple and easy to 
handle for selected groups of similar alloys. (For instance, alloys of the elements of the 
same group of the Periodic Table). 

As an example we may mention the alloys of the rare earth metals (especially the 
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“trivalent ones”). It is well known that, within this family of elements, several properties 
change according to well-recognized and systematic patterns. The atomic number itself 
can be used in this case as a simple and convenient chemical parameter). In several 
instances it has been pointed out that a systematic consideration of the crystal structures 
(and of the phase diagrams) of alloys formed by analogous elements (as those of the 
trivalent rare earth family) enables a number of empirical regularities to be deduced and 
theoretical statements to be made. (See a general discussion on this subject by 
GSCHNEIDNER [1969, 19711, the comments by YATSENKO et al. [1979, 19831, COLINET 
et al. [1984a, 1984b], VASSILIEV et aZ. [1993], FERRO et al. [1994] and SOMMER et al. 
[1995] on alloys thermodynamics, the papers by MASSALSKI [1989] on the applications 
of this behaviour to phase diagram assessment, by PARTHE and CHABOT [1984], ROGL 
[I9841 and by IANDELLI and PALENZONA [1979] for a systematic crystallochemical 
description. See S ~ M  [1984] for examples and a discussion of the properties of the 
rare earth metals themseives. See also some comments of this point in sec. 7.2.4.a). 
Criteria based on the mentioned characteristics have been used in assessment procedures 
and in the prediction of phase diagrams and of phase (and structure type) formation. Fig. 
59 may be considered as an example of such typical trends and of their correlations. 
Special applications (prediction of Pm-alloys) have been described by SACCONE et al. 
[1990] and (forecast of selected phase diagrams) by BORZONE et al. [1990], FERRo etal. 
[1993] and SACCONE et al. [1995]. The applicability of similar criteria to the assessment 
and prediction of phase equilibria in selected groups of ternary rare earth alloys 
(containing two different RE metals) has been exemplified by GIOVANWINI et al. [1994, 
1995a, 1995bl in the description of complex Mg-RE alloy systems. 

Considering other families of similar compounds we may mention as an other 
example of systematic descriptions of selected groups of phases and of the use of special 
interpolation and extrapolation procedures to predict specific properties, the contributions 
given by GUILLERMET et al. [1991, 19921 (cohesive and thermodynamic properties, 
atomic average volumes, etc. of nitrides, borides, etc. of transition metals). 

8.7. Pettifor’s chemical scale and structure maps 

We have seen that in a phenomenological approach to the systematics of the crystal 
structures (and of other phase properties) several types of coordinates, derived from 
physical atomic properties, have been used for the preparation of (two, three-dimension- 
al) stability maps. Differences, sums, ratios of properties such as electronegativities, 
atomic radii, valence electron numbers have been used. These variables, however, as 
stressed, for instance, by VILLARS et aZ. [1989] do not always clearly differentiate 
between chemically different atoms. 

As already mentioned in sec. 1 of this chapter, PETTIFOR [1984, 1985a, 1986al 
created a chemical scale (x) which orders the elements along a single axis. This scale 
(and the progressive order number of the elements in this scale: the so-called Mendeleev 
number, M) starts with the least electronegativity element and ends with the most 
electronegative one (see table 1). 

For binary compounds (and alloys) X,,Y,,, (with a given n:m ratio) two-dimensional 
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Fig. 59. Gschneidner’s plots for some rare earth (RE) alloys. 
a) REIn, compounds 
b) RETl, compounds 

Following data are reported as a function of RE atomic number: Formation enthalpy, volume ratio relative 
to cerium (see sec. 7.2.4.a) and reduced melting temperature TR. This is the ratio (KelvinKelvin) of the 
melting point of the phase and of the melting point of the involved earth metal. (e) experimental values; 
(0 )  hypothetical values (reference values) of TR computed for compounds assumed to have a constant 
melting point. The difference between the experimental and computed slopes of TR curves is considered 
to be an indication of the variation of the thermal stability of the phases along the series). 
In these cases, all the diagrams show a decreasing phase stability for an increase of the atomic number. 

xX xy (or M,, My) maps may be prepared. See chapter 2, $6.2 and the simplified 
version reported in fig. 60 for the reader’s convenience. It has been proved that by using 
this ordering of the elements an excellent structural separation may be obtained of the 
binary compounds of various stoichiometries (n:m= 1:1, 1:2, 1:3, 1:4, ...., 1:13, 2:3,2:5, 
..., 2:17, 3:4, ..., etc.) (PETTIFOR [1986a]). See also VILLARS et al. [1989] who have 
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Me L 

L1 0 

csct 
NaCl 

ZnS 

Fig. 60. Simplified version of the Pettifor’s map for AB compounds. The elements are arranged along the axes 
according to their Mi, Mendeleev number. As an example the existence regions of the NaCl, CsCl and cubic 
ZnS type phases are evidenced. For more details see chapter 2, 5 6.2. 

updated the Pettifor maps for several stoichiometries. 
An extension of the application of these maps to the systematic description of certain 

groups of ternary alloys has been presented also by PETTIFOR [1988a, 1988bl. Composi- 
tion averaged Mendeleev numbers can be used, for instance, in the description of 
pseudobinary, ternary or quaternary alloys. All these maps show well defined domains 
of structural stability for a given stoichiometry, thus making the search easier for new 
ternary or quaternary alloys with a particular structure type and which, as a consequence, 
have the potential of interesting properties and applications (PETTIFOR [ 1988a, 1988bl; 
see also ch. 2, 96.2). 
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Appendix 1. Gazetteer, in alphabetic order, of intermetallic phases 
cited in this chapter. 

(In the formulae of the phases in the 1st column the element symbols are in 
alphabetical order, in the prototype formulae they are in the Pettifor's order (see sec. 2). 
Heavy-faced characters have been used for the phases corresponding to the prototypes) 

Phase and Corresponding Section 
Prototype Prototype of this chapter 

Strukturberichte Symbols 
cF4-Cu 
cP20-Mn 

hP&Ni&n 

c152-Cu,Zn8 
hP4-ZnO 
cP52-Cu&b 
cI52-CuJn8 
cF8-ZnS (sphalerite) 

hP2-Mg 

~F'l2-AgMgAs 

tISdgTITe, 
hP2-Mg 
cI52-Cu5Zn, 
C F M U  
cF8-ZnS (sphalerite) 
cF12-CaF2 
PP3-AIB, 
tI10-BaAl, 
cP2-CsC1 
cP8-Cr3Si 
cI2-w 
cI2-w 
tIl2-CUAI, 
cP52-ChAb 
cFIB-MnCu,Al 

3.4 
6.2.1 
7.2.2 
7.2.2 
6.5.3 
6.4.3 
6.1.5, 7.2.2 
6.3.3 
6.1.5, 7.2.2 
6.1.5, 7.2.2 
6.3.3 
6.5.9 
7.2.2 
6.1.5, 7.2.2 
6.2.1 
6.3.3 
6.4.2 
6.5.6, 6.5.10 
6.5.9 
6.1.2 
6.6.2 
6.1.1 
7.2.2 
5 
6.1.5, 7.2.2 
3.4, 6.1.3 
6.1.5 
6.1.5 
6.1.5 
6.1.5 
6.1.5 
6.1.5 
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A~,,(CU,Ni),, 
A1 , , (~ ,WI2  
AlCuS, 
A1,Er 
AlFe 
AIFe, 
A1,Gd 
Al,,Gd,Ni, 
AI,La 
A13Mg2 
A4zMg17 
AIMo, 
AIN 
AINb, 
AlNi, 
ALNiX 
AI,Ni,Y,, 
Al,OsU, 
AIP 
AlPd, 
AIR, 

AlSb 
A1,Sc 
AISnV, 
A1,Th 
AIR, 
AI,Ti 
A1,Tm 
AIV, 

AIY, 
AI,Y 
A1,Y 
A1,Yb 
AlZr, 
A l J r  
AI,Zr 
A13Zr, 
Ar 
AsB 
AsCaCu 
ASCUS 
As& 
Ashi 
AsNa3 
AsNb 
AsNi 
As,Zn 
Au 
AuBe, 
Au,Cd, 
AuCu 0 

M2R 

Al*V5 

Riccardo Feme and Adriana Saccone 

tI1 WuFeS, 
cP4-AuCu3 
cP2-CsCl 
cF16-BiLi3 
hP8-Ni,Sn 

hP8-Ni,Sn 
cF1832-MgzAI3 
~15811-Mg,7Al, 
cP8-Cr3Si 
hP4-ZnO 
cP8Cr3Si 
cP4-AuCu3 
cP2-csC1 

~PIZ-U~OSAI~ 
cF8-ZnS (sphalerite) 
OP 1 2-Co2Si 
cP4-AuCu3 
cF12-CaF2 
cF8-ZnS (sphalerite) 
cP4-AuCu3 
cP8Cr3Si 
hP&Ni,Sn 
hP&Ni,Sn 

c P ~ A u C U ,  
cP8-Cr3Si 
c152-Cu5Zn, 

hPI-Ni,Sn 
cP4-AuCu3 
cP4-AuCu3 
hP&Ni,In 
hP12-MgZn, 
tIlbA1,Zr 
hW-Zr,A!, 
cF4-Cu 
cF8-ZnS (sphalerite) 
hP6-Ni2h 
oPl2-CUASS 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
hP8-Na As, 

hP4-Ni As 
mP24-ZnP2 
cF4-Cu 
cKZCAuBe, 
c152-Cu5Zn, 

tIS-TiAl, 

cP~-AuCU, 

tIS-Nb As 

tP2-AuCu 

6.1.5 
6.1.5 
7.2.1, 6.3.3 
6.2.7 
6.1.2 
4.1.1(a) 
6.2.7 
3.2. 
6.2.7 
6.6.5, 5 
6.6.5 
6.6.2 
6.3.3 
6.6.2 
3.5.5 
6.1.2 
3.2. 
6.6.4 
6.3.3 
6.5.4 
3.5.5 
6.4.2 
6.3.3, 7.2.1 
6.2.7 
6.6.2 
6.2.7 
6.2.7 
4.1.l(a) 
6.2.7 
6.6.2 
6.1.5, 7.2.2 
3.5.5 
6.2.7 
3.5.5 
6.2.7 
6.5.3 
6.6.4 
4.1.1(a) 
Table 6 
6.2.1 
6.3.3 
6.5.3 
5 
6.3.3 ' 

6.3.3 
3.4. 
6.5.9 
4.1, 6.5.1 
7.2.1 
6.2.1 
6.6.4 
6.1.5, 7.2.2 
4.1.1,.6.2.4 
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AuCu (II) 

Au,Ge 

Au,In, 
Au,K 
AuNb, 
AuSiTh 
AuSn, 
AuTa, 
AuTi, 

BCeCo, 

B3Ce,Co, 
B,Ce3Col, 

B3CoVV, 
BCr 

BIr 
B,Lu,Ni,, 

B,Nd,lVi,, 
BNi 
BOs 
BRu 
Ba 
BaCd,, 

AuCUS 

Au,Hg, 

B,CXP%Y 

W e C S  

s,covv* 

B,Cr, 

B 4 L a 4  

B@u&+-,Y 
BdzOI) 
B a g , ,  
BaPb, 
BaPtSb 
a-Be 
Be 
Be,$o, 
Be,,Cu, 
BeN,Si 
Be,,Ni, 
Be0 
BePd 
BePo 
BeS 
BeSe 
BeTe 
Bi,(Ca,Sr),Cu,O, 

BiLi, 
BrCS 
BrCu 
BrTI 
C(diamond) 

BiF3 

oI40-AuCu 
cP~-AuCU~ 
hP2-Mg 
c152-Cu5Zn, 
cPSZCu,Al, 
hPbCaCu, 
cP8-Cr3Si 
hP3-BaF'tSi 
oP24-AuSn2 
cPS-Cr,Si 
cP8-Cr3Si 

hP12-CeC04B 

h=%C%B3 
hP6-CeCo.,B2 

hPl&Ce3C0,$4 
oIlO-W,CoB, 
oC~S-W~COB, 
OCS-CrB 
t132-Cr,B3 
hP2-wc 
hP30-Lu,Ni1,B, 

hPlS-Nd,Ni,,B, 
oC8-BCr 
hpzwc 
ha-WC 
CIZW 
tI48-BaCd1, 

oP12-CozSi 
cP36-BaHg1, 
bR36-BaPb3 
hP3-BaPtSb 
hP2-Mg 
cI2-w 
cP2-csCl 
cP2-CsC1 
oPlfi-BeSiN, 
cP2-CsCl 
hp4-ZllO 
cP2-Csc1 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
cF&ZnS (sphalerite) 

cF16-BiF3 
cF16-Li3Bi 
CP2-cSCl 
hP4-ZnO 
ca-Csc1 
cF8-c 

4.1.1, 4.2, 6.2.4 
3.5.5, 4.1,4,1,1, 6.2.3. 
7.2.2 
6.1.5, 7.2.2 
6.1.5, 7.2.2 
6.2.8 
6.6.2 
6.5.6 
5 
6.6.2 
6.6.2 
6.6.2 
4.5 
4.5, 6.2.8 
4.5 
4.5 
4.5 
4.5 
4.5 
3.4 
6.5.5 
4.5 
6.6.2 
4.5 
3.2 
6.5.5 
6.5.5 
6.1.1 
5 
6.6.2 
6.5.4 
5 
6.2.3 
6.5.6 
6.2.6 
6.1.1 
6.1.2 
6.1.2 
6.3.3 
6.1.2 
6.3.3 
6.1.2 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.6.2 
3.5.1, 6.1.4 
4.1.1, 6.1.4, 6.2.2 
6.1.2 
6.3.3, 7.2.1 
6.1.2 
6.3.1 

References: p.  363. 
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C(graphite) 
C (lonsdaleite) 
C,Ca 

CMo 
CI_,Hf 

C I - m  

CSi polytypes 
C1-2-h 
C1-*li 
CI-.XV 
C5V6 
GV8 
cw 
CbXW 
Cl-Xzr 

GNb6 

u-Ca 
p-Ca 
CaCu, 
CaF, 
CaIn, 
C a P  
CaSi, 
Ca,Si 
Ca31Sn*o 
Cd 
Cd3Cu, 
CdI, 
Cd,Na 

CdPO 
CdS 
CdS 
CdSe 
CdSe 
CdTe 
a-Ce 
y-Ce 

Ce,Ni,, 
=Ce,NiSi, 
Ce&Vi,Si3 
Ce,Ni,Si, 
CeO, 
ClCU 
ClNa 
CI,Pb 
ClCS 
ClTl 
c o  
a-co 

Cd43P4 

Ce5Mg4, 

Riccardo Fern and Adriuna Saccone 

hP4-C 
hP4-C 
tI6-CaG 
cF8-NaC1 
hP2-wc 
cF8-NaC1 
mC22-Nb6C, 

cF8-NaCl 
cF%-NaCl 
cF8-NaCl 
m??44-V6C, 
cP6C-V8C, 
m-wc 
cF8-NaC1 
cF8-NaC1 
cF4-Cu 
cI2-w 
hP6-CaCu5 
cF12-CaF2 
hP6-CaInZ 
OP 1 2-Co,Si 
hRlS-CaSi, 
oP12-Co,Si 
tI204-PU,,Rhm 
hP2-Mg 
cF1124-Cu&d, 
hP3-CdI2 
eF1192-NaCdz 
cP52-Cu+414 
cF8-ZnS (sphalerite) 
cF8-ZnS (sphalerite) 
hP4-ZnO 
cF8-ZnS (sphalerite) 
hP4-ZnO 
cF8-ZnS (sphalerite) 
cF4-Cu 
cF4-Cu 
t192-CeSM&1 
hP36-Ce,Ni1, 
hP3-AlB2 
hP22-CefiizSi3 
hP4RCe,Ni,Si3 
cFlZ-CaF, 
hP4ZnO 
cF8-NaC1 
oPlZ-PbCI, 
cP2-CsCI 
CP2-CSC1 
hP2-Mg 
cF4-Cu 

Co-Cr-Mo (R phases) 3.4 
Co,EuP, tI 1 O-ThCr,Si, 

6.3.4 
6.3.3 
3.2 
6.4.1 
6.5.5 
6.4.1 
6.4.1 
4.3, 6.3.3, 7.2.1 
6.4.1 
6.4.1 
6.4.1 
6.4.1 
6.4.1 
6.4.1, 6.5.5, 5 
6.4.1 
6.4.1 
6.2.1 
6.1.1 
4.5, 6.2.8 
3.2, 6.2.2, 6.4.2 
6.4.3, 6.5.7 
6.5.4 
3.4 
6.5.4 
3.2 
6.2.6 
5, 6.6.5 
3.2.4.1, 6.5.2 
5, 6.6.5 
6.1, 7.2.2 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.3.3 
6.2.1 
6.2.1 
5 
4.5 
6.5.6, Table 3 
4.1, 6.5.6 
4.1, 6.5.6 
6.4.2 
6.3.3 
6.2,2, 6.4.1 
3.4, 6.5.4 
4.1.1, 6.1.2, Table 3 
6.1.2 
6.2.6 
6.2.1 

4.4, 6.5.9 
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Ch. 4, App. Struciure of intermetallic compounds and phases 359 

CoFeSn hP6-Ni2In 
CO3GaY3 oC2&W3CoB, 
Co4GaY4 mClS-Y,Co,Ga 
CosGaY5 oC44-Y,Co5Ga 
Co,Ge hP6-Ni2In 
Co,Ge,RE t110-ThCr2Si, 
C0,La hPMaCu, 

Co,RESi, tI 1 0-ThCr,Si, 
Co,Si oP12-CqSi 
Co,Sm hPXaCu, 
COT% hP3-Cd12 

w%, cP52-Cu&14 
cr cI2-w 
d r - F e  tP3O-uCr-Fe 
Cr-Mo-Ni (P phases) 
cr30s cP8-Cr3Si 
CrnP, hP 19-26-Cr1,P, 
Cr3Si cP8-Cr3Si 
Cr,Si,Th tIlO-ThCr,Si, 
Cr3Pt cP8-Cr3Si 

a-Cr,Ti c F M u , M g  
F-Cr,Ti hP12-MgZn, 
y-Cr,Ti hP12-Ni2Mg 
c u  cF4-Cu 
CuFeh tI16-FeCuS2 

%G%M tIlO-ThCr,Si, 
CUI hP4-ZnO 
cu,La 
CuLaSi hP6-NiJn 

cu16Mg6si7 cF11 6-Th6MnZ3 
Cu4MgSn cF24-C yMgSn 

Cu,RESi, tI 1 0-ThCr,Si, 
CUS,Sb oPlCCuSbS, 
Cu,Si t** 
Cu,Sn 
CuTi3 tP4-Ti3CU 
@-)Cu-Zn cI2-w 
@'-)Cit-Zn cP2CsCl 
Cu5Zn, cISZ-CusZn, 
Diamond: see C (diamond) 
a-Dy hP2-Mg 
E phases: see oP12-TiNiSi 
Er hP2-Mg 
Er,RhSi, hPZ4-ErZRhSi, 
Ell cI2-w 
cr-Fe (8) cI2-w 
y-Fe cFecU 

COO tM-CoO 

C0,V hm4-VCO3 

or-Cr-Ti phase hP3-CPTi 

cwa, CP52-Cu& 

h P &C a C u , 
CUaW cF24-CuZMg 

c u p t o  hRW-CuPt(I) 

6.5.3 
4.5 
4.5 
4.5 
6.5.3 
6.5.9 
6.2.8 
6.1.5 
6.5.9 
6.5.4 
6.2.8 
6.5.2 
6.2.3 
6.1.5 
6.1.1 
6.6.3, Table 6 
3.4, Table 6 
6.6.2 
Table 3 
6.6.2, Table 6 
6.5.9 
6.6.2 
6.5.6 
6.6.4 
6.6.4 
6.6.4 
6.2.1 
5, 6.3.1, 6.3.3 
6.1.5 
6.5.9 
6.3.3 
6.2.8 
6.5.3 
3.4, 4.3, 6.6.4, Table 6 
3.4 
6.6.4 
4.1.la 
6.5.9 
5 
7.2.2 
7.2.2 
4,1,1 a, 6.2.5 
4.1.1, 6.1.1, 7.2.2 
4.1.1, 6.1.2 
6.1.5 

6.2.6 

6.2.6 
6.5.6 
6.1.1 
6.1.1 
6.2.1 

References: p.  363. 
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Fe3Ga hPS-Ni,Sn 
Fe3Ge hP8-Ni3Sn 
Fe,Ge,RE t110-ThCr2Si, 
Fe,N cPS-Fe,N 
FesN tIS-Fe,N 
FeNNi tP3-FeNfl 
F%P hP!LFep 
Fe,RESi, tI 1 O-ThCr,Si, 
FeSz (pyrite) cP12-FeS, 
FeSbV hP6-Ni21n 
Fe,Sn hP&Ni,Sn 
%W' hR39-WPg 
F%Zn,o cI52-Cu5Zn8 
Frank-Kasper phases 
G phases: see cF116-MnSTh, 
GaGeNb, cP8Cr3Si 

GaN hP4-ZnO 
GaNb, cP8-Cr3Si 

GaV, cP8-Cr3Si 
Ga7V6 c152-Cu5Zn, 
GdNi oCS-CrB 
GdSe, oP12-Co2Si 
Ge cF8-C (diamond) 
Ge,Ir4 tP36-Ir,GeS 

Ge2Mn2RE tI 1 O-ThCr2Si, 
GeNa mP32-NaGe 
GeNb, cP&Cr,Si 
Ge2N@E tIlO-ThCr,Si, 

GasIr, tP32-Ir,Ga, 

G&Ni c15zcu5zn, 

cF 12-CaF2 

oP12-Co2Si 
tP192-V,,W1 

GRh, 
Ge,,v17 
Graphite: see C (graphite) 
Hlgg phases 
Heusler phases 
Hfs, hP3-Cd1, 
HgS cF8-ZnS (sphalerite) 
HgSe cF8-ZnS (sphalerite) 
HgTe cF8-ZnS (sphalerite) 
HgZ, cP4-AuCu3 
HPt, cP4-AuCu3 

Hume-Rothery phases 
InLa, hP&Ni,In 
InLa, cP4-AuCu, 
In,La cP4-AuCu3 
InN hP4-ZlO 
InNi, h W-Ni,In 
IT1 cP2-Csc1 
Ir C F M U  
IrMo, cPS-Cr,Si 
K cI2-w 

Ho hP2-Mg 

6.2.7 
6.2.7 
6.5.9 
4.1, 4.1.1 b 
4.1.1 b 
4.1.1 b 
6.5.8 
6.5.9 
4.1 
6.5.3 
6.2.7 
3.43, 6.6.3, Table 6 
6.1.5 
3.4, 6.6 

6.6.2 
4.4 
6.3.3 
6.6.2 
6.1.5 
6.6.2 
6.1.5 
3.2. 
6.5.4 
6.3.1 
4.4 
6.4.2, Table 3 
6.5.9 
3.4 
6.6.2 
6.5.9, 7.2.5 b 
6.5.4 
4.4 

3.4 
3.4, 6.1.3 
6.5.2 
6.3.3 
6.3.3 
6.3.3 
3.5.5 
3.5.5 
6.2.6 
3.4, 6.1.5, 7.2.2 
6.5.3 
3.5.5 
3.5.5 
6.3.3 
6.5.3 
6.1.2 
6.2.1 
6.6.2 
6.1.1 
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KZO cF12-CaF2 
Kr C W U  

KZS cF12-CaF2 
KSbZn hP6-Ni21n 
w e  cFlZCaF, 
K,Te cF 1 XaF ,  
a-La hP4-La 
p-La cF4-Cu 
LaNi, hPMaCu, 
Lan, hPWaCu, 
LaPtSl tI12-LaPtSi 
Laves phases 

Li cI2-w 
Li-Mg-Zn Laves polytypes 
Li20 cFlZCaF, 
Li,O,Si 
LiN,Si, 
Li,d% cP52-Cu,A14 
Li,S cFlZCaF, 
Li,Se cFlZ-CaF, 
Li,Te CF 1 2-CaF2 
Lonsdaleite: see C (lonsdaleite) 

Lazn, hP6-cacl15 

hP2-Mg 

hP2-Mg 
hP24-NiJWg 
cF12-CaF2 
cF12-CaF2 
cF12-CaF2 
hPlZMgZn, 
e158 a-Mn 
tI 1 O-ThCr,Si, 
hP4-ZnO 
hP4-ZnO 
hP6-Ni21n 
hP4-ZnO 
tIZCThMn, 
cFl16-Th,$En, 
cP4-AuCu3 
cI2-w 
tIlO-MoN& 
hP2-WC 
016-M0& 
t16-MoSiz 
hP4-ZnO 

cF8-NaCl 
cF8-NaC1 
hP2-wc 
cI2-w 
cF 1 2-CaF2 

hP2-WC 

6.4.2 
6.2.1 
6.4.2 
6.5.3 
6.4.2 
6.4.2 
6.2.6 
6.2.1 
6.2.8 
6.2.8 
6.5.10 
3.4,4.3, 6.6.4, Table 6 
6.2.8 
6.1.1 
6.6.4 
6.4.2 
3.2. 
3.2. 
6.1.5 
6.4.2 
6.4.2 
6.4.2 

6.2.6 
Table 6 
6.1.5 
6.2.6 
3.4, 6.6.4, 4.3, Table 6 
6.4.2 
6.4.2 
3.4, 6.4.2 
3.4, 6.6.4, 4.3, Table 6 
6.6.5 
6.5.9 
6.3.3 
6.3.3 
6.5.3 
6.3.3 
6.2.8 
3.4 
3.5.5 
6.1.1 
4.1.la 
6.5.5 
4.1.la 
3.2, Table 3 
6.3.3 
6.5.5 
6.4.1 
6.4.1 
6.4.1, 6.5.5 
6.1.1 
6.4.2 

References: p .  363. 
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Na,S 
Na$e 
Nasi 
Na2Te 
NaTl 
NaZn,, 
Nb,Sn 
Nb3p1: 
Ne 
NilPr13Silo 
Ni,Si,RE 
NiSiTi 
Ni,Sn 
Nil1Th2 
Ni,Ti 
Ni2Zn,, 
Ni,Zr 
Nowomy phases 
os 
OTa, 
02m 
O,,Ti 
OTi, 
03J 
O,,V 
ow3 
OZn 
P phases 
Pb 
Pb3U 
Pd 
Pd2Sn 
Pdl-xTi, (r) 
Pd,-xTi, (h) 
a-Po 
Pt 
PtMn, 

PGRESn, 
PtS, 

Pt,-x~, (r) 
Pt,-,TiX (3) 
&TJ 
pu,,Rh, 
Pyrite: see FeS, 
X phases 
RE (rare earth) alIoys 
RE (metals) 
Rb 
Re 
Re,Ti&-phase) 
Rh 
Rh,Sn 

cF12-CaF2 
cF12-CaF2 
mC32-Nasi 
cF12-CaF2 
cFl6-NaTI 
cF112-NaZn1, 
cP8-Cr3Si 
cPI-Cr,Si 
cF4-Cu 
hP64-PrI,Ni,Si,, 
tI 10-ThCr,Si, 
oPl2-TiiiSi 
hPS-Ni,Sn 
hP3%-Th2Ni,, 
hP16-Tai3 
c152-Cu,Zn8 
hPd-Ni,Sn 

hP2-Mg 

cFlZCaF, 
cF8-NaC1 
hP3-Cd1, 
cFlZCaF, 
cF8-NaC1 
cP&Cr,Si 
hP4-ZnO 
oP56-(Cr-Mo-Ni) 
cF4-Cu 
cP4-AuCu3 
cF4cit  
oP12C0,Si 
oP4-AuCd 
cP2-csCl 
cP1-Po 
cF4-Cu 
cP&AuCu, 
hP3-Cd12 
tIlO-ThCr,Si, 
oP4-AuCd 
cP2-CsC1 

OPS-"~@ 

oc12-uPt2 
t1204-h3,Rh, 

hR159 Co-Cr-Mo 

cI2-w 
hP2-Mg 
cISS-Ti,Re, 
cFecU 
oP12-Co,Si 

Ru- hP2-Mg 

6.4.2 
6.4.2 
3.4 
6.4.2 
3.4, 6.1.4 
5 
6.6.2 
6.6.2 
6.2.1 
4.1,6.5.6 
6.5.9 
6.5.4 
6.2.7, 4.1.la 
6.2.8 
6.2.3 
6.1.5, 7.2.2 
6.2.7 
4.4 
6.2.6 
4.1.lb 
6.4.2 
6.4.1 
6.5.2 
6.4.2 
6.4.1 
6.6.2 
6.3.2 
Table 6 
6.2.1 
3.5.5 
6.2.1 
6.5.4 
6.1.2 
6.1.2 
3.5.2 
6.2.1 
3.5.5 
6.5.2 
6.5.9 
6.1.2 
6.1.2 
4.5 
3.2. 

Table 6 
8.6 
6.1.1, 6.2.6 
6.1.1 
6.2.6 
6.6.5 
6.2.1 
6.5.4 
6.2.6 
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RuSn, 
Samson phases 
SZn(spha1erite) 
SZn(wurtzite) 
s2Th 
SeZn 
Si 

p-Si,Th 
&i5Th3 
Si,Ti 
SiJJ, 
SiV, 
Si,W, 
sm 
a-Sn 
P-Sn 
SnTi, 
a-Sr 
Sr 
T, phases: see Si,W, 
T, phases: see B,Cr, 
Ta 
Tc 
TeTh 
TeZn 
a-Th 
Th 

T i n 3  
V 
W 

a-Si,Th 

m a 1 7  

tF%-Ru,Sn, 

cFS-ZnS 
hP4-ZnO 
oP12-Co2Si 
hP4-ZnO 
cF8-C (diamond) 
tI12e-ThSi, 
hP3-AIBz 
hP3-AIB2 
oF24-TiSi2 
tPlO-U,Si, 
cP8-Cr3Si 
t132-W,Si3 
bR9-Srn 
cF8-C (diamond) 
tI4-fi-Sn 
hPb-Ni,In 
cF4-Cu 
cI2-w 

cI2-w 
hP2-Mg 
cP2-csc1 
hP4-ZnO 
cF4-Cu 
cI2-w 
hR57-Th2Zn, 
cP4-AuCu3 
cI2-w 
cI2-w 

Wwtzite: see SZn (wurtzite) 
Xe cF4-Cu 

Zintl phases 

p-(Cu-Zn) 
p'-(Cu-Zn) 
8-m type 
Y-(ClqZn*) 
Il-cperw,) 

CY-Y hP2-Mg 

zn hP2-Mg 

a-phases (see (a) Cr-Fe) 3.4 
X-phase:see Re&, 
o-phase : see o-Cr-Ti 
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1. Introduction 

The first years of quasicrystal structure analysis were marked by the investigation of 
badly characterized samples with non-crystallographic diffraction symmetry, called 
“quasicrystals” for short, with spectroscopic and powder diffraction techniques. It was 
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Fig. Al.  (a) HRTEM image of perfectly ordered icosahedral AI,Cu$e,, with enlarged part in (b) (from 
HIRAGA, ZHANG, HIRABAYASHI, INOUE and MASUMOTO [1988], and (c) REM photograph of a single crystal 
with pentagon-dodecahedral morphology (from TSAI, INOUE and MASUMOTO [ 19871. 

not at all clear whether these samples were homogenous and quasiperiodically ordered 
(fig. Al), whether they were twinned approximants (fig. A2), i.e. closely related 
structures with huge unit cells, or had rather a kind of complicated crystalline nano- 
domain structure. The generalization of models based on single experimental results 
caused confusion in many cases until investigation learnt that the experimental findings 
were strongly dependent on chemical composition, thermal history and growth conditions 
of the samples. It turned out that most stable quasicrystals transform to crystalline phases 
at lower temperature or higher pressure running through intermediate states with 
sometimes complicated modulated andor nanodomain structures. Some structural 
principles of quasicrystals and their relationships to approximants are now fairly well 
understood: both the quasiperiodic and periodic related structures are built from the same 
clusters. Whether the structural units order periodically or quasiperiodically can be 
influenced by slight changes in composition for stable samples and also by the annealing 
conditions for metastable ones. 

References: p .  408. 
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Fig. A3. Penrose tiling (bold lines) with deflated tiling drawn in (light lines). The deflation rules for the fat, and 
skinny rhombs are also shown in the lower part of the drawing. The edge lengths of the deflated tiles are 
smaller by a factor T than the original ones (from SOCOLAR and STEINHARDT [1986]). 

Quasiperiodic translational order: there is no nontrivial translation leaving the tiling 
invariant. The mass density function is quasiperiodic, i.e. it can be expressed as a 
finite sum of periodic functions with periods incommensurate to each other. For 
example, the function is quasiperiodic f(x) = cos x+cosax if a is an irrational 
algebraic number (i.e., an irrational solution of an equation of the type a,,x" + an_lxn-' 
+ ... a,=O). 

Orientational order: each edge of each unit tile is oriented along one of the set of 
orientational star axes. Except in singular cases, there is no rotational or mirror 
symmetry in a quasiperiodic tiling. 

Indeterminacy of the construction process: the infinite pattern is not determined by a 
finite region. Starting from a finite region allows an uncountable infinity of ways to 
continue the construction. All resulting tilings belong to the same local isomorphism 
class and are homometric structures (i.e., have the same diffraction patterns). 

Local isomorphism: any region, however large it might be, belonging to a given infinite 
tiling, can be found in any other different (i.e., non superposable) tiling. 

References: p .  408. 
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Self-similarity: to any PT a different PT can be associated, whose tiles are smaller by a 
factor T and which includes all the vertices of the former tiling (this operation is 
termed deflation). The local matching rules can be obtained from the deflation 
operation. 

The Penrose tiling may serve as quasilattice for structures with two-dimensional 
quasiperiodicity and five-fold orientational order (decagonal phases). A three-dimensional 
variation of the PT, with prolate and oblate rhombohedra for unit cells (their volumes in 
the ratio ~ : 1  like their frequencies) may represent a quasilattice for the icosahedral 
quasicrystals (fig. A4). 

In the course of a normal crystal structure analysis, the determination of the correct 
crystal lattice, which has to be one of the 14 Bravais lattices, never poses any problems. 
In the case of quasicrystal structure analysis, however, for a given diffraction symmetry 
an infinite number of different quasilattices are possible. Thus, the selection of the 
quasilattice cannot be separated from the determination of the quasicrystal structure itself. 
Helpful as the tiling approach may be for the understanding of the geometrical principles 
of a quasicrystal structure, it is not suited for performing ab initio structure analyses of 
quasicrystals. This has to be done by means of the higher-dimensional approach. 

2.2. Higher-dimensional approach 

Quasiperiodic structures can always be decribed as sections of higher-dimensional 
periodic structures (JANSSEN [ 19861). Five-fold rotational symmetry, for instance, which 
is incompatible with three-dimensional translational order, can be a symmetry operation 
of a four-dimensional lattice. Thus, non-crystallographic symmetries in the three- 
dimensional space R3 can become crystallographic in R" space. It is quite natural, 
consequently, to describe quasiperiodic structures with their non-crystallographic 
symmetries as periodic structures in the R". For the axial quasicrystals, which are 
quasiperiodic in two dimensions and periodic in the third one, the five-dimensional 
embedding space B5 is necessary. The icosahedral phases can be embedded in the R6, and 
one-dimensional quasicrystals in the R4. 

The principles of the higher-dimensional embedding method are demonstrated on the 

Fig. A4. Prolate (left), and oblate (right) rhombohedron, the unit tiles of the three-dimensional Penrose tiling, 
with special sites marked. 
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simple example of the one-dimensional quasiperiodic Fibonacci sequence, which can be 
described as a quasiperiodic section of a two-dimensional periodic lattice (fig. A5). 

The Fibonacci sequence may be obtained from the substitution rule 

where E denote ‘long’ and S denotes ‘short’. Starting with L one obtains the sequences 

Fig. A5. Embedding of a one-dimensional quasicrystal with point atoms in the Etz. The observed diffraction 
pattern of the Fibonacci sequence in the physical (external, parallel) space V, corresponds to a projection of an 
appropriate two-dimensional reciprocal lattice down the complementary (external, perpendicular) space V, 
(upper drawing). The quasiperiodic structure, connected via Fourier transform with reciprocal space, 
consequently results from a section of V, with the two-dimensional hypercrystal. Since the slope of V, is 
irrational with regard to the lattice vectors, the hyperatoms have to be extended (line-shaped) to get a non- 
empty intersection (lower drawing). 

Refemces: p .  408. 
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sequence number of 
L S  

L 
LS 
LSL 
LSLLS 
LSLLSLSL 
LSLLSLSLLSLLS 
LsLLsLsLLsLLsLsLLsLsL 

1 0  
1 1  
2 1  
3 2  
5 3  
8 5  

13 8 

where F, = + K-l are the Fibonacci numbers with lim 

One finds that the substitution rule always leaves the existing sequence invariant. Thus, it 
corresponds to a self-similarity operation in the case of an infinite Fibonacci sequence. 
Replacing the letters L and S by intervals of length 7 and 1 one gets, because of the relation 

= r. 
n - w  F 

n 

=-- - r  L L + S  
S L  
- 

a smcture invariant under scaling by a factor T", n being an integer. 
In fig. A6 the correlation between hyperatoms in the five-dimensional description and 

the actual quasiperiodic structure is illustrated on the example of decagonal Al,,Co,,Ni,, 
(cf. section 3.2.2). 

One big advantage of the higher-dimensional approach is that the structural informa- 
tion can be given in closed form. It is mainly contained in the position and shape of the 
hyperatoms. In terms of the tiling-decoration method, it would not be sufficient to define 
the type of tiling (what needs not always be possible in closed form) and the decoration 
of the unit tiles since, generally, the decoration can be context dependent. 

23. Symmetry of quasicrystals 

A first classification of quasicrystals, without knowing anything about their structure, can 
be performed by means of their diffraction symmetry. As for regular crystals, the diffraction 
symmetry is equivalent to the centrosymmetric point group related to the space group of the 
crystal structure. Experimentally observed have been phases with diffraction symmetries 
Wrnmm, lO/mmm, 12/mmm, and m33 so far, called octagonal, decagonal, dodecagonal and 
icosahedral phases, respectively. Systematically absent reflections in the diffraction patterns 
(fig. A7) allow the assignment of centered lattices and symmetry elements with translation 
components in the higher-dimensional description. 
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Fig. A6. Physical space electron density map (atomic structure in the (xl, x,)-plane) of decagonal A1,oCo,,Ni,, 
with aluminum, and transition metal atoms, bond lengths, and pentagon-rectangle structure motifs marked 
(upper part of the drawing). In the lower part of the drawing, a section containing the perpendicular-space 
direction x, is shown to visualize the generation of real atoms from the hyperatoms marked 1, 2, and 3. The 
outline of one unit cell is also drawn in. 

Fortunately, the number of possible superspace groups is very limited owing to the 
restriction that the corresponding point group has always to leave invariant the point 
group of the physical subspace. Thus, for the icosahedral phase, the combination of the 
three Bravais groups, generating the primitive (P), the body-centered (I) and the face- 
centered (F) hypercubic lattice, with the point groups 235 and m%, produces only six 
symmorphous and five non-symmorphous superspace groups: P235, P235,, 1235, I235,, 
F235, F235,, P21m55, P2Iq35, I21m55, F2/m35, F21q35. 

3. The structure of quasicrystals and approximants 

Depending on the preliminary character of our present knowledge of the real structure 
of quasicrystals, the following classification and description of quasicrystal structures 
may be revised in future. The fundamental relationships between quasicrystals and 

References: p .  408. 
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Fig. A7. First-layer X-ray precession photograph of decagonal AI,, ,Mn,, ,Pd,, with symmetry lO/mmm. The 
zonal systematic extinctions (marked by arrows) obey tenfold symmetry. 

approximants* seem to be fairly reliable, however. The metastable quasicrystals 
mentioned in the following have all been prepared by rapid solidification methods (melt- 
spinning or splat-cooling); stable quasicrystals have been grown from the melt in the 
same way as any other metal crystals. 

3.1. One-dimensional quasicrystals 

There are only a few, mostly metastable phases known which are periodic in two 
dimensions and quasiperiodic in the third one (table Al). The structural units in these 
phases are ordered along one direction similarly to a Fibonacci sequence (Fibonacci 
phases). Well-studied examples are A1-Pd, Al-Cu and Al-Cu-Ni phases with basic 
cP2-CsC1 type structure and vacancies ordered quasiperiodically along the [ 11 11 direction 
(CHATTOPADHYAY, LELE, THANGARAJ and RANGANATHAN [ 19871). Fibonacci phases 
also often occur as intermediate states during the transition icosahedral ++ crystalline or 
decagonal ++ crystalline phase. Examples of the latter case were found in the systems 
Al-Ni-Si, Al-Co-Cu and Al-Cu-Mn (HE, LI, ZHANG and Kuo [1988]; LI and Kuo 
[1993]). 

A stable one-dimensional quasicrystal as transformation product from the decagonal 
phase was found in a fully annealed Al,,Cu,~e,@n, sample. It has six-layer periodicity 

* A crystalline phase with a structure closely related to that of a quasicrystal is called an approximant. If both 
structures can be transformed into each other by a rotation in superspace the crystalline phase is called a 
rational approximant. 
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Table A1 
Systems with one-dimensional quasiperiodic (Fibonacci) phases (approximate compositions. given). Stable decagonal 

phases are marked by a star. 

GaAs-AlAs artificial TODD, M~RLIN,  CLARKE, MOHANTY 

Mo-V artificial KARKUT, TRISCONE, ARIOSA and 

AI-Pd, AI-Cu-(Ni) 

AI&& 

A165C~2OCO15 
*AI~sCUZOF~IOM~~ 

*&Fe lopdl5 

and AXE [1986] 

FISCHER [ 19861 
CHATTOPADHYAY, LELE, THANGARAJ and 
RANGANATHAN [ 19871 

HE, LI, ZHANG and Kuo [1988] 

TSAI, INOUE, NZASUMOTO, SATO and 

TSAI, MASUMOTO and YAMAMOTO [1992] 
YAMAMOTO [ 19921 

&5cu2oMni5 

along the original tenfold axis and eight-layer periodicity perpendicular to it (TSAI, 
INOUIE, MASUMOTO, SATO and YAMAMOTO [1992]). Another one was prepared from 
slowly cooled A1,,Pd,5Felo (TSAI, MATSUMOTO and YAMAMOTO [ 19921). Its structure can 
be derived from a decagonal quasicrystal by introducing a finite linear phason strain." 

By means of molecular beam epitaxy, Fibonacci phases were constructed from GaAs 
and AMs layers (TODD, MERLIN, CLARKE, MOHANTY and AXE [1986]), as well as from 
Mo and V layers (KARKUT, TRIscom, ARIOSA and FISCHER [1986]), in order to study 
their physical properties. 

3.2. lbo-dimensional quasicrystals 

Two-dimensional quasicrystals consist of quasiperiodically ordered atomic layers 
which are stacked periodically. They combine the structural characteristics of both 
quasicrystals and regular crystals in one and the same sample. According to their 
diffraction symmetry octagonal, decagonal and dodecagonal quasicrystals are known so 
far. 

3.2.1. Octagonal phases 
The known octagonal phases (table A2) are all metastable and closely related to the 

cF2O-pMn type, whose lattice parameter, a=6.315 A, is preserved along the translation- 
ally periodic direction of the quasiperiodic phases (fig. A8). 

* A strain field introduced parallel to the perpendicular space is called a phason-strainfield. In the case of a 
uniform shift of the hyperatoms along the perpendicular space coordinates one gets a Zinearphason-strainfiezd. 
This is equivalent to rotating the hypercrystal relative to to the parallel space, producing a rational approximant. 

References: p .  408. 
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Table A2 
Systems with octagonal phases (approximate compositions given). In the second column the translation period 

along the eight-fold axis is given. 

Ni,,SiV,, 
Cr5Ni,Si, 
Mn,Si 
Al,Mn,,Si,, 6.2A WANG, FUNG and KUO [1988] 
Fe-Mn-Si WANG and Kuo [1988] 

WANG, CHEN and Kuo [1987] 

CAO, YE and Kuo [1988] 6.2A 

3.2.2. Decagonal phases 
Decagonal phases (table A3) are built in many cases from quasiperiodically packed 

columnar clusters with eigensymmetry lO,/mmc or 10,mc. The clusters are periodic along 
their tenfold axes, their translation periods can be -4 A, -8 A, -12 A, -16 A, -24 A and 
-36 8, corresponding to stackings of 2,4, 6 ,  8, 12 and 18 flat or puckered atomic layers. 
All decagonal phases have needle-like decaprismatic crystal morphology, indicating 
preferred crystal growth along the periodic direction (fig. A9). 

(4 
Fig. A8. (a) HRTEM image taken from octagonal Cr-Ni-Si. Nuclei of the p-Mn structure are marked by an 
arrow. (b) A tiling model of the octagonal phase with p-Mn structure units (hatched) indicated (from WANG 
and Kuo [1990]). 
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Table A3 
Systems with decagonal phases (approximate compositions given). In the second column the translation period 
along the tenfold axis is given. In the third column the closely related crystalline phase (approximant) is listed. 

Stable decagonal phases are marked by stars. 

*Al,,Co,,Cu,, 4 8, A1,& 
*A1,,Co,,Ni15 4 8, A1,,Co4 

*A1,Cu,,Rh,o 4 A Al,,Co, 
*Al,,Ni,,Rh,, 

*A1,,Fe5Ni, 4 A A1&0, 

I ONi 15 4 A  
A1,Ni 4 A  
Fe52Nb1, 4 A Zr,Al, 

*Al1,Co4 88, AI,,Co, 

A1,Mn 12 A p-Al,Mn 
A17g:Fe,,6Mn,9,, 12 A 
*A170SMn16SPd13S l2 pu-A14Mn 

AI-Cr(Si) 12 A Al,&r, 

Al,5Cu,~e15 12 8, Al,,Fe, 
A~6,~r7CU,Fe8 12 8, Al,,Fe, 

A165@u&n15 

A1,Ir 16 8, A1,Ir 
A1,Pd 16 A A1,Pd 
A1,Pt 16 8, A1,Pt 
A1,Os 16 8, Al,,Os, 
A1,Ru 16 A A1,,Ru4 

AI,Rh 16 A Al,Rh, 
A1,Fe 16 A Al,,Fe, 

Al,,Mg,Pd,, 16 8, A1,Pd 

*A1,,Fel$dlo 16 8, A1,,Fe4 
*A1,,Rul,Pd,, 16 8, AI,,Fe, 
*Al,,Os,,Pd,, 16 A AI,,Fe, 
Al$Ji(Si) 16 A Al,(Ni, Si), 

Al,,Cr,,Cu,, 36 A 

STEURER and Kuo [1990] 
STEURER, HAIBACH, ZHANG, KEK and 
LUCK [1993] 
TSAI, INOUE and MAsumtO [1989] 

LEMMERZ, GRUSHKO, FREIBURG and 
JANSEN [ 19941 
ZHANG and Kuo [1989] 
LI and Kuo [1988] 
HE, YANG and YE [I9901 

MA and Kuo E1994 1 
STEURER [ 199 11 
MA and STERN [1987] 
STEURER, HAIBACH, ZHANG, BEELI and 
NISSEN [ 19941 
Kuo [1987] 

HE, Wu and Kuo [1988] 

LIU, KOSTER, MULLER and ROSENBERG 
[ 19921 

MA, WANG and Kuo [1988] 

Kuo [1987] 
BANCEL, HEINEY, STEPHENS, GOLDMAN 
and HORN [1985] 
WANG and Kuo [1988] 
FUNG, YANG, ZHOU, ZHAO, ZHAN and 

KOSHIKAWA, EDAGAWA, HONDA and 
TAKEUCHI [ 19931 

SHEN [1986] 

TSAI, INOUE and MASUMOTO [ 199 11 

LI and Kuo [1988, 19931 

OKABE, FURIHATA, MORISHITA and 
FUJIMORI [ 19921 

References: p .  408. 
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Fig. A9. Single crystals with decaprismatic growth morphology of decagonal (a) Al,,Co,,Ni,,, and (b) 
Al,Co,Cu,, (from TSAI, INOUE and MASUMOTO [1989]). 

Crystals of the decagonal phase epitaxially grown on icosahedral quasicrystals exhibit 
a defined orientation relationship: the tenfold axis of the decagonal phase is parallel to 
one of the fivefold axes of the icosahedral phase. Thus, in many cases decagonal phases 
can be considered as approximants of icosahedral quasicrystals. Stable decagonal phases 
were observed so far in the systems Al-Co-Cu (HE, ZHANG, WU and KUO [1988]), 
Al-Co-Ni, Al-Cu-Rh, Al-Ni-Rh (TSAI, INOUE and MASUMOTO [ 19891) and Al-Me-Pd 
with Me=Mn, Fe, Ru, Os (BEELI, NISSEN and ROBADEY [1991]; TSAI, INOUE and 
MASUMOTO [1991]). The Al-Mn-Pd system is the only one for which both stable 
icosahedral and decagonal phases are known. 

Three different basic decagonal structure types were identified hitherto: A1,Co,,Cu2, 
and Al,,Co,,Ni,, belong to the deca-Al-Co-Cu type, A1,,Mn2,, A1,o~SMn,,,,Pd,, and 
Al,,Cu,,Cr,Fe, to the deca-Al-Mn type, Al,d;e,$d,,, Al,,Ru,$d,,, Al,,Os,,Pd,, and 
Al,,Mn,Pd, to the deca-Al-Fe-Pd type. In all cases the most probable superspace group 
of the average structures is PlO,/mmc (table A4). 

It is remarkable that all three decagonal structure types result from different stacking 
sequences of only three types of layers: A, B and C. In all cases, similar columnar 
clusters are formed with interplanar bonds stronger than intraplanar ones. It is also 
noteworthy that the electron density maps, projected along the tenfold axis, show the 
respective hyperatoms all centered at the same special positions on the [11110] diagonal 
of the five-dimensional unit cell, as is the case for a general Penrose tiling. This means 
that at least a substructure of any decagonal phase shows close resemblance to a 
decorated Penrose tiling. For the description of the full structure, however, only a context 
dependent decoration is adequate. 
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Multiplicity 

4 

2 

Table A4 
Selected symmetry information on the five-dimensional superspace group P105/mmc. p is an integer with 

OSp 24. Reflection condition: h,h2h,Ii,h,=2n. 

Wyckoff position site symmetry coordinates 

C 5m k(pl5 p15 p15 p15 x,) 
+@I5 p15 pl5 pl.5 +-xJ 

__ 
b 1om2 &@I5 p15 pl5 p15 t )  

1 2 a Sm2 (0 0 0 0 O), (0 0 0 0 3) 

Deca-Al-Co-Cu type: 
For AI-Co-Cu, there exist studies on phase equilibria and transformation properties 
(GRUSHKO [1993]; DAULTON, KELTON, SONG and RYBA [1992]; DONG, DUBOIS, 
DEBOISSIEU and JANOT [ 1991]), on structural relationships to approximants (LIAO, Kuo, 
ZHANG and URBAN [1992]; DONG, DUBOIS, KANG and AUDIER [1992]; DAULTON and 
KELTON [1992]; SONG and RYBA 119921; Kuo [1993]), on twinning and microdomain 
structures (SONG, WANG and RYBA [1991]; LALJNOIS, AUDIER, DENOYEN, DONG, DUBOIS 
and LAMBERT [ 1990]), as well as investigations using high-resolution transmission 
electron microscopy (€€REM) (REYES-GASGA, LARA, RIVEROS and JOSE-YACAMAN 
[1992]; HIRAGA, SUN and LINCOLN [1991]), the extended X-ray absorption fine structure 
( E M S )  technique (DONG, Lu, YANG and SHAN [ 1991]), scanning tunneling micro- 
scopy (KORTAN, BECKER, THIEL and CHEN [1990]), or fast-ion channeling (PLACHKE, 
KUPKE, CARSTANJEN and EMNCK [1993]). For Al-Co-Ni the stability range between 
500" C and the melting point was investigated (KEK [1991]), and a wealth of HRTEM and 
electron diffraction studies of the decagonal phase in comparison with its approximant phases 
was performed (e.g., HIRAGA, LINCOLN and SUN [1991]; EDAGAWA, ICHIHARA, SUZUKI 
and TAKEUCHI [1992]). Also a large number of theoretical studies have been published 
dealing with structure modelling or tiling decoration to understand the rules governing 
the formation of quasiperiodic phases (HENLEY [1993]; R o w  [1993]; WIDOM and 
F'HILLIPS [1993]; KANG and DUBOIS [1992]; BURKOV [1991]; BURKOV [1992]). 

From the results of the five-dimensional single crystal X-ray structure analyses of 
decagonal Al&o,,Cu, (STEURER and Kuo [ 19901) and A1,0Co,5Ni,, (STEURER, 
HAIBACH, ZHANG, KEK and LOCK [1993]), the following characteristics of the deca-Ai- 
Co-Cu structure type can be derived: 

(1) Two-layer structure with approximate translation period 4 A. There are two planar 
layers stacked with sequence Aa (a means A rotated around 36" under the action 
of the 10,-screw axis). At lower temperature a disordered superstructure doubling 
the translation period is observed. 
There are two hyperatoms per asymmetric unit on the special Wyckoff position 
(b): one with p = 2 consisting mainly of transition metal (marked l), and one with 
p = 4  (marked 2) consisting of AI atoms (fig. A10). 

(2) 

References: p .  408. 
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0.0 0.5 1 .o 1.5 [ lOOlO]  2.0 

Fig. A10. Characteristic (101 10) section of the five-dimensional electron density of decagonal Al,,Co,,Ni,,. The 
hyperatoms 1, and 2 generate an atomic layer A separated by e2 8, from the symmetrically equivalent layer a 
generated by the I0,screw axis which is parallel to [OOlOO]. 

Shape and chemical composition of the hyperatoms are roughly compatible with 
tiling models like the binary tiling model (BURKOV [1991]), for instance. 
Columnar clusters (0% 20 8,) with eigensymmetry 105/mmc can be identified as 
basic structural units (fig. All) .  Their cross sections can be described as parts of 
a Penrose tiling with edge lengths qz2 .5  A. The unit rhombs are decorated by 
atoms on the vertices and in some cases on the diagonals. 
The global structure can be described as a rhombic tiling with unit tiles of edge 
length ar= 20 8, (equivalent to the distance between two = 20 A columnar clusters), 
decorated by the columnar clusters at the vertices and at one position on the long 
diagonal of the fat rhomb (fig. A12). 
The formation of a network of icosagonal rings of pentagonai and rectangular 
structure motifs may act as weak matching rule stabilizing quasiperiodic tilings 
(fig. A13). 
A closely related approximant structure is that of monoclinic Al,,Co, (HLJDD and 
TAYLOR [ 19621; BARBIER, TAMURA and VERGER-GAUGRY [ 19931). It contains 
locally similar structure motifs (pentagon-rectangle strips) which are arranged in a 
different way (wavy bands instead of icosagons), however (fig. A14). 

Deca-Al-Mn type: 
Decagonal Al,,Mn,, A170.5Mn16,jPd,g and A1,,Cu2,Cr7Fe, are representatives of the deca- 
A1-Mn type with - 12 A translational period. Stable decagonal A170.5Mn16,5Pd13, may be 
considered as Pd-stabilized Al,*Mn,,. There exist several HRTEM (BEELI, NISSEN and 
ROBADEY [1991]; HIRAGA, SUN, LINCOLN, KANEKO and MATSUO [19911; HIRAGA and 
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SUN [1993]; BEELI and NISSEN [1993]) and X-ray diffraction investigations (FREY and 
STEURER [1993]; STEURER, HAIBACH, ZHANG, BEELI and NISSEN [1994]) and also structure 
determinations of the approximants A1,Mn (HIRAGA, KANEKO, MATSUO and HASHIMOTO 
[1993]) and p-AL,, ,,Mn (SHOEMAKER [ 19931). Stable decagonal Al,,Cu,Cr,Fe,, Le., Fe- 
stabilized metastable (?) Al,Cu,,,Cr,,, and its approximants were studied by (LIu, K~STER, 

+ + 
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Fig. A l l .  (a), and (b): Schematic drawings illustrating how the =20 8, columnar clusters (shown in sections) 
agglomerate to a fat decorated Penrose unit rhomb. (c) Stacking principle of the layers A and a along the line 
drawn in the uppermost section of (a). 

MULLER and ROSENBERG [1992]; KANG, DUBOIS, MALAMAN and VENTURINI [1992]). 
The X-ray single-crystal structure analyses of Al,,Mn,, (STEURER [1991]) and 

Al,o,Mnl,,Pdl, ( S T ~ E R ,  HAIBACH, ZHANG, BEELI and NISSEN [1994]) allow the 
characterization of the deca-Al-Mn type in the following way: 

Six-layer structure with approximate translation period 12 A. One puckered (k0.3 
A) layer A (related to the layer a of the deca-Al-Co-Cu type) and one planar layer 
B are stacked with sequence ABAaba. 
Four hyperatoms per asymmetric unit: two on the Wyckoff position (c); one with 
p= 1, x,=O.O63 (marked l), consisting in its core region of transition metal (TM) 
and in its remaining part of AI, and one with p = 3, x5 = 0.1 13 (marked 2), consist- 
ing of Al. Two further hyperatoms are located on Wyckoff position (b), one with 
p=O (marked 4), consisting mainly of Al, and one with p = 3  (marked 5), of 
similar chemical composition as hyperatom 1 (fig. A15). 
Shape and chemical composition of the hyperatoms are roughly compatible with 
tiling models such as the triangular tiling model (BURKOV [1992]; WELBERRY 
[ 1989]), for instance. 
Columnar clusters (diameter = 20 A) with point symmetry lO,/mmc can be 
identified as basic structural units. Their cross sections can be described as sections 
of a Penrose tiling with edge lengths a, = 2.5 A of the unit rhombs (fig. A16). 
The global structure can be described as a random Robinson-triangle tiling with 
unit tiles of edge lengths S = 20 A, and L = TS, decorated by the columnar clusters 
on the vertices (fig. A17). 
The decagonal phase shows close resemblance to the respective icosahedral phase, 
orthorhombic A1,Mn (HIRAGA, KANEKO, MATSUO and HASHIMOTO [1993]), and 
hexagonal p-A&.12Mn (SHOEMAKER [1993]), which has nearly all Mn atoms 
icosahedrally coordinated. 
Contrary to the phases with deca-Al-Co-Cu type, those with deca-Al-Mn type show 
icosahedral pseudosymmetry and can be considered as rational approximants of 
icosahedral quasicrystals. There is also a larger amount of Mackay icosahedra (MI) or 
fragments of MI present in this structure type than in the other decagonal ones. 
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Fig. A12. (a) HRTEM image of decagonal AI,,Co,,Ni,, (b) simulation image calculated from the 20 8, 
columnar cluster (from HIRAGA [1992]). 
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Fig. A13. Parallel space section with Penrose tiling from the type of q=20 8, rhombs shown in fig. A l l  
indicated. The pentagonal and rectangular structure motifs form a network of interconnected icosagons. 

Deca-Al-Fe-Pd type: 
The stable decagonal phases A18,,Fel,Pdl,, Al,,Ru,,Pd,,, Al,,Os,$d,, (TSAI, INOUE and 
MASUMOTO [ 19911) and Al,,Mn,Pd, (TSAI, YOKOYAMA, INOUE and MASUMOTO [1991]) 
belong to the deca-Al-Fe-Pd type with 16 8, translational periodicity. A1,~el,Pd,, is the 
only one of this group studied so far by X-ray single-crystal diffraction (HAIBACH, 
ZHANG and STEURER [1994]), electron diffraction and HRTEM (TSAI, INOUE and 
MASUMOTO [1993]), and also by Mossbauer spectroscopy (LAWTHER and DUNLAP 
[ 19931). A stable one-dimensional quasiperiodic phase, a rational approximant of the 
decagonal phase, was also identified in the system Al-Fe-Pd (TSAI, MASUMOTO and 
YAMAMOTO [1992]). On the basis of early results, the deca-Al-Fe-Pd type may be 
characterized in the following way: 

(1) Eight-layer structure with approximate translation period 16 8,. Two puckered 
(kO.3 8,) layers A and C, and one planar layer B are stacked with sequence 
CABACaba, with C identical to c. 
Four hyperatoms per asymmetric unit: one on the Wyckoff position (a), one on the 
Wyckoff position (c) with p = 1, x5 = 0.125, and two with p = 0 and 2 on (b). 

(2) 
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Fig. A14. Schematic drawing of the puckered atomic layer of the monoclinic approximant AI,,Co, with the 
same pentagon-rectangle strips as found in the decagonal phase. One unit cell is also drawn in. 

(3) 

(4) 

Shape and chemical composition of the hyperatoms are roughly compatible with 
tiling models like the binary tiling model (BURKOV [1991]), for instance. 
Columnar clusters (0 = 20 A) with point symmetry lO,/mmc can be identified as 
basic structural units. Their cross sections can be described as section of a Penrose 
tiling with edge lengths q ~ 2 . 5  A of the unit rhombs. 
The global structure can be described as a rhombic tiling with unit tiles of edge 
lengths a, = 20 A decorated by the columnar clusters at the vertices and at one site 
on the long diagonal of the fat rhombs. 

(4) 

3.2.3. Dodecagonal phases 
Beside one, probably stable, dodecagonal T4Te phase (KRUMEICH, CONRAD and 

HARBRECHT [1994]), only metastable dodecagonal phases are known so far (table A5). 
These phases are closely related to the tP3O-cCrFe type phases, which are built up from 
hexagon-triangle and triangle-square layers (fig. A18). The c lattice parameter of the (T- 

phase corresponds with 4.544 A to the translation period of the dodecagonal phases. 

3.3. Icosahedral phases 

The icosahedral phases discovered so far (table 6) can be grouped into two main 
c laws  (HENLEY and ELSER [ 19861): the ico-Al-Mn structure type (A) with quasilattice 
constant a, - 4.6 A and free electron per atom ratio of - 1.75, and the ico-AI-Mg-Zn 
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Fig. A15. Characteristic (101 10) section of the five-dimensional electron density of decagonal AI,,,Mn,,,Pd,,. 
The hyperatoms create a six-layer structure ABAaba. 

structure type (B) with 4- 5.2 A and free electron per atom ratio of - 2.1. The A type 
phases contain 54-atom Mackay icosahedra as structural building elements which also 
occur in the approximant a-Al-Mn-Si, while the B type consists of 137-atom Bergmann 
rhombic triacontahedra which are also typical for Frank-Kasper phases like 

Table A5 

period along the twelve-fold axis is given. Stable dodecagonal phases are marked by a star. 
Systems with dodecagonal phases (approximate compositions given). In the second column the translation 

cr70.6Ni29.4 ISHIMASA, NISSEN and FUKANO [ 19851 

CHEN, LI and Kuo [I9881 } Ni2V, 4.5 A 
Ni,,SiV,, 4.5 A 
*Ta,Te 20.7 8, KRUMEICH, CONRAD and HARBRECHT 

[ 19941 
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Mg,,(Al,Zn), for instance. The A-type icosahedral phases are mostly aluminum- 
transition metal compunds contrary to the B-type phases which rarely contain transition 
metals. 

The first quasicrystal structure ever studied was that of metastable ico-Al-Mn and 

(a) 

Figure continued on p .  394 

References: p. 408. 
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Fig. A16. (a) Schematical drawings illustrating how the =20 8, columnar clusters (shown in sections) agglomer- 
ate to a Robinson triangle (coincidence lines are dotted). (b) Stacking principle along the full line drawn in the 
uppermost section of (a). The pentagons and decagons in the right upper part marked by a bracket form one 
half of a 54-atom Mackay icosahedron illustrated in (c). 

structural resolution. The discovery of very well ordered icosahedral quasicrystals in the 
systems A l 4 - M e ,  with Me=Fe, Ru, Os (TM, INOUE and MASUMOTO [1987]; TSAI, 
INOUE and MASUMOTO [ 1988lb) and Al-Me-Pd, with Me = Mg, Mn, Re (TSAI, INOUE, 
YOKOYAMA and MASUMOTO [ 19901; KOSHIKAWA, SAKAMOTO, EDAGAWA and TAKEUCHI 
[1992]) brought the turning point. During the last years, structure analyses focused on 
ico-Al-Cu-Fe (CORNIER-QUIQUANDON, QUIVY, LEFEBVRE, ELKAIM, HEGER, KATZ and 

MOZER [ 19931) and ico-Al-Mn-Pd (BOUDARD, DEBOISSIEU, AUDIER, JANOT, HEGER, 
BEELI, NISSEN, VINCENT, IBBERSON and DUBOIS [ 19921). In both cases, the ternary phase 
diagrams have been intensively investigated and the phase transitions studied (AUDIER, 
DURAND-CHARRE and DEBOISSIEU [1993]). 

GRATIAS [ 199 11; CORNIER-QUIQUANDON, BELLISENT, CALVAYRAC, CAHN, GRATIAS and 

3.3.1. Brimitbe hypercubic icosahedral phases 
Representatives of stable quasicrystals with superspace group Pm% are ico- 

Al,M[n,,Si, (JANOT, DEBOISSIEU, DUBOIS, and PANNETIER [ 1989]), ico-Al,CuLi, 
(DEBOISSIEU, JANOT, DUBOIS, AUDIER and DUBOST [ 19911; YAMAMOTO [1992]), ico- 
G~,$4g36.7Z&,2,, (OHASHI and SPAEPEN [ 19871) and ico-Al,,M&Pd,, (KOSHIKAWA, 
SAKAMOTO, EDAGAWA and TAKEUCHI [1992]). The structures of ico-Al,,Mn,,S& and ico- 
Al6CuiL1, (fig. A19) were analysed using X-ray powder diffraction and neutron scattering 
techniques. Of the large number of papers dealing with other structure sensitive methods, 
only two HRTEM studies will be quoted (HIRAGA [1991]; NISSEN and BEELI [1993]). 
The results are shortly summarized as follows: 
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Table A6 
Systems with icosahedral phases (approximate compositions given). The quasilattice constant q=l/a*,,, is 
listed in the second column. The structures with face-centered hypercubic unit cells are. marked by F, the 
ico-AI-Mn-Si structure type is labeled by A, and that of ico-(AI, Zn)-Mg by B. Stable quasicrystals are 

marked by asterisks. 

A1-MO 

A1,Ru 
A14V 4.75 A 
A1-W 

AI(Cr,,Fex) 
Al(Mn,-,Fe,) 
A162Cr19Si,9 4.60 A 

A165Cu20Mn15 F 
*A~~,CU~OOS~, 4.51 8, F 
*A1,,Cu20Ru,5 4.53 8, F 
A165Cu20V,5 4.59 A 
A17,,FemTa,, 4.55 A 
A173Mn2,Si, 4.60 A 
A4&n20Ge20 
A175.5Mn17.5RU4Si3 

Al,Mn,,,Fe,,Si, 4.59 a 
AI,5Mnl,Cr,Si, 

*A170,5Mn8,5P&1 4.56 A F 
*A170,,P~o,,Re, 4.60 F 

*AI-Mn-Pd-B 4.55 A F 
"AI-Cu-Mn-B 4.51 A F 

A 
A 

A 

A 

A 
A 

A " 1  
A 
A 

A 

A 

A 
A 

A 

A " 1  
A 
A 
A 
A 
A 

A 
A 

A 

A " 1  

ZHANG, WANG and Kuo [1988] 
BANCEL, HEINEY, STEPHENS, GOLDMAN 
and HORN [ 19851 
SHECHTMAN, BLECH, GRATIAS and CAHN 
[ 19841 
CHEN, PHILLIPS, VILLARS, KORTAN and 
INOUE [ 19871 
BANCEL and HEINEY [ 19861 
ANLAGE, FULTZ and KRISHNAN [1988] 
CHEN, PHILLIPS, VILLARS, KORTAN 
and INOUE [ 19871 

SCHURER, KOOPMANS and van der 
WOUDE [1988] 
INOUE, KIMURA, MASUMOTO, TSAI and 
BIZEN [1987] 
SRINIVAS, DUNLAP, BAHADUR and 
DUNLAP [1990) 
BANCEL and HEINEY [1986] 

TSAI, INOUE and MASUMOTO [1988a] 
EBALARD and SPAEPEN [1989]; TSAI, 
INOUE and MASUMOTO [1988d] 
HE, Wu and Kuo [1988] 

TSAI, INOUE and MASUMOTO [1988b] 

TSAI, INOUE and MASUMOTO [1988a] 
TSAI, INOUE and MASUMOTO [1988c] 
GRATIAS, CAHN and MOZER [ 19881 
TSAI, INOUE and MASUMOTO [1988d] 
HEINEY, BANCEL, GOLDMAN and STEPHENS 
[ 19861 
MA and STERN [1988] 
NANAO, DMOWSKI, EGAMI, RICHARDSON 
and JORGENSEN [ 19871 

TSAI, INOUE, YOKOYAMA and 
MASUMOTO [ 19901 

YOKOYAMA, INOUE and MASUMOTO [ 19921 
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Table A6-Continued 

A ;\ A 

F F i }  

M72pd25v3 F 
A170Fe13pd17 F 
A172Cr8Pd20 F 

I OPdl 5 F 

* AI-Pd-Cr-Fe F 

* Al- Pd-Mo-Ru 
" Al-Pd-CO-V 

*Al-Pd-W-OS F A 

AlS2Mg,,Pd3, 4.63 8, F 

Ti,Fe 4.72 8, F 
Ti,Mn 4.79 8, F 
Ti,Co 4.82 8, F 

T%6Ni2*si16 F A  

F A  " 1  A~,LMg*Rh,, 

:1 A 
Ti,(N i,V) F A 

v41Ni36si7.3 A 
Pd58.8U'20.6Si20.6 5.14 A A 

*AI,M&Pd,, 5.13 8, B 

*A1,CuLi3 5.04 A B 
A1,CuMg4 5.21 8, B 

A151Cu12.5- 5.05 8, B 
wXm36.5-x) 
Al5&i,,Mgz 5.17 8, F B 

A16AULi3 5.11 8, 
Al,,Zn,,Li,, 5.11 A 
A15dV[g3,Ag,, 5.23 A 

AI-Ni-N b B 

"> 
(A1,Zn),Mg3, 5.15 8, B 
(A1,Zn,Cu),,Mg3, 5.15 8, B 

*Ga,,Mg,,Zn,, 5.09 B 
*Mg-Y-Zn B 
*Mg-Y-Zn-Zr B 

Nb-Fe B 

TSAI, YOKOYAMA, INOW and 
MASUMOTO [ 19901 

YOKOYAMA, TSAI, INOUE, 
MASUMOTO and CHEN [1991] 

KOSHIKAWA, EDAGAWA, HONDA and 
TAKEUCHI [ 19931 

KELTON, GIBBONS and SABES [1988] 

ZHANG, YE and Kuo [1985] 
CHATTERJEE and O'HANDLEY [ 19891 
Kuo, ZHOU and LI [1987] 
POON, DREHMANN and LAWLESS [ 19851 

KOSHIKAWA, SAKAMOTO, EDAGAWA and 
TAKEUCHI [ 19921 

SAINTFORT and DUBOST [1986] 
SASTRY, RAo, RAMACHANDRARAO and 
ANANTHARAMAN [ 19861 
SHEN, SHIflET and POON [1988] 

NIIKURA, TSAI, INOUE, MASUMOTO and 
YAMAMOTO [1993] 

CHEN, PHILLIPS, VILLARS, KORTAN 
and INOm [1987] 
MUKHOPADHYAY, CHATTOPADHYAY, and 
RAGANATHAN [ 19881 

HENLEY and ELSER [1986] 
MUKHOPADHYAY, THANGARAJ, CHATTO- 
PADHYAY and RANGANATHAN 119871 
OHASHI and SPAEPEN [ 19871 
Luo, ZHANG, TANG and ZHAO [1993] 
TANG, ZHAO, Luo, SHENG and ZHANG 
[ 19931 
Kuo [1987] 
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Multiplicity 

6 

Table A7 
Selected symmetry information on the six-dimensional superspace group Pm% 

Wyckoff position site symmetry coordinates 

C mS ~ ( 1 0 0 0 0 0 )  

1 b m3S & ( l  1 1  1 1  1) 

1 a m55 (0 0 0 0 0 0)  
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Fig. A17. (a) HRTEM image of decagonal A1,0,5Mn,6,5Pd,, with a point to point resolution of 2 A, and (b) 
comparison with the projected decagonal AI-Mn structure (from BEELI and NISSEN [1993]). (c) Physical space 
projection of the electron density of decagonal 5Mn,6, 5Pd,, with large, and small ROBINSON triangles drawn 

The hyperatoms occupy the Wyckoff positions (a), (b) and (c) (table A7), Le., the 
vertices, the body center and the mid-edge positions of the six-dimensional 
hypercubic unit cell. In the case of ico-Al,,Mn,,Si,, one hyperatom is centered at 
(a), its core consisting of Mn and the surrounding part of AUSi. The second 
hyperatom is located at the body center (b), (c) remains unoccupied. Ico-Al,CuLi, 
has AUCu-hyperatoms at (a) and (c), and one Li-hyperatom at (b) (figs. A20 and A21). 
The structures of ico-A1,,Mn,,Si6, ico-Al,CuLi, and their related crystalline phases 
show close resemblance in the six-dimensional description. This confirms the 
assumption that cubic ( Y - A ~ ~ ~ M ~ , ~ S ~ , ,  and R-Al,CuLi, are (1,l)-approximants 
related to the icosahedral phases merely by a hyperspace rotation. 
There exist orientation relationships for epitaxially grown a-Al,,Mn,,Si,, on 
icosahedral Al,,Mn,,Si,: [loo] of the cubic phase is parallel to a twofold direction 
of the icosahedral phase, and [ 11 11 is parallel to a threefold one. 

References: p .  408. 
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Fig. A18. Dodecagonal tiling as example for a quasilattice with twelve-fold symmetry. 

Fig. A19. Single crystal of ico-Al,,CuLi, with triacontahedral shape (from KORTAN, CHEN, PARSEY and 
K~MERLING [1989]). 
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(4) cr-AI,,Mn,,Si,, contains a high percentage of atoms forming slightly distorted 
Mackay icosahedra (78.3%), and its structure can be described by a near-bcc 
packing of these 54-atom polyhedra. Ico-A1,,Mn,,Si6, on the other hand, contains 
66.6% of atoms in regular but often fragmented Mackay icosahedra. 
R-Al,CuLI, can be described as bcc packing of distorted Pauling triacontahedra or 
104-atoms Samson complexes (fig. A22). These structure motifs are also locally 
present in ico-A&CuLi,. In the Penrose tiling description, there are icosahedral 
clusters placed on the twelvefold vertices. 

(5) 

3.3.2. Face-centered hypercubic icosahedral phases 
The face-centering of the six-dimensional hypercubic unit cell results from chemical 
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Fig. A21. Hyperatoms of the ideal ico-Al,CuLi, structure derived from the R-AI,CuLi, structure: (a) vacant 
twelve-fold, (b) vertex AYCu, (c) mid-edge AYCu, (d) body-center Li surrounded by (e) AVCu hyperatoms. The 
domain (a) has to be subtracted from (b) to remove unoccupied twelve-fold vertices (from YAMAMOTO [1992]). 

ordering of the atoms. Therefore, the resulting structure may also be described as a 
superstructure, with twice the lattice parameters of the primitive hypercubic unit cell used 
in the preceding paragraph: the Wyckoff positions occupied are often named n, = (0 0 0 
0 0 0), n,=)(l 0 0 0 0 0), bc,=f(l 1 1 1 1 1) and bc,=f(l 1 1 1 1 1). 

Representatives of stable quasicrystals with superspace group Fm% are ico- 
Al-Cu-Me, with Me=Fe, Ru, Os (TSAI, INOUE and MASUMOTO, 1989; TSAI, INOUE and 
MASUMOTO [ 1988bl) and ico-Al-Me-Pd, with Me=Mn, Re (TSAI, INOUE, YOKOYAMA 

ELKAIM, HEGER, KATZ and GRATIAS [ 199 11; CORNIER-QUIQUANDON, BELLISENT, 
CALVAYRAC, CAHN, GRATIAS and MOZER [ 19931) and ico-Al,,,Mn,,Pd,, (BOUDARD, 
DEBOISSIEU, AUDIER, JANOT, HEGER, BEELI, NISSEN, VINCENT, IBBERSON and DUBOIS 
[ 19921) were analysed using X-ray diffraction and neutron scattering techniques on 
single- and polycrystalline samples, and by HRTEM (BEELI, NISSEN and ROBADEY 
[1991]; HIRAGA [1991]; KRAKOW, DI VINCENZO, BANCEL, COCKAYNE and ELSER 
[ 19931). Ico-A1,,Cu,,Ru1, was investigated by anomalous X-ray diffraction on poly- 
cnstalline samples (Hu, EGAMI, TSAI, INOUE and MASUMOTO [ 19921). The results of the 
structure analyses can be summarized briefly: 

(1) The hyperatoms occupy the positions n,, n,, bc, and bc,, i.e. the vertices, mid-edge 
positions, and body centers of the subhypercubes of the six-dimensional face- 
centered hypercubic unit cell. In the case of ico-Al,,Cu,,Fe,,, Fe is concentrated at 

and MASUMOTO [ 19901). ICO-A1,,CU2,Fe,2 (CORNIER-QUIQUANDON, QUIVY, LEFEBVRE, 
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the core of hyperatoms centered on n, and n2 and surrounded by successive shells 
of Cu and Al. Cu also occupies the body center bc,, while bc, remains unoccupied. 
For ico-A1,0,,Mn8,,Pd,, (fig. A23) was found that Mn occupies the core of the 
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b 

Fig. A23. (a) Single crystal of ico-AI,,Mn,$d,, with shape like an (b) icosidodecahedron (from TSAI, INOUE, 
YOKOYAMA and MASUMOTO [1990]). 

hyperatom on n, surrounded by an intermediate Pd and one outer A1 shell, the 
hyperatom at n2 consists of Mn surrounded by Al; at bc, a small Pd and at bc, 
possibly a small A1 hyperatom may be located (fig. A24). 
The shapes of the hyperatoms for Al,,Cu,,Fe,, were assumed as a large triaconta- 
hedron at n,, a truncated triacontahedron of the same size at n2 and a small 
polyhedron bounded by twofold planes at bc, (fig. A25). For A1,,,,Mn8,,Pd2, only 
spherical hyperatomic shapes were used in the refinements. 
Since the hyperatoms at the lattice nodes have a subset in common with the 
triacontahedra generating a canonical Penrose rhombohedra tiling, also a subset of 
the atoms in the three-dimensional quasicrystal structure is located on the vertices 
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of a Penrose tiling. The location of the other atoms, however cannot be described 
by a simple decoration of the unit tiles, a context dependent decoration would be 
necessary. 
In the three-dimensional structure of ico-A1,0,,Mn,,5Pd,, two types of pseudo- 
Mackay cluster are present: type 1 refers to a large icosahedron of MdA1 and a 
icosidodecahedron of PdAl, type 2 to a large icosahedron of Mn/Pd and a 
icosidodecahedron of Al. The small icosahedron core of MI is absent. 

(4) 
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b c 

Fig. A25. The shapes of the hyperatoms in ico-AI,Cu,,Fe,,. (a) Fe/Cu/Al triacontahedral hyperatom in the 
origin n,, (b) mid-edge (n,) Fe/Cu/Al hyperatom, and (c) CdAl hyperatom at bc, (from 
CORNIERQUIQUANDON, QUIVY, LEFEBVRE, ELKAIM, HEGER, KATZ and GRATIAS [ 19911). 

References 

ANLAGE, S.  M., B. FULTZ and K. M. KRISHNAN, 1988, J. Mater. Res. 3,421-5. 
AUDIER, M., M. DURAND-CHARRE and M. DEBOISSIEU, 1993, Phil. Mag. B68, 607-18. 
AUDIER, M., J. PANNETIER, M. LEBLANC, C. JANOT, J.M. LANG and B. DUBOST, 1988 Physica B153, 13642. 
BANCEL, P. A., and P.A. HEINEY, 1986, Phys. Rev. B33,7917-22. 
BANCEL, P. A., P. A. HEZNEY, P. W. STEPHENS, A.I. GOLDMAN and P.M. HORN, 1985, Phys. Rev. Lett. 54, 

BARBIER, J.-N., N. TAMURA and J.-L. VERGER-GAUGRY, 1993, J. Non-Crystall. Solids 153,154, 126-31. 
BEELI, C., and H.-U. NISSEN, 1993, J. Non-Crystall. Solids 153,154, 463-7. 
BEELZ, C., H.-U. NISSEN and J. ROBADEY, 1991, Phil. Mag. Lett. 63, 87-95. 
BOUDARD, M., M. DEBOISSIEU, C. JANOT, J. M. DUBOIS and C. DONG, 1991, Phil. Mag. Lett. 64, 197-206. 
BOUDARD, M., M. DEBOISSIEU, M. AUDIER, C. JANOT, G. HEGER, C. BEELI, H.-U. NISSEN, H. VINCENT, R. 

BURKOV, S. E., 1991, Phys. Rev. Lett. 67, 614-7. 
BURKOV, S. E., 1992, Phys. Rev. B47, 12325-8. 
CAHN, J. W., D. GRATIAS and B. MOZER, 1988, J. Phys. France 49,1225-33. 
CAO, W., H. Q. YE and K. H. Kuo, 1988, Phys. Status Solidi (a) 107, 511-9. 

2422-5. 

IBBERSON and J. M. DUBOIS, 1992, J. Phys.: Condens. Matt. 4, 10149- 68. 



App. 42-1. 4, Refs. The structure of quasicrystals 409 

CHA- R, and R.C. O'HANDLEY, 1989, Phys. Rev. B39, 8128-31. 
CHA-ITOPADHYAY, K., S. LELE, N. THANGARAJ and S .  RANGANATRAN, 1987, Acta Metall. 35,727-33. 
CHEN, H., D.X. LI and K.H. Kuo, 1988, Phys. Rev. Lett. 60, 1645-8. 
CHEN, H.S., J. C. -LIPS, P. VILLARS, A.R. KORTAN and A. INOUE, 1987, Phys. Rev. B35,9326-9. 
COOPER, M., and K. ROBINSON, 1966, Acta Crystallogr. 20, 614-17. 
CORNIER-QUIQUANDON, M., R. BELLISENT, Y. CALVAYRAC, J. W. CAHN, D. GRATIAS and B. MOZER, 1993, J. 

CORNIER-Q~IQUANDON, M., A. QUIVU, S. LEFEBVRE, E. ELKAIM, G. HEGER, A. KATZ and D. GRATIAS, 1991, 

DAULTON, T.L., and K.F. KELTON, 1992, Phil. Mag. B66, 37-61. 
DAULTON, T.L., and K.F. KELTON, 1993, Phil. Mag. B68,697-711. . 
DAULTON, T. L., K.F. KELTON, S. SONG and E. R. RYBA, 1992, Phil. Mag. Lett. 65.55-65. 
DEBOISSIBU, M., C. JANOT, J.M. DUBOIS, M. AUDLER and B. DUBOST, 1991, 
J. Phys.: Condens. Matt. 3, 1-25. 

DONG, C., J.M. DLJBOIS, M. DEBOISSEU and C. JANOT, 1991, J. Phys.: Cond. Matt. 3, 1665-73. 
DONG, C., J.M. DUBOIS, S. S. KANG and M. AUDIER, 1992, Phil. Mag. B65, 107-26. 
DONG, J., K. Lu, H. YANG and Q. SHAN, 1991, Phil. Mag. B64,599-609. 
EBALARD, S., E SPAEPEN, 1989, J. Mater. Res. 4, 3943. 
EDAGAWA, K., M. ICHIHARA, K. SUZUKI and S. TAKEUCHI, 1992, Phil. Mag. Lett. 66, 19-25. 
FREY, E, and W. STEURER, 1993, J. Non-Crystall. Solids 153,154, 600-5. 
FUNG, K. K., C. Y. YANG, Y. Q. ZHOU, J. G. ZHAO, W. S .  ZHAN and B. G. SHEN, 1986, Phys. Rev. Lett. 56, 

GRATIAS, D., J. W. CAHN, B. MOZER, 1988, Phys. Rev. B38, 1643-6. 
GRUSHKO, B., 1993, Mater. Trans. JIM 34,116-21. 
HAIBACH, T., B. ZHANG and W. STEURER, 1994, in preparation. 
HE, L.X., X. Z. Lr, Z. ZHANG and K. H. KUO, 1988, Phys. Rev. Lett. 61, 1116-8. 
HE, L. X., Y. K. Wu, K. H. Kuo, 1988, J. Mater. Sci. 7, 1284-6. 
HE, A.Q., Q.B. YANG and H.Q. YE, 1990,61,69-75. 
HE, L. X, Z. ZHANG, Y. K. WU and K. H. Kuo, 1988, Inst. Phys. Conf. Ser. No. 93,2,501-2. 
HEINEY, P. A., P. A. BANCEL, A.I. GOLDMAN and P. W. STEPHENS, 1986, Phys. Rev. B34, 6746-51. 
HENLN, C. L., 1993, J. Non-Crystall. Solids 153,154, 172-6. 
HENLEY, C. L., and V. ELSER, 1986, Phil. Mag. B53, L59-66. 
HIRACiA, K., 1991, J. Electron Microsc. 40, 81-91. 
HIRAUA, K., 1992, Electron Microscopy 2, EUREM 92, Granada, Spain. 
WOA, K., M. KANEKO, Y. MATSUO and S. HASHIMOTO, 1993, Phil. Mag. B67, 193-205. 
HIRACIA, K., E J. LINCOLN and W. SUN, 1991, Mater. Trans. 32, 308-14. 
HIRAGA, K., and W. SUN, 1993, Phil. Mag. Lett. 67, 117-23. 
HIRAGA, K., W. SUN and F.J. LINCOLN, 1991, Jap. J. Appl. Phys. 30, L302-5. 
HIRAOA, IC, W. SUN, E J. LINCOLN, M. KANEKO and Y. MATSUO, 1991, Jap. J. Appl. Phys. 30,2028-34. 
HIRAGA, K., B.P. ZHANG, M. HIWAYASHI, A. INOUE and T. MASUMOTO, 1988, Jpn. J. Appl. Phys. 27, 

Hu, R., T. EGAMI, A.P. TSAI, A. INOUE and T. MASUMOTO, 1992, Phys. Rev. B46,6105-14. 
HUDD, R.C., and W.H. TAYLOR, 1962, Acta Crystallogr. 15,441-2. 
INOUE, A., H. M. KIMURA, T. MASUMOTO, A. P. TSAI and Y. BIZEN, 1987, J. Mater. Sci. Lett. 67,771-4. 

JANOT, C., 1992, Quasicrystals. A Primer (Clarendon Press, Oxford). 
JANOT', C., M. DFBOISSIEU, J. M. Dusors and J. PANNETIER, 1989, J. Phys.: Condens. Matt. 1, 102948. 
JANSSEN, T., 1986, Acta Crystallogr. A42, 261-71. 
KANG, S., and J.M. DUBOIS, 1992, J. Phys.: Condens. Matt. 4, 10169-98. 
KANG, S. S., 9. M. DUBOIS, B. MALAMAN and G. VENTURINI, 1992, Acta Crystallogr. B48, 77C-6. 
KARKUT, M. G., J.M. TRISCONE, D. ARIOSA and 0. FISCHER, 1986, Phys. Rev. B34,4390-3. 
KEK, S., 1991, Thesis, Univ. Stuttgart, FRG. 
KELTON, K. F., P. C. GIBBONS and P. N. SABES, 1988, Phys. Rev. B38,781&3. 

Non-Crystall. Solids 153,154, 10-4. 

Phys. Rev. B44, 2071-84. 

2060-3. 

L951-3. 

ISHIMASA, T., H.-U. NISSEN and Y. FUKANO, 1985, Phy~. Rev. Lett. 85,511-3. 



410 W! Steurer App. Ch. 4, Refs. 

KORTAN, A.R., R. S. BECKER, EA. Tma and H. S. C m ,  1990, Phys. Rev. Lett. 64,200-3. 
KORTAN, A.R, H. S. CHEN, J.M. PAR= and L.C. KIMERLING, 1989, J. Mater. Sci. 24, 1999-2005. 
KOSHIKAWA, N., K. EDAGAWA, Y. HONDA and S. TAKBUCHI, 1993, Phil. Mag. Lett. 68, 123-9. 
KOSHIKAWA, N., S. SAKAMOTO, K. EDAGAWA and S. TAKEUCHI, 1992, Jpn. J. 
Appl. Phys. 31, 966-9. 

m o w ,  W., D. P. DIVINCENZO, P. A. BANCEL, E. COCKAYNE and V. ELSER, 1993, J. Mater. Res. 8, 24-7. 
KRUMEICH, E, M. CONRAD and B. HARBRECHT, 1994, 13th International Congress on Electron Microscopy, 

Kuo, K.H., 1987, Mater. Sci. Forum 22-24, 131-40. 
Kuo, K.H., 1993, 2'. Non-Crystall. Solids 153,154, 40-4. 
Kuo, K.H., D.S. Z m u  and D.X. LI, 1987, Phil. Mag. Lett. B55, 33-7. 
LAUNOIS, P., M. AUDIER, E DENOYER, C. DONG, J. M. DUBOIS and M. LAMBERT, Europhys. Lett. 13,629-34. 
LA- D. W., and R. A. DUNLAP. 1993, J. Non-Crystall. Solids 153,154,611-4. 
LEMMERZ, U., B. GRUSHKO, C. FREIBURG and M. JANSEN, 1994, Phil. Mag. Lett. 69,1416. 
~ I N E ,  D., and P. J. S-m, 1986, Phys. Rev. B34,596-616. 
LI, X. Z., and K. H. Kuo, 1988, Phil. Mag. Lett. 58, 167-71. 
LI, X.Z., and K.H. Kuo, 1993, J. Mater. Res. 8,2499-503. 
LIAO, X.Z., K.H. Kuo, H. ZHANG and K. URBAN, 1992, Phil. Mag. B66,549-58. 
LN, W., U. KOsni~, E MULLER and M. ROSENBERG, 1992, Phys. Stat. Sol. (a) 132, 17-34. 
Luo, Z., S.  ZHANG, Y. TANG and D. ZHAO, 1993, Scr. Metall. and Mater. 28, 1513-8. 
MA, X.L., and K.H. Kuo, 1994, Met. and Mater. Trans. 25A, 47-56. 
MA, Y., and E. A. STERN, 1987, Phys. Rev. B352678-81. 
MA, Y., and E. A. . STERN, 1988, Phys. Rev. B38, 3754-65. 
m, L., R. WANG and K.H. Kuo, 1988, S a  Metall. 22, 1791-6. 
MUKHOPADHYAY, N. K., K. CHATTOPADWAY and S .  RANGANATHAN, 1988, Met. Trans. Au), 805-12. 
MUKHOPADHYAY, N. K., N. THANGARAJ, K. CHATWPADHYAY and S. RANGANATHAN, 1987, J. Mater. Res. 2, 

NANAO, S., W. DMOWSKI, T. &AMI, J. W. RICHARDSON and J.D. JORGENSEN, 1987, Phys. Rev. B35435-40. 
N ~ U R A ,  A., A.P. TSAI, A. INOUE, T. MASUMOTO and A. YAMAMOTO, 1993, Jpn. J. Appl. Phys. 32, L1160-3. 
NISSEN, H.-U., and C. BEELI, 1993, J. Non-Crystall. Solids 153,154, 68-71. 
OHASHI, W., and E SPAEPEN, 1987, Nature 330,5556. 
OKABE, T., J. I. FURIHATA, K. MORISHITA and H. FUJIMORI, 1992, Phil. Mag. Lett. 66,259-64. 
PAVLOVITCH, A., and M KLEMAN, 1987, J. Phys. A Math. Gen. 20,687-702. 
PLACHKE, D., T. KUPKE, H. D. CARSTANJEN and R. M. EMRICK, 1993, J. Non-Crystall. Solids 153,154,724. 
POON, S .  J., A. J. DRBHMANN and K. R. LAWLESS, 1985, Phys. Rev. Lett. 55,2324-7. 
QIU, S.-Y., and M. V. JARIC, 1993, J. Non-Crystall. Solids 153,154, 221-6. 
REYES-GASGA, J., A. LARA, H. RIV'EROS and M. JOSE-YACAMAN, 1992, Mater. Sci. Eng. A150, 87-99. 
R o w ,  D., 1993, Phil. Mag. B67, 77-96. 
SAINTFORT, P., and B. DUBOST, 1986, J. Phys. France 47, C3-321-30. 
SASTRY, G. V.S., V. V. RAo, P. ~MACHANDRARAO and T. R. ANANTHARAMAN, 1986, Scr. metall. 20, 191-3. 
SCHURER, F? J., B. KOOPMANS, E VANDERWOUDE, 1988. Phys. Rev. B37,507-10. 
S-, D., I. BLECH, D. GRATIAS and J. W. C m ,  1984, Phys. Rev. Lett. 53, 1951-3. 
SHEN, Y., G. J. SUIFLET and S. J. POON, 1988, Phys. Rev. B38,5332-7. 
SHOEMAKER, C. B., 1993, Phil. Mag. B67, 869-81. 
VANSWLEN, S., J.L. DEBOER and Y. SHEN, 1991, Phys. Rev. B43,929-37. 
SOCOLAR, J.E. S., and P. J. STEINHARDT, 1986, Phys. Rev. B34,617-47. 
SONG, S., and E.R. RYBA, 1992, Phil. Mag. Lett. 65, 85-93. 
SONG, S., L. WANG and E.R. RYBA, 1991, Phil. Mag. Lett. 63, 335-44. 
SRINIVAS, V., R A. DUNLAP, D. BAHADUR and E. DUNLAP, 1990, Phil. Mag. B61,177-88. 
STEURER, W., 1991, J. Phys.: Condens. Matter 3,3397-410. 
STEURER, W., T. HAIBACH, B. ZHANG, C. BEBLI and H.-U. NISSEN, 1994, J. Phys.: Condens. Matter 6,613-32. 
STcuRnl W., T. HAIBACH, B. ZHANG, S. KEK and R. LUCK, 1993, Acta Crystallogr. B49,661-75. 
STEURER, W., and K.H. KUO, 1990, Acta Crystallogr. B46,703-12. 

ICEM, Paris. 

299-304. 



App. Ch. 4, Refs. The structure of quasicrystals 411 

TANG, Y., D. ZHAO, Z. Luo, N. S ~ G  and S. ZHANG, 1993, Mater. Lett. 18, 148-50. 
TODD, J., R. MERLIN, R. CLARKE, K.M. M o m m y  and J.D. AXE, 1986, Phys. Rev. Lett. 57, 1157-60. 
TSAI, A.P., A. INOUE and T. MASLIMOTO, 1987, Jpn. I. Appl. Phys. 26, L1505-7. 
TSAI, A.P., A. INOUE and T. MASUMOTO, 1988a, Trans. J I M  29,521-4. 
TSAI, A.P., A. INOUE andT. MASUMOTO, 1988b, J.J. Appl. Phys. 27, L1587-90 
TSAI, A.P., A. INOUE and T. MASUMOTO, 1988c, J. J. Appl. Phys. 27, L5-8. 
TSAI, A. P., A. INOUE and T. MASUMOTO, 1988d. J. Mater. Sci. Lett. 7, 3226. 
TSAI, A.P., A. INOUE and T. MASUMOTO, 1989, Mater. Trans. JIM 30,463-73. 
TSAI, A.P., A. INOUE and T. MASUMOTO, 1991, Phil. Mag. Lett. 64, 163-7. 
TSAI, 14. P., A. INOUE and T. MASUMOTO, 1993, Mater. Trans. JIM 34, 155-61. 
TSAI, A.P., A. INOUE, T. MASUMOTO, A. SATO and A. YAMAMOTO, 1992, Jpn. J. Appl. Phys. 31,970-3. 
TSAI, A.P., A. INOUS, Y. YOKOYAMA and T. MASUMOTO, 1990, Mater. Trans. JIM 31,98-103. 
TSAI, A.P., T. MASUMOTO and A. YAMAMOTO, 1992, Phil. Mag. Lett. 66,203-8. 
TSAI, A.-P., Y. YOKOYAMA, A. INOUE and T. MASUMOTO, 1990, Jpn.J. Appl. Phys. 29, L1161-4. 
TSAI, A.-P., Y. YOKOYAMA, A. INOUE and T. MASUMOTO, 1991, J. Mater. Res. 6,2646-52. 
WANG, N., H. CHEN and K.H. Kuo, 1987, Phys. Rev. Lett. 59, 1010-13. 
WANG, N., K. K. FUNG and K. H. Kuo, 1988, Appl. Phys. Lett. 52, 2120-22. 
WANG, N., and K. H. Kuo, 1988, Acta Crystallogr. A44, 857-63. 
WANG, N., and K.H. Kuo, 1990, Phil. Mag. Lett. 61,6343. 

WIDOM, M., and R. PHILLIPS, 1993, J. Non-Crystall. Solids 153,154, 282-7. 
YAMAMOTO, A,, 1992, Phys. Rev. B45,5217-27. 
YQKO'YAMA, Y., A. INOUE and T. MASUMOTO, 1992, Mater. Trans. JIM 33, 1012-9. 
YOKOYAMA, Y., A.P. TSAI, A. INOUE, T. MASUMOTO and H.S. C m ,  1991, Mater. Trans. JIM 32,421-8. 
~ N G ,  H., and K. H. Kuo, 1989, Sa. Metall. 23,355-8. 
ZHANG. H., D.H. WANG and K.H. Kuo, 1988, Phys. Rev. B37,6220-5. 
ZHANG, Z., H. Q. YE and K. H. KUO, 1985, Phil. Mag. A52, L49-52. 

WELBERRY, T. R., 1989, J. Awl. Cryst. 22,308-14. 

Further reading 

FUJIWARA, T., and T. OGAWA, (eds.) 1990, Quasicrystals, Springer Series in Solid State Science 93. 
GOLDIMAN, A. I., and K.F. KELTON, 1993, Rev. Mod. Phys. 65, 213-30. 
KELTON, K.F., 1995, in: Intermetallic Compounds - Principles and Practice, eds. J. H. Westbrook and R. L. 

JANOT. C., 1992, Quasicrystals. A Primer (Clarendon Press, Oxford). 
JANSSEN, T., 1988, Phys. Rep. 168,55-113. 
STEURER, W., 1990, 2. Kristallogr. 190, 179-234. 

Fleischer (Wiley, Chichester), Vol. 1, pp. 453491. 





CHAPTER 5 

METALLURGICAL THERMODYNAMICS 

D.R. GASKELL 
School of Materials Engineering 

Purdue University 
West Lafayette, IN 47907, USA 

R W Cahn and l? Haasen?, eds. 
Physical Metallurgy; fourth, revised and enhanced edition 
0 Elsevier Science B'C: 19% 



414 D. R. Gaskell Ch. 5,  8 1 

I .  Introduction 

Metallurgical thermodynamics is concerned with the equilibrium states of existence 
available to systems, and with the effects of external influences on the equilibrium state. 
The thermodynamic state of a system is defined in terms of state variables (or state 
functions) and the state variables occur in two categories; intensive variables such as 
pressure, P, and temperature, T, the values of which are independent of the size of the 
system, and extensive variables such as internal energy, U, and volume, V, the values of 
which are dependent on the size of the system. The simplest equation of state is the ideal 
gas law, 

PV = nRT 
where n is the number of moles of the gas and R is the universal gas constant. In 
considering a fixed quantity of ideal gas, only two of the state functions in eq. (1) are 
independent and the other is dependent. Thus, in a three-dimensional diagram employing 
P, V and T as ordinates, the equilibrium states of existence of the fixed quantity of gas 
lie on a definite surface. In any reversible change of state of the gas the path of the 
process lies on this equilibrium surface, such that, in moving from the initial to the final 
state, the gas passes through a continuum of equilibrium states. Under such conditions 
the work, w, done on or by the gas during the process is given by: 

and thus the magnitude of w is dependent on the actual process path taken over the 
equilibrium surface between the final and initial states. In an irreversible process the 
state of the gas momentarily leaves the equilibrium surface while moving between the 
initial and final states. 

1.1. The First and Second Laws of Thermodynamics 

When a system undergoes a process in which it moves from one state to another, the 
change in the internal energy of the system, AU, is given by: 

where q is the heat entering or leaving the system and w is the work done on or by the 
system during the change of state. For an increment of the process the change is: 

(4) 
Equations (3) and (4) are statements of the FirstLaw of Thermodynamics. By convention, 
heat entering the system and work done by the system are positive quantities. Equation 
(3) is remarkable in that, although the individual values of q and w are dependent on the 
path taken by the system between the initial and final states, their algebraic sum (which 
is the difference between U, and U,) is independent of the process path. Thus integration 
of eq. (4) to obtain eq. (3) requires that the process path be known and that the process 

dU = dq - dw. 
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be conducted reversibly. 
The Second Law of Thennodynamics states that, for a reversible change of state, the 

integral of dq/T is independent of the process path. As one of the properties of a state 
function is that the difference between the values of the hnction in any two thermo- 
dynamic states is independent of the process path taken by the system in moving 
between the two states, the term dq/T is the differential of a state function. The state 
function entropy, S, is thus defined as: 

dS = dq ,  1 T .  

If change in volume against an external pressure is the only form of work performed 
during a reversible change of state of a closed system, the work performed is given by 
eq. (2), and substitution of eqs. (2) and (5) into eq. (4) gives: 

(6) 

Equation (6), which is a combination of the First and Second Laws of Thermodynamics, 
gives the variation of U (as the dependent variable) with S and V (as the independent 
variables). 

From consideration of the difference between reversible and irreversible processes 
and the Second Law, eq. (6) gives the following criteria for thermodynamic equilibrium 
in a closed system of fixed composition: 

du = T ~ S  - pav. 

(i) 
(ii) 

S is a maximum at constant U and V; 
U is a minimum at constant S and V. 

Equation (6) involves the extensive thermodynamic properties S and U as independent 
variables. Although it is possible to measure and, with sufficient ingenuity on the part of 
the experimenter, to control the volume of a system, experimental control of the entropy 
of a system is virtually impossible, and consequently the criteria for equilibrium obtained 
from eq. (6) are not of practical use. From the practical point of view it would be 
desirable to have an equation as simple in form as eq. (6) but in which the independent 
variables are the intensive properties P and T, both of which are amenable to exper- 
imental measurement and control. Such an equation would also provide a criterion for 
equilibrium in a constant pressureconstant temperature system. 

1.2. Auxiliary thermodynamic functions 

The required auxiliary state functions are generated by Legendre transformations of 
U. For example, in eq. (6), written as 

a Legendre transform, H, of U is obtained using: 
u= UCS, v), 

U - H  
v - 0  (7) 

At constant S, the tangent to the variation of U with V passes through the points U =  U, 
V= V and U=H, V= 0. Rearrangement of eq. (7) gives: 

References: p .  469. 
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H = U + P V ,  

dH = dU + PdV + V U .  

cW = TdS -+ VdP, 

which, on differentiation, gives: 

(8) 

(9) 

in which the extensive variable V has been replaced by the intensive variable P.  The 
transform H is called the enthalpy. 

Substitution of eq. (6) into eq. (8) gives: 

Writing eq. (9) as 
H =  H(S, P) ,  

a Legendre transform, G, of H is obtained as: 

T = ( S )  =- H-G 
p s-0  

or: G = H - TS, 
which, on differentiation, gives: 

dG = dH - TdS - SdT = -SdT + V U ,  
in which the extensive variable S has been replaced by the intensive variable T. This 
transform, G, is called the Gibbsfree energy. Being dependent on the independent 
variables T and P,  the Gibbs free energy is the most useful of thermodynamic functions 
and provides the practical criterion that, at constant T and P, thermodynamic equilibrium 
is established when the Gibbs free energy is minimized. 

A third Legendre transform yields the Helmholtz free energy, or work function A, 
defined as 

A =  U-TS. 
In a multicomponent system containing n1 moles of component 1, n2 moles of 

component 2, ni moles of component i ,  etc.: 

and thus, 
G = G(T, P,  nl, n2, ..., ni) 

The derivative 

is of particular significance and is called the chemical potential, pi, or the partial molar 
free energy, q, of the component i .  Thus, in view of eq. (ll), eq. (12) can be written as 
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dG = -SdT + VdP + @ni, (13) 

and the equilibrium state of any system undergoing any type of reaction at constant 
temperature and pressure can be determined by application of this equation. 

2. Metallurgical thermochemistry 

2.1. The measurement of changes in enthalpy 

In order to distinguish between the value of an extensive property of a system 
containing n moles and the molar value of the property, the former will be identified by 
the use of a prime (3, e.g., with respect to enthalpy, H' =nH. 

From eqs. (5) and (9), for a process occurring reversibly at constant pressure P: 
dH' = dq, 

which, on integration, gives: 

Thus, in a system undergoing a process in which the only work performed is the work 
of expansion or contraction against the constant pressure P, the change in enthalpy, A H f ,  
can be measured as the heat qp entering or leaving the system during the constant 
pressure process. In the case of heat entering the system the process involves an increase 
in the temperature of the system and the constant pressure molar heat capacity, c,, is 
defined as: 

AH' = qp. 

The constant pressure molar heat capacity of a system can be measured by the methods 
of calorimetry. In metallurgical applications the measured values are fitted to an equation 
of the form 

cp = a + b~ + CT-~.  

For example, the constant pressure molar heat capacity of solid silver varies with 
temperature in the range 298-1234 K as: 

- 21.3 + 8.54 x 10-3T + 1.51 x 105T-2J/K mole 
cP.&(.) - 

and hence, from eq. (14), the difference between the molar enthalpy of solid Ag at a 
temperature T and the molar enthalpy at 298 K is 
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= 21.3(T - 298) -!- 4.27 x 10"(T2 - 2982) 

- 1.51 x 105(L T - L ) J / m o l e ,  298 

which is thus the quantity of heat required to raise the temperature of one mole of solid 
Ag from 298 K to T. 

Transformation of a low-temperature phase to a high-temperature phase involves the 
absorption of the latent heat of the phase change, e.g., the transformation of one mole of 
silver from the solid to the liquid state at the normal melting temperature of 1234 K 
requires a heat input of 11.09 kJ. Thus at 1234 K the molar enthalpy of melting of Ag, 
AH,, is 

- 
AHm,Ag.1234K - *Ag(1),1234K - *Ag(s),1234K = 1'09kT* 

The molar heat capacity of liquid Ag is independent of temperature, ~ ~ , ~ ~ ~ , ~ = 3 0 . 5  J/K 
mole, and the difference between the molar enthalpy of liquid Ag at a temperature T and 
the molar enthalpy of solid Ag at 298 K is 

As chemical reactions involve the absorption or evolution of heat, they also necessar- 
ily involve changes in enthalpy. For example, when conducted at 298 K, the oxidation 
reaction 

2Ag(,) + 3 0 2 ( g )  = *g20(,) 

is accompanied by the evolution of 30.5 kJ of heat per mole of Ag20 produced. Thus, 

q = AH = -30.5kJ, 

or the system existing as one mole of Ag20 has an enthalpy of 30.5 kJ less than the 
system existing as two moles of Ag and half a mole of oxygen gas at 298 K. 

As the enthalpies of substances are not measurable quantities, i.e., only changes in 
enthalpy can be measured (as the evolution or absorption of heat), it is conventional to 
designate a reference state in which the relative enthalpy is zero. This reference state is 
the elemental substance existing in its stable form at 298 K and P = 1 atm. In practice the 
designation of P = 1 atm is relatively unimportant as the enthalpies of condensed phases 
are not significantly dependent on pressure and the enthalpy of an ideal gas is indepen- 
dent of pressure. Thus, in the above example: 

AH,% = HAg$3(~),298 - 2HAg(s),298 -- H02(g),298. 
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As HAg(s),298 and Ho(g),298 are arbitrarily assigned values of zero, the relative molar 
enthalpy of Ag,O at i98 K is simply equal to the experimentally-measured molar heat of 
formation of Ag20 at 298 K. At any other temperature T: 

mT = HAg20,T - 2HAg.T - 3 H 0 2 , T  

where 
1 

“p = ‘p.Ag20 - 2cp,Ag - T cp,02‘ 

The enthalpy-temperature diagram for the oxidation of silver is shown in fig. 1. 

2.2. The measurement of entropy 

From eqs. (5) and (14), we find: 

Thus, the variation of entropy with temperature at constant pressure is obtained from 
measured heat capacities as 

T C  
ST = So + X d T .  

O T  
Nernst’s heat theorem, which is also known as the Third Law of Thermodynamics, 

states that all substances at complete internal equilibrium have zero entropy at 0 K, Le., 
S,,=O. Thus, in contrast to enthalpies, the entropies of substances have absolute values. 

According to Gibbs, entropy is a measure of the degree of disorder in a system. Thus 
the entropy of the gaseous state is greater than that of the liquid state, which, in turn, is 
greater than that of the solid state. The transformation of a solid to a liquid at the normal 
melting temperature, T,, involves the absorption of AH, per mole. Thus, at T,, the molar 
entropy of the liquid exceeds that of the solid by the molar entropy of fusion, AS,, given 
by eq. (5 )  as: 

ASm = AH,,, i T,. 

This corresponds with the fact that the liquid state is more disordered than the solid state, 
and ASm is a measure of the difference in degree of order. For simple metals, with 
similar crystal structures and similar liquid structures, AS, lies in the range 8-16 J/K. 
This correlation is known as Richard’s rule. Similarly, at the normal boiling temperature, 
Tb, the molar entropy of boiling, AS,, is obtained from the molar heat of boiling as: 
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Fig. 1. The enthalpy-temperature diagram for the reaction 2Ag+fO,=Ag,O. 

For simple metals ASb= 88 J/K, which indicates that the difference in disorder between 
the gaseous state at 1 atm pressure and the liquid state significantly exceeds the 
corresponding difference between the liquid and solid states. The correlation = 88Tb 
is known as Trouton’s rule. 

Although the degrees of disorder, and hence the entropies of condensed states, are not 
noticeably dependent on pressure, the entropy of a gas is a significant function of 
pressure. As the internal energy, V ,  of an ideal gas is dependent only on T, an iso- 
thermal compression of an ideal gas from P, to P2 does not involve a change in V.  
Thus, from eq. (3), the work of compression, w, equals the heat transferred from the gas 
to the isothermal surroundings at the temperature T. This transfer of heat from the gas 
decreases its entropy by the amount 
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which, from eq. (l), gives: 

Thus 

Si - S; = nRln(P,/P,), 

which corresponds with the fact that a gas at high pressure is a less disordered state than 
a gas at low pressure. 

As changes in entropy are caused by the transfer of heat, chemical reactions involving 
heat changes necessarily involve changes in entropy. At 298 K and 1 atm pressure, the 
molar entropies of Ag,,,, OZk, and Ag,O,, are 42.7, 205 and 122 JK, respectively. Thus 
the entropy change for the oxidation 

at 298 is: 

AS = 122 - (2 x 42.7) - (0.5 x 205) = -65.9 J/K mole. 

This can be viewed in two ways: (i) the entropy decrease is due to the loss of the heat 
of oxidation from the reacting system, or (ii) the degree of disorder in the system 
existing as one mole of Ag,O is less than that when the system exists as two moles of 
Ag and half a mole of oxygen gas at 1 atm pressure. 

The variation, with temperature, of the entropy change for the reaction is determined 
by the heat capacities of the reactants and products as: 

The entropy-temperature diagram corresponding to fig. 1 is shown in fig. 2. 

due to a chemical reaction occurring at a temperature T, AGp is 
From the definition of Gibbs free energy, eq. (lo), the change in Gibbs free energy 

AG, = AH, - TAS. 

Thus, the variation of the change in Gibbs free energy with temperature can be 
determined from measurement of the variation, with temperature, of the constant pressure 
molar heat capacities of the reactants and products and measurement of the enthalpy 
change of the reaction at one temperature. For the oxidation of solid silver, such data 
give 

AG, = -34200 + 87.9T - 1.76TlnT - 10.8 x 10-3T2 
(16) + 3.2 x 105T-'Jlmole Ag20. 
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Fig. 2. The entropy-temperature diagram for the reaction 2Ag+@, = Ag,O. 

3. Phase equilibrium in a one-component system 

At constant T and P the equilibrium state is thit in which the Gibbs free energy has 
its minimum possible value. In a one-component system the states of existence available 
are the gaseous and liquid states and the various allotropic or polymorphic forms of the 
solid state. At any T and P the state with the lowest Gibbs free energy is the stable state. 
For the transformation 

solid + liquid: 

AG,,, ( P ,  T )  = G(ll (P,  T )  - G(s, (P,  T )  = AH, ( P ,  T )  - TAS, ( P ,  T).  (17) 

If AGm is negative, the transformation decreases the Gibbs free energy of the system 
and hence the liquid is stable relative to the solid. Conversely, if AG, is positive the 
solid is stable relative to the liquid. As absolute values of enthalpy cannot be measured 
it follows that absolute values of Gibbs free energy cannot be measured. Thus only 
changes in G can be measured. 

The solid and liquid phases coexist in equilibrium with one another in that state at 
which AGm=O, Le., where G(,,=G,,. From eq. (15), at any pressure P this equilibrium 
occurs at the temperature T, given by 
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T, = AH,/hS,, 

and hence T, is the equilibrium melting temperature of the solid at the pressure P. From 
eq. (lo), G is decreased by decreasing H and increasing S and hence nature prefers states 
of low enthalpy and high entropy. As H,,, > Hco and S,, > S(s, the enthalpy contribution to 
G favors the solid as the stable state and the entropy contribution favors the liquid as the 
stable state. In eq. (17) the entropy contribution to AG is temperature-dependent and the 
enthalpy contribution is not. Thus, at high temperatures the former contribution domi- 
nates, at low temperatures the latter contribution dominates, and at a unique temperature 
T, the two contributions cancel to make AG=O. 

For the two-phase equilibrium to exist, 

G(l) = G(.$,, 

dG(1, = q s ,  

and maintenance of the two-phase equilibrium with variation in T and P requires that T 
and R be varied in such a manner that 

or, from eq. (ll), such that 

-S(,)dT t yl,dP = -S(,dT t ys)dP, 

i.e., 

(0 1 d~)eq = ('(1) - '(3)) / ( ~ 1 1 -  YE)) = Urn/Avrn 

(dP/dT)eq = AH,/TAV,. (18) 

As equilibrium between the two phases is maintained, AH,,, = TAS,: 

Equation (18) is the CZupeyron equation, which, on integration, gives the variation of T 
and P required for maintenance of the two-phase equilibrium. Strictly, integration 
requires knowledge of the pressure and temperature dependences of AH, and AV,. 
However, for relatively small departures from the state P =  1 atm, T,, AH, and AV, can 
be taken as constants, in which case: 

Equation (18) can be applied to condensed phase-vapor phase equilibria by making the 
approximation AV= V(", - V,,,,,, phase, V,, and assuming ideal behavior of the vapor 
phase, Le., V,,,=RT/P, Le., 

Equation (19) is the CZuusius-Clupeyron equation. 
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If AHb (the molar enthalpy of boiling) is not a function of temperature (which 
requires cHv)=cpg)), integration of eq. (19) gives 

1nP = -- mb + const., 
RT 

and if AH, is a linear function of T (which requires that Acp be independent of tempera- 
ture) given by AHbsT= AH, + AcpT, integration gives 

AH, Ac 
RT R 

In P = - - + -In T + const. 

as either (i) the variation of the saturated vapor pressure with temperature or (ii) the 
variation of the equilibrium boiling temperature with pressure. Experimentally measured 
vapor pressures are normally fitted by an equation of the type 

1nP = -A/T + BlnT + C. 

The solid, liquid and vapor states exist on surfaces in G-T-P space. The solid- and 
liquid-surfaces intersect at a line (along which G,,, = G(sJ and projection of this line onto 
the basal P-T plane of the G-T-P diagram gives the pressure dependence of T,. 
Similarly the vapor- and liquid-surfaces intersect at a line, projection of which onto the 
basal P-T plane gives the variation, with temperature, of the saturated vapor pressure of 
the liquid. Similar projection of the line of intersection of the surfaces for the solid and 
vapor states gives the variation, with temperature, of the saturated vapor pressure of the 
solid. The three lines of two-phase equilibrium in G-T-P space intersect at a point, 
called the triple point, at which all three phases are in equilibrium with one another. 
Consideration of the geometry of the intersections of the surfaces in G-T-P space shows 
that, in a one-component system, a maximum of three phases can exist in equilibrium. 
Alternatively, as the three phases co-exist in equilibrium at fixed values of T and P the 
equilibrium is invariant, Le., has no degrees of freedom. The phase diagram for H,O is 
shown in fig. 3 and a schematic representation of the section of G-T-P space at 1 atm 
pressure is shown in fig. 4. In fig. 4, the slope of any line at any point is -S for that state 
and hence the “steepness” of the lines increases in the order solid, liquid, vapor. Also the 
curvatures of the lines are ( a 2 ~ / a ~ ” > ,  = - (as/agp = - C / T .  

4. Chemical reaction equilibrium 

From eq. (13), at constant T and P, the Gibbs free energy varies with composition in 
a chemically reacting system as 

dG‘ = c.dni.  

The reaction proceeds spontaneously in that direction which involves a decrease in Gibbs 
free energy, and reaction equilibrium is attained when, thereby, the Gibbs free energy is 
minimized, i.e., when dG’ =O. 

Consider the water-gas reaction 
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Fig. 3. The phase diagram for H,O. 

H * q g )  + C q g )  = Hqg) + co,. 
At equilibrium: 

dG = cH2dnH2 + Gco2dnco2 - cH20dnH20 - Gcodnco = 0 

or, in view of the stoichiometry requirement 

-dnHtO = -dn, = dnH2 = dnCO,: 

dG = (9, + cm2 - GH2, - ~cco)dnH2 = 0 

Thus, at equilibrium: 

The isothermal transfer of a mole of ideal gas i from the pure state at the pressure Pi and 
temperature T to an ideal gas mixture at the partial pressure pi involves a change in 
Gibbs free energy: 

(21) AG = q. - Gi = RTln(pi/4). 
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Fig. 4. Schematic representation of the variations of G,,, Gm and G(") with temperature at P =  1 atm for H,O. 

Again, as only changes in Gibbs free energy can be measured, it is convenient to select 
a standard state for the gas and consider the Gibbs free energy of the gas in any other 
state in terms of the difference between the free energy of the gas in this state and the 
free energy of the gas in the standard state. The standard state for an ideal gas at the 
temperature Tis the pure gas at 1 atm pressure and in this state the Gibbs free energy is 
the standard free energy, designated e. Thus eq. (21) can be written as: 

= G: + RTlnpi .  (22) 

Substitution of eq. (22) into eq. (20) and rearrangement gives: 

PH2 PCO2 (G& + GL2 - G&, - G&) = -RT In ___. 
PHZO Pco 

Being the difference between the standard free energies of the products and the standard 
free energies of the reactants, the left-hand side of eq. (23) is termed the standardfree 
energy for the reaction at the temperature T, AG,", and, being dependent only on T, it 
has a definite fixed value at any T. Consequently the quotient of the partial pressures of 
the reactants and products occurring in the logarithm term on the right-hand side of eq. 
(23) has a fixed value at any T. This term is called the equilibrium constant, Kp, and 
hence the equilibrium state in any reacting system is such that 
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AG; = -RTIn K,. 

427 

(24) 

For the general reaction 

Dalton’s law of partial pressures in an ideal gas mixture gives 

pi  = XiP, 

where X, being the ratio of the number of moles of i in the gas to the total number of moles 
of all species, is the moZefpactian of i in the gas and P is the total pressure of the gas. 
Thus 

where K, is the equilibrium constant expressed in terms of the mole fractions of the 
reactiants and products occurring at reaction equilibrium. From the definition of AG:, Kp 
is independent of pressure and hence, from eq. (25), K, is only independent of pressure 
if c+d-a-b=O. 

From eqs. (24) and (15): 

AG; = - R T h  K, = AH: - TAS:. 

Thus 

dln K AH; or 2,- a~ R T , ’  

For the water-gas reaction: 

CO + H,O = CO, + H,; 

AG; = -36400 + 32.OTJ/mole; 

thus 

( 36400 ) (-32.0) 
8.31441 - 8.3144 ’ 

K p  = exp - 

The reaction of a moles of CO with b moles of H,O produces x moles of each CO, and 
H, and leaves (a - x)  moles of CO and (b - x )  moles of H,. Thus at any point along the 
reaction coordinate in a reacting mixture at the constant pressure P: 
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and at reaction equilibrium: 

Pco2Pn2 - - X 2  

PCOPH20 (a - - ‘1 8.3 144T 8.3 144 
= K, = exp(-) 36400 exp (-) -32.0 

If one or more of the reactants and/or products occurs in a condensed state the 
attainment of equilibrium involves both phase and reaction equilibrium. For example, at 
a temperature T the equilibrium 

2Ag(s) + 3 0 2 ( g ,  = Ag20,,, 

Ag@) = &(,) and Ag20, = Ag,o(,), 

2Ag(”) + 30qg) = Ag,O(,). 

(26) 

requires the establishment of the phase equilibria 

and, in the vapor or gas phase, requires establishment of the reaction equilibrium 

(27) 

Conditions for the phase equilibria are pAg= pig (the saturated vapor pressure of solid 
silver at temperature T )  and pAg,. = pAgZO (the saturated vapor pressure of solid Ag20 at 
temperature T), and thus, as the equilibrium constant K for the vapor phase reaction, 
given by eq. (27), has a fixed value at temperature T, the equilibrium oxygen pressure, 
po2, is uniquely fixed by: 

0 

Alternatively, reaction equilibrium in the vapor phase requires that: 
- 

(28) - 
2GAg(v) + 3 ‘02(g) - G A g 2 0 ( ~ ) ’  

and the two-phase equilibria require that: 

and 

(30) - 
‘A&O(v) - ‘Ag20(s)’ 

From eq. (1 l), at constant T, dG = VdP, and hence eq. (29) can be written as: 

Gpc,) + RTlnPZ = GL(.) + p v*g(s)de (31) 

where G&) is the standard molar free energy of solid Ag at temperature T. The integral 
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on the right-hand side of eq. (31) is negligibly small and hence eq. (31) can be written as: 

G:g(v) + RT In P i g  = G:g(s,. 

Similarly, eq. (30) can be written as: 

Substitution of eqs. (32) and (33) into eq. (28) gives: 

2G:g(s) + + G:z(g) + RTln Pt2* = G&20(s). 

where AG: is the standard free energy change for the reaction given by eq. (26) and 
po2(es,n is the value of po, required for equilibrium between Ag,,, Ag,O,, and oxygen 
gas a t  temperature T. The variations of AH:, -TAS; and AG: [given by eq. (16)] are 
shown in fig. 5. Thus, from eq. (34), pol(en,485K) = 1 atm, at which temperature AGo=O. 
At T<485 K, AG: is a negative quantity and hence pol(qT) < 1 atm. At T>485 K,AG: 
is a positive quantity and hence polces.n > 1 atm. 

5. Ellingham diagrams 

In 1944 ELLINGHAM published diagrams showing the variation, with temperature, of the 
standard free energies of formation of a number of oxides and sulfides, and pointed out that 
these diagrams “would show at a glance the relative stabilities of the various substances 
within a given class at any temperature, and would thus indicate, in a direct fashion, the 
range of conditions required for their reduction to the corresponding elements. It would 
provide, in fact, what might be described as a ground plan of metallurgical possibilities 
with respect to the reduction of compounds of the specified class”. Such diagrams, which 
are now available for a wide range of classes of compounds, are known as EZZinghum 
diagrams, and the Ellingham diagram for oxides is shown in fig. 6. (See also ch. 14, 
p 2.1). 

In order to facilitate comparison of the stabilities of the various oxides, the standard 
free energies are for the reaction 

Le., for reactions involving the consumption of one mole of 0,. By choosing this basis: 
(2-dy)M + 0, = (2/y)MXOp 

and hence, in addition to being a plot of AG: versus temperature, the Ellingham diagram 
is a plot of the variation, with temperature, of the oxygen pressure, po2(q,n, required for 
equilibrium between the metal and its oxide. The free energy change for the change of 
state 02(T, P =  1 atm) 02(T, P =  p,) is: 
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Fig. 5. The variations of AZ& -TA$ and AQT with temperature for the reaction 2Ag +& = Ag,O. 

AG, = RT In po, , 
and thus, in the Ellingham diagram, lines of constant po, radiate from the origin, A@ = 0, 
T = 0 K, with slopes of R In pol.  Consequently, a nomographic scale of p can be placed on 
the edges of the diagram and pol(es) at any point on an Ellingham line is obtained as the 
reading on the nomographic scale which is collinear with the given point and the origin of the 
diagram. The Ellingham diagram is thus a stability diagram, in that any point in the diagram 
lying above the Ellingham line for a given oxide is a state in which pozm >P,,(~, T )  

4 
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Fig. 6. The Ellingham diagram for several oxides. 

and hence, in d l  states above the line the oxide is stable relative to the metal. Converse- 
ly, any point lying below the Ellingham line for the given oxide is a state in whichpOo 
~ p , , ( ~ ,  and hence, below the line, the metal is stable relative to the oxide. f i e  
Ellingham line thus divides the diagram into stability fields and, if it is required that a 
given oxide be reduced, the thermodynamic state must be moved from a point above the 
Ellingham line for the oxide to a point below the line, Le., must be moved from a 
positlion within the oxide stability field to a position within the metal stability field. 

The magnitude of AG: is a measure of the relative stability of the oxide and hence, 
with increasing stability, the Ellingham lines occur progressively lower in the diagram. 
Consequently, in principle, the element A can reduce the oxide B,O,,, if, in the diagram, 
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the Ellingham line for A,O,., lies below that for BxOy. 

lines are virtually linear, being given by 
Over the ranges of temperature in which no phase transitions occur the Ellingham 

AG; = A +  BT. 

In this expression A, the intercept of the line with the T=O K axis, is identified with 
AH", the standard enthalpy change for the oxidation, and B, the slope of the line, is 
identified with -A$', the standard entropy change for the reaction. The Ellingham lines 
for the oxidation of solid and liquid metals are more or less parallel with one another, 
with slopes corresponding to the disappearance of one mole of oxygen gas in the 
standard oxidation equation. Consequently, the stabilities of these oxides are determined 
primarily by the magnitudes of their enthalpies of formation. 

At the temperature of a phase change the slope of the Ellingham line changes by an 
amount equal to the entropy change for the phase transition. The slope increases at the 
transition temperatures of the metal and decreases at the transition temperatures of the 
oxide. These changes in slope are most noticeable at normal boiling temperatures, e.g., 
at 1090°C the slope of the Ellingham line for MgO increases by 190.3 J/K, which is the 
entropy of boiling of 2Mg, and at 1484°C the slope of the Ellingham line for CaO 
increases by 174.2 J/K, the entropy of boiling of 2Ca. 

Carbon is unique in that it forms two gaseous oxides, CO and CO,, and the positions 
of the Ellingham lines for these oxides are of particular significance in extraction 
metallurgy. The Ellingham line for CO has a negative slope due to the fact that the 
oxidation 

2C+O, = 2 c o  

c t 0, = co, 
involves the net production of one mole of gas, and, because the oxidation 

does not involve a change in the number of moles of gas, the Ellingham line for CO, is 
virtually horizontal. The enthalpy change for the oxidation of C to form CO as C+fO, 
= CO is -1 11 700 J and the enthalpy change for the oxidation of CO to CO, as CO +$O, 
= CO, is -282 400 J. Thus the standard enthalpy change for the Ellingham line for CO 
is 2 x (-1 11700) = -223400 J and the standard enthalpy change for the Ellingham line for 
CO, is (-11 1700) -I- (-282400) =-394100 J. Thus, on the basis that the stability of an 
oxide is determined primarily by the magnitude of AH", it would appear that CO, should 
be more stable than CO. However, as the Ellingham line for CO has a negative slope, 
which means that the stability of CO increases with increasing temperature, the Elling- 
ham lines for the two oxides intersect. Consequently, although CO, is more stable than 
CO at lower temperature, the reverse is the case at higher temperatures. The gaseous 
phase in equilibrium with solid carbon is a CO-CO, mixture in which the ratio pco/peo, 
increases with increasing temperature. For a total pressure of 1 atm, the equilibrium gas 
contains less than 1 % CO at temperatures less than 400"C, contains less than 1% CO, at 
temperatures greater than 980°C, and is an equimolar mixture at 674°C. The "carbon 
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line" in the diagram, which is the continuum of states in which carbon is in equilibrium 
with a CO-CO, mixture at 1 atm pressure, follows the CO, Ellingham line up to about 
400°C and then curves down gently to tangentially meet and join the Ellingham line for 
CO at about 1OOO"C. Along the carbon line the ratio p,.,/pm2 is fixed by the equilib- 
rium 

c + eo, = 2c0, 

co++o, =co, 
and, by virtue of the equilibrium 

the oxygen pressure is also fixed. Thus the carbon line divides the other oxides into two 
classes, those with Ellingham lines which lie above the carbon line, and those with 
Ellingham lines which lie below the carbon line. With respect to the former class, the 
carbon line lies in the stability field of the metal and hence carbon is a potential reducing 
agent for these oxides, whereas, with respect to the latter class, the carbon line lies in the 
oxide stability field and hence carbon cannot reduce the oxide, Furthermore, if the 
Ellingham line for a metal oxide intersects the carbon line, the temperature of inter- 
section is the minimum temperature at which the oxide may be reduced by carbon. Thus, 
for example, FeO cannot be reduced by carbon at temperatures less than 675°C. 

Whether or not carbon can be used as a reducing agent is determined by the stability 
of any carbide phase which may form, Le., by the sign of the standard free energy for 
formation of the carbide from metal and carbon. For example, in the Ellingham diagram 
the carbon line intersects with the Ellingham line for SiO, at 1676"C, and hence above 
this temperature liquid Si is stable relative to SiO, in the presence of C and its equilib- 
rium CO-CO, gas mixture at 1 atm pressure. However, for the reaction 

Si(,) + C = Sic, 

the standard free energy change is AG," =-122600+37.02' J and hence Sic is stable 
relative to liquid Si in the presence of carbon at 1676°C and P= 1 atm. 

The stability fields in the system Si-0-C at 1676°C are shown in fig. 7 as functions of 
log pco and log pa,. Line A is the variation of pco and pco, required for the equilibrium 

Si(,) + 2C0, = SiO, + 2CO. 

Line B is the corresponding variation required for the equilibrium 

Si(,) + 2CO = Sic + CO,, 
and line C is the variation for the equilibrium 

Sic + 3C0, = SiO, + 4CO. 

These lines divide the diagram into stability fields for Si, Sic and SiO, and meet at the 
values of pm and pCs2 required for the four-phase equilibrium involving the three 
condlensed phases Si, Sic and SiO, and the CO-CO, gas phase. Line D is the variation 
of pco and pco, required for the equilibrium between carbon and the gas phase at 1676°C 

Rtferences: p .  469. 
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Fig. 7. The stability diagram for the system Si -OC at 1949 K. 

and, as such, represents the compositions of CO-CO, gas mixtures which are saturated 
with carbon. The field below line D is designated “unstable” gas, as any gas mixture in 
this field is supersaturated with carbon and hence will spontaneously undergo the carbon 
deposition reaction 

2‘0 + ‘(graphite) + cop 
until, thereby, the composition of the gas lies on line D. The dashed line is the (pco+ 
pco2)= 1 atm isobar. Consequently, the system containing solid carbon and a gas phase 
at 1 atm pressure exists at the state a, and as this state is in the field of stability of Sic, 
SiO, is not reduced to Si by carbon at 1676°C. However, if the standard free energy for 
formation of S ic  had been positive, lines B and C would have occurred below line D in 
the diagram and, as shown by the dashed-dotted extension of line A, the equilibrium 
Si-SiO,-C would occur at the state a, which is the state of intersection of the carbon line 
with the Ellingham line for SiO, in the Ellingham diagram. 



Ch. 5 ,  $ 6  Metallurgical thermodynamics 435 

6. The thermodynamic properties of solutions 

6.1. Mixing processes 

The relationship between entropy and the “degree of mixed-up-ness” is quantified by 
Boltzmann’s expression as: 

S’ = k In W, 
where S’ is the entropy of the system and W is the number of microstates available to the 
system”. In the simplest of mixing processes, W is the number of distinguishable 
arrangements of the constituent atoms on the sites available to them. Consider the mixing 
of NA atoms of solid A and NB atoms of solid B as the process: 

state 1 + state 2, 
Le., unmixed A and B + mixed A and B. 

In state 1, interchange of the positions of A atoms in the crystal of pure A and/or 
interchange of the positions of B atoms in the crystal of pure B does not produce a 
distinguishably different arrangement and hence W sub1 = 1. However, the NA atoms of 
A and NB atoms of B can be placed on the NA + NB lattice sites of the mixed crystal 
(state: 2) in (NA + NB)! ways, of which (NA + NB)!/NA!NB! are distinguishable. Thus 

(NA + NB)! w, = 
NA!NB! 

Thus, for the process: 

(NA + NB)! AS’ = ,Ti - S: = kln W, - kln = kln 
NA!NB! (35) 

If NA and NB are sufficiently large numbers, Stirling’s theorem can be applied as 

In (NA NB)! = (NA + NB)ln(NA + NB) - NA *nNA - NB 
NA!NB! 

= -NA In XA - NB In X,, 

where, respectively, XA and X ,  are the mole fractions of A and B in the mixed crystal. 
Thus, the change in entropy, As””, due to mixing, is 

A S M  = k In ( N A  In X, + NB In XB), 

and, if NA + NB =No (Avogadro’s number) then the molar entropy of mixing is 

* The equivalence between this definition of entropy and the definition in terms of heat flow (51.1) is 
demonstrated in general terms in many texts; a particularly clear treatment is provided in ch. 2 of FAST’S book 
(see bibliography). 

References: p. 469. 
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ASM = -R( X, In X, + XB In XB). (36) 

This increase in entropy is caused by the increase in the number of spatial configurations 
made available to the system as a result of the mixing process and, hence, is conjig- 
urational in origin. If there is no change in enthalpy on mixing, the Gibbs free energy 
change due to the mixing process is given by 

(37) 

Alternatively, consider the following. Consider that p l  and p,” are the saturated 
vapor pressures of pure A and pure B at temperature T and that pA and pB are the partial 
pressures of A and B exerted by the mixed crystal (or solid solution) of composition X, 
at temperature T. Consider that one mole of A is isothermally evaporated from pure solid 
A to form A vapor at the pressure p i ,  that the mole of A vapor is isothermally expanded 
to the pressure p ,  and is then isothermally condensed into a large quantity of the solid 
solution. As the evaporation and condensation processes are conducted at equilibrium, 
they do not involve any change in Gibbs free energy and hence the change in Gibbs free 
energy for the three-step process is simply that caused by the change in pressure from 
P A  to PA, is . ,  

AGM = -TASM = RT(XA In X, + X, In X,). 

0 

AG = ’*(in the solution) - ~ i ( p u r e )  = ( P A  /pi)* 

Similarly, for the corresponding three-step process for B, 

Thus, for the mixing of nA moles of A and nB moles of B: 

AG’ = G’(so1ution) - G’(unmixed A and B) 

= (nACA + nBCB) - (n,G; + nBGi) 

= nA(CA - G:) + nB(cB - G:), 

which, from eqs. (37) and (38), can be written for one mole of solution as 

A G ~  = R$X, ln(p,/p;) + X, ln(pB/pi)]. (39) 

Comparison of eqs. (37) and (39) indicates that, if the mixing process does not involve 
a change in enthalpy, 

Equation (40) is an expression of Raoult’s Law and a solution conforming with this 
behavior is said to exhibit Raoultian ideal behavior. If the energies of the pure states and 
the solution are considered to be the sums of the pair-wise bond energies between 
neighboring atoms, Raoultian ideal mixing requires that: 
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where Em, EM and E B B  are the pair-wise bond energies of A-By A-A and B-B pairs, 
respectively. If the condition given by eq. (41) is not met, the isothermal mixing process 
is accompanied by the evolution or absorption of heat, which, for mixing at constant 
pressure, represents a change in the enthalpy of the system. In such a situation random 
mixing of A and B atoms does not occur and hence the entropy of mixing is no longer 
given by eq. (36). 

Any change in the enthalpy on mixing arises from a redistribution of the atoms 
among their quantized energy levels and this gives rise to a change in the thermal (as 
distinct from the configurational) component of the entropy of the system. Boltzmann’s 
equation can be written as 

where Wan, is the number of distinguishable ways in which the atoms can be distributed 
on the available sites and Wtb, is the number of ways in which the energy of the 
system can be distributed among the particles. Thus, for the mixing process, 

and hence AS’ is only given by eq. (35) if Wt,,-,(l) = WM(2), i.e., if no redistribution of 
the energy occurs, and hence no change in enthalpy occurs. This condition is required for 
Raoultian ideal mixing. If 

the solution exhibits a tendency towards ordering, i.e., towards maximizing the number 
of A-B contacts, and if 

the solution exhibits a tendency towards clustering or phase separation, i.e., towards 
minimizing the number of A-B contacts. 

Configurational entropy is responsible for the occurrence of vacancies in metals. Consider 
a perfect single crystal containing N atoms on N lattice sites. If a single atom is removed 
from a lattice position within the crystal and is placed on the surface of the crystal, random 
placement of the vacancy on N +  1 sites gives rise to a configurational entropy of 

( N  + l)! 
N! 

S = kln-. 

This process involves an enthalpy change AHv and, as the vibration frequencies of the 
nearest-neighbor atoms to the vacancy are altered, a change occurs in the thermal 
entropy, AS,,,. Thus, for the formation of N, vacancies, 

References: p .  469. 
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AG' = AH' - TAS' 

( N + N , ) !  
= N,AH, - N,AS,,T + kT In 

N ! N , !  

+ N ,  In- N v  1. N = Nv(AH, - N,AS,,) + 
N + N, 

The formation of vacancies in an initially perfect crystal is thus a spontaneous process 
which proceeds until, thereby, the Gibbs free energy of the crystal is minimized, in 
which state 

From eq. (42), this condition occurs when 

--- 
N + N ,  

The fraction of vacant sites in a crystal can be determined from simultaneous measure- 
ment of the thermal expansion of a sample, A V l ,  and the change in the lattice parameter, 
Audu,,, as measured by X-ray diffraction (see ch. 18, 52.2.2.2). As the former is 
influenced by both the increase in the average spacing between lattice planes and the 
creation of vacancies, and the latter is a measure only of the average spacing between 
planes, the increase in the fraction of vacant lattice sites is proportional to the difference 
between A V l  and Audu,. Measurements of this type on aluminum give: 

N + N ,  

from which AH,=73.3 kJ/mole and AS,=20 J/K mole. At the melting temperature 
660°C this gives the fraction of vacant sites as 9 x lo4. 

of 

The thermodynamic properties of solutions which do not exhibit Raoultian ideal 
behavior are dealt with by introducing the concept of activity. The activity, a, of the 
component i in a solution is defined as: 

(43)  
and, from eq. (40), is equal to the mole fraction, Xi, in a Raoultian ideal solution. Thus, 
the molar free energy of formation of a binary A-B solution, AG", is given by 

(44)  

The free energy of formation of n moles of a solution, AG'', can be written in terms 

0 
ai = pi/Pi 

AGM = RT(XA In uA + X, In a,). 

of the partial molar free energies of mixing of the components as: 
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AG'M = nAACF + 
or, the molar free energy, AG', as: 

hGM = XAACE t XBAG:, (45) 

where AGM = cj - GP (the difference between the molar free energy of i in the 
solution and the molar free energy of pure i )  is termed the partial molarfree energy of 
mixing of i. The partial molar free energy of mixing of i and the molar free energy of 
formation of the solution are related as: 

A G ~  = A G ~  + (1 - xi) - 
T.P 

Comparison of eqs. (39) and (45) shows that in a Raoultian ideal solution 

AGM = RT In Xi, 

and comparison of eqs. (39) and (44) shows that, generally, 

AGM = RTlna,. (47) 

A typical ideal variation of AGM with composition is shown in fig. 8. In this figure the 
tangent drawn to the free energy curve at any composition intercepts the XA= 1 axis at 
AGf and intercepts the X,, = 1 axis at A??:. This construction is a geometric represent- 
ation of eq. (46). Also, as Xi + 0, ai + 0 and hence, from eq. (47), A??: + -, i.e., 
the vertical axes are tangents to the curve at its extremities. The relationship between the 
variaFions of the tangential intercepts with composition is given by the Gibbs-Duhern 
equafion: 

X,d In U, -t XBd hl UB = 0. (48) 

Usually, the activity of only one component of a solution is amenable to experimental 
measurement, and the activity of the other component, and hence AGM, are obtained from 
integration of the Gibbs-Duhem equation. 

The activity coeflcient, yi, is defined as yi = a/Xi  and hence eq. (44) can be written as: 

AGM = RT(X, In X, + X, In XB) + RT(XA In yA + XB In yB). (49) 

The first term on the right-hand side of eq. (49) is the molar free energy of formation of 
a RaouItian ideal solution, AG'jd, and the second term, being the difference between the 
actual molar free energy of solution and the ideal value, is called the excess molar free 
energy of mixing, G"'. 

6.2. Regular solution behavior 

A regular solution is one which has an ideal entropy of mixing and a nonzero 
enthalpy of mixing. The properties of such a solution are best examined by means of a 

References: p .  469. 
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The variation of AGM with composition in an ideal system at loo0 K. 

simple statistical model of the mixing of NA atoms of A and N B  atoms of B. If the 
internal energy, U‘, of the solution can be taken as the sum of the pair-wise bond 
energies then 

’‘ = ‘AB EAB + ‘AA EAA + ‘BB EBB 9 (50) 

where Pi is the number of i-j pairwise bonds and E@ is the energy of the bond relative 
to i and j at infinite separation. If the coordination number of an atom is z, the number 
of bonds involving A atoms, NAz, is given by 2PAA+PAB and, similarly, the number of 
bonds involving B atoms, NBz, is given by 2PBB + PAB. Thus: 

Pfi = 3 NAZ - 3 PAB and PBB = 3 N B z  - 4  PmI 

substitution of which into eq. (50) gives: 

u’ = 3 N A Z E A A  + 3 N B z E B B  + p A B [ E M  - (Efi f E B B ) / 2 ] *  

The first two terms on the right-hand side represent the internal energies of NA atoms of 
A and NB atoms of B before mixing and hence, for the mixing process: 
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AU' = P,[E, - (E,  + &,)/2]. (5 1) 

If the mixing process, conducted at constant pressure, does not involve a change in 
volume, then, as PAV' =0, AH' = AU' and eq. (51) is the expression for the enthalpy of 
mixing. As random mixing of the atoms is assumed, the number of A-B bonds is 
calculated as the product of the probability of occurrence of an A-B pair and the number 
of pairs of atoms. The former is given by: 

2 NA NB 
NA+NB NA+NB' 

and the latter is $(NA + NB)z, and hence: 

For the mixing of nA moles of A (=nANo atoms of A) and nB moles of B (=nBN, atoms 
of B), eq. (52) becomes: 

or, per mole of solution: 

AHM = 'AxBNO2[ EAB - ( EAA + 

If IE,I>I(E,+EBB/21, AHM is negative, which leads to exothermic mixing, and if 
1E,I < I(E,+EBB/21, A H  is positive, which leads to endothermic mixing. On the other 
hand, if EAB is the average of EM and EBBI AH is zero and Raoultian ideal mixing 
occurs. For any given system, 

' = NOz[EAB - (EAA + EBB)/2] 

is a constant, and hence, in a regular solution, A P  is a parabolic function of com- 
position, given by: 

AHM = 'XAXB, (53) 

and ASM = -R(XA In XA + XB In XB). (36) 

For any extensive thermodynamic property Q, the relationship between AGY and 
AQM in a binary system is given by: 

and thus, in a regular solution, from eq. (53): 
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AFy = a(1- xi)2, 
and from eq. (36): 

AqM = -RInXi. 

The partial molar free energy of mixing of i can be expressed variously as 

A q M  = - TAqM = AqM*id + = RTInXi + RTln yi, 

and hence, in a regular solution: 

9" = bqM = ~ ~ l n y ,  = a(i - xjr. 
Consequently, the limiting values of yi as Xi + 1 and Xi + 0 are unity and exp(CI/RT), 
respectively; i.e., with increasing dilution, the solvent approaches Raoultian ideal behavior 
and the activity coefficient of the solute approaches a constant value designated 7:. The 
tendency of yi towards a constant value as Xi + 0 is expressed as Henry's Law, i.e.: 

'yi + 7: asxi  + 0, 
and if yi is constant over some finite range of composition of dilute solution of i, 
component i is said to exhibit ideal Henrian behavior in this range, its activity being 
given by: 

Application of the Gibbs-Duhem relation, eq. (48), shows that, over the composition 
range in which the solute B exhibits ideal Henrian behavior, the solvent A exhibits ideal 
Raoultian behavior. 

The occurrence of Henrian ideal behavior gives rise to the concept of the Henrian 
standard state, illustrated in fig. 9 which shows the activity of B as a function of 
composition in the system A-B. The Raoultian standard state is pure B, located at the 
point R where a, = 1. If, however, pure B behaved as it does in dilute solution in A, 
extrapolation of its activity along the Henry's Law line would give an activity of y; in 
the hypothetical pure state at X, = 1, relative to the Raoultian standard state. This 
hypothetical pure state is the Henrian standard state, located at the point H in fig. 9, and, 
relative to this standard state, the activity of B in any solution, h,, is 

k = fflxB, 

where fB is the Henrian activity coeficient. In the range of dilute solutions over which B 
exhibits Henrian ideal behavior, fe = 1 and hence: 

hg = x,. 
If the vapor pressure of B in the Raoultian standard state is p i ,  then the vapor pressure 

of B in the Henrian standard state is y ip; ,  and hence the change of standard state, 
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Fig. 9. Illustration of the Raoultian and Henrian standard states. 

i7. i%e thermodynamic origin of phase diagrams 

In the definition of activity, given by eq. (43), pp is the vapor pressure of pure i at 
the temperature of interest. However, depending on the convenience of the situation, 
either pure solid i or pure liquid i can be chosen as the standard state. At temperatures 
below the triple point, & , l i d )  < P&q"id)y and so the activity of i in a solution, relative to 
pure solid i as the standard state, is larger than the activity relative to pure liquid i as the 
standard state. Conversely, at temperatures higher than the triple point temperature the 
reverse is the case. The activities on the two activity scales are related as 

0 

0 = exp(AG;,JRT). 'i(reiative to solid standard state) 

%(relative to liquid standard state) 

Pi(1iquid) 

Pi(so1id) 

=- 
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Consider the molar free energies of mixing in the system A-E, the phase diagram for which 
is shown in fig. loa. For simplicity of discussion it will be assumed that both the solid and 
liquid solutions exhibit ideal Raoultian behavior. The molar free energies, at temperature T, 
are shown in fig. lob. Pure liquid A and pure solid B are chosen as the reference states and 
are located at points a and b respectively. G:(d is located at c, where G&, - GAG) = -AGmA 
at temperature T, and G& is located at d where G&- G&) =AG:, at temperature T. 
Thus, relative to unmixed pure liquid A and pure solid B as the reference state, the molar 
free energy of the unmixed pure liquids (given by line ad) is X,AG:,B and the corre- 
sponding free energy of the unmixed pure solids (given by line eb) is -X,AG&. Upon 
mixing to form Raoultian ideal solutions, the molar free energies decrease by LRT(XA 
lnXA+XB lnX,I and hence, relative to the chosen reference state: 

0 0 

AG'(solid solutions) = -XAAG;,, + RT(X, In X, + X ,  In XB), 

and 

AGM(liquid solutions) = X,AG:,, + RT(XA In X, + X, In XB). 

The double tangent drawn to the two free energy curves touches the curve for the 
solid solutions at g and the curve for the liquid solutions at f, with the intercepts at 
X, = 1 and X, = 1 being e and h respectively. As the equilibrium state is that of minimum 
free energy, points f and g divide the composition range into three regions. At com- 
positions between a and f the homogeneous liquid solution has the lowest possible free 
energy and at compositions between g and b the homogeneous solid solution has the 
lowest possible free energy. However, at compositions between f and g, a two-phase 
mixture of liquid solution of composition f and solid solution of composition g, the free 
energy of which lies on line fg, has a lower free energy than both the homogeneous solid 
solution and the homogeneous liquid solution. Thus point f is the limit of solution of B 
in liquid A and g is the limit of solution of A in solid B, and so points f and g are, 
respectively, the liquidus and solidus compositions at temperature T. 

Furthermore, for phase equilibrium: 

CA(in liquid solution f)  = GA(in solid solution g), 

and 

CB(in liquid solution f )  = CB(in solid solution g) 

AGF(in liquid f)  = AG:(in solid g), or 

and 

AGf(in liquid f )  = AG:(in solid g). 

These requirements state that, for phase equilibrium, the tangent to the molar free energy 
curve for the liquid solutions at the liquidus composition f is also the tangent to the 
molar free energy curve for the solid solutions at the solidus composition g. Geometrical- 
ly, this condition is such that, simultaneously, 




