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Fig. 10. (a) The phase. diagram for the system A-B. @) The ideal free energy of mixing curves for the system 
A-B at temperature T. 

(54) ca+ae=ce and db+bh=dh,  
where: ce = AEf (relative to solid A as the standard state) 

ae = A Z Z  (dative to liquid A as the standard state) 

dh = AEF (relative to liquid B as the standard state) 

bh = A??: (relative to solid B.as the standard state) 

= RT In XA (at the composition g), 

= RT In XA (at the composition f), 

= RT In X, (at the composition f), 

= RT In X, (at the composition g). 
and 
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Thus eqs. (54) become: 

AG:,, + RT In X, (liquidus) = RT In XA (solidus), 

and 

-AG:, + RT In X, (solidus) = RT In XB (liquidus). 

As X,(liquidus) +XB(liquidus) = 1 and X,(solidus) +X,(solidus) = 1, the solidus and 
liquidus compositions (in a Raoultian system) are thus uniquely determined by the values 
of AG;., and AG;,, as: 

- 1 - exp( -AG;,, / RT) 

- [exP(-AG:,B/RT)][exP(AG;,A /RT)] 
xA(liquidus) - 

and 

(55) 

The phase diagram for the system Si-Ge, calculated from eqs. (55) and (56) and the 
known variations of A&m,si and AG:,oe with temperature, is compared, in fig. 11, with 
the liquidus and solidus lines determined experimentally by thermal and X-ray analysis. 
As is seen, the behavior in the system is very close to Raoultian. 

Raoultian behavior is very much the exception rather than the rule, and even 
complete mutual solid solubility between A and B requires that A and B have the same 
crystal structure, similar atomic sizes, similar electronegativities, and similar valences. 
The requirement of similar atomic size arises from the introduction of a strain energy 
into the lattice when the solvent and substitutional solute atoms are of differing size. This 
strain energy always increases the Gibbs free energy and, hence, can significantly 
influence the phase relationships in the system. It is found that terminal solid solutions 
extend only a few atomic percent into a binary system if the atomic diameters differ by 
more than 14%. Significant differences in electronegativity cause the formation of 
intermetallic compounds such as Mg,Si, Mg,Sn and Mg,Pb, and differences in valences 
can cause the formation of electron compounds such as occur in the systems Cu-Zn and 
CuSn.  

Although Cu and Ag are chemically similar, the atomic radius of Ag is 13% larger 
than that of Cu and hence, as shown in fig. 12a, Cu and Ag form a simple eutectic 
system. In this system it is presumed that Ag exhibits Raoultian ideal behavior in the Ag- 
rich a-solid solution and that Cu exhibits Raoultian ideal behavior in the Cu-rich P-solid 
solution. Consequently Cu in a and Ag in /3 exhibit Henrian ideal behavior and, at 1000 
K, the activities of the components, relative to the pure solids as standard states, are as 
shown in fig. 12b. At 1000 K, saturation of the a-phase with Cu occurs at X+.=O.9, and 
hence, as Ag obeys Raoult's law in the a-phase, aAg=0.9 at this compos~tion. Phase 
equilibrium between a saturated with Cu and /3 saturated with Ag requires that the 
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Fig. 11. Comparison of the phase diagram for the system Si-Ge as determined experimentally by X-ray and 
thermal analysis, with that calculated assuming Raoultian ideal behavior in both the solid and liquid solutions. 

activities of both Ag and Cu be the same in both phases, and hence aAg=0.9 in the Ag- 
saturated &phase of composition X,, = 0.04. Similarly, a, = 0.96 in the Ag-saturated fi 
(at X, = 0.96) and in the Cu-saturated a (at XAg = 0.9). Thus, in the a-phase, Henrian 
behavior of Cu is given by: 

a, = 9.6Xc,, (57) 

and in the &phase, Henrian behavior of Ag is given by: 

aAg = 22.5XA,. 

8. Reaction equilibrium involving solutions and the Gibbs phase rule 

8.1. The dependence of the equilibrium state on activity 

In $4 it was shown that, at constant temperature and pressure, equilibrium is 
established in the reaction 

aA + bB = cC + m>, 
when 

aGA + bcB = cG, + dG,. (58) 

References: p .  469. 
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Fig. 12. (a) The phase diagram for the system Ag-Cu. (b) The activities of Ag and Cu in the system Ag-Cu 
atlooOK. 

As: 

= G: + RTlna,, 

eq. (58) can be written as: 

aEag AG; = -RT In - 
aiai ' 
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where the quotient in the logarithm term is Kr the equilibrium constant for the reaction. 
Consider the oxidation, at 1000 K, of Cu from an Ag-Cu alloy of X,=O.OS. From 

eq. (57), the activity of Cu in this alloy, relative to pure solid Cu as the standard state, 
is 

a, = 9.6X, = 9.6 x 0.08 = 0.768. 

For the reaction: 

4 q S )  + Oqg) = 2CU20(,) 

AG: = -336810 + 142.5T J. 

Thus, A G ~ m  =-194300 J=-8.3144x 10o0 lnK,, and so: 
2 

acu20 

a," Po, 
K,,, = 1.41 x 10" = 7. (59) 

Oxidation of the Cu occurs when the oxygen pressure in the system has been increased 
to the level at which a,,,o = 1. From eq. (59) this oxygen pressure is: 

= 2.04 x lO-''atrn. 
1 - 

- (0.768)4 x 1.41 x 10" 

From eq. (16), AGP, for the reaction 

2Ag(,) + + Oqg) = A&O(,) 

has the value 31 062 J. Thus: 

Thus, with uAg = 0.92 (Raoultian behavior in the a-solid solution) and po2 = 2.04 x lo-'' 
atm: 

'Ag20 - - 2.9 x 10-7, 

which shows that the equilibrium oxide is virtually pure Cu,O. As the oxygen pressure 
in the system is further increased, the Cu content in the alloy decreases in accordance 
with eq. (59). Thus the alloy in equilibrium with virtually pure CbO and air (oxygen 
fraction 0.21) at 1000 K is that in which 

= 0.0043, 
= [ 1.41 x 10" l ] " "  x 0.21 

or X, = %/9.6 = 4.5 x lo4. 

At this oxygen pressure the activity of AgzO in the equilibrium oxide phase, with aAg = 
1, is: 

References: p.  469. 



450 D. R, GaskeN Ch. 5, $ 8  

aAg20 - - 0.024 x 1 x 0.21”* = 0.011, 

and so the equilibrium oxide phase is still essentially pure ChO. 

8.2. The Gibbs phase rule 

The complete description of a thermodynamic system containing C components 
existing in P phases requires specification of the temperatures, pressures and com- 
positions of each of the P phases. As the composition of each phase is defined when the 
concentrations of C - 1 of its components are known, the total number of variables in the 
description is P pressures + P temperatures + P(C - 1) concentrations =P(C+ 1). For 
thermodynamic equilibrium in the system, each of the P phases must be at the same 
temperature and same pressure and the activity (or partial molar free energy) of each of 
the individual components must be the same in each of the P phases. Thus, for equilib- 
rium, there are (P - 1) equalities of temperature, (P - 1) equalities of pressure and (P - 
1)C equalities of activity, and hence the total number of equilibrium conditions, given as 
the number of equations among the variables of the system, is (P - 1)(C+2). The 
number of degrees of freedom, F, which the equilibrium system may have, is defined as 
the maximum number of variables which may be independently altered in value without 
disturbing the equilibrium in the system. This number is obtained as the difference 
between the total number of variables available to the system and the minimum number 
of equations among these variables that is required for maintenance of the equilibrium, 
1.e.: 

F = P(C + 1) - ( P  - 1)(c + 2) 
= C + 2 - P .  

Equation (60) is the Gibbs phase rule and is a powerful tool in the determination of 
possible equilibria which may occur in multicomponent, multiphase systems. 

In the simplest of applications, i.e., in a one-component system, F = 3 - P. Thus, with 
reference to the phase diagram for H,O, shown in fig. 3, for the existence of a single 
phase F = 2 and so the pressure and temperature can be varied independently without 
disturbing the equilibrium, i.e., with F=2 the state of the system can be moved about 
within the area of stability of the single phase in the pressure-temperature diagram. 
However, for a two-phase equilibrium the state of the system must lie on one of the lines 
in fig. 3 and thus only the pressure or the temperature can be varied independently. From 
the phase rule, F = 1 and hence the two-phase equilibrium is univariant. The triple point, 
where the three phases are in equilibrium, occurs at fixed values of temperature and 
pressure, in accordance with F =  0 from the phase rule. The three-phase equilibrium is 
thus invariant and three is the maximum number of phases which can be in equilibrium 
with one another in a one-component system. 

In a binary system, the inclusion of a second component adds an extra degree of 
freedom to each equilibrium and hence the maximum number of phases which can be in 
equilibrium with one another in a two-component system is four. However, phase 
diagrams for binary systems of metallurgical interest are normally presented for a 
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pressure of 1 atm, i.e., they are the 1 a m  isobaric sections of the phase equilibria 
occumng in pressure-temperature-composition space, and hence one of the degrees of 
freedom is used in specifying the pressure. Thus, at an arbitrarily selected pressure such 
as 1 atm, the maximum number of phases which can exist in equilibrium with one 
another in a binary system is three (unless, by chance, the arbitrarily selected pressure 
happens to be that at which an invariant four-phase equilibrium occurs). In the binary 
system A-B, considered at constant pressure, the available variables are T, a, and aB. For 
the existence of a single phase, such as a, p or liquid in fig. 12a, the phase rule gives 
F = 2 ,  and hence any two of T, U, and aB may be varied independently. For any two- 
phase equilibrium, F= 1 and hence the specification of any one of the three variables 
fixes the state of the system. For example, specification of the temperature at which the 
two-phase equilibrium exists fixes the compositions of the equilibrated phases on the 
appropriate liquidus, solidus or solvus lines; and specification of the composition of one 
of the equilibrated phases fixes the temperature at which the chosen composition lies on 
the appropriate liquidus, solidus or solves line and fixes the composition of the second 
phase at the other end of the tie-line between the two equilibrated phases. The three- 
phase equilibrium with F = 0 is invariant, and, in fig. 12a, the eutectic equilibrium occurs 
at a fixed temperature at which the compositions o f  the a, /3 and liquid phases are also 
fixed. 

If some, or all, of the components of a system can react chemically with one another 
to produce new chemical species, a distinction must be drawn between the terms 
component and species. For example the components silver and oxygen in the binary 
system Ag-0 are capable of reacting to form the new species Ag,O, and hence an 
equilibrium among the three species Ag, AgzO and 0, can occur in the two-component 
system. The equilibrium among Ag, Ag,O and 0, is called an independent reaction 
equilibrium. In a system containing N species and existing in P phases among which 
there are R independent reaction equilibria, the number of variables is P(N+ l), Le., P 
pressures + P temperatures + P(N - 1) concentrations. However, if the species i and j 
react to form the species k, reaction equilibrium requires that 

q + q  = 9, 
and this is an additional equation required among the variables. Thus, if R independent 
reaction equilibria occur, the number of equations among the P(N+ 1) variables, required 
for equilibrium is (P - 1) equalities of temperature f (P - 1) equalities of pressure + (P 
- l)N equalities of activity+R=(P-l)(N+2)+R, and hence the number of degrees of 
freedom, F, is 

F = P(N + 1) - (P - 1)(N + 2) - R 
= ( N -  R ) + 2 -  P .  

Comparison with eq. (60) indicates that 

C = N - R ,  

Refewnces: p .  469. 
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Le., the number of components in a system equals the number of species present minus 
the number of reaction equilibria. Equation (61) is normally used to calculate the number 
of independent reaction equilibria from knowledge of the number of components and the 
number of species. For example, in the two-component system Ag-0, the independent 
reaction equilibrium among the three species is 

2Ag + 3 0, = Ag,O. 

For equilibrium among the phases metal, metal oxide and oxygen gas in the two- 
component system, F =  1 and thus only T or pol can be selected as the single degree of 
freedom. Selection of T fixes AG: and hence, via eq. (34), fixes poz, and vice versa. 

Consider the various equilibria which can occur in the ternary system Si-C-0, for 
which a stability diagram is shown in fig. 7. It can be considered that this system 
contains the six species Si, SiO,, Sic, C, CO and CO,, and hence R = 6 - 3, i.e., there are 
three independent reaction equilibria. These are derived as follows. The chemical reaction 
for formation of each compound from its elements is written: 

Si + 0, = SiO,, 
Si + C = Sic, 
c + 0, = co,, 
c + + o ,  =co. 

These equations are then combined in such a way as to eliminate any elements which are 
not considered as species in the system, and the minimum number of equations so 
obtained, is the number of independent reaction equilibria, R. In this case oxygen is not 
considered as species, and elimination of 0, gives: 

c + co, = 2c0, (9  

Si + C = Sic, 
and 

Si + 2C0, = SiO, -t 2CO 

(ii) 

(iii) 

as the independent equilibria. From the phase rule, the maximum number of phases 
which can coexist in equilibrium is five (the condensed phases Si, SiO,, Sic, C and the 
gas phase CO-CO,). This equilibrium is invariant and occurs at the temperature T, at 
which AG& = O  and at the pressure P=p,+pm2 at which K,,, = pm/pm2 andK(ci),Tq 
= (pm/p,)’ are simultaneously satisfied. If the temperature is ar%itrarily fixed, as is the 
case in fig. 7, the maximum number of phases which can coexist in equilibrium is four 
(three condensed phases and a gas phase). One such equilibrium occurs in fig. 7 at point 
b. For the coexistence of two condensed phases and a gas phase at the arbitrarily selected 
temperature, F =  1, and such equilibria lie on the univariant lines A, B, C and D in fig. 
7, and for equilibrium between a single condensed phase and a gas phase, F=2,  
corresponding to areas of single condensed phase stability in fig. 7. 

Occasionally situations are found in which it might appear, at first sight, that the 
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phase rule is not obeyed, and usually, in such situations a degree of freedom is used by 
a condition of stoichiometry in the system. For example, in the reduction of ZnO by 
graphite to produce Zn vapor, CO and C02, it might appear that the three-phase 
equilibrium (ZnO, C and the gas phase) in the three-component system (Zn-042) has 
F = 5 - 3 = 2 degrees of freedom, and that, with the five species ZnO, C, ZqV), CO and 
C02, two independent reaction equilibria occur, which can be selected as 

(iv) ZnO(s) + q g r )  = q”) + qg) 

and 

(Vii) 

However, selecting T, which fixes the values of K(iv) and K,, and any one of pzn, pCo orpmz 
as the two apparent degrees of freedom does not fix the state of the system, i.e., does not 
allow simultaneous solution of eqs. (vi) and (vii). This difficulty arises because the 
stoichiometry requirement has not been taken into consideration, i.e. that, as all the Zn 
and 0 occurring in the gas phase originates from the stoichiometric ZnO, the condition 

(viii) 

must also be satisfied. This stoichiometric requirement decreases F to unity and hence 
selecting T as the single degree of freedom fixes the partial pressures of Zn, CO and CO, 
as the values required for simultaneous solution of eqs. (vi), (vii) and (viii). 

9, The thermodynamics of suflaces and inteflaces 

9.1. The Gibbs adsorption isotherm 

In passing from one phase to another in a heterogeneous system, some of the 
properties undergo significant changes as the boundary between the two phases is 
traversed. The thin region over which these changes occur is called the inteflace, and a 
complete thermodynamic analysis of the system requires consideration of the thermo- 
dynamic properties of the interface. 

Consider fig. 13 which shows the variation of the concentration, cl, of the component 
1 across the interface region in a system comprising equilibrated CY and p phases. 
Calculation of the total number of moles of component 1 in the system as the sum 
cf V” + cfV6, where V and b#? are the volumes of the phases, involves the assumption 

References: p .  469. 
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Fig. 13. The variation, with distance, of concentration on passing through the interface between two phases. 

that the values cy and c f  occur up to some plane in the interface region, and evaluation 
of cPV" + cfVB requires that a mathematical plane be located somewhere in the 
interface region. In fig. 13 it is seen that the number of moles of component 1 in the 
system, calculated as C ~ V "  + c f V B ,  is only equal to the actual number of moles of 1 in 
the system, n, when the boundary plane X-X is located such that the shaded areas in fig. 
13 are equal. If the boundary plane is located to the right of X-X, say at X'-X', then: 

n, < CPV" + c,BvB 

or, if the boundary plane is located to the left of X-X: 

n, > CPV" + c,BvB. 

The difference between n, and C ~ V "  + cf3Vp defines the surface concentration of 
component 1 ,  r,, (moleskm'), as: 

T,A, = n, - (cPV" + cfVs), 

where A, is the area of surface between the two phases. Thus, with the boundary located 
to the left of X-X, r, is a positive quantity and with the boundary located to the right of 
X-X, rl is a negative quantity. In a single-component system where the boundary is 
between a condensed phase and a vapor phase, it is logical to locate the boundary at 
X-X so that the surface concentration is zero. However, with two or more components 
in the system it is not generally possible to locate the interface at a position at which 
more than one of the surface concentrations are zero. In such a case X-X is located such 
that the surface concentration of the solvent, rl, is zero and the surface concentration of 
the solute, r2, is not zero. This is illustrated in fig. 14. 



Ch. 5,  8 9  Metallurgical thermodynamics 455 

distance 

Fig. 14. The variations, with distance, of the concentrations of solvent and solute on passing through an 
interface, and illustration of the origin of surface concentration of the solute. 

The definition of surfiace free energy per unit area, G,, is analogous to that for the 
surface concentration, i.e.: 

where G’ is the total free energy of the system. 
The surfiace tension, (+, is defined as: 

cT=(g) 9 

T.P.ni 

and hence, when surfaces are included in the discussion, eq. (13) is written as: 

dG‘ = -S’dT + V’dP + d, + qdni (63) 

If the surface area is increased by dA, at constant T, P, and n ,  combination of eqs. (62) 
and (63) gives: 

G,dA, = adg + (C Fn; +C G’n!). (64) 

As phase equilibrium is maintained, = Gf ; mass balance requires that: 

dn,u + dnf = -q.d4, 

in which case eq. (64) can be written as: 

Gsdq = ad4 + C G r i d 4  

References: p. 469. 
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or: 

G, = u + x q r i ,  
i.e., the surface free energy is the surface tension plus the free energy due to the surface 
concentrations of the components. 

Complete differentiation of eq. (65) gives: 

dG, = d u  + G d r i  + r i d q ,  (66) 

and the differential of G, for conditions of fixed surface area and fixed P gives: 

dG, = -S,dT + q.d.dT;:. 
Combination of eqs. (66) and (67) gives: 

d u  = -S,dT - TdG,, 

which is Gibbs' equation for surface tension. At constant T, eq. (68) gives, for the binary 
system A-B in which r,=O: 

Equation (69, which is known as the Gibbs adsorption isotheim, indicates that any solute 
which lowers the surface tension has a positive value of r and hence is concentrated in 
the surface, and, conversely, any solute which raises the surface tension has a lower 
concentration in the surface than in the bulk phase. 

The influence of dissolved oxygen on the surface tension of liquid iron at 1550°C is 
shown in fig. 15 as the variation of cr with the activity of oxygen relative to the 1 weight 
percent standard state. The surface concentration of oxygen at any concentration of 
oxygen in the bulk phase is obtained from the slope of the line and the Gibbs adsorption 
isotherm. At high oxygen contents the slope of the line approaches the constant value of 
-240 dyne/cm, which corresponds to saturation coverage of the surface by adsorbed 
oxygen. From the Gibbs adsorption isotherm this saturation coverage is calculated as 

= 9.5 x 1 0 ' ~  atoms/cm2 240 
8.3144 x lo7 x 1823 

r,, = 6.023 x iou x 

9.2. The Langmuir adsorption isotherm 

Consider the equilibrium between the component i in a vapor phase and i adsorbed 
on the surface of a condensed phase. If is is considered that the atoms of i are adsorbed 
on specific adsorption sites on the surface of the condensed phase, the limit of adsorption 
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Fig. 15. The variation of the surface tension of Fe-0 melts with activity of oxygen at 1550°C. 

occurs when all of the available sites are occupied by adsorbed atoms. This limit 
corresponds to the surface being covered by a monolayer of adsorbed atoms at the 
surface concentration r:. At surface concentrations, Ti, less than that corresponding to 
monolayer coverage, the fraction of surface sites occupied, Bi (or the fractional saturation 
of the surface) is defined as: 

(70) 

At equilibrium, the rates of adsorption and desorption of i are equal, the former being 
proportional to the pressure of i in the vapor phase, pi, and the fraction of unoccupied 
surface sites, (1 -e,), and the latter being proportional to the fraction of surface sites 
occupied by i, i.e.: 

r. 8. = I r; * 

k,pi(l - Oi) = kdei, 

where k, and k,, are the rate constants for the adsorption and desorption reactions, 
respectively. Thus: 

(71) ‘i pi = Ki - 
i - e i ’  

where 

Ki = k,/k, = exp(-AG:/RT), 

References: p .  469. 
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and AGP is the change in molar free energy accompanying the transfer of one mole of 
i from the vapor state at 1 atm pressure to the adsorbed layer on the surface at the 
surface concentration c. Equation (71), which is Langmuir 's adsorption isothenn, shows 
that 8, is proportional to pi  at small Oi and (1 - 8J is inversely proportional to pi at large Oi. 

Alternatively, eq. (71) can be written as: 

a, = K(-. 4 
1 - e, 

BELTON has combined the Gibbs and Langmuir adsorption isotherms by substitution of 
eqs. (70) and (72) into eq. (69) to give: 

da Kla. -- - -RT 
d In a, 

= -RT8,r;" = -RT Ko -, 
1 + K,la, 

which, on integration between the composition limits Xi' and Xi" , becomes: 

1 + K'a!' d' - a' = -RT yo In - 
1 + K'a! a 

(73) 

If Langmuir's isotherm holds at all compositions, one limit can be taken as the pure 
solvent, in which case eq. (73) becomes 

(74) 

where cf refers to the surface tension of the pure solvent. Curve-fitting of eq. (74) with 
the experimental data shown in fig. 16 and d = 1788 dyne/cm, Po =240 dyne/cm, gives 
K = 220. Thus, if oxygen adsorbed on liquid iron exhibits ideal Langmuir behavior: 

a' - (T = -RT I7: ln(1 + K'a,). 

220 = [wt%O] 
1 + 220 * [wt%O] * 

e, = (75) 

Equation (75) is shown in fig. 16 in comparison with the variation of 8, obtained from 
the slopes in fig. 15 as Bo = J?d r", 

A number of applications of the Gibbs and Langmuir absorption isotherms will be 
found in ch. 13, 592 and 4. 

9.3. Curved interfaces 

The existence of surface tension gives rise to the interesting phenomenon that the 
equilibrium vapor pressure exerted by a spherical droplet is a function of the radius of 
curvature of the droplet. This phenomenon, which was first discussed by Kelvin in 1871, 
is of importance with respect to the dependence of the limit of solid solution of one 
component in another on the particle size of the second phase. 

The general equation 

dG' = -S'dT + V'dP + d, + Gdn, (63) 
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Fig. 16. The variation, at 155OoC, of the fractional coverage of the surface of liquid iron by adsorbed oxygen 
with concentration of oxygen in the melt. 

was tacitly applied to systems containing flat interfaces. However, provided that CT is not 
a function of the radius of curvature of the interface, and that the interface within the 
system does not influence the exterior pressure, eq. (63) can be applied to the transfer of 
matter across curved interfaces. The partia2 molurfree energy, E ; ,  defined from eq. (63) 
as: 

pertains to the addition of i to the system in such a manner that A, remains constant. 
However, in a process involving the transfer of matter to a small spherical droplet, A,, 
being dependent on the volume, and hence on the amount of matter in the droplet, is not 
an independent variable. The incremental increase in volume of a droplet caused by the 
addition of dn, moles of the various components is: 

where 7 is the partial molar volume of i in the system. From the relationship between 
the surface area and the volume of a sphere, 

substitution of which into eq. (63) gives: 

References: p .  469. 
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dG’ -S’dT + V‘dP + ( + ?)Ini. 

Comparison with eq. (63) gives the identity 

(76) 
- 2 p  Gi = G: + - 

I 

as the variation of partial molar free energy with spherical particle size. From the 
relationship between partial molar free energy and activity, eq. (76) can be written as 

2Fu 

RT, 
lna, = ha,* +-. (77) 

In a limited terminal solid solution of B in A, in which B obeys Henry’s Law, the 
activity of €3 at the limit of solubility is: 

% = YixB(sat)y 

and hence, from eq. (77), the solubility limit varies with particle size of the second phase 
as 

where XB(sat,rl is the solubility limit when the second phase occurs as a dispersion of 
spherical particles of radius r and is the solubility limit when the second phase is 
massive. Equation (78), which is known as the Thomson-Freundlich equation, provides 
a thermodynamical explanation of the phenomenon of Osnvald ripening (see ch. 9, Q 
3.2.2). When the second phase, precipitating from a primary solid solution, occurs in a 
range of particle sizes, it is observed that the particles of radius greater than some 
average value grow and that the smaller particles redissolve in the matrix. As the 
concentration of solute in the matrix at the interface between the matrix and a small 
precipitate is greater than that at the interface between the matrix and a large precipitate, 
a concentration, and hence activity, gradient exists between the two interfaces. This, in 
turn, provides the driving force for the diffusion of dissolved solute from one interface 
to the other, with the overall result that the larger particle grows and the smaller particle 
dissolves. Equation (78) is also of interest in that it indicates that no such quantity as 
“maximum solubility” exists. 

10. The measurement of thermodynamic activity 

Although activities are thermodynamic functions of state, their magnitudes and 
variations are determined by the interactions among the constituent particles of the 
system, which, in turn, determine bond energies and influence the spatial configurations 
assumed by the particles. Thus measurement of activities within a class of similar simple 
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systems can be expected to provide, at best, some fundamental understanding of the 
natures of these interactions or, at least, a basis for correlation of the behavior, which can 
then be used for extrapolation of the behavior of more complex systems. 

The molar free energy of formation of a solution or compound from its pure 
components is obtained from the activities via eq. (44) and as the various phase 
equilibria occurring in a materials system are determined by the variations, with 
composition, temperature and pressure, of the relative free energies of the various phases, 
such equilibria can be most precisely determined by accurate measurement of activity. 
Also, the activity of a component in a solution is a measure of the minimum free energy 
required to convert the component from its state in solution to the pure state in any 
proposed extraction or refining process. 

En the majority of the experimental methods the activity of only one component is 
measured. In such cases the activities of the other components can be obtained by 
integration of the Gibbs-Duhem equation. For constant temperature and total pressure 
this expression is ZXid lna,=O or, in a more convenient form, XX,d lny,=O where 
yi=nJXj is the activity coefficient of i. Applied to the binary system A-B in which the 
variation of yA is known across the entire range of composition: 

10.1. Determination of activity by experimental measurement of vapor pressure 

The experimental technique for the measurement of vapor pressure is determined by 
the magnitude of the pressure to be measured, and the various techniques which have 
been developed can be classified as absolute methods (direct and indirect static methods) 
and indirect methods (effusion and transpiration methods). 

The earliest activity measurements were made on binary alloys of Hg with Zn, Au, 
Ag and T1 at temperatures near the boiling point of Hg. The partial pressure of Hg 
exertsd by an amalgam is so much greater than the partial pressure of the other 
component that the former can be equated with the total vapor pressure of the amalgam. 
In the first studies the alloy was used as the sealing liquid in a U-tube null-point 
manometer. The vapor in equilibrium with the alloy is contained in the closed arm of the 
manometer, and hydrogen, the pressure of which is measured at a second manometer, is 
introduced to the other arm until the meniscuses in both arms are at the same level. The 
vapor pressures of amalgams at lower temperatures have been measured using various 
devices such as membrane manometers, quartz spiral manometers and ionization gages. 

Tbe partial pressures of Zn and Cd over a-Ag-Zn-Cd alloys and of Zn over 
a-brasses have been measured by resonance absorption spectroscopy. In studying the Zn 
alloys, light produced by a spark between Zn electrodes, is passed through a sample of 
vapor in equilibrium with the alloy, and the absorption of the 3076 A resonance line is 
measured. As absorption of the 3035 8, resonance line does not occur, it is used as an 
interrial standard and the vapor pressure, p ,  of Zn is obtained from Beer's Law as 
-ln(Z3m~Ims) = Kpd/T where I is the intensity of the transmitted light, K is the absorp- 
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tion coefficient, T is  the absolute temperature and d is the distance travelled by the light 
through the sample of vapor. 

The dew point method is well-suited to systems containing a distinctly volatile 
component and has been applied to measurement of the activity of Zn in binary alloys 
containing Cu, Al, Ag, Au, Zr, Th, U, and Y, and the activity of Cd in Ag-Cd alloys. 
Experimentally, the alloy is placed at one end of a long initially evacuated tube which is 
heated to the desired temperature T,. The temperature of the other end of the tube is 
lowered until condensation of the volatile component is observed at the temperature T,. 
As the pressure within the tube is uniform, the partial pressure of the volatile component 
exerted by the alloy at TI equals the saturated vapor pressure of the pure volatile 
component at T,. The use of fused silica tubes, which permits visual observation of 
condensation at the cooler end, has limited the temperature to less than 1100°C and, 
generally, measurements have been made in the range 400-900°C. In a similar isopiestic 
technique, the pure volatile component is placed in the cool end of an initially evacuated 
tube maintained in a known temperature gradient, and weighed quantities of the pure 
second component are placed at intervals along the temperature gradient. The volatile 
component is transferred from the vapor phase to the specimens of nonvolatile com- 
ponent until the alloys in equilibrium with the prevailing pressure of the volatile 
component are formed. In this technique, which has been applied to measurement of the 
activities of A1 in solid A1-Fe and A1-Ni alloys, the compositions of the equilibrated 
alloys are determined gravimetrically. 

Application of the dew point and isopiestic techniques to measurement of activity 
requires knowledge of the temperature dependence of the saturated vapor pressure of the 
volatile component. 

In the rrunspirution technique, an inert carrier gas is passed over a sample at a flow 
rate which permits evaporation of the alloy to occur to the extent necessary to saturate 
the carrier gas. This technique has been used to measure the activities in liquid F e C u  
and Fe-Ni alloys. The material evaporated from the sample is condensed downstream 
and is chemically analyzed. The total amount of evaporation into unit volume of the 
carrier gas at the total pressure P is determined by measuring the weight loss of the 
sample or by quantitative analysis of the amount of condensate recovered from a known 
volume of gas. If nFe. n, and nHe are the numbers of moles of Fe, Cu and He carrier gas 
in the sampled volume, the partial pressure of Fe is calculated, from the ideal gas law, 
as pR = PnFe/(nFe + n, + n&). An advantage of this technique is that the activities of both 
components are measured and hence internal consistency of the results can be checked 
using the Gibbs-Duhem equation. However, in order that surface depletion of the more 
volatile component be avoided, the rates of diffusion in the alloy must be faster than the 
rates of evaporation. 

In the efsusion technique the alloy to be studied is placed in a Knudsen cell (a sealed 
crucible containing a small orifice in its lid) and the crucible is heated in vacuum to the 
desired temperature. Phase equilibrium is established between the vapor phase and the 
condensed phase in the cell and, if the dimensions of the orifice are small in comparison 
with the mean free path of the vapor species, the passage of vapor species through the 
orifice is not disturbed by collisions. Thus the rates of effusion of the vapor species are 
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proportional to their vapor pressures within the cell. From gas kinetic theory, the number 
of particles in a vapor phase striking unit area of the containing wall in unit time is 
Q.25 IZC, where n is the density of vapor species and F = (8RT/IW)”2 is the average speed 
of the particles. Consequently, the weight loss, W, due to effusion through an orifice of 
area .A in time t is pAt/(211MRT)”2 and hence the pressure, p, of the species in the cell 
is p = (W/At)(211RT/M)’/2. If a radioactive tracer is added to the alloy, very small 
amounts of effusing substance can be detected. For example, gamma-ray spectrometry of 
neutron-irradiated Au-Cu alloys has facilitated estimation of quantities as small as lo-’’ g. 

The transpiration and effusion techniques require that the molecular weights of the 
vapor species be known and hence they can only be used to study systems in which no 
complex vapor molecules are formed. 

The problems caused by complex molecule formation can be eliminated by mass- 
spectrometric analysis of the vapor effusing from the Knudsen cell. In the Knudsepa cell- 
time ofJtight mass-spectrometer combination, the beam of particles effusing from the cell 
is introduced to the ionization chamber of the mass-spectrometer through a slit, Ioniza- 
tion iis produced by a pulsing electron beam and after each pulse the ionization chamber 
is cleared of ions by a pulse of small negative potential. The ions are then subjected to 
a continuously maintained high negative potential which accelerates them into a field-free 
drift tube, and the time required for a given ion to traverse the drift tube and be detected 
is proportional to (m/e)’/2. The ion current, Z,+, measured for the species i is related to 
the vapor pressure of i as: 

pi = KI,!T, 

where the constant K is determined by the ionization cross-section of the ion, the detector 
sensitivity and the geometry of the Knudsen cell-ion source. The application of the 
technique to measurement of activities in binary systems was greatly facilitated by a 
manipulation of the Gibbs-Duhem equation which allows the variations, with com- 
position, of the activity coefficients of the individual components to be obtained from the 
corresponding measured ratio of the activity coefficients as: 

From eq. (80): 

substitution of which into eq. (81) gives: 

Use lof a mass-spectrometer requires that a pressure of less than lo-* atm be maintained 
in the areas of the ion source, analyzer and detector. This technique has been applied to 
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measurement of activities in a large number of binary and ternary systems containing V, 
Cr, Fe, Co, Ni, Cu, Ag, Au, Al, T1, Pb, Sn, Bi, Sb, and In. 

10.2. Determination of activity by establishing heterogeneous equilibrium 

Heterogeneous equilibrium at constant temperature and pressure requires that the 
partial molar free energy, and hence activity, of each component of the system be the 
same in each of the phases present, i.e., ai (in phase I) =ai (in phase 11) =a, (in phase 111) 
=.... Thus, if the activity of a component can be fixed at a known value in any one of 
the phases, its value in every other phase is known. 

One of the more simple heterogeneous equilibria involves a binary liquid, saturated 
with one of its components. In a simple binary eutectic system exhibiting virtually 
complete mutual immiscibility in the solid state, the saturated liquids on the liquidus 
lines are in equilibrium with virtually pure solids. Thus, in the melt of A-liquidus 
composition at the liquidus temperature T, the activity of A relative to pure liquid A as 
the standard state equals the activity of pure solid A relative to liquid A as the standard 
state, both being given by aA = exp( -AG;,/RT) where AG:,, is the molar free energy 
of melting of A at temperature T. Activities have been calculated in this manner along 
liquidus lines in such systems as Ag-Si and Ag-Pb. 

Fe and Ag are virtually immiscible in the liquid state, and when Si is added as a 
solute to coexisting liquid Fe and Ag it is distributed between the two liquids such that 
its activity is the same in both phases. The activities of Si in liquid Fe and liquid Fe-C 
alloys have been determined by chemical analysis of equilibrated Fe and Ag liquids 
containing Si, and knowledge of the activity of Si in Ag-Si alloys. In a similar manner 
the activity of Ag in A1-Ag alloys has been determined from measurement of the 
equilibrium partitioning of Ag between the virtually immiscible liquids AI and Pb, and 
the activity of A1 in AI-Co alloys has been determined by partitioning Al between the 
virtually immiscible liquids Ag and Co. 

The respective equilibrium constants for the reactions C02 + C,,,,,,,, = 2CO and 
CO +io2 = COz are: 

2 
Pco K4 = ~ 

Pco2ac 

and 

Pco, 
Pco Po, 

K5 = ~ t2 - (83) 

Thus, at a fixed temperature, which determines the values of K4 and K5, a CO-CO, gas 
mixture of known pco and pco, has an activity of carbon given by eq. (82) and a partial 
pressure of oxygen given by eq. (83). Similarly, by virtue of the equilibrium H2+$O2= 
H20, an H2-H20 mixture of known pHa and p%o exerts a unique partial pressure of 
oxygen at any temperature; by virtue of the equilibrium H2+iS,=H2S, an H2-HzS 
mixture of known pH, and pHaS exerts a unique partial pressure of sulfur at any temperat- 
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ure; and, by virtue of the equilibrium CwNire)+2H2=CH4, a CH4-H, mixture of known 
pa4 and p., has a unique activity of carbon at any temperature. Consequently, CO-CO, 
and CH,-H, mixtures can be used as gas phases of fixed activity of carbon for use in the 
establishment of heterogeneous equilibria between a gas phase and a condensed phase. 
Similarly, CO-CO, and H2-H,O mixtures can be used as gas phases of fixed oxygen 
pressure and H,-H,S mixtures can be used as gas phases of fixed sulfur pressure. The 
activities of carbon in liquid and solid iron have been determined by equilibrating iron 
with CO-CO, and CH4-H, mixtures and measuring the equilibrium carbon content of the 
metal phase, and the activities of oxygen and sulfur in liquid iron have been determined 
by equilibrating iron with H,O-H, and H,S-H, mixtures, respectively. In more simple 
gas-metal equilibria the activities of hydrogen and nitrogen in iron have been determined 
by measuring the solubilities of the gases as functions of gas pressure. Activities in the 
system Fe-Fe,O, have been determined by experimental observation of the variation of 
the composition of small samples of condensed phases with temperature and oxygen 
pressure imposed by an equilibrating gas phase. The variation, with composition, of the 
activity of Fe in the system is determined by Gibbs-Duhem integration of the corres- 
ponding measured variation of the equilibrium partial pressure of oxygen. The oxygen 
contmt of liquid iron in equilibrium with pure liquid iron oxide at 1600°C is 0.23 wt%. 
If the oxide of a less noble metal than iron is dissolved in the liquid iron oxide, the 
activity of iron oxide, and hence the equilibrium oxygen content of the liquid iron are 
decreased. If the latter is x wt%, the activity of FeO, relative to pure Fe-saturated iron 
oxide as the standard state, in the oxide solution is d0 .23 .  This technique has been used 
to determine the activity of FeO in CaO-FeO and CaO-FeO-SiO, melts saturated with 
liquid iron. 

One step more complex is the establishment of equilibrium between a gas phase and 
two condensed phases. The equilibrium between manganese, manganous oxide and a 
CO-CZO, mixture, expressed as Mn + CO, = MnO + CO requires: 

Thus, at a given temperature, the equilibrium between pure Mn (at unit activity) and Mn- 
saturated pure MnO (at unit activity) occurs at a unique value of the ratio p,-Jpco, given 
by eq. (84). If a metal more noble than Mn is embedded in an excess of MnO and 
subjected to a lower p,-Jpco, ratio, manganese is transferred from the MnO to the metal 
phase until the activity of Mn required by eq. (84) and the imposedpdpmz is establish- 
ed. The manganese content of the alloy corresponding to the imposed activity is 
determined by chemical analysis. The other component of the alloy must be sufficiently 
more noble than Mn that formation and solution of its oxide in the MnO phase is 
negligible. The activity of Mn in Mn-F't alloys has been determined in this manner. 
Having determined this relationship, the activity of MnO in oxide melts containing 
oxides more stable than MnO can be determined by equilibrating a small sample of Pt 
with an excess of oxide melt and a CO-CO, gas mixture. Again, as Mn is distributed 
between the Pt-Mn alloy and the oxide melt in accordance with eq. (84) and the imposed 
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pc,/pco,, chemical analysis of the equilibrated R-Mn alloy yields a,,, and hence, from 
eq. (84), the value of uMnO in the oxide melt. In this application the other oxide compo- 
nent must be of a metal which is sufficiently less noble than Mn that the extent of its 
solution in the Pt Mn phase is negligible. This technique has been used to determine the 
activity of MnO in systems such as MnO-SiO, MnO-TiO,, MnO-Al,O,, MnO-B,O, and 
MnO-CaO-Si0,. 

Other examples of determination of activities by establishing equilibrium between a 
binary alloy, a nonmetallic phase of known composition and a gas phase include: 

Fe(in Fe-Ni alloys) + H,O = FeO + H,; 
2Cr(in Cr-Ni alloys) + 3H,o = Cr,O, + 3H,; 
3Mn(in Mn-Cu alloys) + CH, = Mn,C + 2H,; 

3Si(in Si-Ag alloys) + N, (in N,-H, mixtures) = Si,N,. 
2C~(in CU-AU alloys) + HZS = CU~S + H2; 

Again, in this application, the “inert” metal must be sufficiently more noble than the 
primary component metal that its occurrence in the equilibrium nonmetallic phase is 
negligible. Corrections are required in systems where the nonmetallic phase is not a line 
compound. Thus, for example, in eq. (85), the activity of FeO is that in the wustite 
equilibrated with the imposed partial pressure of oxygen, relative to Fe-saturated wustite 
as the standard state. Equation (85) has also been used to determine the activity of FeO 
in FeO-SiO, melts by establishing the equilibrium Fe +H,O = FeO (in FeoSiO, melts) 

If the difference between the nobilities of the metals is small enough that an oxide 
solution is produced in equilibrium with the binary alloy phase a different approach is 
taken. For example, if a small specimen of an Fe-Mn alloy is equilibrated with an excess 
of an FeO-MnO solid solution, the exchange equilibrium Fe+MnO = Mn+FeO is 
established, wherein K = aMnuFJaku~m From chemical analysis of the equilibrated 
Fe-Mn alloy and knowledge of the activities in the system Fe Mn, the ratio yFed yMnO in 
the equilibrating oxide solution is obtained as: 

+ H,. 

YFeO - K aFeXMnO 

YMnO aMnxFeO ’ 
and Gibbs-Duhem integration of the variation of this ratio with composition in the oxide 
solution according to eq. (81) yields the individual activity coefficients, and hence 
activities, of the components of the oxide solution. This technique has been used to 
determine activities in the systems Fe,Si04-Co,Si04 and Fe,SiO,-Mn,SiO,. 

Activities have been determined by establishing equilibrium among three condensed 
phases and a gas phase. As an example, the activity of SiO, in CaO-MgO-A1,03-SiOz 
melts has been determined by establishing the equilibrium 

SiO, + 2C = Si + 2CO (86) 

in systems comprising a silicate melt, solid graphite, liquid iron and CO gas at 1 atm 
pressure, and by establishing the equilibrium 
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SiO, + 2SiC = 3Si + 2CO (87) 
in systems comprising a silicate melt, solid Sic, liquid iron and CO gas at 1 atm 
pressure. The activity of SiO, is obtained from chemical analysis of the equilibrated 
liquid phases, knowledge of the equilibrium constants for the reactions given by eqs. (86) 
and (87) and knowledge of the activity of Si in Fe-Si-C melts. Gibbs-Duhem integration 
of the results yielded activities in the systems CaO-SO,, CaO-Al,O,, MgO-SiO,, CaO- 
A1,0,-Si02, Mg0-Ca0-Si0, and Mg0-A120,-Si0,. 

10.3. Electrochemical measurement of activity 

The Eh4F of a reversible galvanic cell, 8, is related to the free energy change, AG, 
for the cell reaction as AG=-zFE where F is Faraday's constant and z is the number of 
Faradays required for the cell reaction. Thus, in a concentration cell of the type 

the cell reaction is A(pure) + A(in the A-B alloy) for which AG=RT lna, (in the A B 
alloy). Thus the activity of A in the alloy is obtained as lna,=-(zAFE/RT). The 
determination of activity by measurement of the EMF of an electrochemical cell requires 
that the electrolyte be a purely ionic conductor and that the valency Z, be defined. A 
further requirement is that the extent of the exchange reaction at the cathode-electrolyte 
interface between B in the alloy and A in the electrolyte be negligible. If this condition 
is not met, the measured EMF contains a contribution of unknown magnitude arising 
from the transfer of electrolyte between regions of different composition. In practice the 
extent of the exchange reaction is rendered negligible by ensuring that B is significantly 
more noble than A. Molten chlorides are purely ionic conductors and hence these melts 
are popular as liquid electrolytes. The concentrations of low valent cations in the 
electrolyte are minimized by dissolving the chlorides in mixtures of alkali chlorides. 

The activity of A1 in A1-Ag melts in the range 700-8OO0C has been obtained from 
measurement of the EMFs of cells of the type 

Ala, I A13'(in KCl-NaCl) I Al-Ag(,). 

pure metal A lionic conductor containing metal A ions of valence z,lalloy A-B, 

Similarly the activities of Cd in Cd-Pb, Cd-Bi, Cd-Sb and Cd-Sn alloys, and the 
activities of Cu in Cu-Au melts and Ag in Ag-Au melts have been determined from 
concentration cells with liquid chloride electrolytes. 

The cell 

is a formation cell in which the cell reaction is Mg +Cl,=MgCl,. With pure liquid Mg, 
pure liquid MgCI, and C1, at 1 atm pressure, the free energy change is the standard free 
energy change, AGO, and the EMF is the standard EMF, ao=-A@/2F. Alloying the 
anode with a more noble metal such as A1 alters the free energy change for the cell 
reaction to AG= AGo-RT lna,, (in the alloy) and hence the cell EMF to 

(88) 0 RT E = E + - In aMg (in the alloy). 
2F 
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Equation (88) has been used to determine the activities of Mg in Mg-Al melts from 
EMF measurements in the range 700-880°C. 

Similarly, the formation cell 

has a standard EMF of &'=-AGo/2F. Alloying the PbO electrolyte with the oxide of a 
less noble metal, such as SO,, changes the cell EMF to: 

In uPbo (in PbO-SiO,), 0 RT 
2F 

E = &  -- 

and this has been used as the basis for electrochemical determination of the activities in 
the system Pbes iO ,  in the range 850-1O5O0C. 

Within wide ranges of temperature and oxygen pressure, Zro, and Tho, in the 
fluorite structure, stabilized by solid solution with CaO and Y,03, respectively, exhibit 
unusually high conductivities and transport numbers for 0'- of essentially unity. 
Consequently CaO-ZrO, and Y,O,-Tho, have been used as solid electrolytes in oxygen 
concentration cells of the type 

in which the cell reaction is 02(g,at prersurc p , )  + 02(g,at pressun pL) and the cell EMF is E =-AG/4F 
= -(RT/4F) In PJP, .  The oxygen pressure at the electrodes can be fixed by using 
equilibrated metal-metal-oxide couples, e.g., with Fe-FeO and Ni-NiO the cell becomes 

Fe, FeO I CaO-ZrO, I Ni, NiO, 

with a cell reaction of NiO + Fe = FeO + Ni. With the electrodes Fe-FeO and (Fe-Ni j 
FeO, the cell reaction is Fe@,, + Fe,, the FeNi a,,oy) and the cell EMF is 

In uFe (in the alloy). (89) 
RT 
2F 

E = - -  

This method is similar to that discussed in connection with eq. (85). In the chemical 
equilibration technique the oxygen pressure is imposed, and the Fe-Ni alloy in equi- 
librium with FeO and the imposed oxygen pressure is produced in the experimental 
apparatus. In the EMF technique the oxygen pressure in equilibrium with a given Fe-Ni 
alloy and FeO is measured. Equation (89) has been used as the basis for electrochemical 
determination of the activities in a large number of solid and liquid binary alloy systems, 
the majority of which contained Fe, Co, Ni or Cu as the less noble metal. The activity 
of Si in FeSi alloys at 1550°C and 1600°C has been determined with electrodes of Cr, 
Cr,O, and SiO,, Fe-Si and activities in the systems Ta-W and Ta-Mo have been 
determined with a Y,03-Th0, electrolyte and Ta, T%O, and Ta-X, T%O, electrodes. The 
activities of SnO in SnO-SiO, melts and PbO in PbO-SiO, melts have been determined 
from cells of the type M, MOICa0-ZrO,IM, MO-SiO,. 

Other solid electrolytes which have been used include /?-alumina and soft soda glass 
for measurement of the activity of sodium in alloys, and glasses containing K" and Ag+ 
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for study of K and Ag alloys, respectively. It can be expected that, as new solid state 
electrolytes are developed for possible use in fuel cells, they will be applied to the 
determination of activities by EMF measurements. 
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1. Introduction 

The study of phase equilibria and phase transformations is central to nearly all 
branches of metallurgy and materials science. Although departures from equilibrium will 
occur in any real system, a knowledge of the equilibrium state under a given set of 
conditions is the starting point for the understanding of most processes. 

A phase diagram is a graphical representation of the loci of thermodynamic variables 
when equilibrium among the phases of a system is established under a given set of 
conditions. The phase diagrams most familiar to the metallurgist are those for which 
temperature and composition are the axes. These are discussed in $5 2 and 3 for binary 
(two-component) and ternary (three-component) systems, and in $ 4 for multicomponent 
systems. However, the effect of other variables such as total pressure and chemical 
potential of the components (e.g., the partial pressure of oxygen) may often be of 
interest. In $6,  different types of phase diagrams are discussed along with the general 
rules governing their construction. 

Throughout the chapter, the thermodynamic origin of phase diagrams is stressed. 
With the advent of modern computer techniques, the relationship between phase diagrams 
and the thermodynamic properties of the system has become of increasing practical 
importance. As discussed in 0 2.10, a quantitative coupling of the two is now possible. 
Furthermore, as discussed in $ 5 ,  the computer-assisted thermodynamic approach often 
permits good estimates of unknown multicomponent phase diagrams to be made, and can 
often significantly reduce the experimental effort required to measure the phase diagram 
of a system. 

2. Binary phase diagrams 

The temperature composition (T-X) phase diagram of the Bi-Sb system is shown in 
fig. 1 (HULTGREN et al. [1963]). The abscissa is the composition, expressed as mole 
fraction of Sb, XSb. Note that X,, = 1 -XBi. Phase diagrams are also often drawn with the 
composition axis expressed as weight percent. 

At all compositions and temperatures in the area above the line labelled liquidus, 
single-phase liquid alloys will be observed, while at all compositions and temperatures 

Mole f ract ion X S b -  

Fig. 1. Phase diagram of the Bi-Sb system (after HULTGREN etal. [1963]). 
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below the line labelled solidus, alloys exist as single-phase solid solutions. An alloy 
sample at equilibrium at a temperature and overall composition between these two curves 
will consist of a mixture of solid and liquid phases, the compositions of which are given 
by the liquidus and solidus compositions at that temperature. For example, a B i S b  
sample of overall composition &=0.6@ at T=700 K (at point R in fig. 1) will consist, 
at equilibrium, of a mixture of liquid alloy of composition X ,  = 0.37 (point P) and solid 
alloy of composition xsb=o.82 (point Q). The line PQ is called a tie-line or cunude. As 
the overall composition is varied at 700 K between points P and Q, the compositions of 
the liquid and solid phases remain fixed at P and Q, and only the relative proportions of 
the two phases change. From a simple mass balance, one can derive the Zever rule for 
binary systems: (moles of liquid)/(moles of solid) = RQRR. Hence, at 700 K a sample 
of B iSb  alloy with overall composition X, = 0.60 consists of liquid and solid phases in 
the molar ratio (0.82 - 0.60)/(0.60 - 0.37) = 0.96. Were the composition axis expressed as 
weight percent, then the lever rule would give the weight ratio of the two phases. 

Suppose that a liquid BiSb alloy with composition XSb = 0.60 is cooled very slowly 
from an initial temperature of 900 K. When the temperature has decreased to the liquidus 
temperature of 780 K (point A) the first solid appears, with a composition at point B 
(xsb =: 0.93). As the temperature is decreased further, solid continues to precipitate with 
the compositions of the two phases at any temperature being given by the liquidus and 
solidus compositions at that temperature and with their relative proportions being given 
by the lever rule. Solidification is complete at 630 K, the last liquid to solidify having 
composition xsb = 0.18 (point C). 

Tbe process just described is known as equilibrium cooling. At any temperature 
during equilibrium cooling the solid phase has a uniform (homogeneous) composition. In 
the preceding example, the composition of the solid phase during cooling varies along 
the line BQD. Hence, in order for the solid particles to have a uniform composition at 
any temperature, diffusion of Sb from the center to the surface of the growing particles 
must occur. Since solid state diffusion is a relatively slow process, equilibrium cooling 
conditions are only approached if the temperature is decreased very slowly. If a B i S b  
alloy of composition xSb=O.60 is cooled very rapidly from the liquid, concentration 
gradients will be observed in the solid grains, with the concentration of Sb decreasing 
towards the swface from a maximum of xsb = 0.93 (point B) at the center. Furthermore, 
in this case solidification will not be complete at 630 K since at 630 K the average 
concentration of Sb in the solid particles will now be greater than X,=0.60. These 
considerations are discussed more fully in ch. 9. 

At Xsb = 0 and Xsb = 1 in fig. 1 the liquidus and solidus curves meet at the equilibrium 
melting points, or temperatures offusion, of Bi and Sb, which are: T&) =544.5 K, 
Z'&,,) =903 K. 

The phase diagram is influenced by the total pressure, P. Unless otherwise stated, 
T-X diagrams for alloy systems are usually presented for P = const. = 1 atm. However, for 
equilibria involving only solid and liquid phases, the phase boundaries are typically 
shifted only by the order of a few hundredths of a degree per bar change in P (see ch. 
5, $3). Hence, the effect of pressure upon the phase diagram is generally negligible 

References: p .  531. 
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unless the pressure is of the order of hundreds of atmospheres. On the other hand, if 
gaseous phases are involved then the effect of pressure is very important (5  2.12). 

2.1. The thermodynamic origin of phase diagrams 

In this section we shall consider first of all the thermodynamic origin of simple "lens- 
shaped" phase diagrams in binary systems with complete liquid and solid miscibility. 

An example of such a diagram was given in fig. 1. Another example is the Ge-Si 
phase diagram in the lowest panel of fig. 2 (HANSEN [1958]). In the upper three panels 
of fig. 2 are shown, to scale, the molar Gibbs energies of the solid and liquid phases, gs 
and g', at three temperatures. As illustrated in the top panel, gs varies with composition 

Pig. 2. GeSi phase diagram (after HANSEN [1958]) and Gibbs energy-composition curves at three temperatures, 
illustrating the common tangent construction. 
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between the standard molar Gibbs energies of pure solid Ge and of pure solid Si,gz' 
and g z ' ,  while g' varies between the standard molar Gibbs energies of the pure. liquid 
components go, and g;'). The molar Gibbs energies of mixing of the solid and liquid 
phases, Ags and AB1, are negative and are equal to the difference between the Gibbs 
energy of the solution and a simple weighted average of the Gibbs energies of the pure 
unmixed components in each phase. 

The difference between g;") and g?' is equal to the standard molar Gibbs energy of 
fusion (melting) of pure Si, Ag& = (g:") - g;")). Similarly for Ge, A&) = (si:,"' - gl!)). 
The Gibbs energy of fusion of a pure component may be written as: 

(1) 

where Ah: and Asp are the standard molar enthalpy and entropy of fusion. Since, to a 
f is t  approximation, Ah," and As," are independent of T, Ag! is approximately a linear 
function of T. If T > T!, then Ag! is negative. If T c T!, then Agfo is positive. Hence, 
as seen in fig. 2, as T decreases, the gs curve descends relative to g'. At 1500"C, g' c 
at all compositions. Therefore, by the principle that a system always seeks the state of 
minimum Gibbs energy at constant T and P, the liquid phase is stable at all compositions 
at 1500°C. At 13OO0C, the curves of gs and g1 cross. The line P,Q,, which is the common 
tangent to the two curves, divides the composition range into three sections. For 
compositions between pure Ge and P,, a single-phase liquid is the state of minimum 
Gibbs energy. For compositions between Q, and pure Si, a single-phase solid solution is 
the stable state. Between P, and Q1, total Gibbs energies lying on the tangent line P,Q, 
may be realized if the system adopts a state consisting of two phases with compositions 
at PI and Q1 and with relative proportions given by the lever rule. Since the tangent line 
P,Q, lies below both gs and g', this two-phase state is more stable than either phase 
alone. Furthermore, no other line joining any point on g' to any point on gs lies below the 
line P,Q,. Hence, this line represents the true equilibrium state of the system, and the 
compositions PI and Q1 are the liquidus and solidus compositions at 1300°C. 

IU may be shown that the common tangency condition also results in equal activities of 
each component in the two phases at equilibrium. That is, equality of activities and 
miniimization of total Gibbs energy are equivalent criteria for equilibrium between phases. 

As T is decreased to 1 1OO"C, the points of common tangency are displaced to higher 
concentrations of Ge. For Tc 937"C, g" c g' at all compositions. 

It should be noted that absolute values of Gibbs energies cannot be defined. Hence, 
the relative positions of gtf) and g z '  in fig. 2 are completely arbitrary. However, this 
is immaterial for the preceding discussion, since displacing both g:") and g:@) by the 
same arbitrary amount relative to g,"' and g z )  will not alter the compositions of the 
points of common tangency. 

It should also be noted that in the present discussion of equilibrium phase diagrams 
we are assuming that the physical dimensions of the single-phase regions in the system 
are sufficiently large that surface (interfacial) energy contributions to the Gibbs energy 
can be neglected, For very fine grain sizes in the sub-micron range however, surface 
energy effects can noticeably influence the phase boundaries. 

00) 

Agf = Ah: - TAS;, 
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The shape of the two-phase (solid + liquid) “lens” on the phase diagram is determined 
by the Gibbs energies of fusion, Ag,“ of the components and by the mixing terms, Af 
and Ag’. In order to observe how the shape is influenced by varying AS:, let us consider 
a hypothetical system A-B in which Ags and Ag’ are ideal Raoultian (52.2). Let 
TiA) = 800 K and T&) = 1200 K. Furthermore, assume that the entropies of fusion of A 
and B are equal and temperature-independent. The enthalpies of fusion are then given 
from eq. (1) by the expression Ah: = T,“As~ since Ag: = O  when T =  T,“. Calculated 
phase diagrams for As: =3, 10 and 30 J/mol K are shown in fig. 3. A value ofAs,“ 0 
is typical of most metals (Richard’s rule). However, when the components are ionic 
compounds such as ionic oxides, halides, etc., then As,“ can be significantly larger since 
there are several atoms per formula unit. Hence, two-phase “lenses” in binary ionic salt 
or oxide phase diagrams tend to be “fatter” than those encountered in alloy systems. If 
we are considering vapour-liquid equilibria rather than solid-liquid equilibria, then the 
shape is determined by the entropy of vaporization, As: ( 5  2.12). Since As: = lOAs:, 
two-phase (liquid + vapour) lenses tend to be very wide. 
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Fig. 3. Phase diagrams for a system A-B with ideal solid and liquid solutions with I-, = 800 K and ‘I& = 
1200 K, calculated for entropies of fusion As&, = As&, = 3, 10 and 30 Jlmol K. 
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2.2. Minima and maxima in two-phase regions 

As discussed in ch. 6, 8 6, the Gibbs energies of mixing, Ag’ and Agl, may each be 
expressed as the sum of an ideal (Raoultian) term which is purely entropic and which is 
given by the Boltzmann equation for a random substitutional solution of A and B 
particles, and an excess term, 8. 

Ag = RT(X,  In X ,  + X, In XB) + gE, (2) 

where X, and X, are the mole fractions of the components. An ideal or Raoultian 
solution is defined as one in which ?=O.  Both the solid and liquid phases in the Ge-Si 
system (fig. 2) are approximately ideal. With two ideal solutions, a “lens-shaped” two- 
phase region always results. However, in most alloy systems, even approximately ideal 
behaviour is the exception rather than the rule. 

If $>O then the system is said to exhibit positive deviations from ideality. If 8 ~ 0 ,  
then we speak of negative deviations. 

Curves of gs and g’ for a hypothetical system A-B are shown schematically in fig. 4 
at a constant temperature below the melting points of pure A and B such that the solid 
state is the stable state for both pure components. However, in this system gwl)cg‘s) so 
that gs presents a flatter curve than does g’ and there exists a central composition region 
in which g’<gs. Hence, there are two common tangent lines, P,Q, and P,Q. Such a 
situation gives rise to a phase diagram with a minimum in the two-phase region as 
observed in the Au-Cu system shown in fig. 5 (HTJLTGREN et al. [1963]). At a com- 
position and temperature corresponding to the minimum point, liquid and solid of the 
same composition exist in equilibrium. 

A two-phase region with a minimum point as in fig. 5 may be thought of as a two- 
phase “lens” which has been “pushed down” by virtue of the fact that the liquid is 
relatively more stable than the solid. Thermodynamically, this relative stability is 
expressed as g(I) e gats). 

Conversely, if gE(’)>8(’) to a sufficient extent, then a two-phase region with a 
maximum will result. In alloy systems, such maxima are nearly always associated with 
the existence of an intermetallic phase, as will be discussed in 0 2.8. 

A B 
X B  

Fig. 4.. Isothermal Gibbs-energy-composition curves for solid and liquid phases in a system A-B in which 
pe e 2“. A phase diagram of the type in fig. 5 results. 

References: p .  531. 



478 A. D. Pelton Ch. 6 , 5 2  
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Fig. 5. Phase diagram of the Au-CU system (after H U L ~ R E N  etal. [1%3]). 

2.3. Miscibility gaps 

If 8 > 0  for a solution, then the solution is thermodynamically less stable than an 
ideal solution. In an alloy system this can result from a large difference in atomic 
diameter of the components, which will lead to a (positive) lattice strain energy, or from 
differences in valence, or from other factors. 

In the Au-Ni system, g" is positive in the solid phase. In the top panel of fig. 6 is 
plotted gw'' at 1200 K (HULTGREN et al. [1963]) as well as the ideal Gibbs energy of 
mixing, Ag"", also at 1200 K. The sum of these two terms is the Gibbs energy of 
mixing Ag' = Agide* + $(')', which is plotted at 1200 K as well as at other temperatures in 
the central panel of fig. 6. Now, 

AgiM = RT(XAu In XAu + XNi In XNi) 

is always negative and varies directly with T, whereas g" varies less rapidly with 
temperature. As a result, the sum, Ag'= Agided + 8, becomes less negative as T decreases, 
However, the limiting slopes to the Agid""l curve at X,,= 1 and X,= 1 are both infinite 

( lim d(Agide")/dXAu = lim d(Agide*)/dXNi = 
XA" + 1 XNi+l 

whereas the limiting slopes of gE are always finite (Henry's Law). Hence, Ags will 
always be negative as X,, + 1 and X, + 1 no matter how low the temperature. As a 
result, below a certain temperature the curves of Ag' will exhibit two negative "humps". 
Common tangent lines P,Q,, P& P3Q to the two humps define the ends of tie-lines of 
a two-phase solid-solid miscibbiliby gap in the Au-Ni phase diagram which is shown in 
the lower panel in fig. 6 (HULTGREN et al. [1963]). The peak of the gap occurs at the 
critical or consolute temperature and composition, T, and X,. 

When p) is positive for the solid phase in a system it is usually also the case that 
$")cgEf'), since the unfavourable factors (such as a difference in atomic dimensions) 
which are causing g(') to be positive will have less of an influence upon gE(') in the liquid 
phase owing to the greater flexibility of the liquid structure to accommodate different 
atomic sizes, valencies, etc. Hence, a solid-solid miscibility gap is often associated with 
a minimum in the two-phase (solid + liquid) region as in the Au-Ni system. 

Below the critical temperature the curve of Ag' exhibits two inflection points 
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indicated by the letter “s” in fig. 6. These are known as the spinodalpoints. On the phase 
diagram their locus traces out the spinodal curve as illustrated in fig. 6. The spinodal 
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Fig. 6.  Phase diagram and Gibbs energy curves of solid solutions for the Au-Ni system (after HULTGREN et al. 
[1963]). Letters “s” indicate spinodal points. 
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curve is not part of the equilibrium phase diagram, but it is important in the kinetics of 
phase separation as discussed in ch. 5 15. 

2.4. Simple eutectic systems 

The more positive g" in a system is, the higher is T, and the wider is the miscibility 
gap at any temperature. Suppose that 8'" is sufficiently positive that T, is higher than the 
minimum in the (solidi-liquid) region. The result will be a phase diagram such as that 
of the Ag-Cu system shown in fig. 7 (HULTGREN et al. [1963]). 

In the upper panel of fig. 7 are shown the Gibbs energy curves at 1100 K. The two 
common tangents define two two-phase regions. As the temperature is decreased below 
1100 K, the gs curve descends relative to gl, and the two points of tangency, P, and Pz, 
approach each other until, at T= 1052 K, P, and Pz become coincident at the composition 
E. That is, at T=1052 K there is just one common tangent line contacting the two 
portions of the gs curve at compositions A and B and contacting the curve at E. This 
temperature is known as the eutectic temperature, TE, and the composition E is the 
eutectic composition. For temperatures below TE, g' lies completely above the common 

1100 K 
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Fig. 7. Phase diagram and Gibbs energy curves at 1100 K of the Ag-Cu system (after HULTGREN etal. [1963]). 
Solid Ag and Cu are both fcc. 
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tangent to the two portions of the g" curve and so, for T< TE a solid-solid miscibility gap 
is observed. The phase boundaries of this two-phase region are called the solvzrs lines. 
The word eutectic is from the Greek for "to melt well" since an alloy has the lowest 
melting point at the eutectic composition E. 

This description of the thermodynamic origin of simple eutectic phase diagrams is 
strictly correct only if the pure solid components A and B have the same crystal structure 
(see 02.6). 

Suppose a Ag-Cu alloy of composition X,, = 0.28 (composition PI) is cooled from the 
liquid state very slowly under equilibrium conditions. At 1100 K the first solid appears 
with composition QI. As T decreases further, solidification continues with the liquid 
composition following the liquidus curve from P, to E and the composition of the solid 
phase following the solidus curve from Q1 to A. The relative proportions of the two 
phases at any T are given by the lever rule. At a temperature T= (TE + 8) just above TE, 
two phases are observed: a solid of composition A and a liquid of composition E. At a 
temperature T=(T,-S) just below T,, two solids with compositions A and B are 
observed. Therefore, at T,, during cooling, the following binary eutectic reaction QCCUTS: 

(3) 

Under equilibrium conditions the temperature will remain constant at T =  TB until all the 
liquid has solidified, and during the reaction the compositions of the three phases will 
remain fixed at A, B and E. For this reason the eutectic reaction is called an invariant 
reaction. 

The morphologies of two-phase grains resulting from the co-precipitation of two 
solids during eutectic reactions are discussed in detail in ch. 8. 

liquid + solid, f solid,. 

2.5. Binary phase diagrams with no intermediate phases 

2.5.1. Thermodynamic origin illustrated by simple regular solution theory 
Many years ago VANLAAR [1908] showed that the thermodynamic origin of a great 

many of the observed features of binary phase diagrams can be illustrated at least 
qualitatively by simple regular solution theory. As discussed in ch. 5 ,  86.2, a regular 
solution is one in which: 

gE = A2XAXB, (4) 
where fi is a parameter independent of temperature and composition. 

In fig. 8 are shown several phase diagrams calculated for a hypothetical system A-3 
containing a solid and a liquid phase with melting points of TiA) = 800 K and TiB, = 
1200 K and with entropies of fusion of both A and B set to 10 J/mol K, which is a 
typical value for metals. The solid and liquid phases are both regular with ~(s)=QsXAXB 
and gE(I) = fi'XAXB. The parameters IR' and R' have been varied systematically to generate 
the various panels of fig. 8. 

In panel (n) both phases are ideal. Panels (1-r) exhibit minima or maxima depending upon 
the sign and magnitude of (gE(')-gE(')), as has been discussed in $2.2. In panel (h) the liquid 
is ideal but positive deviations in the solid give rise to a solid-solid miscibility gap as 
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Fig. 8. Topological changes in the phase diagram for a system A-B with regular solid and liquid phases, 
brought about by systematic changes in the regular solution parameters N and a'. Melting points of pure A 
and B are 800 K and 1200 K. Entropies of fusion of both A and B are 10.0 J/mol K. (PELTON and THOMPSON 
[ 19751.) 

discussed above in $2.4. On passing from panel (h) to panel (c), an increase in gHs' 
results in a widening of the miscibility gap so that the solubilities of A in solid B and of 
B in solid A decrease. Panels (a-c) illustrate that negative deviations in the liquid cause 
a relative stabilization of the liquid with resultant lowering of the eutectic temperature. 

Eutectic phase diagrams are often drawn with the maximum solid solubility occurring 
at the eutectic temperature (as in fig. 7). However fig. 8d, in which the maximum 
solubility of A in the B-rich solid solution occurs at approximately T=950 K, illustrates 
that this need not be the case even for simple regular solutions. 
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2.5.2. Liquid-liquid immiscibility - monotectics 
In fig. 8e, positive deviations in the liquid have given rise to a liquid-liquid miscibil- 

ity gap. An example of a real system with such a phase diagram is the Cu-Pb system 
shown in fig. 9 (HULTGREN et al. [1963]). If a Cu-Pb alloy with X,=O.lO is cooled 
slowly from the liquid state, solid Cu begins to appear at 1260 K. Upon further cooling 
the liquid composition follows the liquidus curve to point A at T= 1227 K. The foIlowing 
invariant monotectic reaction then occurs: 

liquid, + liquid, + C U ( ~ ~ , ~ ~ ) ,  (5) 

where liquid, and liquid, are liquids with compositions at points A and B. The temper- 
ature remains constant at the monotectic temperature and the compositions of all phases 
remain fixed until liquid, is completely consumed. Cooling then continues with precipita- 
tion of copper with the liquid composition following the liquidus line from B to the 
eutectic E. 

Returning to fig. 8, we see that in panel (d) the positive deviations in the liquid are 
not large enough to produce immiscibility but they do result in a flattening of the 
liquidus which is often described as a “tendency to immiscibility”. An example of such 
a flattened (or “S-shaped”) liquidus resulting from a positive gE(l) is shown later for the 
Cd-IPb system in fig. 12. 

r n o n o t e c t i c  ( T  = 1 2 2  

Cu + Liquid 

- cu 

Cu + Pb 

eutec t ic  
I 1 ‘ 1  1 I 1  1 1 1  

2.5.3. Peritectics 
The invariant which appears in fig. 8i is known as a peritectic. The Au-Fe system 

shown in fig. 10 (HULTGREN et al. [1963]) exhibits a peritectic PQR at 1441 K as well 
as another at about 1710 K. The Gibbs energy curves, gl and gfcc, of the liquid and solid 
face-centred cubic phases are shown schematically at the peritectic temperature of 
Tp= 1441 K in the upper panel of fig. 10. One common tangent line PQR to g’ and to the 
two portions of gfce can be drawn. 

‘ b  

Pb 

Fig. 9. The Cu-Pb phase diagram (after HULTGREN et al. [1963]). 
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Phase diagram and Gibbs energy curves at the peritectic temperature of 1441 K .-r the Au-Fe system 

Suppose that a Au-Fe alloy of composition X,, = 0.65 is cooled very slowly from the 
liquid state. At a temperature (T’+S) just above 1441 K, a liquid phase of composition 
P and an fcc phase of composition R are observed at equilibrium. At a temperature 
(T,-S) just below 1441 K, the two phases at equilibrium are liquid and solid with com- 
positions P and Q respectively. The following invariant binary peritectic reaction thus 
occurs upon cooling: 

(6) 
This reaction occurs isothermally with all three phases at fixed compositions (at points 
P, Q and R). In the case of an alloy with overall composition between P and Q, the 
reaction occurs isothermally until all solid, is consumed. In the case of an alloy with 
overall composition between Q and R, it is the liquid which will first be completely 
consumed. 

A peritectic reaction between a liquid and solid, occurs on the surface of the particles 

liquid + solid, + solid,. 
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of solid, which can rapidly become coated with solid,. By preventing contact between 
liquid and solid,, this coating may greatly retard further reaction to such an extent that 
equilibrium conditions can only be achieved by extremely slow cooling. 

2.5.4. Syntectics 
The invariant in fig. 8k in which a solid decomposes upon heating into two liquids 

is known as a syntectic. It is rarely observed in alloy systems. Examples are found in the 
K-Pb and K-Zn systems (HANSEN [1958]). A phase diagram similar to fig. 8j, although 
without the tiny miscibility gap, is exhibited by the Au-R system (HANSEN [1958]). 

2.6. Limited mutual solid solubility 

In 0 2.4 the region of two solids in the Ag-Cu phase diagram of fig. 7 was described as 
a miscibility gap in the solid phase. That is, only one gs curve was drawn. If, somehow, 
the appearance of the liquid phase could be suppressed, then the two solvus lines in fig. 
7, when projected upwards, would meet at a critical point (as in the Au-Ni system in fig. 
6) above which one continuous solid solution would exist at all compositions. 

Such a description is justifiable only if the pure solid components have the same 
cryst(a1 structure. This is the case for Ag-Cu since solid Ag and Cu are both fcc. The 
same assumption was made in our treatment of the peritectic Au-Fe system (fig. 10) in 
which the region of two solids was treated as a miscibility gap. Again in this case this 
description is permissible since Au and Fe are both fcc in this temperature range. 

However, consider the simple eutectic system A-B in fig. 11 in which pure solid A 
and B are hcp (hexagonal close-packed) and fcc respectively. In this case, if the 
formation of the liquid phase could be suppressed the two solvus lines could not project 
upward to meet at a critical point, since this would imply that above this critical 
temperature a continuous series of solid solutions varying smoothly from hcp to fcc 
coulcl exist. Such a situation is prohibited by symmetry conditions. That is, one con- 
tinuous curve for gs cannot be drawn. Each solid phase must have its own separate Gibbs 
energy curve, as shown schematically in the upper panels of fig. 11. In this figure,gl(fcc) 
is the standard molar Gibbs energy of pure fcc A and g:‘h”p’ is the standard molar Gibbs 
energy of pure hcp E. Such quantities may be defined in a number of different and non- 
equivalent ways as will be discussed below. 

A real system with a phase diagram similar to fig. 11 is the Cd-Pb system shown in 
fig. 12 (ASHTAKALA et al. [1981]). Gibbs energy curves at a temperature below the 
eutectic are shown schematically in the upper panel. Let us derive an expression for g“‘ 
under the assumption that the Pb-rich fcc solid solution is a Henrian solution. As 
discussed in ch. 5 , s  6.2, when a solution is sufficiently dilute in one component, Henrian 
behaviour may be assumed. That is, the activity of the solvent is ideal (uso,vent=Xso~vent; 
ysOlven, = 1), while for the solute, asolute = yso,utdysso,ute, where the Henrian activity coeflcient, 
ysOlute, is independent of composition. At TE=247.8’C in fig. 12, Cd in the Pb-rich fcc 
solution at X, = 0.940 exists in equilibrium with virtually pure solid hcp Cd. Thus, in the 
fcc solution, acd=l.O with respect to pure solid hcp Cd as standard state. Hence, 
ycd = u c d X ,  = 1 .O/O.O6O = 16.67 at 2473°C. We can now express gfcc as: 

0 0 

0 

References: p. 531. 
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Fig. 11. Phase diagram and Gibbs energy curves at two temperatures for a simple eutectic system A-B in 
which pure solid A and B have different crystal structures. 

gfcc = (xagp) + X,g:p)) + RT(X,  In a, + x,, In a,) 
(7) 

= (x,g,4""' + xpbggw)) + RT(X, h(&xa) + X ,  In x,) 
0 However, since ycd is independent of composition we can combine terms as follows: 

gfcc = [Xcd(gF)  + RT In y&) + X,gzw'] 

+ RT(X,, In x,, + X, In xPb). 
Let us now define: 

ggw) = (g:fq) + RT In y&). 
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Fig. 12. Phase diagram of the Cd-Pb system (after ASHTAKALA et al. [1981]) and Gibbs energy curves 
(schematic) at a temperature below the eutectic. Dashed lines indicate limiting liquidus slopes calculated for 
zero solid solubility. 

From eq. (8) it can be seen that relative to g i p ’  defined in this way and to g r ’  the 
fcc solution is ideal. This is illustrated in fig. 12. 

At X7.8”C in Cd-Pb, ( g z ’  - g?’) = RTln -y& = R(247.8 + 273.15) In 16.67 = 12.19 
kJ/mol. As a first approximation we could take this value to be independent of T, or as 
a second approximation we could evaluate &, at other temperatures along the solidus 
and express (gza’-g$p’) as, say, a linear function of T. 

Although the above treatment has the advantage of numerical simplicity, it suffers 
from the difficulty that the numerical value of (g,qlf“e’-giFq’) is solvent-dependent and 
will be different for, say, solutions of Cd in fcc Cu and Cd in fcc Pb. For purposes of 
predicting binary phase diagrams from first principles or for estimating ternary phase 
diagrams from binary phase diagrams ($5.5) it would be desirable if could be 
defined to be system-independent so as to be truly the “standard molar Gibbs energy of 
metastable fcc Cd”. A great deal of effort has been expended by the international 
CALPHAD group under the impetus of Kaufman (KAUFMAN and BERNSTEIN [1970]) and 

References: p .  531. 
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co-workers to compile tables of lattice Stabilities for metals in the fcc, hcp, bcc, and 
liquid states (that is, to obtain a set of relative values of gqfm), gwq), g-’ and gw) for 
every metal). In some cases, these can be calculated by extrapolating thermodynamic 
data from regions of T and P where the phases are stable. In other cases, lattice 
stabilities can be estimated partly from theoretical calculations and partly from the 
analysis of a large number of binary phase diagrams followed by a judicious choice of 
the “best” values which most closely fit the greatest number of systems. Tabulations of 
lattice stabilities are now available for many metals (DINSDALE [1991]). 

2.7. Calculation of limiting slopes of phase boundaries 

In fig. 12 we see that the solubility of Pb in solid Cd is very small. The actual 
solubility at TE is about 0.14 mol% (HANSEN [1958]). In thermodynamic terms this 
means that 9““ increases very rapidly as Pb is added to solid Cd (see fig. 12), or that the 
Henrian activity coefficient 7: is very large. The fact that the solubility of Cd in solid 
Pb is much greater than that of Pb in solid Cd can be understood in terms of the 
Hume-Rothery rule (ch. 4) that solubilities are greater when the solute atoms are smaller 
than the solvent atoms, since the lattice strain energy will be less and hence g will rise 
less rapidly upon addition of solute. 

As discussed later in $7, it is usually more difficult experimentally to determine a 
solidus than it is to measure liquidus temperatures. However, if the liquidus has been 
mehred in the limit as XsOlvent+ 1, then the limiting slope of the solidus can be 
calculated. Let component B be the solvent in a system A-B. The partial Gibbs energies 
of B along the liquidus and solidus are equal (gi - 8,” =O) .  Hence: 

But: (gi - g,””) = RT In ad and ( g i  - g?)) = RT In a i ,  where a i  and a i  are activit- 
ies of B on the liquidus and solidus with respect to the pure liquid and pure solid 
standard states respectively. Hence, eq. (9) may be written as: 

(10) 

In the limit X,  + 1, Raoult’s Law holds for both phases. That is, a; + X ;  and a i  + 
Xi. Hence, in the limit, eq. (IO) may be written as: 

0 RT In a; - RT In a; = -Agf(B). 

RT In X i / X i  = -A&,,. (11) 

Furthermore, in the limit, T+ T&) and from eq. (1) Ag& + Ah&,( 1 - T/T&)). Finally, 
liqn+l (ln X,) = (X, - 1). Substituting these limiting values into eq. (1 1) we obtain: 

x, lim(dXi/dT 4 - dXi/dT) = Ah&)/R(T&y. 

If the limiting slope of the liquidus, lim, ,,(dX,$dT), is known, then the limiting slope 
of the solidus can be calculated via eq. (12) if the enthalpy of fusion is known. 

For the Cd-Pb system, limiting liquidus slopes were calculated for both components 
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from eq. (12) under the assumption that there is no solid solubility (that is, that dXi/dT 
=O) .  These are shown as the dashed lines on fig. 12. In Cd-rich solutions, agreement 
with the measured limiting liquidus slope is very good, but in Pb-rich solutions the poor 
agreement indicates the existence of appreciable solid solubility as has been confirmed 
by direct measurement. 

2.8. Intermediate phases 

The phase diagram of the Ag-Mg system (HULTGREN etal.  [1963]) is shown in fig. 
13. An intermetallic phase, p', is seen centered approximately about the composition 

T =  1050K' 

T = 7 4 4 K  

L i q u i d  - 

0.2 0.4AiMg0.6 0.0 M~ 

* MII 

Fig. 13. Ag-Mg phase diagram (after HULTGREN el al. [1963]) and Gibbs energy curves (schematic) at 744 K 
and 1050 K. 
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XMg = 0.5. The Gibbs energy curve for such an intermetallic phase has the form shown 
schematically in the upper panel of fig. 13. 8' rises quite rapidly on either side of its 
minimum which occurs near XMg=0.5. As a result, the p' phase appears on the phase 
diagram only over a limited composition range. This form of the curve 8' results from 
the fact that when XAg=XMg a particularly stable crystal structure exists in which Ag and 
Mg atoms preferentially occupy different sites. The two common tangents P,Q, and P,Q, 
give rise to a maximum in the two-phase @' +liquid) region in the phase diagram. 
(Although the maximum is observed very near XMg=0.5, there is no thermodynamic 
reason for the maximum to occur exactly at this composition.) 

The Na-Bi phase diagram is shown in fig. 14 (HANSEN [1958]). Gibbs energy curves 
at 700°C are shown schematically in the upper panel. g(Na3/4Bi1/4) rises extremely 
rapidly on either side of its minimum which occurs at X,, = 3/4, XBi = 1/4. (We write 
g(Na3/4Bi1/4) rather than g(N%Bi) in order to normalize to a basis of one mole of metal 
atoms.) As a result, the points of tangency Q1 and Qz of the common tangents P,Q, and 
P2Q2 are nearly (but not exactly) coincident. Hence, the composition range over which 
single-phase Na,Bi exists (sometimes called the range ofstoichiometry or homogeneity 

0 
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I 

E 
3 

W 

0) 
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0)  
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I- 

700°C. Fig. 14. Na-Bi phase 

Bi 

diagram (after HANSEN [1958]) and schematic Gibbs energy curves at 
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range of Na,Bi) is very narrow (but never zero). The two regions labelled (Na,Bi+ 
liquid) in fig. 14 are the two sides of a two-phase region which passes through a 
maximum just like the (p’ +liquid) regions in fig. 13. Because the Na3Bi single-phase 
region is so narrow we refer to Na3Bi as an intermetallic compound. In the case of 
Na3Bi, any slight deviation from the stoichiometric composition causes a very large 
increase in Gibbs energy. Owing to the large difference in electronegativities of Na and 
Bi, Na,Bi could be considered to be a semi-ionic compound. Deviations from 
stoichiometry would require the substitution of Na on Bi sites or vice versa which would 
be energetically very unfavourable. 

If stoichiometric Na3Bi is heated, it will melt isothermally at 775°C to form a liquid 
of the same composition. That is, the melting behaviour of Na3Bi is similar to that of a 
pure element. Such intermetallic compounds are called congruently melting or simply 
congment compounds. The p‘ phase in fig. 13 might also be called a congruent inter- 
metallic compound AgMg (or AgMg,,). It is debatable, however, whether a phase with 
such ;a wide range of composition should really be called a “compound”. 

It should be noted with regard to the congruent melting of Na3Bi in fig. 14 that the 
limiting slopes dT/dX of the two liquidus curves at the congruent melting point (775OC) 
are both zero, since we are really dealing with a maximum in a two-phase region and not 
with the melting of an element. 

Another intermetallic phase, the E phase, is also observed in the Ag-Mg system, fig 
13. This phase has a narrow range of stoichiometry around the composition AgMg,. This 
phase is associated with a peritectic invariant ABC at 744 K. The Gibbs energy curves 
are shown schematically at the peritectic temperature in the central panel of fig. 13. One 
common tangent line can be drawn to g’, g’, and 8“. 

Suppose that a liquid alloy of composition XMg = 0.7 is cooled very slowly from the 
liquid state. At a temperature just above 744 K a liquid phase of composition C and a p’ 
phase of composition A are observed at equilibrium. At a temperature just below 744 K, 
the two phases at equilibrium are p’ of composition A and E of composition B. The 
following invariant peritectic reaction thus occurs upon cooling (cf. 0 2.5.3): 

(13) 

This reaction occurs isothermally at 744 K with all three phases at fixed compositions (at 
points A, B and C).  For an alloy with overall composition between points A and B the 
reaction proceeds until all the liquid has been consumed. In the case of an alloy with overall 
composition between B and C, the p’ phase will be the first to be completely consumed. 

The AgMg,(&) compound is said to melt incongruently. If solid AgMg, is heated, it 
will melt isothermally at 544 K, by the reverse of the above peritectic reaction (141, to 
form a liquid of composition C and another solid phase, p’, of composition A. 

Another example of an incongruent compound is the compound NaBi in fig. 14. This 
compound has a very narrow range of stoichiometry. When heated, it melts incongruently 
(or peritectically) at the peritectic temperature of 446°C to form another solid, Na,Bi, and 
a liquid of composition XBi = 0.53. 

An incongruent compound is always associated with a peritectic. (The word peritectic 
comes from the Greek for (loosely) “to melt in an indirect way”.) However, the converse 

liquid + P’(so1id) + c(so1id). 

References: p.  531. 
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is not necessarily true. A peritectic is not always associated with an intermediate phase. 
See, for example, fig. 10. 

For purposes of phase diagram computations involving very stoichiometric com- 
pounds such as Na,Bi, we may, to a good approximation, consider the Gibbs energy 
curve, g(Na,,Bi,,), to have zero width. Then all we need is the numerical value of 
g(Na,,,Bi,,,) at the minimum. This value is usually expressed in terms of the Gibbs 
energy of fusion of the compound, Ag&%,4Bi,,), or in terms of the “Gibbs energy of 
formation”, Ag&,,(N%14Bi,,4) ,of the compound from solid Na and Bi according to the reaction 
:Nu, +$Bi, = Na,,,Bi,,,,,. Both these quantities are interpreted graphically in fig. 14. 

2.9. Topology of binary phase diagrams 

In ch. 5,  3 8.2 the Gibbsphase rule was derived.: 

F = C- P+2, 
where C is the number of components, P the number of phases in equilibrium, and F the 
number of degrees of freedom or variance. That is, F is the number of parameters which 
can and must be specified in order to completely specify the state of the system. In the 
present context, the thermodynamic parameters are temperature, total pressure, and the 
compositions of the phases at equilibrium. Since binary temperature-composition phase 
diagrams are plotted at constant pressure, usually 1 bar, one degree of freedom is already 
used up. In a binary system, C=2. Hence, for binary isobaric T-X diagrams the phase 
rule reduces to: 

F = 3 - P .  (15) 
Binary T-X diagrams contain single-phase areas and two-phase areas. In the single- 

phase areas, F =  3 - 1 = 2. That is, temperature and composition can be varied indepen- 
dently. These regions are thus called bivuriunt. In two-phase regions, F = 3 - 2 = 1. If, say, 
T is  chosen, then the compositions of both phases are fixed by the ends of the tie-lines. 
Two-phase regions are thus termed univariant. Note that the overall composition can be 
varied within a two-phase region at constant T, but the overall composition is not a 
variable in the sense of the phase rule. Rather, it is the compositions of the individual 
phases at equilibrium that are the variables to be considered in counting the number of 
degrees of freedom. 

When three phases are at equilibrium in a binary system at constant pressure, F = 3 
- 3 = 0. Hence, the compositions of all three phases as well as T are fixed. There are two 
general types of three-phase invariants in binary phase diagrams. These are the eutectic- 
type andperitectic-type invariants as illustrated in fig. 15. Let the three phases concerned 
be called CY, /3 and y, with p as the central phase as shown in fig. 15. CY, /3 and y can be 
solid, liquid or gaseous phases. At the eutectic-type invariant, the following invariant 
reaction occurs isothermally as the system is cooled: 

P+CY+Y,  (16) 

whereas, at the peritectic-type invariant the invariant reaction upon cooling is: 
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f f + Y + B  (17) 

Some examples of eutectic-type invariants are: (i) eutectics (fig. 7) in which 
a = solid,, p =liquid, y = soli&. The eutectic reaction is 1 + s, + s,; (ii) monotectics (fig. 
9) in which a =liquid,, p = liquid,, y = solid. The monotectic reaction is 1, + 1, + s; (iii) 
eutectoids (fig. 10) in which CY =solid,, p =solid,, y =solid,. The eutectoid reaction is 
s2 + s1 + s,; (iv) catutectics in which CY =liquid, /3 = solid,, y = solid,. The catatectic 
reaction is s1 + 1 + s2. 

Some examples of peritectic type invariants are: (i) peritectics (fig. 10) in which 
a =liquid, j? = solid,, y =soli&. The peritectic reaction is 1 + s, + s,; (ii) syntectics (fig. 8k) 
in which a =liquid,, p =solid, y =liqui&. The syntectic reaction is 1, +12+ s; (iii) peri- 
tectoids in which a = solid,, p = soli&, y = solid,. The peritectoid reaction is s, + s3 + s,. 

An important rule of construction which applies to invariants in binary phase 
diagrams is illustrated in fig. 15. This entension rule states that at an invariant the 
extension of a boundary of a two-phase region must pass into the adjacent two-phase 
region and not into the single-phase region. Examples of both correct and incorrect 
constructions are given in fig. 15. To understand why the “incorrect extension” shown is 
not correct, consider that the (a + y )  phase boundary line indicates the composition of the 
y-phase in equilibrium with the a-phase as determined by the common tangent to the 

E u t e c t i c -  type 
invar iant  

incorrect  
extensions 

Per i tec t lc - type  

correct 
extensions 

correcf invariant  

P+Y 

----- 
Maximum 

a+P a+P 

Fig. 15. Some topological units of construction of binary phase diagrams illustrating rules of construction. 
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Gibbs energy curves. Since there is no reason for the Gibbs energy curves or their 
derivatives to change discontinuously at the invariant temperature, the extension of the 
(a +y) phase boundary also represents the composition of the y-phase in equilibrium 
with the a-phase. Hence, for this line to extend into a region labelled as single-phase y 
is incorrect. 

Two-phase regions in binary phase diagrams can terminate: (i) on the pure com- 
ponent axes (at X,= 1 or X,= 1) at a transformation point of pure A or B; (ii) at a 
critical point of a miscibility gap; (iii) at an invariant. Two-phase regions can also exhibit 
maxima or minima. In this case, both phase boundaries must pass through their max- 
imum or minimum at the same point as shown in fig. 15. 

All the topological units of construction of binary phase diagrams have now been 
discussed. The phase diagram of a binary alloy system will usually exhibit several of 
these units. As an example, the Fe-Mo phase diagram (KUBASCHEWSKI [1982]) is shown 
in fig. 16. The invariants in this system are: peritectics at 1540, 1488, and 1450°C; 
eutectoids at 1235 and 1200°C; peritectoids at 1370 and 950°C. The two-phase (liquid 
+y) region passes through a minimum at X,,=O.Z. 

Between 910°C and 1390°C is a two-phase (a +y) y-loop. Pure Fe adopts the fcc y 
structure between these two temperatures but exists as the bcc a phase at higher and 
lower temperatures. Mo however, is more soluble in the bcc than in the fcc structure. 

as discussed in 02.6. Therefore, small additions of Mo That is, g,, 
stabilize the bcc structure. 

O@cc-Fe) < g;y’ 

2.9.1. Orderdisorder transformations 
In fig. 13 for the Ag-Mg system, a transformation from an a‘ to an a phase is shown 

occurring at approximately 390 K at the composition Ag,Mg. This is an orderdisorder 

0.0 0.2 0.4 0.6 0.8 1.0 

Mo 

Fig. 16. Fe-Mo phase diagram (KuB- [1982]). 
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transformation. Below the transformation temperature, Zong-range ordering (superlattice 
formation) is observed. An orderparameter may be defined which decreases to zero at 
the transformation temperature. This type of phase transformation is not necessarily a 
first-order transformation like those considered so far in this chapter. Unlike transfor- 
mations which involve atomic displacements over distances large compared with atomic 
dimensions, order-disorder transformations, at least at the stoichiometric composition 
(Ag,Mg is this example), occur by atomic rearrangement over distances of the order of 
atomic dimensions. The slope of the curve of Gibbs energy versus T is not necessarily 
discontinuous at the transformation temperature. For a detailed discussion see ch. 4, 
54.1.1, INDEN [1982], and Prrsc~ and INDEN [1991]. 

A type of order-disorder transformation of importance in ferrous metallurgy is the 
magnetic transformation. Below its Curie temperature of 769"C, Fe is ferromagnetic. 
Above this temperature it is not. The transformation involves a change in ordering of the 
magnetic domains and is not first-order. Additions of alloying elements will change the 
temperature of transformation. Magnetic transformations are treated in ch. 29. See also 
MIODOWNIK [1982], INDEN [1982] and HILLERT and JARL [1978]. 

2.10. Application of thermodynamics to phase diagram analysis 

In recent years, the development of solution models, numerical methods and computer 
software has permitted a quantitative application of thermodynamics to phase diagram 
analysis. Computer programs are available which permit phase diagrams to be generated 
from equations for the Gibbs energies of the phases. Other programs have been written 
to perform simultaneous critical evaluations of available phase diagram measurements 
and of available thermodynamic data (calorimetric data, measurements of activities, etc.) 
with a view to obtaining optimized equations for the Gibbs energies of each phase which 
best represent all the data. These equations are consistent with thermodynamic principles 
and with theories of solution behaviour. 

Vie phase diagram can be calculated from these optimized thermodynamic equations, 
and so one set of self-consistent equations describes all the thermodynamic properties 
and the phase diagram. This technique of analysis greatly reduces the amount of 
experimental data needed to characterize a system fully. All data can be tested for 
internal consistency. The data can be interpolated and extrapolated more accurately, and 
metastable phase boundaries can be calculated. All the thermodynamic properties and the 
phase diagram can be represented and stored by means of a small  set of coefficients. 

Finally and most importantly, it is often possible to estimate the thermodynamic 
properties and phase diagrams of ternary and higher-order systems from the assessed 
parameters for their binary sub-systems as will be discussed in $ 5 .  The analysis of 
binary systems is thus the first and most important step in the development of databases 
for multicomponent systems. 

The computer coupling of thermodynamics and phase diagrams is a growing field of 
much current research interest. The international Calphad Journal, published by Per- 
gamon Press, and an annual international meeting, the Calphad Conference, are now 
devoted to this subject. 

References: p.  531. 
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2.10.1. Polynomial representation of excess properties 
Empirical equations are required to express the excess thermodynamic properties of 

the solution phases as functions of composition and temperature. For many simple binary 
substitutional solutions, a good representation is obtained by expanding the molar excess 
enthalpy and entropy as polynomials in the mole fractions X, and XB of the components: 

(18) 
hE = X,XB(hO + h,(XB - XA) + 

4 ( X B  -X*)' + 4 ( X B  - x A ) 3  +...) 

where the hj and si are empirical coefficients. As many coefficients are used as are 
required to represent the data in a given system. For most systems it is a good approx- 
imation to assume that the coefficients hi and si are independent of temperature. 

If the series are truncated after the first term, then: 

gE = hE - TsE = XAXB(hO - Ts,) (20) 
This is the same as eq. (4) for a regular solution. Hence, the polynomial representation 
can be considered to be an extension of regular solution theory. When the expansions are 
written in terms of the composition variable (XB-XJ as in eqs. (18) and (19) they are 
said to be in Redlich-Kisfer form. Other equivalent polynomial expansions such as 
orthogonal Legendre series have been discussed by PELTON and BALE [1986]. 

Differentiation of eqs. (18) and (19) yields the following expansions for the partial 
excess properties: 

h," = x:chi[(xB - XA)i + 2iXB(XB - x,)'-'] 
i=O 

2.10.2. Least-squares optimization 
Eqs. (18), (19) and (21) to (24) are linear in terms of the coefficients. Through the 

use of these equations, all integral and partial excess properties @, hE, 3, gr, hE, s:) 
can be expressed by linear equations in terms of the one set of coefficients {hi, si}. It is 
thus possible to include all available experimental data for a binary phase in one 
simultaneous linear least-squares optimization as discussed by BALE and PELTON [ 19831, 
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LUKAS et aZ. [1977] and D~RNER et al. [1980], and specialized software for such 
optimizations is available. 

The technique of coupled thermodynamic/phase diagram analysis is best illustrated by 
an example. The phase diagram of the Cd-Na system with points measured by several 
authors is shown in fig. 17. From electromotive force measurements on alloy con- 
centration cells, several authors have measured the activity coefficient of Na in liquid 
alloys. These data are shown in fig. 18 at 400°C. From the temperature dependence of 
g, =RT In y,,, the partial enthalpy of Na in the liquid was obtained via the Gibbs- 
Helmholtz equation. The results are shown in fig. 19. Also, hE of the liquid has been 
measured (KLEINSTUBER [ 19611) by direct calorimetry. 

Along the Cd-liquidus in fig. 17 the partial Gibbs energy of Cd in the liquid is equal 
to that of essentially pure solid Cd with which it is in equilibrium: 

E 

Weight Percent  Sodium 
0 10 20 30 4,O 50 60 70 BO 1 

450 . . . . . . . . , . . . . . . . . . ,  . .  . ,  . .  ! . . .  , . . . .  , I ' d  

Cd Atornic Pe rcen t  Sodium Ka 

Fig. 17 .  Cd-Na phase diagram calculated from optimized thermodynamic parameters (Reprinted from PELTON 
[1988]:). 
0 KIJRNAKOW and KUSNETZOV [1907] 
A MATHEWSON [1906] 
x WEEKS and DAVIES [1964] 
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Cd Nu 
Atomic Percent Na 

Fig. 18. Sodium activity coefficient in liquid Cd-Na alloys at 400°C. Line is calculated from optimized 
thermodynamic parameters (Reprinted from PELTON [1988]). 
0 HAUFFE 119401 
0 LANTRATOV and MIKHAILOVA [I9711 
A MAIOROVA et al. [ 19761 
V ALABYSHEV and MORACHEVSKII [1957] 
0 BARTLETT etal. [I9701 

RT In XLd + g:!) = -AgiCd) (27) 

Therefore, from the experimental liquidus composition x&,  and from a knowledge of the 
Gibbs energy of fusion, g z )  at the measured liquidus points can be calculated from eq. 
(27). 

Similar equations relating the liquidus compositions along the Cd,,N%- and CGNa- 
liquidus lines to the partial excess Gibbs energies of the liquid and to the Gibbs energies 
of fusion of Cd,,Na, and Cd,Na can be written based upon the graphical construction 
shown in fig. 14. 

The thermodynamic data for g:# hia  and hE as well as the measured liquidus points 
and the Gibbs energies of fusion of the compounds were optimized simultaneously by a 
least-squares technique to obtain the following optimized expressions (PELTON [ 19881): 

hEo’ = XcdXNa(-12508 + 20316(XNa - Xcd) 

-8714(XNa - XCd)*)J/rnol 

= 6816 - 10.724 T J/g-atom AGJ( @diiNUZ) 
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Fig. 19. Partial excess exthalpy of sodium in liquid Cd-Na alloys. Line is calculated from optimized 
thermodynamic parameters (Reprinted from PELTON [ 19881). 
0 LANTRATOV and MIKHAILOVA [ 197 1 ] 
A MAIOROVA et al. [1976] 
0 BARTLEIT et al. [1970] 

AG;(:cd*Na) = 8368 - 12.737 T Jlg-atom 

AG&, = 6201 - 10.4344 T Jig - atom (32) 

AG,",,, = 2598 - 7.0035 T J/g-atom (33) 

The Gibbs energies of fusion of Cd and Na were taken from CHASE [1983] and were 
not changed in the optimization. The optimized enthalpies of fusion of 6816 and 8368 
J/g-atom for the two compounds in eqs. (30, 3 1) were modified from the values of 6987 
and 7878 J/g-atom measured by Roos [1916]. These changes are within the experimental 
error limits. Eq. (28) reproduces the calorimetric data within 200 J/mol-'. Eqs. (22, 24) 
can be used to calculate and y"N,. The calculated curves are compared to the 
measured points in figs. 18 and 19, The phase diagram shown in fig. 17 was calculated 
from eqs. (28) to (33). Complete details of the analysis of the Cd-Na system are given 
by PELTON [ 19881. 

It can thus be seen how one simple set of equations can simultaneously and self- 
consistently describe all the thermodynamic properties and the phase diagram of a binary 
system. The exact optimization procedure will vary from system to system depending on 
the type and accuracy of the available data, the number of phases present, the extent of 
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solid solubility, etc. A large number of optimizations have been published in the Calphad 
Journal since 1977. 

2.10.3. Calculation of metastable phase boundaries 
In the Cd-Na system just discussed, the liquid exhibits positive deviations from ideal 

mixing. That is, gE‘”>0. This fact is reflected in the very flat liquidus in fig. 17 as was 
discussed in 0 2.5.2. 

By simply not including any solid phases in the calculation, the metastable liquid 
miscibility gap as well as the spinodal curve (0 2.3) can be calculated as shown in fig. 
17. These curves are of importance in the formation of metallic glasses by rapid 
quenching (see ch. 19, 0 2.1). 

Other metastable phase boundaries, such as the extension of a liquidus curve below 
a eutectic, can also be calculated thermodynamically simply by excluding one or more 
phases during the computations. 

2.11. Solution models 

Polynomial expansions, as in eqs (18, 19), give an adequate representation of the 
excess mixing properties for simple substitutional solutions in which deviations from 
regular solution behaviour are not too large. In other cases, more sophisticated models 
are required. 

The Gibbs energy of a regular solution is given by combining eqs. (2) and (4). The 
ideal mixing term in eq. (2) is a consequence of the assumption that A and B atoms form 
a random substitutional solution. The parameter fl in eq (4) can be interpreted as 
resulting from the fact that the energy of A-B bonds in the solution is different from that 
of A-A and B-B bonds. Suppose that A-B bonds are energetically favourable. The 
solution is thereby stabilized, 0 and 9 < 0. However, the distribution will then no 
longer be random because A and B atoms will tend to favour each other as nearest 
neighbours, and so the ideal mixing term, RT(X, lnX,+X, InX,) in eq. (2) is no longer 
correct. For relatively small deviations from ideality, the random mixing approximation 
is often acceptable. However, for larger deviations, the non-randomness becomes 
important. In such cases, a simple polynomial expansion for gE as in eqs. (18,19) is 
insufficient. 

The regular solution model can be extended to account for this non-randomness 
through the quasichemical model for short-range ordering developed by GUGGENHEIM 
[1935] and FOWLER and GUGGENHEIM [1939]. Many liquid alloy solutions exhibit short- 
range ordering. The ordering is strongest when one component is relatively electropos- 
itive (on the left side of the periodic table) and the other is relatively electronegative. 
Liquid alloys such as Alk-Au (HENSEL [19791), Alk-Pb (SABOUNGI et al. [1985]) and 
Alk-Bi (PETRIC et al. [1988]), where Alk= (Na, K, Rb, Cs) exhibit strong short-range 
ordering, as do liquid semiconductor solutions such as Ga-As and In-Sb. The quasiche- 
mical model has been recently adapted to permit thermodynamic/phase diagram 
optimizations of such systems (PELTON and BLANDER [1984, 1986, 19881). 
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Short-range ordering in liquid alloys has also been modeled by treating such solutions 
as substitutional solutions of A atoms, B atoms and A,$, "complexes". See for example, 
LOCK et al. [1989]. For most alloy systems, however, such association models are not 
physically realistic. 

For an interstitiaz solution the ideal Gibbs energy of mixing is that of a random 
distribution of the solute atoms over the interstitial sites. For example, in an interstitial 
solution of C in y-Fe, X, moles of C atoms are distributed over X,, octahedral sites. The 
molar Gibbs energy of mixing is thus: 

The ideal activities are thus: 

62;"" = XJ(1- 2xc) 

a r  = (1 - XC/X,.) 

(35) 

(36) 

When modeling an interstitial solution, one should employ these expressions. 
A multicomponent interstitial solution such as M,-M2-C-N, where M, and M, are 

metals, can be considered to consist of two sublattices: a metallic sublattice on which M, 
and M2 are distributed, and an interstitial sublattice on which C, N (and vacant sites) are 
distributed. General sublattice models, of which such solutions are a special case, have 
been discussed by HILLERT et al. [1985]. An example of application to the Fe-Cr-V-C 
system is given in Q 5. 

Examples of non-stoichiometric compound phases were shown in figs 13 and 16. 
When these exhibit a relatively narrow range of stoichiometry, as is the case for AgMg, 
in fig. 14, the phase is conveniently described as a dilute solution of defects in the 
stoichiometric compound. For example, consider a compound A,,By. The lattice sites 
normally occupied by A atoms we shall call "A sites", and those normally occupied by 
B atoms are "B sites". The dissolution of excess B in the compound can occur by the 
formation of defects. Example of such defects are (i) B atoms occupying A sites; (ii) 
vacant A sites; (iii) B atoms occupying interstitial sites; etc. Generally, one type of defect 
will predominate in any given system when B is in excess, and this is called the majority 
defect for solutions with excess B. When excess A is added to A,$,, then another 
majority defect predominates. It should, of course, be noted that certain compounds, such 
as FeQ, or Nb,A1 near room temperature, do not even contain the stoichiometric 
composition within their range of single-phase stoichiometry. 

Despite the large number of defect types which can occur, a quite general thermo- 
dynamic model can be proposed. Let X, be the mole fraction of the majority defects 
which occur when A is in excess. This is the mole fraction of these defects on the 
sublattice (or interstitial lattice) which they occupy. Similarly, X, is the mole fraction of 
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the majority defects which occur when B is in excess. Let g, and g, be the energies 
required to form one mole of each type of defect in the limit when XI and X, are very 
small. Assume that the concentrations X, and X2 are small enough that interactions 
between defects are negligible (Henry’s Law) and that the number of lattice sites does 
not change appreciably from that in the defect-free compound. Assume further that the 
defects are randomly distributed. The molar Gibbs energy of the solution relative to the 
hypothetical defect-free compound is then: 

where l/p1 and 1/Pz are the numbers of moles of lattice sites available to each type of 
defect. For a given deviation from the stoichiometric composition represented by 
A,-+B+: 

and by minimizing g with respect to X, and X, it can be shown that: 

If values of the energy parameters g, and g, are given, eqs. (38, 39) can be solved for 
any 6 to give X, and X, which can then be substituted back into eq. (37) to give g. When 
g, and g, are very large, g rises very steeply on either side of its minimum, and the range 
of stoichiometry is very narrow as for the case of the compounds in fig. 14. In the case 
of the compound AgMg, in fig. 13, g, > g,. That is, it is easier to form defects by adding 
excess Mg than by adding excess Ag. Hence, the Gibbs energy curve rises more steeply 
on the Ag side, and as a result, Mg is more soluble in AgMg, than is Ag. 

Defects are discussed in chs. 9, 18 and 20. For an example of an application of the 
defect model to phase diagram calculations, see PELTON [1991]. For a treatment of defect 
models as examples of general sublattice models, see HILLERT et al. [1985]. 

2.12. Binary phase diagrams involving a gaseous phase 

The effect of total pressure, P, upon the Gibbs energy change for the transformation 
of one mole of pure component A from the a- to the &phase is given by: 
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where Ag:(’r”g) is the standard @e. at P= 1 atm) molar Gibbs energy of transformation 
and where v: and u: are the molar volumes of the phases. For solids and liquids, molar 
volumes are sufficiently small that the final term in eq. (40) is negligible unless P is very 
large. If a gaseous phase is involved, however, this is no longer the case. If gaseous A 
is ideal and monatomic, and since I& = RT/P >> IJ; , the molar Gibbs energy of vapori- 
zation is given by: 

where Ag:(”) is the standard Gibbs energy of vaporization (when P= 1 atm) which is 
given by: 

(42) a(”) = Ah:(”) - TAs,o(”) Ag,4 
For example, the enthalpy of vaporization of Zn is A h z )  = 115300 J/mol at its normal 
boiling point of 1180 K (BARIN et al. [ 19771). Assuming that Ahq’’ is independent of T, 
we calculate that As;:) = 115300/1180=97.71 J/mol K. Hence, Ag;,, at any T and P is 
given by: 

(43) 

A similar expression can be derived for the other component, Mg. 
Curves of g‘ and g’ at a constant T and P are shown in the upper panel of fig. 20. 

The common tangent construction generates the equilibrium vapour and liquid com- 
positions. A temperature~omposition phase diagram, at constant pressure, can then be 
generated as the curve for g’ descends relative to g’ as the temperature is raised. 
Alternatively, the isothermal pressure-composition diagram shown in the lower panel of 
fig. 20 is generated as the curve for g’ descends relative to g’ as the pressure is lowered. 
The ‘diagram at 1250 K in fig. 20 was calculated under the assumption of ideal liquid and 
vapolur mixing (gE‘” = gE(”) = 0). 

Ag;, = (115300 - 97.71 T )  + RT In P 

3. Ternary phase diagrams 

In this section, an introduction to ternary phase diagrams will be given. A complete 
discussion of the subject is beyond the scope of this chapter. For more detailed treat- 
ments see PRINCE [1966], WEST [1965] or BERGERON and RISBUD [1984]. 

3.1. The ternary composition triangle 

In a ternary system with components A-B-C the sum of the mole fractions is unity. 
(X, +XB + X,) = 1. Hence, there are two independent composition variables. A represen- 
tation of composition, symmetrical with respect to all three components may be obtained 
with the equilateral “composition triangle” as shown in fig. 21. Compositions at the 
corners of the triangle correspond to the pure components. Along the edges of the 
triangle are found compositions corresponding to the three binary subsystems A-B, B-C 
and 63-A. Lines of constant mole fraction X, are parallel to the B-C edge, while lines of 
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Fig. 20. Pressure-composition phase diagram of the Zn-Mg system at 1250 K calculated for ideal vapour and 
liquid solutions. Upper panel illustrates common tangent construction at a constant pressure and temperature. 

constant X, and X, are parallel to the C-A and A-B edges respectively. For example at point 
B in fig. 21, X,=O, XB=0.7 and Xc=0.3. At point b, XA=0.3,  XB=0.2 and &=OS. 

Similar equilateral composition triangles can also be drawn with coordinates in terms 
of weight% of the three components. 

3.2. Ternary space model 

A ternary temperature-composition “phase diagram” at constant total pressure may 
be plotted as a three-dimensional “space model” within a right triangular prism with the 
equilateral composition triangle as base and temperature as vertical axis. Such a space 
model for a simple eutectic ternary system A-B-C is illustrated in fig. 22. On the three 
vertical faces of the prism we find the phase diagrams of the three binary subsystems, 
A-B, B-C and C-A which, in this example, are all simple eutectic binary systems. The 
binary eutectic points are at e,, e, and e3. Within the prism we see three liquidus suflaces 
descending from the melting points of pure A, B and C. Compositions on these surfaces 
correspond to compositions of liquid in equilibrium with A-, B- and C-rich solid phases. 

In a ternary system at constant pressure, the Gibbs phase rule, eq. (14), becomes: 

F = 4 - P .  (44) 
When the liquid and one solid phase are in equilibrium, P = 2 .  Hence, F = 2 ,  and the 
system is bivariant. A ternary liquidus is thus a two-dimensional surface. We may choose 
two variables, say T and one composition coordinate of the liquid, but then the other 
liquid composition coordinate and the composition of the solid are fixed. 
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x B  
Fig. 21. The equilateral ternary composition triangle. 

Fig. 22. Perspective view of ternary space model of a simple eutectic ternary system. e,, e,, e3 are the binary 
eutectics and E is the ternary eutectic. The base of the prism is the equilateral composition triangle. 
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The A- and B-liquidus surfaces in fig. 22 intersect along the line e,E. Liquids with 
Ocompositions along this line are therefore in equilibrium with A-rich and B-rich solid 
phases simultaneously. That is, P =  3 and so F = 1. Such “valleys” are thus called 
univariant lines. The three univariant lines meet at the ternary eutectic point E at which 
P = 4 and F = 0. This is an invariant point since the temperature and the compositions of 
all four phases in equilibrium are fixed. 

3.3. Polythermal projections of liquidus surfaces 

A two-dimensional representation of the ternary liquidus surface may be obtained as 
an orthogonal projection upon the base composition triangle. Such a polytheml 
projection of the liquidus of the Bi-Sn-Cd system (BRAY et ul. [1961-621) is shown in 
fig. 23. This is a simple eutectic ternary system with a space model l i e  that shown in 
fig. 22. The constant temperature lines on fig. 23 are called Ziquidus isotherms. The 
univariant valleys are shown as the heavier lines. By convention, the large arrows 
indicate the directions of decreasing temperature along these lines. 

Let us consider the sequence of events which occur during the equilibrium cooling 
from the liquid of an alloy of overall composition a in fig. 23 (XBi=0.05, Xs,=0.45, 
X,, = 0.50). Point a lies within the field of primary crystallization of Cd. That is, it lies 
within the composition region in fig. 23 in which Cd-rich solid will be the first solid to 
precipitate upon cooling. As the liquid alloy is cooled, the Cd-liquidus surface is reached 
at T = 465 K (slightly below the 473 K isotherm). A solid Cd-rich phase begins to 
precipitate at this temperature. Now, in this particular system, Bi and Sn are nearly 
insoluble in solid Cd, so that the solid phase is virtually pure Cd (note that this fact 
cannot be deduced from fig. 23 alone). Therefore, as solidification proceeds, the liquid 
becomes depleted in Cd, but the ratio XsJXBi in the liquid remains constant. Hence, the 
composition path followed by the liquid (its crystallizutionpath) is a straight line passing 
through point a and projecting to the Cd-corner of the triangle. This crystallization path 
is shown on fig. 23 as the line ab. 

In the general case in which a solid solution rather than a pure component or 
stoichiometric compound is precipitating, the crystallization path will not be a straight 
line. However, for equilibrium cooling, a straight line joining a point on the crystal- 
lization path at any T to the overall composition point a will extend through the 
composition, on the solidus surface, of the solid phase in equilibrium with the liquid at 
that temperature. 

When the composition of the liquid has reached point b in fig. 23 at T = 435 K, the 
relative proportions of the solid Cd and liquid phases at equilibrium are given by the 
lever rule applied to the tie-line dab: (moles of Iiquid)/(moIes of Cd) = ddab, where da 
and ab are the lengths of the line segments. Upon further cooling the liquid composition 
follows the univariant valley from b to E while Cd and Sn-rich solids co-precipitate as 
a binary eutectic mixture. When the liquidus composition attains the ternary eutectic 
composition E at T = 380 K the invariant temuly eutectic reaction occurs: 

liquid + s, + s2 + s3, (45) 
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Cd 

Fig. 23. Projection of the liquidus surface of the Bi-Sn-Cd system (after BRAY etal. [1%1-621). Small arrows 
show crystallization path of an alloy of overall composition at point a. 

where sl, s2 and sj are the three solid phases and where the compositions of all four 
phases as well as T remain fixed until all liquid is solidified. 

In order to illustrate several of the features of polythermal projections of liquidus 
surfaces, a projection of the liquidus of a hypothetical system A-B-C is shown in fig. 
24. For the sake of simplicity, isotherms are not shown, but only the univariant lines with 
arrows to show the directions of decreasing temperature. The binary subsystems A-B and 
C-A are simple eutectic systems, while the binary subsystem B-C contains one 
congruent binary phase, E and one incongruent binary phase, 6, as shown in the insert in 
fig. 24. The letters e and p indicate binary eutectic and peritectic points. The E and 6 
phases are called binary compounds since they have compositions within a binary 
subsystem. Two ternary compounds, q and l, with compositions within the ternary 
triangle as indicated in fig. 24, are also found in this system. All compounds as well as 
pure solid A, €3 and C (the ‘‘a, p and y” phases) are assumed to be stoichiometric (Le. 
there is no solid solubility). The fields of primary crystallization of all the solids are 
indicated in parentheses in fig. 24. The composition of the 8 phase lies within its field, 
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C 

B 

Fig. 24. Projection of the liquidus surface of n system A-B-C. The binary subsystems A-€3 and C-A are 
simple eutectic systems. The binary phase diagram B-C is shown in the insert. All solid phases are assumed 
pure stoichiometric components or compounds. Small arrows show crystallization paths of alloys of 
compositions at points a and b. 

since E is a congruent compound, while the composition of the S phase lies outside of its 
field since 6 is incongruent. Similarly for the ternary compounds, is a congruently 
melting compound while 5 is incongruent. For the congruent compound q, the highest 
temperature on the q-liquidus occurs at the composition of q. 

The univariant lines meet at a number of ternary eutectics Ei (three arrows conver- 
ging), a fernaryperitectic P (one arrow entering, two arrows leaving the point), and 
several ternary quasi-peritectics P‘i (two arrows entering, one arrow leaving). Two saddle 
points s are also shown. These are points of maximum T along the univariant line but of 
minimum Ton the liquidus surface along a section joining the compositions of the two 
solids. For example, s1 is at a maximum along the univariant E,P’,, but is a minimum 
point on the liquidus along the straight line &q. 

Let us consider the events occurring during the cooling from the liquid of an alloy of 
overall composition a in fig. 24. The primary crystallization product will be the E phase. 
Since this is a pure stoichiometric solid the crystallization path of the liquid will be along 



Ch. 6, $ 3  Phase diagmms 509 

a straight line passing through a and extending to the composition of E as shown on the 
figure. 

Solidification of E continues until the liquid attains a composition on the univariant valley. 
Then, the liquid composition follows the valley towards the point PI in co-existence with E 

and {. At point P,/ the invariant ternary quasi-peritectic reaction occurs isothermally: 

(46) 

Since there are two reactants in a quasi-peritectic reaction, there are two possible 
outcomes: (i) The liquid is completely consumed before the &-phase; in this case, 
solidification will be complete at the point P,/ . (ii) E is completely consumed before the 
liquid; in this case, solidification will continue with decreasing T along the univariant 
line P[ E, with co-precipitation of 6 and 6 until, at E, the liquid will solidify eutectically 
(liquid + d +{ +q). To determine whether condition (i) or (ii) occurs, we use the mass 
balance criterion that, for three-phase equilibrium, the overall composition must always 
lie within the tie-triangle formed by the compositions of the three phases. Now, the 
triangle joining the compositions of 6, E, and C does not contain the point a, but the 
triangle joining the compositions of 6, 6, and liquid at P: does contain the point a. 
Hence, case (ii) occurs. 

Pin alloy of overall composition b in fig. 24 solidifies with 8 as primary crystal- 
lization product until the liquid composition contacts the univariant line. Thereafter, co- 
precipitation of 8 and p occurs with the liquid composition following the univariant 
valley until the liquid reaches the peritectic composition P. The invariant ternary 
peritectic reaction then occurs isothermally: 

(47) 

Since there are three reactants, there are three possible outcomes: (i) Liquid is consumed 
before either E or p and solidification terminates at P. (ii) B is consumed first; solidifi- 
cation then continues along the path PP,’. (iii) p is consumed first and solidification 
continues along the path PP,’. Which outcome occurs depends on whether the overall 
composition b lies within the tie-triangle (i) EPC, (ii) pSp or (iii) ES~. In the example 
shown, case (i) will occur. 

liquid + E + 8 + f .  

liquid + E + /3 + f .  

31.4. Ternary isothermal sections 

Isothermal projections of the liquidus surface do not give information on the 
compositions of the solid phases at equilibrium. However, this information can be 
presented at any one temperature on an isothermal section such as that shown for the 
BiSn-Cd system at 423 K in fig. 25. This phase diagram is a constant temperature slice 
through the space model of fig. 22. 

The liquidus lines bordering the one-phase liquid region of fig. 25 are identical to the 
423 K isotherms of the projection in fig. 23. Point c in fig. 25 is point c on the uni- 
variant line in fig. 23. An alloy with overall composition in the one-phase liquid region 
of fig. 25 at 423 K will consist of a single liquid phase. If the overall composition lies 
within one of the two-phase regions, then the compositions of the two phases are given 
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Cd 

(Cd)+(Sn)+ Liquid 

(B 

B i  Sn 
Fig. 25. Isothermal section of Bi-Sn-Cd system at 423 K (after BRAY et al. [1961-62]). Extents of solid 
solubility in Bi and Sn have been exaggerated for clarity of presentation. 

by the ends of the tie-line containing the overall composition. For example, a sample 
with overall composition p in fig. 25 will consist of a liquid of composition q on the 
liquidus and a solid Bi-rich alloy of composition r on the solidus. The relative propor- 
tions of the two phases are given by the lever rule: (moles of liquid)/(moles of solid)= 
pr/pq, where pr and pq are the lengths of the line segments. 

In the case of solid Cd, the solid phase is nearly pure. Cd, so all tie-lines of the (Cd 
+ liquid) region converge nearly to the comer of the triangle. In the case of Bi- and Sn- 
rich solids, some solid solubility is observed. (The actual extent of this solubility is 
somewhat exaggerated in fig. 25 for the sake of clarity of presentation.) Alloys with 
overall compositions rich enough in Bi or Sn to lie within the single-phase (Sn) or (Bi) 
regions of fig. 25 will consist, at 423 K, of single-phase solid solutions. Alloys with 
overall compositions at 423 K in the two-phase (Cd + Sn) region will consist of two solid 
phases. 

Alloys with overall compositions within the three-phase triangle dcf will, at 423 K, 
consist of three phases: Cd- and Sn-rich solids with compositions at d and f, and liquid 



Ch. 6, $ 3  Phase diagrams 511 

of composition c. To understand this better, consider an alloy of composition a in fig. 25, 
which is the same composition as the point a in fig. 23. In 53.3 we saw that when a 
alloy of this composition is cooled, the liquid follows the path ab on fig. 23 with 
primary precipitation of Cd and then follows the univariant line with co-precipitation of 
Cd and Sn so that at 423 K the liquid will be at the composition point c, and two solid 
phases are in equilibrium with the liquid. 

3.4.1. Topology of ternary isothermal sections 
At constant temperature the Gibbs energy of each phase in a ternary system is 

represented as a function of composition by a surface plotted in a right triangular prism 
with Gibbs energy as vertical axis and the composition triangle as base. Just as the 
compositions of phases at equilibrium in binary systems are determined by the points of 
contact of a common tangent line to their isothermal Gibbs energy curves, so the 
compositions of phases at equilibrium in a ternary system are given by the points of 
contact of a common tangent plane to their isothermal Gibbs energy surfaces. A common 
tangent plane can contact two Gibbs energy surfaces at an infinite number of pairs of 
points. thereby generating an infinite number of tie-lines within a two-phase area on an 
isothermal section. A common tangent plane to three Gibbs energy surfaces contacts each 
surface at a unique point, thereby generating a three-phase tie-triangle. 

Hence, the principal topological units of construction of an isothermal ternary phase 
diagram are three-phase (a + p  + y )  tie-triangles as in fig. 26 with their accompanying 
two-phase and single-phase areas. Each comer of the tie-triangle contacts a single-phase 
region, and from each edge of the triangle there extends a two-phase region. The edge 
of the triangle is a limiting tieline of the two-phase region. 

For overall compositions within the tie-triangle, the compositions of the three phases 
at equilibrium are fixed at the comers of the triangle. The relative proportions of the 
three phases are given by the lever rule of tie-triangles which can be derived from mass 
balance considerations. At an overall composition q in fig. 26, for example, the relative 
proportion of the y-phase is given by projecting a straight line from the y-comer of the 
triangle (point c) through the overall composition q to the opposite side of the triangle, 
point p. Then: (moles of ?)/(total moles) = qphp if compositions are expressed in mole 
fractions, or (weight of y)/(total weight) = qp/cp if compositions are in weight percent. 

Isothermal ternary phase diagrams are generally composed of a number of these 
topological units. An example for the Al-Zn-Mg system at 25°C is shown in fig. 27 
(K~STER and DULLENICOPP [1936]). The p, y, 6, 8, q and J phases are binary inter- 
metallic compounds with small (-1%) ranges of stoichiometry which can dissolve a 
limited amount (-14%) of the third component. The T phase is a ternary phase with a 
single-phase region existing over a fairly extensive oval-shaped central composition 
range. Examination of fig. 27 shows that it consists of the topological units of fig. 26. 

An extension rule, a case of Schreinemakers's rule (SCHREINEMAKERS [1915]) for 
ternary tie-triangles is illustrated in fig. 26. At each comer, the extension of the boundaries of the 
single-phase regions, indicated by the dashed lines, must either both project into the triangle as at 
point a, or must both project outside the triangle as at point b, and furthermore the angle between 
these extensions must be less than 180". For a proof, see LIPSON and WILSON [1940]. 
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Fig. 26. A tie-triangle in a ternary isothermal section illustrating the lever rule and the extension rule. 

Many published phase diagrams violate this rule. For example, it is violated in fig. 27 

Another important rule of construction, whose derivation is evident, is that within any 
at the 6-corner of the (E +S +T) tie-triangle. 

two-phase region tie-lines must never cross each other. 

3.5. Ternary isopleths (constant composition sections) 

A vertical isopleth, or constant composition section through the space model of the 
Bi-Sn-Cd system is shown in fig. 28. The section follows the line AB in fig. 23. 

W t  Zn 
Fig. 27. Ternary isothermal section of the AI-Zn-Mg system at 25°C (after K~STER and DULLENKOPF [1936]). 
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A B 
Mole Fraction 

Fig. 28. Isopleth (constant composition section) of the Bi-SnXd system following the line AB of fig. 23. 

The phase fields on fig. 28 indicate which phases are present when an alloy with an 
overall composition on the line AB is equilibrated at any temperature. For example, 
consider the cooling from the liquid state, of an alloy of composition a which is on the 
line AB (see fig. 23). At T = 465 K, precipitation of the solid (Cd) phase begins at point 
a in fig. 28. At T = 435 K (point b in figs. 23 and 28) the solid (Sn) phase begins to 
appear. Finally, at the eutectic temperature T,, the ternary eutectic reaction occurs, 
leaving solid (Cd) + (Bi) + (Sn) at lower temperatures. The intersection of the isopleth 
with the univariant lines on fig. 23 occurs at points P and g which are also indicated in 
fig. 28. The intersection of this isopleth with the isothermal section at 423 K is shown 
in fig. 25. The points s, t, u and v of fig. 25 are also shown on fig. 28. 

It is important to note that on an isopleth, the tie-lines do not, in general, lie in the 
plane of the diagram. Therefore, the diagram gives information only on which phases are 
present, not on their compositions. The boundary lines on an isopleth do not in general 
indicate the phase compositions, but only the temperature at which a phase appears or 
disappears for a given overall composition. The lever rule cannot be applied on an isopleth. 

Certain topological rules apply to isopleths. As a phase boundary line is crossed, one and 
only one phase either appears or disappears. This Law of Adjoining Phase Regions 
(PALATNIK and LANDAU [ 19641) is illustrated by fig. 28. The only apparent exception occurs 
for the horizontal invariant line at T,. However, if we consider this line to be a degenerate 
infinitely narrow four-phase region (L + (Cd) + (Bi) + (Sn)), then the law is also obeyed here. 

Three or four boundary lines meet at intersection points. At an intersection point, 
Schreinemakers’ rule applies (SCHREINEMAKERS [ 19151). This rule states that the 
boundaries of the phase field with the smallest number of phases, when extrapolated, 
must either both fall within the phase field with the greatest number of phases (as at 
point f i n  fig. 28) or else both fall outside this region (as at point g in fig. 28). 

Apparent exceptions to these rules (such as, for example, five boundaries meeting at 
an intersection point) can occur if the section passes exactly through a node (such as a 
ternary eutectic point) of the space model. However, these apparent exceptions are really 
only limiting cases. See PRINCE [1963] or PRINCE [1966]. 

References: p .  531. 
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0 0.2 0.4 0.6 0.8 1 .o 
Weight Percent Carbon 

Fig. 29. Section of the Fe-Cr-V-C system at 1.5 wt.% Cr and 0.1 wt% V (LEE and LEE [1992]). 

4. Multicomponent phase diagrams 

Only a brief outline of multicomponent phase diagrams can be presented here. For 
more detailed treatments see PALATNIK and LANDAU [1964], PRINCE [1963], PRINCE 
[1966] and HILLERT [1985]. 

For alloy systems of four or more components, two-dimensional sections are usually 
plotted with one or more compositional variables held constant. Hence, these sections are 
similar to the ternary isopleths discussed in § 3.5. In certain cases, sections at constant 
chemical potential of one or more components (for example, at constant oxygen partial 
pressure) can be useful. These are discussed in 5 6. 

Two sections of the Fe-Cr-V-C system (LEE and LEE [1992]) are shown in figs. 29, 
30. The diagram in fig. 29 is a T-composition section at constant Cr and V content, 
while fig. 30 is a section at constant T=  850OC and constant C content of 0.3 wt.%. The 

I 

2 4‘ 6 8 10 12 14 16 Fe 
Weight Percent Chromium 

Fig. 30. Section of the Fe-Cr-V-C system at 850°C and 0.3 wt.% C (LEE and LEe [1992]). 
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interpretation and topological rules of construction of these sections are the same as those 
for ternary isopleths as discussed in $3.5. In fact, the same rules apply to a two- 
dimensional constant-composition section for a system of any number of components. 
The phase fields on the diagram indicate the phases present at equilibrium for an overall 
composition lying on the section. Tie-lines do not, in general, lie in the plane of the 
diagram so the diagram does not give information on the compositions or amounts of the 
phases present. As a phase boundary is crossed, one and only one phase appears or 
disappears (Law of Adjoining Phase Regions). If temperature is an axis, as in fig. 29, 
then horizontal invariants like the line AB in fig. 29 can appear. These can be considered 
as degenerate infinitely narrow phase fields of (C + 1) phases, where C is the number of 
Components (for isobaric diagrams). For example in fig. 29, on the line AB, five phases 
are present. Three or four phase boundaries meet at intersection points at which 
Sclzreinernakers’ rule applies. This rule was given in $3.5. It is illustrated by the 
extrapolations in fig. 29 at points a, b and c and in fig. 30 at points b, c, n, i and s. The 
applicability of Schreinemakers’ rule to systems of any number of components was noted 
by HILLERT [1985], although no formal proof has been presented. 

41.1. Zero phase fraction lines 

An interesting and useful method of constructing multicomponent phase diagrams through 
the use of zero phase fracfion (ZPF) lines has recently been proposed (GUPTA etal. [1986]). 
A ZPF line divides a two-dimensional phase diagram into two regions. On one side of 
the line a phase occurs, while on the other side it does not. For example, in fig. 30 the 
ZPF line for the a phase is the line abcdef. The ZPF line for the y phase is ghijkl. For 
the MC phase the ZPF line is mnciopq. The ZPF line for M,C, is rnbhspket, and for 
M,,C, it is udjosv. These five ZPF lines yield the entire two-dimensional phase diagram. 
The usefulness of this methodology for estimating phase diagrams for multicomponent 
systems from experimental data was discussed by GUPTA etal. [1986]. The method also 
holds promise for the thermodynamic calculation of phase diagrams ($ 5). 

43. Nomenclature for invariant reactions 

As discussed in 52.9, in a binary isobaric temperaturecomposition phase diagram 
there are two possible types of invariant reactions: “eutectic type” invariant reactions 

+ a + y), and “peritectic type” invariant reactions (a + y + p). In a ternary system, 
there are “eutectic type” (a -+ p + y + S), “peritectic type” (a +p + y + 6) and “quasi- 
peritectic type” (a +p + y + S )  invariants (§ 3.3). In a system of C components, the 
number of types of invariant reaction is equal to C. A reaction with one reactant, such 
as a p + y + 6 + E  is clearly a “eutectic type” invariant reaction but in general there is 
no standard terminology. These reactions are conveniently described according to the 
numbers of reactants and products (in the direction which occurs upon cooling). Hence, 
the reaction a + p  + y +S +E is a 2 +  3 reaction; the reaction a +/? + y  +S is a 1 + 3 
reaction; and so on. The ternary peritectic type 3 -+ 1 reaction (a + p  + y -+ 6) is an 
invariant reaction in a ternary system, a univariant reaction in a quaternary system, a 
bivariant reaction in a quinary system, etc. 

References: p .  5-31. 
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5. Thermodynamic calculation of ternary and multicomponent phase 
diagrams 

Among 70 metallic elements are formed 70!/3! 67! = 54740 ternary systems and 
916895 quaternary systems. In view of the amount of work involved in measuring even 
one isothermal section of a relatively simple ternary phase diagram, it is very important 
to have means of estimating ternary and higher-order phase diagrams. The most fruitful 
approach to such predictions is via thermodynamic methods. In recent years, large 
advances have been made in this area by the international Calphad group. Many key 
papers have been published in the Calphad Journal. 

As a first step in the thermodynamic approach to calculating a ternary phase diagram 
one critically analyzes the experimental phase diagrams and thermodynamic data for the 
three binary subsystems of the ternary system in order to obtain a set of mathematical 
expressions for the Gibbs energies of the binary phases as was discussed in Q 2.10 and 
Q 2.11. Next, equations based on solution models are used to estimate the Gibbs energies 
of the ternary phases from the Gibbs energies of the binary phases. The ternary phase 
diagram is then calculated from these estimated ternary Gibbs energies by means of 
common tangent plane or total Gibbs energy minimization algorithms. 

For a phase for which the excess Gibbs energies in the binary systems have been 
expressed by polynomial expansions (0 2.10.1) a satisfactory estimation of the Gibbs 
energy of the ternary phase can often be obtained with the following equation proposed 
by KOHLER [ 19601: 

In this equation, g E  is the excess molar Gibbs energy at a composition point in the 
ternary phase and g,,,, g, and g& are the excess Gibbs energies in the three binary 
subsystems at the same molar ratios XB/Xc, X d X A  and X,/XB as at the ternary point. If 
the ternary solution as well as the three binary solutions are all regular then eq. (48) is 
exact. In the general case, a physical interpretation of eq. (48) is that the contribution to 
gE from, say, pair interactions between A and B particles is constant at a constant ratio 
XA/XB apart from the dilutive effect of the C particles which is accounted for by the term 
(1 - Xc)2 taken from regular solution theory. Other very similar equations, all based upon 
extension of regular solution theory, are also regularly used. These all give quite similar 
results. For a discussion see SPENCER and BARIN [1979] or HILLERT [1980]. 

For more complex solutions involving structural ordering or more than one sublattice, 
appropriate solution models for representing the binary properties have been discussed in 
Q 2.11. In such cases, eq. (48) or similar equations should not be used for estimating the 
ternary excess Gibbs energies. Rather, equations consistent with the appropriate solution 
model should be used. For the quasichemical model, these have been discussed by 
PELTON and BLANDER [1986]. For the sublattice model, see HILLERT et al. [1985]. 

As an example of the calculation of a ternary phase diagram, the experimental 
isothermal section at 923 K of the Cr-Ni-Fe phase diagram is compared in fig. 31 with 
the diagram calculated solely from optimized binary thermodynamic properties (CHART 

E E  
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C r  0.8 0.6 0.4 0.2 Ni  

+- Xcr 
Fig. 31. Isothermal section at 923 K of the Cr-Ni-Fe phase diagram from CHART et aZ. [1979]. Lower diagram 
is experimental; upper diagram is calculated from binary data. 

et al. 119791). Such estimated phase diagrams are often quite acceptable for many 
purposes. However, the agreement between the experimental and calculated diagrams can 
usually be greatly improved by the inclusion of one or more “ternary terms” with 
adjustable coefficients in the equations for 2. For example, the ternary term a&X& 
which is zero in all three binary subsystem could be added to eq. (48) and the value of 
the parameter a which gives the best optimized fit to measured ternary phase diagram 
points could be determined. This, of course, requires that ternary measurements be made, 
but only a very few experimental points will usually suffice rather than the large number 
of measurements required for a fully experimental determination. In this way, the coupling of 
the thermodynamic approach with a few well chosen experimental measurements can greatly 
reduce the experimental effort involved in determining multicomponent phase diagrams. 

An example of a coupled thermodynamic/phase diagram evaluation and calculation 
for a multicomponent system is the work of LEE and LEE E19921 on the Fe-Cr-V-C 

References: p .  531. 



518 A.D. Pelton Ch. 6, 16  

system. The diagrams in figs 29,30 were calculated thermodynamically by these authors. 
For the solid alloy and carbide phases, interstitial sublattice models were used. For the 
liquid phase, a substitutional model was employed. All available phase diagram and 
thermodynamic data for the binary and ternary subsystems, as well as for the quaternary 
system, were simultaneously optimized in order to obtain the best sets of binary and 
ternary parameters of the model equations for gE for each phase as well as optimized 
equations for the standard Gibbs energies of the compounds. In this way, all the diverse 
data sets were smoothed and made consistent with each other and with thermodynamic 
principles. Any desired type of two-dimensional phase diagram section for the quaternary 
system can be calculated from the database of model parameters. 

6. Phase diagrams with potentials as axes 

So far we have considered mainly isobaric temperature-composition phase diagrams. 
However, there are many other kinds of phase diagrams of metallurgical interest with 
pressure, chemical potentials, volume, etc. as axes. These can be classified into geomet- 
rical types according to their topological rules of construction. 

For instance, binary isothermal P-X diagrams as in fig. 20 are members of the same 
type as binary isobaric T-X diagrams since they are both formed from the same 
topological units of construction. Other useful phase diagrams of this same geometrical 
type are isothermal chemical potential-composition diagrams for ternary systems. An 
example is shown in the lowest panel of fig. 32 (PELTON and THomso~ [1975]) for the 
Co-Ni-0 system at T =  1600 K (and at a constant total hydrostatic pressure of 1 am). 
Here the logarithm of the equilibrium partial pressure of 0, is plotted versus the metal 
ratio 6 = n N i / ( h  + nNi), where ni = number of moles of i. There are two phases in this 
system under these conditions, a solid alloy solution stable at lower po2, and a solid 
solution of COO and NiO stable at higher po,. For instance, point a gives po, for the 
equilibrium between pure Co and pure COO at 1600 K. Between the two single-phase 
regions is a two-phase (alloy +oxide) region. At any overall composition on the tie-line 
cd between points c and d, two phases will be observed, an alloy of composition d and 
an oxide of composition c. The lever rule applies just as for binary T-X diagrams. 

The usual isothermal section of the ternary Co-Ni-0 system at 1600 K is shown in 
the top panel of fig. 32. There are two single-phase regions with a two-phase region 
between them. The single-phase areas are very narrow since oxygen is only very slightly 
soluble in the solid alloy and since COO and NiO are very stoichiometric oxides. In the 
central panel of fig. 32 this same diagram is shown but with the composition triangle 
“opened out” by putting the oxygen comer at infinity. This can be done if the vertical 
axis becomes r] = nd(nc, + nNi) with the horizontal axis as 5 = nNI/(n, + nNi). These are 
known as Janecke coordinates. It can be seen in fig. 32 that each tie-line, ef, of the 
isothermal section corresponds to a tie-line, cd of the log diagram. This under- 
scores the fact that every tie-line of a ternary isothermal section corresponds to a 
constant chemical potential of each of the components. 

diagram is shown for the Fe-Cr-0 system at 1573 Another example of a log 
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Fig. 32. Corresponding type-2 and type-3 phase diagrams for the C+Ni-O system at 1600 K (from PELTON 
and THOMPSON [1975]). 

K in the lower panel of fig. 33 (PELTON and SCHMALZRIED [1973]). The corresponding 
ternary isothermal section in Jiinecke coordinates is shown in the upper panel. Each of 
the invariant three-phase tie-triangles in the isothermal section corresponds to an 
invariant line in the log pol[ diagram. For example, the (spinel + (Fe, Cr)O + alloy) 
triangle with comers at points a, b and c corresponds to the "eutectic-like" invariant with 
the same phase compositions a, b and c at log pO2=-10.7. We can see that within a 
three-phase tie-triangle, po2 is constant. 

An example of yet another kind of phase diagram of this same geometrical type is 
shown in fig. 34. For the quaternary Fe-Cr-0-SO, system at T =  1273 K and at constant 
pso :=lo-' atm, fig. 34 is a plot of log po2 versus the molar metal ratio 6 (PELTON 
[19b1]). Since log po, varies as -1/2 log ps,  when pso, and T are constant, fig. 34 is 
also a plot of log ps, versus 8. 

It can be seen that the diagrams discussed above are of the same geometrical type as 
binary T-X diagrams since they are all composed of the same topological units of 
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Fig. 33. Corresponding type-2 and type-3 phase diagrams for the Fe-Cr-0 system at 1573 K (PELTON and 
SCHMALZRIED [1973]). Experimental points from KATSURA and MUAN [1964]. 
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Fig. 34. Calculated type-2 phase diagram of log pol versus molar metal ratio at T = 1273 K and pso2 = lo-' atm 
for the Fe-Cr-0-SO, system (PELTON [1991]). 
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construction as in fig. 15. Their interpretation is thus immediately clear to anyone 
familiar with binary T-X diagrams. Chemical potential-composition diagrams (figs. 
32-34) are useful in the study of high temperature oxidation of alloys, metallurgical 
roasting processes, etc. 

The log po2-e diagrams in figs. 33, 34 were calculated by the same algorithm which 
produced the binary phase diagram of fig. 17. This algorithm operates by computing 
comnon tangent lines to the Gibbs energy-composition curves of the phases. The 
diagrams in figs. 33,34 were calculated from optimized mathematical expressions for the 
Gibbs energy curves of all the phases. With these same optimized equations, logp,-( 
diagrams at other temperatures can be calculated, as can T-6 diagrams at constantpol 
which are also of the same geometrical type. For details see PELTON et al. [1979]. 

Another important geometrical type of phase diagram is exemplified by P-T phase 
diagrams for one-component systems as shown for H,O in fig. 35. In such diagrams, 
which are discussed in ch. 5, Q 3, bivariant single-phase regions are indicated by areas, 
univariant two-phase regions by lines, and invariant three-phase regions by triple points. 
An important rule of construction is the extension rule which is illustrated by the dashed 
lines in fig. 35. At a triple point, the extension of any two-phase line must pass into the 
single-phase region of the third phase. 

Another kind of phase diagram of the same geometrical type is shown in fig. 36. For 
the Fe-S-0 system at T = 800 K, the axes of the diagram are the equilibrium partial 
pressures of S ,  and 0,. Single-phase areas indicate which pure compounds of Fe are 
stable under the given conditions. Two-phase regions are lines. Three phases can co-exist 
only at triple points. The extension rule given above applies at all triple points. Such 
stability diagrams or predominance diagrams are useful in the study of oxidation, 
corrosion, roasting, etc. They have been treated in ch. 5, Q 6.2 and have been discussed 
by KELLOGG and BASU [1960], INGRAHAM and KBLLOGG [1963], PELTON and 
THOMPSON [1975], BALE etal. [1986] and BALE [1990]. They lend themselves to rapid 
computer calculation by Gibbs energy minimization from thermodynamic data stored in 
computerized data banks (BALE et al. [1986], BALE [1990]). Their usefulness is by no 
means restricted to metal-sulphur-oxygen systems or to systems of three components. 

As another example of this same geometrical type of diagram, a plot of RT lnpq 
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Fig. 35. Type-] P-7' phase diagram of H,O. 
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Fig. 36. Type-1 predominance diagram for Fe-S-0 at 800 K. 

versus T for the Fe-0 system is shown in fig. 37b. Again, one-, two-, and three-phase 
regions are indicated by areas, lines and triple points respectively. In fig. 37a is the 
binary T-composition phase diagram for the Fe-0 system. The correspondence between 
figs 37a and 37b is evident. Each two-phase line of fig. 37b “opens up” to a two-phase 
region of fig. 37a. Each tie-line of a two-phase region in fig. 37a can thus be seen to 
correspond to a constant p,,,. Triple points in fig. 37b become horizontal invariant lines 
in fig. 37a. 

Yet another type of phase diagram is shown in fig. 38. This is an isothermal section at 
constant molar metal ratio n,J(nFe + ncr) = 0.21 for the Fe-Cr-S-0 system. This diagram was 
calculated thermodynamically from model parameters (LAPLANTE [1993]). The axes are the 
equilibrium suffur and oxygen partial pressures. Three or four boundary lines can meet at an 
intersection point. Some of the boundary lines on fig. 38 separate a two-phase region (a +p) 
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Fig. 38. Phase diagram of log ps2 versus log pq at 1273 K and constant molar metal ratio nd(n,+ne)=0.21 
in the Fe-Cr-S-0 system ( L , . ~ P U ~  [1993]). 
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from another two-phase region (a + y). These lines thus represent the conditions for 
three-phase (a + p  + y )  equilibrium. The Law of Adjoining Phase Regions ( 5  3.5) applies 
to fig. 38 if these 3-phase lines are considered as degenerate infinitely narrow phase 
fields: 

6.1. Classification of phase diagrams 

In a system of C components we can define (C + 2) thermodynamic potentials, q&. 
These are T, P, pl, p2, ..., pc (where pj is the chemical potential of component j). For 
each potential 4, we can define a “corresponding” extensive variable qi. For the potentials 
T, P and pj the corresponding extensive variables are S, V and nj (entropy, volume and 
moles of component j). When two phases, LY and p, are in equilibrium, 4; = 4: for all i. 

If we choose any three potentials, designated c$~, & and 43, and if we hold +4, 4*, 
..., C$wz constant, then a plot of versus +2 will have the geometry of figs. 35,36. Such 
diagrams were termed type-1 phase diagrams by PELTON and SCHMALZRIED [1973]. A 
general type-1 diagram is shown in fig. 39b. On a type-1 diagram the lines give the 
conditions for two-phase equilibrium, and the triple points are three-phase points. 

If we now replace the 42 axis of the type-1 diagram by the ratio q2/q3 (or equival- 
ently, by qz/(q2 + q3)), then we obtain a “corresponding” type-2 phase diagram as 
illustrated in fig. 39a. A corresponding type-2 diagram is also obtained by replacing & 
by q/q3 as in fig. 39d. Two-phase lines in the type-1 diagram become two-phase regions 
with tie-lines in the corresponding type-2 diagrams. Triple points become invariant lines. 

Consider the binary Fe-0 system in fig. 37. Let 41 = T, C#J~ =po, 43 =,uFe, (p4 = P. Fig. 

7 
a 

t 

d 

b 

Rg. 39. Schematic representation of the three types of phase diagrams illustrating the general topology of (a) 
4, VS. qJ%. (b) 4, vs, (c) q,/q3 VS. de, and (4 42 vs. ql/q3. plots. (Ar A+ ... are kept constant). 
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37b is a type-1 diagram of 41 versus 4, with 44 constant. Fig. 37a is the corresponding 
type-2 diagram obtained by replacing 42 by the ratio q2/(q2 + q3) = nd(no + nFe). 

Figs 20, 32 (lower panel), 33 (lower panel) and 34 are also type-2 diagrams. Type-2 
diagrams are exemplified by binary isobaric T-composition diagrams. Consider the 
Fe-Cr-0 system in fig. 33. Let = po, 42 =pCr, c$3 =pFer c$4 = T, 45 = P. the lower panel 
in fig. 33 is a type-2 diagram of c # ~ ~  versus q2/(q2+q3) at constant rp4 and &. In the 
Fe-Cr-0-SO, system in fig. 34 there is one more component and therefore, one more 
potential, 46 = By also holding this potential constant, we obtain the type-2 diagram 

by ql/q3, 
then ,a corresponding type-3phase diagram results as shown in fig. 39c. In this diagram, 
triple points have become tie-triangles. Type-3 diagrams are exemplified by isothermal 
isobaric sections of ternary systems as in figs. 25,27 and 31. The upper panel of fig. 33 
shows the type-3 diagram corresponding to the type-2 diagram in the lower panel. The 
poteatial 41 =po has been replaced by ql/(q2 + q3) = nd(nFe + k,). This gives the type-3 
diagram in Jbecke coordinates. This is usually transformed to the more usual Gibbs 
triangle representation as illustrated in fig. 32. 

FIX a more detailed discussion of this classification scheme, see PELTON and 
SCHMALZRIED [ 19731 and PELTON and THOMPSON [ 19751. 

Type-1, -2, and -3 phase diagrams are all sections at constant potentials (44, 45, ... +c+z). 

Hence, all tie-lines lie in the plane of the diagram. When sections are taken at constant 
composition, then different geometries result. Fig. 38 is an example of a constant composition 
section in which both axes are potentials. Figs 28 and 29 are constant composition 
sections in which one axis is a potential, T, while the other axis is a composition 
variaible. In fig. 30, both axes are composition variables. The geometrical rules of 
construction of these diagrams have already been discussed (P 3.5, 0 4). The difference 
among them is that fig. 30 contains no degenerate phase fields, while in fig. 38 lines can 
be degenerate phase fields, and in figs. 28 and 29 only horizontal lines can be degenerate 
phase fields. 

For more detailed discussions of the classification of phase diagrams, including 
projections and diagrams with more than two dimensions, see PALATNIK and LANDAU 
[1964], PRINCE [1963] and HILLERT [1985]. 

As a final note on the topology of phase diagrams, the construction of multicomponent 
constsarit-composition sections by means of zero phase fraction (ZPF) lines was discussed in 
8 4.1 and illustrated by fig. 30. It should be noted that this method applies to any two- 
dimensional phase diagram section and can be used to construct any phase diagram in the 
present article (with the exception of the projections in figs. 23, 24 and 27). When one 
or both axes are potentials, then parts of the ZPF lines for two phases may be coincident. 

of fig. 34. 
If, as well as replacing 4, in a type-1 diagram by q2/q3, we also replace 

7. Experimental techniques of measuring phase diagrams 

It is beyond the scope of the present article to give a complete discussion of 
experimental techniques. Only a brief survey of the major techniques will be presented 
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with a view to providing the reader with some insight into the difficulties involved. More 
detailed discussions are given by RAYNOR [ 19701, MACCHESNEY and ROSENBERG [ 19701, 
BUCKLEY [1970], and HUM-ROTHERY et al. [1952]. 

As has been discussed in $5, modem techniques of computer coupling of thermo- 
dynamics and phase diagrams can significantly reduce the amount of experimental effort 
required to characterize a phase diagram completely, particularly in the case of multi- 
component systems. 

7.1. Thermal analysis 

Liquidus temperatures are commonly determined by the measurement of cooling 
curves. Consider the binary alloy A-B of composition 1 in fig. 40. A sample of liquid 
alloy, of the order of 50 g, is held in a crucible in a furnace. The furnace temperature is 
then decreased slowly at a uniform rate, usually not exceeding 1°C per minute, while the 
temperature of the alloy is measured by a calibrated recording thermocouple. A graph of 
sample temperature versus time (the cooling curve) is shown in fig. 41a. At the liquidus 
temperature (point a in fig. 40), solidification commences with the evolution of heat. 
This causes a decrease in the cooling rate of the specimen with, ideally, a resultant 
abrupt change of slope of the curve as shown in fig. 41a. When solidification is complete 
at the solidus composition (point b in fig. 40), heat evolution ceases and, ideally, another 
change of slope of the cooling curve is observed. From the "idealized" cooling curve of 
fig. 41a, one can then read the liquidus and solidus temperatures. For an alloy of 
composition 2, the idealized cooling curve is shown in fig. 41b. There is a change of 

L i q u i d  
I 

A 
C o m p o s i t i o n  

Fig. 40. Binary phase diagram to illustrate some experimental techniques; solid circles: single-phase alloy, open 
circles: two-phase alloy. 
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Fig. 411. Cooling curves for alloys of compositions 1 and 2 of fig. 40. 

slope at the liquidus, and a plateau at the eutectic temperature since, ideally, the sample 
temperature remains constant until the invariant eutectic solidification reaction is 
complete. 

In a real experiment, however, cooling curves of the type labelled “realized” in fig. 
41 are usually obtained. Some degree of undercooling (or supercooling) is almost always 
observed. The sample must be cooled below the transformation temperature before 
nucleation of the new phase occurs. The temperature then rises again. However, at a 
liquidus the temperature will never rise all the way back up to the liquidus, so that some 
extrapolation technique must be used to estimate the liquidus temperature. At a eutectic, 
the equilibrium eutectic temperature may be regained by the sample after supercooling 
provided that the quantity of material solidifying eutectically is large enough to yield a 
sufficient evolution of heat. Supercooling may be minimized by stirring or by constantly 
jolting the sample to induce nucleation. 

It is important that temperature gradients within the sample be eliminated by stirring 
and by the use of a furnace with a good constant temperature zone. Otherwise, part of 
the sample will start to solidify before the rest and the cooling curve will show a 
rounded rather than an abrupt change of slope. 

At compositions where the liquidus is steep, such as the composition 3 in fig. 40, the 
rate d heat evolution is small. That is, on descending from the liquidus at point f to a 
point g an appreciable distance below the liquidus, only a small amount of heat is 
evolved since, as can be seen from the lever rule, only a small amount of solid is 
precipitated. Hence, it is more difficult to determine the exact temperature of the change 
in slope of the cooling curve, and the technique of thermal analysis is less precise. For 
very steep liquidus lines, a method of segregation and sampling or quenching may be 
preferable, as will be discussed below. 

For liquidus temperatures below about 1000°C, absolute accuracies of the order of 
k 1°C can be obtained by cooling curve methods under optimal conditions. For temperat- 

References: p .  531. 
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ures of the order of 100OC or lower, accuracies of kO.25”C may be obtained. 
In principle, solidus temperatures can be determined by the method of cooling curves 

as shown for the idealized curve in fig. 41a. In certain very favourable cases, with very 
slow cooling rates, this may be possible. However, in most cases a curve such as the 
“realized” curve of fig. 41a will be observed, in which determination of the solidus 
temperature is extremely imprecise. The reasons for this are, firstly, that the solid phase 
will contain concentration gradients so that solidification will not be complete at the 
equilibrium solidus temperature; secondly, that the precipitated solid phase will insulate 
the thermocouple from the sample thereby reducing sensitivity; and thirdly, that by the 
time the solidus temperature is approached the sample temperature will have lagged well 
behind the furnace temperature so that the cooling rate will start to accelerate rapidly. 
For these reasons, solidus temperatures are better measured by heating curves which are, 
in most respects, analogous to cooling curves. An important precaution here is to ensure, 
by means of a long anneal, that the solid sample is homogeneous before commencing the 
experiment. In general, it is more difficult to measure solidus temperatures with accuracy 
than it is to measure liquidus temperatures. 

In principle, a peritectic invariant can also be evidenced by a plateau on a cooling 
curve. However, as discussed in 5 2.5.3, peritectic reactions are frequently greatly 
retarded kinetically so that only a weak short thermal arrest may actually be observed. 

In general, the precision of thermal analysis experiments may be increased by the use 
of Differential Thermal Analysis (DTA) in which two thermocouples, connected in 
opposition, are placed, respectively, in the sample and in a standard specimen which 
undergoes no phase transformation in the temperature range of study. The danger in DTA 
experiments is that, because of the large surface to volume ratio of the small samples 
used, specimen temperatures often do not increase sufficiently after supercooling. 

7.2. Sampling techniques and quenching techniques 

As discussed above, thermal analysis may be inaccurate for determining the position 
of a steep liquidus. In such a case, a segregation and sampling technique may prove best. 
Suppose an alloy of overall composition and temperature in the (liquid + solid) region at 
point g in fig. 40 is held at temperature until equilibrium is established. A specimen of 
the liquid phase is then obtained, perhaps by suction in a ceramic tube. Chemical 
analysis will then give the composition of the liquidus at this temperature. A similar 
technique might be used to measure the compositions of the boundaries of a liquid-liquid 
miscibility gap. Clearly these methods depend for accuracy on a clean separation of the 
phases and on the prevention of oxidation and of volatilization losses while the sampling 
device is inserted into the container. 

The principle of quenching techniques for solidus determinations is illustrated at 
temperature TI in fig. 40. Samples at each of the four overall compositions shown at T, 
are held at temperature long enough for equilibrium to be attained. They are then 
quenched rapidly. When examined microscopically, samples from the two-phase zone 
will exhibit regions of rapidly quenched liquid which can be distinguished from the solid 
grains. In this way the solidus composition can be bracketed. Alternatively, one could 
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quench samples of the same composition annealed at different temperatures, thereby 
bracketing the solidus temperature as is also illustrated in fig. 40. 

Because of the slowness of solid state reactions, thermal analysis is rarely a useful 
technique for locating phase boundaries involving two solid phases. However, in such 
cases annealing and quenching followed by microscopic observation to determine 
whether one or two phases are present can often be used to bracket the phase boundary 
as illustrated for the solvus line in fig. 40 at T,. 

Ainother method of determining phase boundaries in the solid state involves the 
annealing of a sample in a two-phase (solid, + solid,) region followed by quenching and 
subsequent quantitative analysis by any of several techniques to determine the com- 
positions of the two phases present. The relevant techniques of quantitative metallo- 
graphy are discussed in ch. 10, 3 7, where several examples are quoted of the use of such 
techniques to determine solid solubility limits. 

In all techniques involving quenching, it is essential that the quench be as rapid as 
possible so as to avoid any diffusion, segregation or reaction during cooling. 

7.3. Other techniques 

Suppose that one wishes to determine the compositions (points h and i) of the phase 
boundaries at T3 in fig. 40. Samples at a number of compositions at T3 between points j 
and k are annealed and quenched. The lattice spacings of the a and /3 phases are then 
measured by X-ray techniques. The lattice spacings, when plotted versus composition, 
vary continuously in the single-phase regions, but remain constant in the two-phase 
region. Extrapolation of the single-phase and two-phase portions of the lattice spacing 
versus composition curve to their point of intersection then gives the composition of the 
phase: boundary. If too much decomposition occurs upon quenching, then high-temp- 
erature X-ray techniques may be required to perform the measurements at temperature. 

A technique which is similar in principle consists in measuring the electrical 
conductivity of specimens at various compositions at T3 along the line between points j 
and k. Again, sharp breaks in the plot of conductivity versus composition are noted at 
the phase boundaries. This technique is often quite rapid, and can be carried out at 
elevated temperatures without the necessity of quenching. 

In the interdiffusion technique, polished pellets of compositions j and k are clamped 
together and annealed at T3. Following quenching, a composition versus distance scan is 
performed across the specimen by, say, microprobe analysis. A sharp discontinuity in the 
curve is observed at the interface, the compositions at either side being the phase 
boundary compositions h and i. This technique can also often be used to indicate the 
presence and compositions of one or more intermediate phases in one single experiment 
(see for example, SCHMALZRIED [1974]). 

A, great many other techniques of phase diagram measurement exist, such as dilatometric 
(HUI~-ROTHERY et al. [1952], SINHA et al. [1967]), hardness (BARREAU and CIZHRON 
[ 197!J]), and magnetic measurements (ch. 29, 0 6, also SUCKSMITH [ 19391). The complete 
determination of an alloy phase diagram usually requires a combination of several techniques 
(e.g., a combination of dilatometry and magnetic measurements (SERVANT et aZ. [1973])). 

References: p .  53I. 
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8. Bibliography 

8.1. Compilations of phase diagrams 

The classic compilation in the field of binary alloy phase diagrams is that of HANSEN 
[ 19581. This work was continued by ELLIOTT [ 19651 and SHUNK [ 19691. These compila- 
tions contain critical commentaries. A non-critical compilation of binary alloy phase 
diagrams was prepared by MOFFAT [ 1978-19921. HULTGRENet al. [1973] have critically 
evaluated the phase diagrams and thermodynamic properties of several binary alloy 
systems. An extensive non-critical compilation of binary and ternary phase diagrams of 
metallic systems has been edited by AGEEV [1959-19781. An index to all compilations 
of binary alloy phase diagrams up to 1979 was prepared by MOFFAT [1979]. A critical 
compilation of binary phase diagrams involving Fe has been published by ORTRUD 
KUBASCHEWSKI [1982]. 

Ternary alloy phase diagrams were compiled by AGEEV [1959-19781 and by 
GUERTLER et al. [1969]. A bibliography of ternary and multicomponent metallic phase 
diagrams for the period 1955-1973 was published by PRINCE [1978]. VCH publishers 
(NY) are producing a series of volumes of compilations of ternary alloy phase diagrams 
known as “Ternary Alloys”. Eight volumes, in alphabetical order, have already appeared. 

Since 1979, the American Society for Metals in collaboration with the National 
Institute of Science and Technology and with national organizations in several countries, 
has undertaken a project whose goal is a complete critical evaluation of all binary and 
ternary alloy phase diagrams. All available literature on phase equilibria, crystal 
structures, and often on thermodynamic properties is cited and critically evaluated in 
great detail by “category editors” who are each responsible for a group of systems. 
Evaluations of important systems usually run to several pages. The evaluations are peer 
reviewed and the majority are published in the Journal of Phase Equilibria, (formerly the 
Bulletin of Alloy Phase Diagrams) (ASM International, Materials Park, Ohio). More than 
2500 binary evaluations have been completed. Condensed versions of approximately 
2800 evaluations have been published in three volumes (MASSALSKI et al. [ 19901). When 
a “category” of evaluations (e.g. all binary phase diagrams with Cu) is completed, a 
monograph is published as part of the ASM Monograph Series. 

An extensive bibliography of binary and multicomponent phase diagrams of all types 
of systems (metallic, ceramic, aqueous, organic, etc.) has been compiled by WISNIAK 
[ 19811. A bibliographical database known as THERMDOC on thermodynamic properties 
and phase diagrams of systems of interest to materials scientists, with monthly updates, 
is available through Thermodata (Domaine Universitaire, Saint-Martin d’Hbres, France). 

8.2. Texts and review articles 

A large number of texts and review articles covering all aspects of the theory, 
measurement and applications of phase diagrams are available. Only a selected few are 
listed here. A classical discussion of phase diagrams in metallurgy was given by RHINES 
[1956]. A definitive text on the theory of phase diagrams is that of PALATNIK and 
LAUDAU [1964]. Treatments of the geometry of multicomponent phase diagrams are 
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given by PRINCE [ 19631, ~ C E  [ 19661 and HULTGREN [ 19851. Good discussions of the 
interptation of binary and ternary diagrams are given by WEST [1965] and BERGERON 
and RISBUD [1984]. A series of five volumes edited by ALPER [1970-19781 discusses 
many aspects of the theory, interpretation, measurement and applications of phase 
diagrams in materials science. 
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1. Macroscopic and microscopic theories of difision 

In this section we will present the macroscopic and microscopic theories of diffusion. 
The former provides a description of the observed phenomena (which are fluxes), starting 
from the formalism associated with the thermodynamics of irreversible processes; one 
then obtains a formal expression of these fluxes as a function of thermodynamic forces 
and of parameters which are called the phenomenological coeflcients. In the latter 
approach the fluxes are calculated by starting from atomic mechanisms. The parameters 
used in this case are the jump frequencies; they have a clear physical meaning, as 
opposed to the phenomenological coefficients which are only coefficients of 
proportionality. This step encompasses two parts: on the one hand the random walk 
modelling which starts with atomic jump frequencies and builds the macroscopic 
diffusion coefficient, and on the other hand the jump theory which defines the jump 
frequencies themselves from the very properties of the system and its defects. For both 
formalisms, however, a knowledge of the underlying atomic mechanisms is required in 
order to describe the diffusion phenomena properly. Thus we begin with a short review 
of the possible mechanisms. Finally we present briefly the modern simulation tools, the 
use of which is steadily increasing in diffusion studies. 

1.1. The mechanisms of diffusion 

In crystalline solids, the atoms occupy well defined equilibrium positions (regard- 
less of thermal vibrations); they move by jumping successively from an equilibrium site 
to another. The different possible mechanisms for dense structures are schematized in 
fig. 1. 

1.1.1. Exchange mechanisms 
In the direct exchange mechanism (fig. 1-1) two neighbouring atoms exchange their 

positions. This mechanism is unlikely for dense structures, for it would involve large 
distortions and would then entail too large activation energies. 

In the cyclic exchange mechanism as proposed by ZENER [1951], N atoms exchange 
themselves simultaneously (in fig. 1-2, N = 4); the energy involved is much lower than 
in the direct exchange, but this mechanism remains unlikely, because of the constraint 
imposed by a collective motion. 

At the present time there are no experimental supports for any such mechanisms in 
crystallized metals and alloys. In metallic liquids cooperative motions are more likely 
operating. 

1.12. Mechanisms involving point defects 
In thermal equilibrium a crystal always contains point defects. The best known are 

vacancies, divacancies and interstitials. The presence of these defects in the crystals will 
allow the atoms to move without too large lattice distortions. The properties of these 
point defects are described in ch. 18. 
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Fig. 1. Mechanisms of diffusion in crystals, after ADDA and F’HILIBERT [1966]: (1) direct exchange, (2) cyclic 
exchange, (3) vacancy, (4) interstitial, (5) interstitialcy, (6) crowdion. 

1.1.2.1. Interstitial mechanisms. In the intersririal mechanism (fig. 1-4) the atoms 
move from interstitial site to interstitial site. Usually small interstitial atoms, like 
hydrogen or carbon in metals, diffuse through the lattice by this mechanism. 

The interstitialcy is somewhat more complex; as sketched in fig. 1-5, the atoms move 
from interstitial to substitutional site and vice versa. At higher temperatures, this 
mechanism contributes to silver diffusion in the silver halides. In metals and alloys with 
a dense structure the interstitial formation energy is so large that the concentration of 
these defects is completely negligible at thermal equilibrium. The situation is quite 
different when the material is out of equilibrium (for instance when it is plastically 
deformed or irradiated); under these conditions one can create Frenkel pairs, namely an 
equal number of vacancies and interstitials, which will both contribute to the diffusion. 
In metals and alloys the self-interstitial atom is not centered on the interstitial site: it has 
a dumbbell split configuration around a stable position. It is generally recognized that the 
self-interstitial is split along a <loo> direction in fcc and along a <110> in bcc materials 
(SCHILLING [ 19781; ch. 18, 8 3.3.2.2). The case of the mixed dumbbell (one solute + one 
solvent) is not so simple (see for example LAM et al. [1983]). The elementary jumps for 
these split interstitials are shown in fig. 2. At low temperatures, under irradiation, the 
interstitial would have a crowdion configuration (SEEGER [1976]; fig. 1 4 ) ;  at a higher 
temperature this crowdion would convert into a split interstitial. 

References: p .  651. 
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a) 
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Fig. 2. Elementary jumps of the split interstitials (a) in fcc metals and (b) in bcc metals. 

1.1.2.2. Vacancy mechanisms. In metals and alloys, near the melting point, the 
vacancy concentration is about to 10" site fraction. These vacancies allow the atoms 
to move rather easily, and this mechanism is operating in most cases, with jumps to nearest 
neighbour sites (NN), or also to next nearest neighbour ones (NNN) in bcc crystals. 

Besides monovacancies there are vacancy aggregates: divancancies, trivacancies, etc., 
which can contribute to the diffusion (ch. 18, 52.2.2.1). The ratio &vacancies/ 
monovacancies generally increases with temperature, so that the divacancy contribution 
to the diffusion also increases. We will see that numerous anomalies observed at high 
temperature (leading to curvature of the Arrhenius plot) are attributed to the divancan- 
cies. In dilute alloys there is often a binding energy between solutes and vacancies, and 
the resulting solute-vacancy pairs (complexes) also contribute to the diffusion. The 
relaxation mechanism which is a variant of the vacancy mechanism was proposed by 
NACHTRIEB and HANDLER [1954]. The underlying idea is that a large relaxation around 
a vacancy distorts its surroundings to such an extent that a liquid-like diffusion mechan- 
ism can take place; this idea has now been abandoned. 

Molecular dynamics calculations by DA FANO and JACUCCI [ 19771 have shown that 
at high temperatures, when the atom jump frequency becomes large, a dynamical 
correlation between successive jumps can occur so that a vacancy can move more than 
one jump distance; these vacancy double jumps are an alternative explanation for the 
observed curvature of the Arrhenius plot, 

1.1.23. Mixed mechanisms. For some systems it has been necessary to devise more 
complex mechanisms in order to account for abnormally fast diffusion. The dissociative 
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model by FRANK and TURNBULL [1956] was the first attempt at explanation. It assumed 
that the fast diffusing solute dissolves both substitutionally and interstitially; the mass 
transport is then due to a mixed vacancy and interstitial mechanism. MILLER [1969] has 
imprsoved this mechanism by introducing the idea of vacancy-interstitial pairs. For more 
details see 84.3.2. 

1.1.2.4. Short-lived Frenkel pairs. Numerical simulations have revealed that, at 
least in non compact phases at high temperatures, short-lived Frenkel pairs can form 
homogeneously and give rise to closed rings of replacement of various sizes (4 atoms and 
above). At the end of the sequence the pair recombines (DOAN and ADDA [1987]). 

1.1.3. Mechanisms involving extended defects 
Linear defects (dislocations) and planar defects (surfaces, interfaces, grain boundaries, 

etc.) are disordered regions in which the atomic migration is easier than in the bulk. 
These preferential paths of diffusion are called short-circuits. The diffusion mechanisms 
are not yet well known but it is a topic where one is expecting rapid theoretical advances 
owing to the increasing power of computers. For more details see 5 7. 

1.2. The macroscopic theory of diffusion 

1.2.1. Generalities 
Iliffusion is an irreversible phenomenon; its description requires the use of the proper 

formalism, namely thermodynamics of irreversible processes (TIP). 
We refer the reader, for a detailed discussion of the subject, to specialized books and 

articles (PRIGOGINE [1947], HOWARD and LIDIARD [1964], MONSTER [1966], DEGROOT 
and MAZUR [1969]). 

For measuring a flux, it is necessary to define a frame of reference; for the crystal- 
lized solid there are two preferred reference frames: the Zuboratoly reference frame is 
bound to the ends of the sample which are assumed to be not affected by diffusion (we 
will neglect the sample size variation) whereas the lattice reference frame is rigidly 
bound to the atomic planes. It is possible to mark this lattice reference frame with inert 
markers such as very thin refractory wires, oxide particles, scratches on the surface etc.. 
These inert markers neither contribute nor alter the diffusion but “follow” the motion of 
the neighbouring atomic planes. Hereafter we will denote fluxes measured with respect 
to the laboratory frame by Jo and fluxes measured with respect to the lattice frame by J. 

The vacancy mechanism most commonly operates in metals and alloys: we will 
present the TIP formalism with this assumption. We assume further that the medium is 
isotropic; no chemical reactions take place: no viscous phenomena and no size variations 
occur; and, last, that mechanical equilibrium is achieved. We will restrict the discussion 
to the case of a binary alloy since only these alloys have been widely studied theoretical- 
ly and experimentally. 

l.2.2. Binary alloys and the vacancy mechanism 
Xn a binary alloy there are three species: A, B and vacancies V; there will then be 

three fluxes, JA, J, and J, in the lattice reference frame or J;, J,” and J: in the 

References: p .  651. 
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laboratory frame. For a sample subjected to concentration gradients, Vn,, a temperature 
gradient, VT, and an electric field, E, it has been shown (BREBEC [1978]) that: 

Jv = -(JA + J , )  

v = J V = - L  J + J B  
n n 

J f  = JA + nAv and J; = J ,  + ngv 

We have omitted the vector notation for simp-Lity but we must keep in minc 
VT, E and v are vectors. Symbols are defined in what follows. 

D, and D, are the intrinsic dipusion coeflcients; they are given by: 

DA = kTp[ $ - %), D, = k T q ( 2  - ?) 
where k is the Boltzmann constant and LAA, LAB, LBA and L,, are the phenomenological 
coeficients which depend on the intensive quantities such as temperature, concentration, 
etc.; further they verify the Onsager reciprocity relation Lij = Lji, (here LAB = b,); p is 
the thermodynamic factor of the A-B solution; it is given by: 

where yA and 7, are the thermodynamic activity coefficients. nA, n, and n, are the 
numbers of A and B atoms and vacancies per unit volume, respectively. 

The number of sites per unit volume is equal to: 

n = n, + n, + nv 

We now define the atomic fractions, taking into account the three species: 

or, taking into account only the A and B atoms: 

nB CA = ~ ‘ A  and C, = ___ 
nA + nB ‘A + ‘B 

Since n, is always small (nv << nA + nB), the two definitions are practically equivalent. 
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Z,’ and &a are the efective valences for A and B and e the absolute value of the 
charge of an electron. If the material is an insulator or an ionic conductor, these effective 
valences are equal to the ionic valences z, and zB. In a metallic alloy for which the 
electrical conductivity is due to the electronic carriers there is a momentum transfer from 
these carriers (electrons or holes) to the A and B atoms. This is equivalent to a force 
which has to be added to the electrostatic force; as a consequence an effective valence 
can be defined (see 5 6). 

Q,’ and Q,’ are energies per mole and are related to the heats of transport q; and 
q i  , Physically these heats of transport define the heatjm,  Jq associated with the matter 
fluxes JA and J, when there is no thermal gradient. Actually it can be shown that: 

which implies: 

J,, = q l J A  + qiJB when VT = 0 

In metals and alloys the assumption is often made that the vacancies are in thermal 
equilibrium everywhere in the sample; this implies that the vacancy sources and sinks 
(dislocations, grains boundaries, etc.) are effective enough to fulfil this assumption. When 
this equilibrium condition is well obeyed we have: 

Qi = 4; - AHFv and Qi = qi - AHm 

AHw is the vacancy formation enthalpy in the alloy. 
When the requirement of local equilibrium is not met, no simple relation holds 

between Q:’s and qT’s. 
Finally, v is the lattice velocity measured with respect to the laboratory frame. The 

physical reason for the lattice displacements is related to the fact that vacancies are not 
conservative species (they can be created or destroyed at certain lattice sites). In fig. 3 
we have sketched the process responsible for the inert marker displacement; we see, in 
this simple example, that the lattice moves to the right because the vacancies created on 
the left are eliminated on the right. 

We notice from equations (I)+) that the fluxes measured in the laboratory frame equal to: 

J z  = CBJA - CAJB, J i  = -(CBJA - CAJB) 

so that Jf + J; = 0 

1.2.3. Some special cases 

1.2.3.1. Chemical diffusion. In the absence of electric fields and thermal gradients, 
eqs. (1)-(5) become: 

JA = -DAVnA, JB = -D,Vn,, v = (DA - DB)VNA (9) 

References: p .  651. 
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a b C 

0 . Io  0 0 0 O O I O  0 0 0 0 O l . 0  0 

0 010 0 0 

0 O ( O 0  0 O o . I . 0 0  0 0 O l . 0  0 

0 0 .I 0 0 0- 0 0 O l . 0  0 + 

0 0 . I O  0 0 0 . I o  0 0 0 0 .IO.. 
0 0 010 0 

0 0 010 0 0 0 . I O  0 0 0 0 . I O .  0 

0 0 . Io  0 0 0 0 l . O  0 0 0 . I O .  0 

0 0 010 0 0- 0 0 . I O .  0 
c- 

f e d 

Fig. 3. Schematic representation of the displacement of inert markers (solid circles: atoms; squares: vacancies; 
dashes: inert markers: (a) initial state; (b) creation of a plane of vacancies; (c, d, e) displacement of the vacancy 
plane towards the right; (f) elimination of the vacancies. Comparison between (a) and (f) shows that the inert 
markers are displaced to the right. 

In the laboratory frame we have: 

J: = -J; = DVn, 

where: 

= NBDA + NADB 

6 is the chemical dzfusion coeflcient. 
We see that, for binary alloys, the fluxes have the form of Fick’sJirst law: 

Ji = -DiVni 

In the lattice frame there are two independent fluxes and thus two intrinsic coefficients, 
whereas in the laboratory frame there is only one flux and one chemical diffusion 
coefficient. 

123.2. Dilute systems. For dilute alloys n, (or C,) + 0 and (9 + 1; on the other 
hand it can be shown ($4.1.2.1) that LB/nB tends to a finite value, whereas LA/nA, 
which is of the order of n,, tends towards zero. So: 

(12) LBB DB,nB+O = kT- = D p  
nB 

This coefficient is the solute dirusion coeflcient at injinite dilution. It will be denoted by 
D p  to distinguish it from DB and to recall that diffusion is generally studied with 
radioactive isotopes which are used at great dilution; then we will also replace nB by nB*. 
D, does not become as simple as D, because the cross-term Lm/nB does not tend to zero 
with n, ($4.1.2.1). 
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For these dilute systems the flux of solute is equal to: 

543 

(13) 

whe:re: 

ZT = Z; + LAB Z: (the apparent effective valence) 
LBB 

QY = (2; + (2: (the apparent heat of transport) 
LBB 

Because Z& = Zi and q; = qi(same chemical species) we have dropped the asterisk on B 

ins, Z;, Qi and Q;. 

Quation (13) has the generalized form of Fick's first Law: 

Ji = -D,Vni+ < v >i ni 

When B atoms are isotopes A* of the element A, eq. (13) becomes: 

n D  n D  JA* = -DA.VnAt + ZreE - QT 
kT 

It can be shown, (HOWARD and LIDIARD [1964]), that: 

-=I+-  1 LA*A 
f, -%*A* 

The apparent valency and heat of transport are therefore given by: 

where f, is the correlation factor for self-difision; its presence stems from the non- 
ramdom character of the tracer atom displacements by a vacancy mechanism. D, is the 
self-difision coeficient, given by: 

13.4. The various diffusion coefficients 
Diffusion coefficients have the dimension Length2 Time-'. In the international system 

of units they are expressed in m2s-'. The CGS system (em's-') is still widely used. We 
will show now which experimental situations correspond to these various coefficients. 

References: p .  651. 



544 J. L Bocquet, G. Brebec, I! Limoge Ch. 7, 8 1 

The chemical dz@sion coeficient 0 describe the interdiffusion of A and B (fig. 4a); 
it can be measured from the curve CA (or C,) versus x; in general it depends on the 
concentration. 

The intrinsic coej'3icients DA and D, correspond to a similar experiment; but to obtain 
them it is necessary to determine fi and v [see eqs. (9) and (ll)]. v is obtained from the 
displacement of inert markers (see Kirkendall effect, 5 5.3.1.1). These coefficients depend 
also on the concentration. 

The solute diffusion coeficient at inJinite dilution D p  corresponds to the experimental 
situation shown in fig. 4b. A thin layer of B* atoms has been deposited on the A surface 
so that CB* - 0 and B* diffuses in pure A. 

The self-difision coeficient D, corresponds to a similar situation when B* is 
replaced by A*. 

Two other diffusion coefficients are defined as shown in fig. 4c; they are the self- 
difision coeficients in an homogeneous alloy AB which are denoted by D E .  The B* (or 
A*) concentration is always negligible so that the alloy composition is not modified by 
the diffusing species. These coefficients depend on the concentration. An alternative 
notation often used for dilute alloys is: 

where C, is the concentration of B. 
The macroscopic description presented above cannot account for the A* and B* 

diffusion into AB alloys; it would be necessary to derive the flux equations for four 
species A, A*, B, B* (plus vacancies); this is beyond the scope of this review and we 
refer the reader to HOWARD and LIDIARD [1964] for more details. Thus it is possible to 
show that the self-diffusion coefficients in the alloy and the intrinsic diffusion coeffi- 
cients are related by: 

where p is the thermodynamic factor and rA and r, are terms which will be made 
explicit in 3 5.1.2. These relations, (17), were first established by DARKEN [1948] in a 

a 

A* or B* 

C 

Fig. 4. Different types of diffusion experiments: (a) chemical diffusion + b ; (b) self or solute diffusion in 
pure metals -+ D,. or DB.; (c) self-diffusion in homogeneous alloys + @or e 




