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simplified form for the case when r,=rg=1.

1.2.5. Fick’s second Law
We have seen that the fluxes in a binary alloy have the form:

J;==-DVn, or J,=-DVn +n, <v>,

By using the conservation equation:

Wi _div],
ot

we obtain Fick’s second Law; this partial differential equation can be solved for given
initial and boundary conditions. D; and <v>; can then be obtained from a comparison
between the experimental and the calculated concentration curve C(x).

When D, and <v>, are constant and the diffusion is along the x direction Fick’s
second Law has the form:

on, 3n,
t=D —* 18
ot Lo’ (18)
or
2
Mo_p Ty, T (19)
ot ax ox

The geometry which is most commonly used for measuring D, is a thin layer
deposited onto a “semi-infinite sample” (see fig. 4b and 4c); in this case the solution of
eq. (18) has the well-known form:

2
n(x,1) = \/'n'QDt exp(— 4';)1) (20)

where Q is the quantity of the diffusing species deposited per unit surface, so that D, is
obtained from the slope of the straight line: log n; versus x°.

In the presence of an electric field, the equation to be solved is eq. (19); very often
the geometry used is a thin layer sandwiched between two semi-infinite samples. The
solution is then:

. _(x—<v>it)2
n{x,t) = 2 JmDr exp|: Tapr :|

<v>, is obtained from the displacement of the maximum of the curve ny(x) with respect
to the origin (defined by the welding interface).
For chemical diffusion (see fig. 4a), D is not constant, we have then to solve:

an, _ 9 ( B, %j 22)
ot ox dax

(21)
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MaTANO [1933] has shown that, when D, depends on x through n;

y

. Ix dn
D(n)=-—L 23
Bn) ==, (dn,/dx) @
the x origin must be chosen so that:
[xdn =0 4)

0

This origin defines the Matano plane. In fig. 5 the different terms of eqs. (23) and (24)
are illustrated.

Numerous solutions of the diffusion equation can be found in CRANK [1956] and
CArRSLAW and JAEGER [1959]. We will see that in some cases Fick’s first law is not
valid; the first restriction is related to the discontinuous nature of crystals (lattice effect)
and will be discussed in § 1.3.5. The second restriction is met in chemical diffusion
(spinodal decomposition: CAHN [1967]; ch. 15, § 3.1). In both cases the discrepancy with
Fick’s law becomes noticeable only for harmonics of concentration with short wave-
lengths.

1.3. The random walk theory of diffusion
The aim of the random walk theory is to describe the observed macroscopic effects

from the atomic jumps which are the elementary processes in diffusion.

1.3.1. Einstein relation and flux expression
For a random walk motion, EINSTEIN [1905] has shown that the diffusion coefficient
of species i along the x direction is given by:

x?
= o

where X? is the mean square displacement along the x direction for the duration 7. If Xy
is the displacement of the k" atom along the x direction during 7, we have:

(25)

. N
X =YX 26)
k=1

where N is the number of diffusing atoms of species i.
In many cases the motion is not random but the expression (25) still holds provided
that 7 — 0.
According to LE CLAIRE [1958] and MANNING [1968], the flux J; measured with
respect to the lattice reference frame is equal to:
on oD,

Ji=<v>n-D—L-n— 27
ox ox @7
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|_» Matano plane

S

o F 3
Fig. 5. Matano method for the calculation of D . The Matano plane is defined by the equality of the two areas

F'O'M and FOM (hatched surfaces). Jjix dn, is equal to the area HPFO (doubly hatched surface), dn/dx is the
slope of the tangent to the concentration curve at P.

where:

<y> = lim X (28)
-0 7

D, is given by eq. (25) when 7 — 0, X2 is the mean displacement during 7 for species
i

These relations, (25), (27) and (28), are valid for anisotropic media but to save space
we have omitted the more precise notation D,, <v>;, etc...

1.3.2. Calculation of X and X? in terms of jump frequencies
It is easy to show that:

X=%% 29)
i=1
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F:Z?uﬁzrx, (30)
i=1

1=l j=i+l

where x, is the i th displacement along x and n is the mean number of atomic jumps
during 7. The overbar denotes an average over a large number of atoms.

1.3.2.1. Expression for X2. For a truly random walk motion the last term in eq.
(30), P=2 3% x; x;, vanishes. When X differs from zero (chemical diffusion, electro and
thermal diffusion, etc.) this term P is also different from zero but is has been shown that
the X contribution to P is of the order to 7 whereas the X, x,.2 term, eq. (30), is of the
order of 7; as a consequence the X contribution to P is negligible when 7 — 0.

But even if X =0, the P term is not necessarily equal to zero, owing to the mechan-
ism of diffusion. We will see later that for most diffusion mechanisms the successive
atomic jumps are not independent of each other, and that the motion is not a truly random
walk. This can be easily understood for the vacancy mechanism: the vacancy concentra-
tion is so low (~ 10™ to the melting point) that two consecutive atomic jumps are likely
due to the same vacancy and it is obvious that after one jump an atom has a greater than
random probability of making a reverse jump; there is correlation. This correlation
between the directions of two successive jumps initiated by the same vacancy reduces the
efficiency of the walk with respect to a truly random walk. Correlation occurs for all
defect-assisted diffusion mechanisms except for the purely interstitial and exchange
mechanisms; it is related to the low concentration of point defects (vacancies,
divacancies, interstitials, etc.) and decreases when this concentration increases (WOLF
{1980D).

How to take this effect into account will be reported in § 1,3.4. To summarize, we can
always calculate X* by assuming X = 0, because when t — 0, X* does not depend on X,

For a truly random walk motion, P=0 and we have:

X' = 1'2 Tx; 31n
k=1

where z is the number of jump directions, I', the mean atomic jump frequency for the k
direction and x, the displacement along x for a k-jump. Hence:

Z

Dmndom = % Z l-‘Itxlz' (32)

k=1
For cubic lattices all the frequencies I', are equal, and:

ri?

Drnmiom = ? (33)
where I'=3, T, is the total jump frequency and 1 is the jump distance (ay/2 for fcc,
1a/3 for bec). B -

1.3.2.2. Expression for X. With the same notation as for X2 we have:

X=7)ILx,=<v>7 (34)

k=1
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For the case where X is not zero, the potential energy of the atoms versus their position
is schematized in fig. 6 (for simplicity we have shown regular energy barriers which
correspond to a mean displacement X independent of x). The shape of this energy
diagram is due to a force F; acting on the atoms such that (see fig. 6):

2
The atom jumps are easier towards the right than towards the left (in fig. 6) and if AW
<< kT we have for thermally activated jumps:

: Ex; - _Ex
I(-) = I‘O(l + 2kT) () = 1“0(1 2kT) (35)

where I, is the jump frequency when F,=0; — denotes jumps towards the right and <

jumps towards the left.
We then obtain, with egs. (34) and (35):

AW

<ys=X_ED (36)
T

kT

Energy

Potential

Position
Fig. 6. Schematic representation of the potential energy diagram of the atoms when a constant force is present.
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This expression is the Nernst—FEinstein relation.
F, has the following forms, according to the nature of the field acting on the atoms:

F, = Z;eE for an electric field,
=247 for a thermal gradient,
T dx

=-k il_c;%yi for a concentration gradient, 37

where Z; is the effective valence, Q,, = q, - hy,, Q. is the heat of transport for an a-
type jump of the species i, h,, is the vacancy formation enthalpy on a site from which
an a-type jump is possible, v, is the coefficient of activity of species i in the alloy at the
position x; this last term can be evaluated from a thermodynamical study of the alloy; we
will see in § 6 how it is possible to measure and calculate Z* and Q*. We observe that
with the microscopic approach there are as many heats of transport as there are different
types of jumps, whereas with the macroscopic approach the number of the heats of
transport is equal to the number of species.

The expression for X, eq. (36), is not complete because the diffusion mechanism can
give rise to an additional term; in order to go further it is thus necessary to adopt a
particular model for diffusion. We will consider the case of a binary alloy and a vacancy
mechanism.

1.3.3. Binary alloys and vacancy mechanism

In the case of a vacancy mechanism there is a coupling between A and B fluxes
through the vacancy flux. This coupling, known as the vacancy flow effect, contributes to
<v>; in addition to the force F,. The calculation of this term is rather tedious and for
more details we refer the reader to MANNING [1968]. Two cases have to be considered,
depending on whether it is a dilute or a concentrated alloy. The diffusion models and
results (expressions for L,,, L, and Lgy) are given in §4 for dilute alloys and § 5 for
concentrated alloys.

1.3.4. Correlation effects
For most diffusion mechanisms the successive atomic jumps are not independent; as

a result, the last term of eq. (30), P=2 2. x,;, does not vanish. The correlation factor
is defined as:

f = actual
D (38)

random
and from eq. (30) we obtain:
n-1 n no___
f=1+[22 ZTx,.J/ x; (39)
i=1

i=l j=i+l
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Thus the expression for D, eq. (33), becomes:

2
D =¢Il (40)

actual 6

In order to calculate f we have to evaluate P=2 X3, ?xj, which will depend on the
diffusion mechanism. BARDEEN and HERRING [1951] were the first to point out that
point-defect diffusion mechanisms involve a non-random-walk motion for the atoms, and
they calculated the correlation factor f for a vacancy mechanism.

The first useful estimation for f with the vacancy mechanism yields f=1 - 2/z, where
z stands for the coordination number of the lattice. Since, at each jump, the vacancy has
the probability 1/z to perform a backward jump, a fraction 2/z of the number of jumps
performed by a given tracer atom is lost, giving rise to an efficiency factor equal to
1—2/z. This argument cannot be used as such for evaluating the correlation factor for
solute diffusion, because the exchange frequency with a solute atom w, differs from that
with the solvent w, and because the solvent jump frequencies themselves are altered in
the immediate neighbourhood of the solute (see § 4.1). As a consequence, the walk of the
defect around the solute must be considered in more detail. Since the pioneering work of
BARDEEN and HERRING, numerous studies have been published on this topic; we refer
the reader to the books or articles by ADDA and PHILIBERT [1966], MANING [1968] and
Le CLAIRE [1970a].

The principal techniques used for the calculation of f are:

(i) Computer simulations; X:cma, is obtained by Monte Carlo simulations and com-
pared to X2 4. For more details see § 1.5.2.

(i) The pair association method; this technique is described in §4; the fluxes are
calculated from the diffusion model and by comparing with the macroscopic expressions
we obtain D, and then f with eq. (38). This technique can only be used for dilute
alloys.

(iii) The random walk method, this is the calculation of f from the expression (39). In
this type of calculation it is necessary to evaluate the return probabilities of the defect on
the neighbouring sites of the atom after the first exchange with this atom. To obtain these
probabilities, several methods have been used:

— The BARDEEN and HERRING [1951] technique;

— the matrix method (LE CLAIRE and LIDIARD [1956], MULLEN [1961], HOWARD [1966]);
~ the electrical analogue method (CoMPAAN and HAVEN [1956, 1958]);

— the integral methods, which have now superseded the previous ones. The return
probabilities are evaluated through 3-D integrals which are easily computed in a few
seconds with a very high accuracy. Tackling with a slightly different problem, the
ancestor paper introducing such integrals for random walk probabilities (MCCREA and
WHIPPLE [1940]) has been followed much later by others more directly devoted to
correlation calculations (MONTET [1973], BENOIST et al. [1977]; Koiwa [1978], IsHIOKA
and Korwa [1980]).

For self-diffusion, f is independent of temperature in isotropic materials (for vacancy
mechanism f=0.72 for bee, 0.78 for fcc and hep, 0.5 for diamond lattice; for divancancy
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mechanism £=0.475 for fcc and hep lattice). For impurity diffusion see § 4.

In some cases the knowledge of the correlation factor can allow us to choose among
several of the mechanisms of diffusion; it is then a very useful quantity, but as we will
see later, experiment does not yield f alone. What is measured is the isotope effect, E,
from which it is not obvious how to extract f (§ 1.4.3.3).

1.3.5. The limitation of Fick’s Law

We present here a first restriction of Fick’s Law, which is related to the discontinuous
nature of the lattice (MARTIN and BENOIST [1977]). Let us consider the case of one-
dimensional diffusion; the rate equations for an atomic plane n are:

d;:," =T(c,,, -2C, +C,,) (41)

where T is the atomic jump frequency and C, the concentration for the i plane.
We have to compare the solution of this rate equation, which takes into account the
discontinuous nature of the lattice, with the macroscopic equation:
aC s*C
=D

7% 42
ot o2 “42)

Let us suppose an infinite medium with an initial concentration variation according to a
sine form:

. 27X
Cyy =C, +(C; - C,)sin e
The solution will be:
. 2mX\ _o
C, =C +(C, - Cl)(sm T)e (43)

when t — oo, the concentration becomes homogeneous, C — C,.
By substituting eq. (43) in eqs. (41) and (42), we obtain:

2
a = 21‘[1 - cos 2—:‘5] ay = (%’1) D (44)

where a is the interatomic distance, subscript R stands for the solution of eq. (41) and F
for the solution of Fick’s Law, eq. (42).

In expanding cos (27a/A) and taking into account the fact that D=T"a” for this one-
dimensional diffusion, we obtain:

2\ 2 (27ra)2 2 (27ra)2
={— | D|l-={—]| +=|—] ... 4
o (/\) [ 410 A ) 610 #3)
We clearly see by comparing egs. (44) and (45) that the solutions of the rate equations
and of Fick’s equation are identical only when 2ma/A << 1, i.e., for large wavelengths.
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Since a concentration profile can be expanded in a Fourier series, the short-wavelength
components will evolve in a different manner than predicted by Fick’s Law. This effect
will be noticeable only for very short wavelengths (a; and ag differ by 3% for A =10a
and by 0.03% for A =100 a).

1.4. Jump frequency and diffusion coefficient calculation

We have shown above, eqs (33) and (40), that the diffusion coefficient is given as a
function of the jump frequency I of the diffusing species. Its calculation comes therefore
into the determination of this frequency, which itself can be done in the framework of
the statistical mechanical theory of fluctuations (LANDAU and LiFsHITZ [1984], FLYNN
[1972]). In fact the jump of an atom can be viewed as a particular fluctuation of the
local energy density during which the system undergoing diffusion passes from a stable
position to another over a barrier of higher energy, the so-called saddle hypersurface in
the configurational space spanned by the 3 N position variables.The statistics of the
fluctuations of the local energy density therefore control the jump frequency. The nature
of this saddle hypersurface is defined by the nature of the crystalline lattice and by the
mechanism at work (see § 1.1). Let us particularize for example to the case of a vacancy
mechanism, the other cases being easily handled in the same framework.

1.4.1. Vacancy concentration

In this case the relevant fluctuation can be decomposed into two steps: the formation
of the vacancy and the jump of a neighbouring atom into the vacancy. The probability
to observe a defect on a neighbouring site of the atom under consideration is given by:

P, = B exp(=G,/u7)

with G, the free enthalpy of the system containing the vacancy plus N atoms and P, a
normalizing constant. The relative probability with respect to the non defective state, i.e.
the vacancy concentration is therefore:

¢, = exp(—~(G, — G,)/kT) (46)

with G, the free enthalpy of the perfect crystal. In the so-called quasi-harmonic approxi-
mation, which in most cases works fairly well up to near the melting point (LUTSKO et
al. [1988]), these free enthalpies are given by:

3(N-1) (hw' ]

G=W+kT ) Ln e\+pV
a=] k T

with W the potential energy of the system in the relevant state, the third term correspond

to the work of the external pressure P, on the actual volume and the second, the so-

called vibrational entropy, corresponds to a summation over the 3 (N—1) non-zero normal

eigenfrequencies @_. The enthalpy difference in (46) takes now the form:

3(N-1) v
AG, = AH, = TAS, =W, - W, + kT ZLn(:gJ+gx,(m—%) 47

a
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in which the eigenfrequencies @, and ®. pertain to the system with and without a
vacancy respectively; and V, and V, to the volume with and without the defect.

1.4.2. Vacancy jump

In order to handle the second step, the vacancy jump, two theories have been put
forth and later refined, the theory of Rate Processes (WERT and ZENER [1949], VINE-
YARD [1957]), and the Dynamical Theory (RICE [1958], SLATER [1959], FLYNN [1968]).
As will become clear, these two approaches emphasize different aspects of the jump, and
are complementary rather than contradictory.

1.4.2.1. Rate theory of jumps. The probability of finding a vacancy as a first
neighbour of an atom is a static property and as such the statistical thermodynamical
treatment given above is rigorous. This is no longer the case for the jump which has a
strong dynamic character: the jump proceeds as an hamiltonian trajectory in the phase
space and the successive positions during the jump are strongly correlated. However, it
is not possible to solve for them down to a calculation of the frequencies, so we need
approximations. In the rate theory one neglects completely the dynamical aspects: the
successive positions of the system during the jump are viewed as independent static
positions with an occupancy given by their equilibrium statistical weight all along the
jump path, including the saddle position. The dynamical correlations between successive
positions are lost, and therefore the jumping particle has no “memory”. Moreover the
saddle hypersurface is supposed to be planar as a consequence of the hypothesis of
harmonic interatomic interactions even at the saddle position.

The jump frequency of a vacancy, or the frequency in one direction for an atom (eq.
32), is defined as the flux Jg crossing the saddle hypersurface S, for a unit occupancy of
the stable position, which in our example includes a vacancy on the proper site:

L, =Js/P, yw Js=|Ps'ds

Ot §

where s is the unstable normal coordinate perpendicular to the saddle hypersurface S, s’
the corresponding “velocity” and Pg as above the statistical weight along S defined by:

Py = Rexp{—(G,)/kT}

3(N-1)-1 s 48)
Gs =W +kT Y, Ln(’:’T)H) v,
o=l

ext
Now we have for the migration frequency:
kT
T = - exp{~(G; - G, )/kT}
W (S 3(N-1) 49)
Gs~G, =W, =W, +kT ZL ( ) kTZLn( ) P (Vs - V)

Notice that in this expression the eigenfrequencies o, corresponding to motions
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restricted to the saddle hypersurface do not correspond one-to-one to the frequencies in
the stable position, ®g. Indeed the new modes of the system close to the saddle point
have no counterpart in the perfect nor in the defective system in the stable position. Moreover
the first product contains one fewer frequency than the second, for the reaction coordinate s
is quenched at the saddle value. A more homogeneous formula is generally written as:

T, = vexp{~(G; — G, )/kT} = vyexp{~(AG,, )/kT}
3(N-1)-1 3(N-1)

(50
AG, = W, - W, +kTLn{vo Il =/ Hw2}+ P(Vs - V,)
as a

which shows clearly that the so-called “attempt frequency”, v,, has no physical meaning
on its own, but only as a couple with the migration entropy. From (33) and (50) one
recovers the well known expression of the diffusion coefficient in cubic structures:

D = vya*f exp(—A—SF—;ﬁ"—)exp(— AHF;#) (51)

where, by comparison with eq. (50), one defines AS,; and ASg, respectively the defect
migration and formation entropies, AH,, and AHg, the corresponding enthalpies, ‘a’ the
lattice parameter.

As said above, in this approach the dynamic aspect of the jump is neglected.
However the system follows during the jump an hamiltonian trajectory in the phase space
and its successive positions are therefore correlated. These short time correlations have
two effects, multiple jumps one the one hand (DA Fano and JAacucct [1977], De
LorenzI and ERCOLESSI [1992]) which can be viewed as a new diffusion mechanism, the
existence of unsuccessful jumps on the other, in which the jumping particle turns back
just after having passed the saddle point. Following BENNETT [1975] these unsuccessful
events could amount to 10% of the jumps foreseen by the rate theory up to near the
melting point in a Lennard-Jones crystal, but to a larger value for other kinds of
interaction (GILLAN et al. [1987]). The main origin of this inefficiency lies in the
anharmonicity of actual interatomic interactions allowing for a curved rather than planar
saddle hypersurface; according to FLYNN [1987], a curved hypersurface can be crossed
twice. An improvement to the Vineyard approach as been proposed by TOLLER and col.
[1985] by considering the full manifold of the newtonian trajectories in the phase space,
and not simply the positions of the system in the configuration space. Topological
considerations allow to count now only the successful trajectories as a subset of all
possible ones, instead of counting only the static state of the system in the saddle
hypersurface, as in the rate theory approach. Using the first non-harmonic term, of third
order, for describing the curvature of the saddle hypersurface, a part of the above
mentioned 10% discrepancy is shown to be recovered, but the Molecular Dynamics
method is needed to account for the remainder (FLYNN [1987]).

1.4.2.2. Dynamic theory of jumps. Contrarily to the rate theory, in the dynamic one
the jump frequency is directly deduced from the atomic dynamics, the phonon contribution to
the fluctuations of the atomic positions, and not from an occupancy hypothesis about the
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states in configurational space. In this approach one defines a 1D reaction coordinate

measuring the progress of the jump along the jump direction, according to the scalar product:
Xx=(65—65s,) 0

where 8 s, and 8 s,; are the 3D displacements with respect to the stable positions s, and

S, Tespectively of the jumping atom and of the saddle point, and n the unit 3D vector

along the jump path. The position s, is generally defined as the center of gravity of the

atoms defining the saddle gate. All these coordinates fluctuate as a result of the random

superposition of phonons. The contribution of a phonon of frequency @, wave vector k
and branch A to x is given by:

x(t) = (2. n)(1 — exp(i. k s,5))exp(i (k. s, — w1)) (52)

where ug ) is the 3D amplitude vector of the phonon.

Last, it is assumed that the jump necessarily proceeds to completion, once a certain
critical value & of x has been reached. 6 remains in the theory an adjustable parameter,
which is supposed to depend only on the crystalline structure of the lattice.

It can be shown that upon superposition of harmonic vibrations of frequencies », and
amplitude X}, the critical value & is reached from below at a frequency w given by:

W= (Z () /2 (x?)’jmexp [42/ Z(x?)zj

The effect of the various phonons in (52) can be evaluated using k, =@, /v, in a Debye
model, v, being the sound velocity along the phonon branch A. At high temperature,
hw, /kT < 1; denoting by &, the energy in the mode @, A, one has:

lqu{Z _ 2£m\ 2kT

T NMw®  NMw?
and the summation over @ and A gives:
) 5 15M
w={(2)"v,exp| —— 53
(3)"v p[ kT 2(3v% +v7 + v,'?)] 53)

where v, v, and v, reflect the longitudinal and transverse sound velocities, v, is a mean
Debye frequency and M the mass of the particles.

As in the rate theory approach, one recovers an Arrhenius-like form of the diffusion
coefficient with the migration activation energy defined in the second bracket.

It is also possible to express this result as a function of the elastic constants, since
v?=c/p with p the specific mass. Using a properly weighted mean of the elastic moduli,
c, and taking ) as the atomic volume, FLYNN proposes:

2
w=(3)".v, exp (— ci1d ) (53')

kT

Using a value of § =.32 for fcc metals and 8 =.26 for bee ones, a quite good agreement
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is found with experimental values of migration energies (FLYNN [1968]). Other values
are sometimes used (SCHULTZ [1991]).

The most severe drawback of this approach lies in the implicit assumption that the
normal modes remain untouched during the jump. Its main interest relies in its ability
to handle the migration including the effects of the actual crystal dynamics. The
summation in (52) can now be made without any approximation thanks to the availability
of complete dispersion relations for various metals and to the development of the
numerical simulations, allowing for example a deeper understanding of the bcc metals
(see section 3.2).

1.4.3. Macroscopic parameters of diffusion

1.4.3.1. Variation with temperature. For self-diffusion in isotropic media, f is
independent of T, so that from eq. (51), D has the well-known Arrhenius form:

D = D, exp (— %) with D, = vya’ fexp (M)

and Q= AH, +AH,,
D, is the frequency factor and Q the activation energy.

For impurity diffusion, f depends on T and, strictly speaking, D has no longer the
Arrhenius form, but if we want still to recast its variation into the form of an Arrhenius
law, we can define Q as:

dlog D .
g=-k a(l/gT) hence we obtain: @ = AH. + AH,, - C
and D, = v, a’ fexp (Mﬂ) exp (—i) with C =k dlog f
k kT ayT)

If C depends on T, Q and D, will also depend on T but it is experimentally observed
that C is small and more or less constant so that impurity and self-diffusion behaviours
are qualitatively similar.

As a matter of fact, the Arrhenius plot (log D versus 1/T) is often curved; the
departure from a straight line is more or less substantial (curvature only at high
temperature, continuous curvature, two straight lines with different slopes). In general,
the activation energy increases with T. Several explanations are possible:

(1> The enthalpy and entropy terms depend on T (GILDER and LazARrRus [1975],
VAROTSOS and ALEXOPOULOS[1986]).

(2) Diffusion occurs by more than one mechanism. This is the case:

— for non homogeneous media; e.g. grain boundary + volume diffusion;

— when several types of jumps occur (DA FaNO and Jacucct [1977]);

— when several defects contribute to the diffusion. Monovacancies are responsible for
most of the diffusion processes and, at the present time, the curvatures at high tempera-
ture are generally ascribed to the increasing contribution of the divacancies (SEEGER and
MEHRER [1970)). If several defects contribute to the diffusion we have:
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D=Y D,

D is the measured diffusion coefficient and D, the contribution to the diffusion of the i
th defect.

(3) There is an intrinsic domain at high temperature and an extrinsic domain at low
temperature; this is mainly the case for semiconductors and ionic crystals. At high
temperature (intrinsic region) the point-defect concentration is only a function of the
temperature, whereas at low temperature (extrinsic region) the defect concentration is
mainly controlled by the impurity content. More complex situations can occur for
complex mechanisms (Hoob [1993])

Typically, for metals and alloys, D, is in the range of 10°— 10" m%s and Q in the
range of 100-600 kJ/mole (~ 1-6 eV), depending on the melting point of the material.

1.4.3.2, Variation with pressure. According to eqs. (50) and (51) the pressure
derivative of the activation enthalpy AG,, defines an activation volume AV along:

(M%D)_”j%—%%%%—wjz_Aw+Am
P )y kT kT

(54)

We have neglected the 0 log f/0P and all d log w, /0P terms; the former is strictly zero
for self-diffusion and the latter are generally small, of the order of 107 £ ({ is the
atomic volume), with respect to the volume variation due to defect formation.
AV =AV.+AV,, is the activation volume, where AV, and AV, are the defect formation
and migration volumes, respectively. In general, AV,, is small so that AV; is not very
different from AV. Typically AV varies from 0.5 to 1.3 €} at least in the case of a
monovacancy mechanism; in some cases AV is very small or even negative, which can
be an indication of an interstitial-type mechanism.

1.4.3.3. Variation with atomic mass. From an experimental point of view, the
isotope effect E is obtained by measuring simultaneously the diffusion coefficients D, and
D, of isotopes o and B of the same element with masses m, and m,. It can be shown
that E is given by:

D,/D; -1
_(mﬂ / _ma )'11'2__1

where f is the correlation factor. It is assumed that only the frequency » of the isotope-
vacancy exchange is altered by the mass difference according to:

dLn(») _ AR
—4d Ln(m)

= fAK (55)

where AK is the fraction of the kinetic energy in the unstable mode residing in the
jumping atom. Its value is therefore smaller than 1, of the order of .8 to .9 for self-
diffusion in simple fcc metals, and reflects the collective nature of the saddle position
crossing during the jump (LE CLAIRE [1966]). Equation (55) holds if, and only if, f has
the form:
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f=_"

u+vy

where u is a term which depends on all the frequencies involved but ». For fcc materials
BAKKER [1971] has shown that eq. (55) is valid for vacancy, divacancy and impurity-
vacancy pair mechanisms. For more complicated mechanisms such as the Miller
mechanism, eq. (55) is no longer valid (see LE CLAIRE [1970a] and PETERSON [1975]).
This is also the case for the the vacancy mechanism in ordered alloys with a B2
structure.

Isotope effect measurements can contribute to identification of the diffusion mecha-
nism through the correlation factor; but we have to know AK. Theoretical values of AK
can be calculated in the framework of the above mentioned jump theories. Unfortunately
they are not really sufficiently quantitative for that purpose. An expression has been
established by LE CLAIRE [1966], which allows AK to be estimated if the defect
formation volume AVg is known:

Ak ~ (1+5[1-av,))" (56)

In this expression, £ is the number of neighbouring atoms when the jumping atom is in
saddle-point position and AV; is expressed as a fraction of the atomic volume. For more
details about the isotope effect we refer the reader to LE CLAIRE [1970a}, PETERSON
[1975] and FLYNN [1987]).

1.5. Numerical simulation approaches

Thanks to the huge progresses of the power of the modern computers as well as of
the presently available models of interatomic interactions, the numerical simulation route
is now routinely used in diffusion studies (ADDA and CiccotTI [1985]). The main goal
of this approach is twofold. On the one hand numerical simulations are providing well-
controlled experiments and allow a proper check of the validity of the various theoretical
tools depicted above. Moreover, if realistic interatomic interactions are available, they
provide a fairly reliable substitute to actual experiments. This is now almost the case for
simple metals with s and p electrons (see for example GILLAN [1989]). On the other
hand, like numerical methods, they easily allow for a full treatment of the actual
problem: no approximation is needed, and the full anharmonicity can be introduced,
which proves to be particularly important in diffusion studies due to the high tempera-
tures involved and the strongly N-body character of the events.

The Molecular Dynamics (M.D.) and the Monte Carlo (M.C.) methods are the most
used simulation tools. As explained in the previous paragraph the main observables of
the diffusion theory, formation and migration energies for instance or the diffusion
coefficient itself, appear as thermodynamic ensemble averages in the phase space of the
system. Both of these methods aim therefore to furnish a full set of atomic configurations
using a properly choosen bias for selecting the most important parts of the phase space,
i.e. each configuration will be given a weight according to its Boltzmann factor in the
proper ensemble.

References: p. 651.
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In M.D,, by solving the Newton equations of motion the full trajectory of the system
in the phase space is built, and the proper weighting of the possible configurations
follows as a consequence of the hamiltonian equations. The ensemble averages can be
calculated as time averages thanks to the ergodic hypothesis. In M.C., a set of possibly
uncorrelated configurations is built by randomly moving the particles according to a rule
designed for achieving the proper importance sampling. The notion of trajectory, as well
as of time scale, is therefore lost to a large extent.

1.5.1. Molecular Dynamics method

For a broad coverage of the field the interested reader can find almost everything in
the following references: CiccoTT! and HOOVER [1986], ALLEN and TILDESLEY [1987],
MEYER and PONTIKIS [1991].

In this method the hamiltonian equations of motion are solved by stepwise numerical
integration for a system of N particles interacting by a properly chosen potential energy
function U. This function can have any degree of complexity (and realism!) from the
early empirical sum of interactions between pairs of atoms (GIBSON et al [1960],
RAHMAN [1964]), to the most recent quantum-mechanics-based N body potentials where
the full contribution of the electrons to the cohesive energy of the system is taken into
account (CAR and PARRINELLO [1985], LAASONEN [1994]). Periodic boundary conditions
are generally used by repeating on all sides of the primitive system replicas of itself. In
this way the spurious effects of free surfaces are avoided. Even in the largest simulations
the maximum size is of the order of 10° atoms for a maximum duration lower than 10~
seconds of actual time.

The first M.D. simulations were done at constant volume V and total energy E, in the
microcanonical ensemble, noted NVE, but more recently new methods appeared which
allow to produce trajectories in other ensembles: constant enthalpy (ANDERSEN [1980]),
constant stresses (PARRINELLO and RAHMAN [1981]), constant temperature (NOSE [1984],
Hoover [1985]). One must be nevertheless careful when using these new ensembles
since the dynamics of the fluctuations introduced is generally no longer the actual one.
If needed, special techniques can be used, tailored for studying rare events or non equi-
librium systems (BENNETT [1975], CiccoTT1 [1991]).

Once a well-equilibrated system has been prepared, the thermodynamic average of the
various physical observables can be calculated according to:

<f>=lim_, 1| f(t)de
0
The observable f, determined as a function of time along the trajectory, can be an
energy, enthalpy, temperature, pressure or stress, any correlation function, as well as the
mean squared atomic displacement, of special interest here.

In diffusion studies, M.D. has been used either in a direct approach or in an indirect
one. In the first the mean squared displacement of the atoms is directly computed from
the record of the successive atomic positions. Albeit conceptually simple, this approach
is limited by the available computing resources to calculation of diffusion coefficients
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higher than 10" m%s at most, which limits its application to the studies of liguids
(RAHMAN [1964]), or of interstitial diffusion at a quite high temperature (GILLAN [1986],
GENDRE et al. [1991]). In the indirect approach the M.D. is used for studying the
elementary events of the diffusion: the atomic mechanism at work in a given material
(BENNETT [1975], DoAN and ADDA [19871, DELAYE and LiMOGE [1993a]), and its
various thermodynamic properties, e.g. formation and migration energies, entropies and
volumes or associated local modes (WILLAIME [1990], DELAYE [1993]). At a high
temperature, the jump frequencies of the defects can also be directly calculated, allowing
for a direct check of the validity of the usual theoretical approaches in the diffusion
theory.

1.5.2. Monte Carlo method

Now the notion of trajectory is lost: a set of successive configurations II; is generated
by randomly moving one or several particles of a system. As in M.D., the system
contains N particles interacting by a properly chosen potential energy function U (the
limitations over N are of the same order as in M.D.), and periodic boundary conditions
also are frequently used. The configurations resulting from these random moves will be
taken as acceptable according to various rules which ensure that the set of configurations
contains each state according to its thermodynamical weight in the proper ensemble (for
a complete review of the field see VALLEAU and WHITTINGTON [1977] or BINDER ref.
S, in the ‘Further Reading’ list). Such a set forms a Markov chain. It can be shown that
it is sufficient that the acceptance rule, or transition probability p; between states II; and
IT, satisfies the microscopic detailed balance:

m.D,; =T Dy

for the various states IT, will be represented in the stationary Markov chain proportionally
to their proper Boltzmann weight ;. Various acceptance rules have been devised, the
most popular of which is the Metropolis scheme according to which:

a) p;=1 iftW, < W

AT (57)
b) p; = exp| - T itw, > W,

if W, and W, are the potential energies of states II; and II;
As a matter of fact the thermal averages are obtained simply as:

<f>= #if(ni)

with m the length of the Markov chain. The precise form of the acceptance rule
influences the rate of convergence towards the limit chain, but does not alter the
stationary behaviour. In this approach one of the key point is the source of the random
numbers used i) to generate the successive configurations ii) to decide of the acceptance
or not in case 57b). The art of building “good” generators of pseudo-random numbers is
a quite sophisticated one (see for example KNUTH [1968]). The best one for the present
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purpose is probably the so-called “Feedback Shift Register” method (ZIERLER [1959],
LEwIs and PAYNE [1973)).

The same comments apply here as in § 1.5.1 with respect to the extension of the
method, originally developed for the canonical ensemble, to isoenthalpic, isostress or
even Grand Canonical ones by using the proper weight. One of the subtleties of the M.C.
method is that the time variable has disappeared, since successive configurations in the
chain are not necessarily related by a physically possible path. However, this drawback
can be removed (BOCQUET [1987], LiMOGE and BOCQUET [1988]).

Except for the dynamic aspects, the use of M.C. is identical to that of M.D.: defect
structure and properties, thermodynamical averages calculation. Moreover, the M.C.
approach is particularly well-suited for studying the properties of random walks. Indeed,
in a random walk model, the full dynamics of the jump is condensed in a set of fre-
quencies, allowing to calculate by the direct method the diffusion coefficient in a very
efficient way. This method has proved to be particularly useful in complex systems, like
concentrated alloys, disordered materials etc., where analytical solutions for random walk
are not available (MURCH and ZHANG [1990]).

2. Experimental methods

We shall review the different techniques which allow the diffusion coefficients D to
be measured; for the heats of transport and effective valence measurements the reader is
referred to § 6. Two kinds of methods are used to measure D: macroscopic methods,
which are based on Fick’s Law, and microscopic methods. With the former, we compare
the experimental concentration profiles (or a quantity which depends on it) with the
appropriate solution of Fick’s Law. The latter takes advantage of the fact that many
physical phenomena depend on the atomic jumps (for instance, NMR or Mossbauer
signals) and can be used to measure atomic jump frequencies. For the microscopic
methods it is, in general, necessary to know the diffusion mechanism precisely in order
to be able to deduce the jump frequency from the measured signal, whereas the
macroscopic methods yield D without any assumption on the diffusion mechanism.
Moreover it is not granted that the jumps detected are actually the ones involved in
macroscopic diffusion (a drawback of spectroscopic techniques), nor that they are
involved in the same manner as in actual diffusion (case of relaxation studies). But the
macroscopic methods entail a macroscopic displacement of the atoms and thus a large
number of jumps. At low temperatures, for small values of D, it is then necessary to
perform long anneals. Conversely, because they only involve a small number of jumps,
the microscopic methods require much shorter durations and they allow the variation of
D with time to be studied for systems which are not in equilibrium (systems under
irradiation, after quenching, during plastic deformation, etc.). For a given system the
combination of both kinds of techniques can help to determine the diffusion mechanism
(see for instance BRUGGER et al. [1980]). We will successively discuss these two types
of techniques.
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2.1. Macroscopic methods

Most frequently the quantity which is measured is the concentration C(x) at point x,
and the resulting concentration profile is compared with the appropriate solution of
Fick’s Law; but any quantity which depends on the concentration or on the flux can
allow the determination of the diffusion coefficient. In the first part we focus on methods
which determine the profile C(x); in the second part we briefly discuss other macroscopic
techniques. For more details see ADDA and PHILIBERT [1966], or PHILIBERT [ref. C)].

2.1.1. D from the C(x) curve

2.1.1.1. C(x) by sample sectioning. Generally the C(x) profile is obtained by
sectioning the diffusion zone and measuring the quantity of the diffusing species in each
slice (thickness Ax).

For sectioning, several techniques can be used:

Mechanical sectioning with precision lathe (10 um, 5x 107 m¥s), microtome (1 pm,
5x 10"®* m?%s) or grinding machine (1 wm, 5x 107'* m%s).

Chemical or electrochemical attack (50 A, 107 m¥s).

Sputtering by ionic bombardment (10 A, 5x107% mYs).

The numbers in parentheses indicate, respectively, the minimum thickness of the slices
and the minimum diffusion coefficient which can be obtained in practice.

The slice thickness, Ax, and the values of x can be measured by weighing; when Ax
is tco small, weighing becomes inaccurate and other techniques (optical methods,
Talystep) have to be used. The techniques most frequently employed for the determina-
tion of the concentration C(x) are activity counting (for the radioactive species) and mass
spectrometry. Each of them can, in principle, be utilized with one of the sectioning
methods described previously. They are very sensitive, especially activity counting which
allows the detection of atomic fractions as small as 10™'°. Ionic sputtering is associated
with mass spectrometry in commercial apparatus (ionic analyzers or SIMS, i.e. secondary
ion mass spectrometry, see ch. 10, table 4) and with activity counting in several devices
(see for instance GUPTA [1975]); both allow the determination of diffusion coefficients
as small 5x 107 m%s.

2.1.1.2. Non-destructive techniques. As a matter of fact all these techniques are
raethods of analysis which could be associated with the sectioning of the sample but they
also allow the determination of the profiles without sectioning.

The Castaing microprobe (electron microprobe analyzer). A thin electron beam
(¢ ~ 1um? analyzed zone ~ 1 wm?®) stimulates the X-fluorescence radiation of the element
to be studied (ch. 12, §2.2); the profile C(x) can be obtained by analyzing the sample
along the diffusion direction. This technique is convenient for studying chemical
diffusion. The sensitivity is of order of 10~ and it is not possible to measure diffusion
coefficients smaller than 10™° m?%s.

Nuclear reactions. The surface of the sample is bombarded with particles («, protons,
etc.) which induce a nuclear reaction with the element to be studied; the energy spectrum
of the out-going particles created by this nuclear reaction allows the determination of the
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concentration profile C(x). These techniques are convenient for the analysis of light nuclei.
Back-scattering. As previously, the surface of the sample is bombarded and one
studies the energy spectrum of the elastically back-scattered particles, from which it is
possible to obtain the concentration profile. In contrast with nuclear reaction methods, the
back-scattering method is convenient for the analysis of heavy nuclei.
For more details about these two last methods we refer the reader to the writings of
ENGELMANN [1977], PHILIBERT [ref. C)] and CHU et al. [1978].

2.1.2. Other macroscopic methods

There are numerous macroscopic techniques which allow the determination of
diffusion coefficients from measurements of properties depending on matter transport;
one obtains generally as a result the chemical diffusion coefficient. The most important of
these methods are the following:
— Measurement of the quantity of matter leaving or crossing a sample. This method is
much employed for gases and volatile products.
— Measurement of the growth rate of a new phase. When the growth is controlled by
diffusion it is possible to calculate D from the growth kinetics. This is fully explained by
SCHMALZRIED [1974].
— Measurements of compaction and deformation kinetics. Sintering of powders and creep
of crystals are in some cases controlled by bulk diffusion; it is then possible to deduce
D from compaction or deformation kinetics (ch. 31, §2.2).
— Measurements of the evolution of the concentration modulation by X-rays (or electrical
resistance). This method was initially developed by Coox and HILLIARD [1969] and used
for amorphous systems by ROSENBLUM et al. [1980], GREER and SPAEPEN [1985]. A film
of periodic composition is deposited by evaporation or sputtering; this film tends to
homogenize on heating, according to the solution given in § 1.3.5. The kinetics can be
followed by X-rays and

2
D=— ’\_2 4 [ In M)
87" dt I,

where 1 is the intensity of the satellite peak in the neighbourhood of the central spot. It
is also possible to follow this kinetics using the measurement of the electrical resistance
of the sample; this provides a very convenient measurement tool in complex environ-
ments, like high pressures or irradiation (WONNELL er al. [1992]).

This technique allows the determination of very small coefficients of diffusion
(~ 1077 m¥s).

The Gorsky effect, in spite of its being a macroscopic method, will be described in the
next section, together with relaxation phenomena.

2.2. Microscopic (or local) methods

The methods described here pertain to two groups: on the one hand, studies of
relaxation kinetics in out-of-equilibrium samples, on the other hand various spectroscopic
methods involving transition matrices disturbed by atomic jumps.
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2.2.1. Relaxation methods
The reader can find a very detailed theory of relaxation properties in solids as well
as experimental results in NowICK and BERRY [1972].
2.2.1.1. Thermodynamic aspects of relaxation. The internal energy of a system is
defined by the state variables, stresses, temperature, fields, etc., and by a set of n internal
variables, labelled v;, the equilibrium values of which, v;, are fixed by the values of the
state variables. These internal parameters can be, for example, the order parameters in an
alloy or the populations of the various energy levels that a system can occupy. If one of
the state variables changes suddenly, the various internal variables which are coupled
with it will relax to the new equilibrium values. In the cases of interest here, the
diffusional mobility D controls the relaxation towards equilibrium. We can then measure
a relaxation time 7, related to D by
2
p=k<
T
where a is a distance characteristic of the lattice, and k is a constant depending on the
specific model involved.
The internal energy varies according to:

dU = TdS + dU,, - Y, U,dv, (58)

where dU,,, is the energy supplied by the external forces and the dv; stand for the
variations of the internal variables. U, is the ordering energy associated with the i®
internal variable,

If the deviations from equilibrium, v;—v;, are not too large, the U, can be expanded
as

U, = —Z Ul(v, - v;) (59)

When the time evolution of the v;’s is first-order, one speaks of relaxation phenomena.
In this case:

dv, ; .
...L:—Zw;,’(vj—vj) (60)
One sees easily that it is always possible to find a set of n normals modes V, evolving
in time as:

V() = Ve[Vt = o) = V' Jexp (~1/7) (61)

In eq. (61), 7, is the relaxation time of the i th normal mode. In many cases the homo-
geneity of the sample is not perfect and, instead of a single-valued 7, we observe a
distribution 7r(r;) of times, corresponding either to the distribution of atomic environ-
ments or to the various relaxation paths.
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In diffusion studies of metals and alloys, the most frequently used external influences
are mechanical stresses, magnetic field or temperature jumps.

2.2.1.2. Anelasticity. In the case of mechanical stresses one speaks of anelasticity.
Two solicitation modes are used in these studies. The first one is the mechanical after-
effect: a static stress (or strain) is applied and the strain (stress) relaxation is followed in
time. The application for example of a constant stress leads to an instantaneous elastic
response defining the unrelaxed modulus M. Afterwards the system displays a relaxation
of the strain which corresponds at infinite time to the relaxed modulus M. The after-
effect anelasticity is then defined by three physical quantities:

— the relaxation intensity: A =(M; - M, )YM_;

— the mean relaxation time T,

— the width of the relaxation time spectrum .

In many cases the experimental data are well fitted with a Gaussian spectrum
(Nowick and BERRY [1972]):

7(t) = (B«/}r_)_l exp —( In(1/7)/ ,3)2

The second mode is the internal friction mode. In this case, stress and strain are
periodic with a frequency w according to:

T = g, expit, & = &, exp i(wt — @)

The phase factor ¢ between stress and strain expresses the energy dissipation due to
anelasticity. One can show that ¢ is related to T by:

oT

1+ (or) 2

tang ~
The phase factor displays a Debye resonance versus w, or versus temperature
variation through the temperature dependence of 7; the maximum value, ¢, is obtained
for w7 =1. In real experiments the measurements are made either in forced, or in free,
damped oscillations. One can then measure the energy absorbed per cycle, dw/w, or the
magnification factor at the resonance Q (inverse of Full Width at Half Maximum
(FWHM) of the ef)— versus-w curve) as a function of temperature, In the free case one
measures the logarithmic decrement & =In [g(t)/e(t+T)], where T is the oscillation
period.
All these physical quantities are related by:
Sw

2wsing ~ %T ~26~— and PATA L

w Tira” ©

The study of the value of ¢ versus w, at various temperatures, gives the relaxation
time 7 versus temperature. We deduce D, the diffusion coefficient, as

_ka’

T

D
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A great variety of experimental set-ups have been used. The reader will find many
references in NOWICK and BERRY [1972]. The most commonly used are the torsion
pendulum, either in internal friction or in after-effect mode, and the resonant bar at
higher frequency. The corresponding D’s which can be measured are given in table 1.

2.2,1.3. Snoek relaxation. In body-centered cubic metals the interstitial defect has
a tetragonal symmetry, in both octahedral and tetrahedral sites. Owing to this lower
symmetry it can give rise to an anelasticity effect, the so-called Snoek effect (SNOEK
[1939]). In most cases experimental results are, in bcc metals, in good agreement with
the octahedral model (see fig. 7 and § 4.2.1). Under a uniaxial tensile stress o along the
Oz axis, there is a splitting of the energy levels of the three kinds of sites S,, S, S,, in
favor of S, sites. The ordering energy [eqs. (58) and (59) is: U,=vyo, where vy is the
lattice parameter variation along Oz axis due to the redistribution from S, and S, to S,
sites. The associated internal variable is v=(n,—n/3), n and n, being the total atomic
fraction and the atomic fraction of solute on S, sites, respectively. Taking I" as the total
solute frequency jump, one easily shows that I' =2/(37), and D is given by

aZ

D =
367

(64)

where a is the lattice parameter. (See also ch. 22, §4.3.)

2.2.1.4. Zener relaxation. In face-centered cubic metals, an interstitial solute has the
same symmetry as the lattice. Therefore there is no anelasticity associated with interstitial
solutes. On the other hand, a pair of substitutional solute atoms B of non-zero size effect
in a solvent metal A represents a defect of orthorhombic symmetry. Their reorientation
under stress then gives rise to an anelastic relaxation which can be seen in all lattices of
higher symmetry. ZENER [1943, 1947] was the first to point out the existence of an
internal friction peak in a 70:30 «-brass, which he further analyzed as the effect of the
reorientation of solute pairs (now called the Zener effect). LE CLAIRE [1951] has analyzed
the kinetics of their reorientation and shown how it allows the solute jump frequencies
to be determined. Nevertheless this model in terms of solute pairs suffers from several
weaknesses:
— Ccntrary to Snoek relaxation, the Zener effect can be observed only in concentrated
alloys, because of its dependence on the square of the B concentration. The description
in terms of isolated pairs therefore becomes less satisfactory.
— Several parameters of the relaxation (the anisotropy, the temperature dependence of D)
are badly accounted for by the pair model.
- The solute mobility alone is involved in Le Claire’s analysis of the kinetics. However,
Nowick [1952] has shown that the mobility of both species is needed to produce a
relaxation.

Clearly we need a full description of the ordering under stress to give a good account
of the Zener effect. LE CLAIRE and LOMER [1954] and WELCH and LE CLAIRE [1967]
have given a solution to this problem in the framework of Cowley’s order parameters (up
to the second-nearest neighbours for the latter authors). The most elaborate analysis of
the kinetics for the first model is due to RADELAAR [1970]. He simultaneously calculated
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Q)

Fig. 7. Characteristics of octahedral interstitial sites in bcc lattices. There are three kinds of sites S,, S, and S,.

x My

For an S, site the first-neighbour distance in the z direction is a/2 and a/V2 in the xOy plane.

Ty, the relaxation time for ordering, and DAA,B and DQ\?, the tracer diffusion coefficients
of respectively A* and B* in the alloy:

Tp ~ azg(a)(CA/D;f + CB/D:P) (65)

where g(a) is a smooth function of «, the short range order parameter. No equivalent
analysis exists for Welch and Le Claire’s model.

One clearly sees that the (approximate) formula (65) does not allow one diffusion
coefficients alone to be deduced from 7 values. The relaxation time appears to be a
“Zener-averaged” function of the various atomic jump frequencies and not that particular
arrangement which gives the diffusion coefficients. In most cases for example, 7 appears
to be a thermally activated quantity, the activation energy of which is lower than that of
either DA* or D2 (Nowick and BERRY [1972)).

Nevertheless, while the use of Zener relaxation in measuring diffusion coefficients is
a delicate task, this effect is of paramount interest in studies of the behaviour of point
defects in alloys in, or out of, equilibrium (BERRY and OREHOTSKY [1968], BALANZAT
and HILLAIRET [1980]).

2.2.1.5. Gorsky effect. Any defect B which produces a lattice dilatation is also able
to give rise to an anelastic relaxation. This is the well known Gorsky effect (GORSKY
[1935]) the complete theory of which was given by ALEFELD et al. [1970]. Indeed, the
migration of positive (resp. negative) dilatation centres down (resp. up) a macroscopic
strain gradient produces a relaxation of stresses, which is detectable if the diffusion
coefficient is high enough (VOLKL [1972]).

One easily shows that the diffusion coefficient Dy« of the B defect is related to the
relaxation time 7y by (ALEFELD et al. [1970]):

2
DB* = _L (g) (66)
PTr \T
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where d is the length of the diffusion zone and ¢ the thermodynamic factor (§ 1.2.2). The
main interest of the Gorsky relaxation is to give access to Dy, without the need of any
diffusion model. Note that here the length scale is d, the sample size, and not a, the
atomic size [eqs. (64) or (65)]. We see in table 1 that this method is well suited for high
diffusion coefficients.

2.2.1.6. Magnetic relaxation in ferromagnetic alloys. In ferromagnetic alloys the
local interactions between a magnetic momentum and local order give rise to relaxation
phenomena similar to those observed under stress. Their origin is to be found in the
induced anisotropy energy, the theory of which was built up by NEEL [1951, 1952,
1954] and TANIGUCHI [1955]. We have an ordering energy U, given by [see egs. (58)
and (59)]:

U =wcos® 6 (67)

1

where 6 is the angle between the local moment and the symmetry axis of the defect
under consideration. The origin of w lies in the perturbation by the defect of i) exchange
integrals between magnetic atoms ii) spin—orbit coupling.

This anisotropy energy gives rise to three kinds of relaxations.

Table 1
Diffusion coefficient ranges accessible through different techniques.

Method Relaxation time 7 Range of Dy.

or Frequency @ accessible (m?/s)
Elastic after-effect 10<7 <10°s 10 < D, < 107
(Zener or Snoek)
Intemal friction | Hz<w < 10° Hz 100 < Dy, < 1077
(Zener or Snoek)
After-effect and Approximately same 10% <Dy <107®
internial friction as above

in Gorsky relaxation

Torque measurement 10<7<10°s 108 <Dy < 107
(magnetic anisotropy

method)

NMR field gradient - 10« Dy <107
Pulsed NMR 107<7<0.1s 10 <Dy <10
Maossbauer - 107¥ <Dy <107
Neutron scattering - 102 <Dp.< 107

The first, analogous to the Snoek relaxation, is due to reorientation of interstitial
impurities in bee crystals during a change of field direction. The relationship between
jump frequency, relaxation time and diffusion coefficient is the same as in the Snoek
relaxation.

The second is the analogue of the Gorsky effect. In a domain wall the interaction
between the magnetostrictive stresses and the strain field of interstitials can be minimized
by diffusion through the wall. This diffusion gives rise to an after-effect. The relaxation
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time is a factor (5/a)® larger than the preceding one (as in the mechanical case), & being
the domain wall thickness (KRONMULLER [1978]).

The third can be called a magnetic Zener effect and is due to the ordering of
ferromagnetic alloys in a magnetic field. The theory was built up by NEEL [1954] in a
quasi-chemical model and by VILLEMAIN [1970] with inclusion of second-nearest
neighbour order. The link between relaxation time and diffusion is as difficult to
establish as in the Zener effect. However, the sensitivity is extremely high and allows
study of diffusion at exceedingly low defect concentrations (107 — 107" vacancy fraction,
CHAMBRON and CAPLAIN [1974]). (See also ch. 29, §5.3.3.3).

2.2.1.7. Kinetics of short-range ordering. Any physical property sensitive to atomic
order can be used to follow the kinetics of ordering and therefore to study atomic
mobility: resistivity (RADELAAR [1966], BARTELS [1987], YU and LUCKE [1992]), X ray-,
electron- or neutron diffraction (PENiSSON and BOURRET [1975]). Nevertheless we need
to relate quantitatively the order parameter and the measured quantity. Further, the link
between ordering kinetics and diffusion coefficients is as difficult to establish as in the
Zener effect.

2.2.2. Spectroscopic methods

2.2.2.1. Nuclear magnetic resonance. In a static magnetic field H, (say 10° Gauss)
a nuclear spin of magnitude I takes a precession motion at the Larmor frequency w,
Simultaneously the degeneracy of the 2I1+1 energy levels is raised. A macroscopic
sample is an assembly of nuclear spins and will then display a magnetic moment along
H,, M,, and a transverse part M,, zero at equilibrium. If we apply a transverse radio-
frequency magnetic field H, with a pulsation @ near w, this field will induce transitions
between the 2[+1 Zeeman levels of each spin. Experiments show, and theory confirms
in many cases (ABRAGAM [1961]), that the time evolution of the total moment of the
sample M is given by the Bloch equation:
eq
M _ YMAH ~ M _M oM, V[D. V(M - M”")] (68)
a L L
where vy is the gyromagnetic ratio, M* the equilibrium value of the magnetic moment
and D the diffusion coefficient of the nuclei. T, is the relaxation time of the longitudinal
part M, and corresponds to an energy transfer between lattice and spins system. T, is the
relaxation time of the transverse part M,. The values of T, and T, are fixed by various
interactions between spins, either direct or indirect via electrons. On each nuclear site
these interactions create a local field (approx. 1 Gauss) which fluctuates, due to atomic
vibrations and jumps. It induces transitions between levels and then settles their lifetime.
However, if the frequency of the atomic displacements becomes of the order of magni-
tude of the frequency of the precession motion due to this local field, the spins will be
sensitive only to the time average of it. This average is zero and the lifetime is no longer
limited by interactions: this is the so-called motional narrowing of absorption lines,
which explains part of the variation of T, and T, with temperature.
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Equation (68) shows that two techniques can be used to determine diffusion coeffi-
cients. Firstly, the last term of eq. (68) gives a time evolution of M when the sample is
put into a field gradient G according to:

2

M (1) = M, exp(— TL - % DyZGZT2I]

The measurements of M, versus time t then gives D without any further hypothesis
(ABRAGAM [1961]).

We can also measure either the width of absorption lines in steady-state resonance (@
near w,), or the decay of M, and M, parts with time after the perturbation by a “‘pulse”
of I, field. In this last case, the decays fit the laws M, =M, [1—exp (- /T))] or M, =M,
exp (—2t/T,). Now the BLOEMBERGEN et al. theory [1948] expresses T, and T, in terms
of Fourier transforms of the time correlation function of dipolar interactions (the main
interaction in many cases) due to nuclear motions. We then have to postulate a diffusion
mechanism, to calculate correlation functions and to compare it with experimental T
values in order to deduce a diffusion coefficient.

The original work of Bloembergen was done for diffusion in liquids and later
extended to the case of random walk and defect mechanism in lattices (TORREY [1954]),
including correlation effects (WOLF [1979]). Self-diffusion in aluminum was measured
by NMR by SEYMOUR [1953] and by SrokAS and SLICHTER {1959].

2.2.2,2. Mossbauer effect. Gamma rays can be emitted or absorbed by excited
nuclei. According to the Heisenberg principle, and controlled by the half-life time 7 of
the nuclei, the width I = /7 of the corresponding lines can be very narrow, of the order
of 107 eV for example. Owing to the recoil energy of the emitter, the emission line of
free nuclei is shifted by a much larger amount. This shift then prevents the resonant
absorption by other nuclei. On the other hand, if the emitter is embedded in a crystal a
part of the emissions occurs without recoil. This is the Mossbauer effect. In this case
resonant absorption can occur. However, if one of the emitting or absorbing nuclei is
moving, either by thermal vibration or diffusion jumps, the line is broadened by self-
interference effects. This broadening is the main effect which has been used to give
access to atomic mobility. More precisely, SINGWI and SIOLANDER [1960a] have shown
that the emission, or absorption, cross-section is given by:

a{w) = %‘1[ J. exp[i(Kr - W)~ 2—2 ltl]G:(r, 1)drdt (69)

where G (r,t) is the Van Hove autocorrelation function and K the wave vector of the
v photon of frequency 2m/w. In a classical system G, gives the probability of finding at
(r,t} a particle located initially at (0,0). Therefore G,(r,t) contains all the information
about diffusion processes. SINGwI and SIOLANDER [1960a, b] have given the theory of
diffusion broadening in the case of liquids and of random jumps on an empty lattice (i.e.
interstitial case). In the last case the broadening is given by:

N
AT = 15_’1 D(1-a) and a = %Zexp(iKRn) (70)
n=l

References: p. 651.
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where b is the jump distance and R, the N possible jump vectors. Equivalent formulas
have been given for the vacancy mechanism (WOLF [1983]). This dependence can give
very valuable informations about the anisotropy of diffusion (FLINN [1980]), as well as
on the jump vectors (SEPIOL and VOGL [1993a]). Nevertheless the constraints of: (i) high
recoilless fraction (large detectable signal), and (i) measurable AL/T, say between 10~
and 10%, limit the available tracers to ’Fe, "*Sn, "*'Eu and '*'Dy (JanoTt [1976]).

The other aspects of the Mossbauer spectroscopy, the so-called hyperfine interactions,
isomeric shift, magnetic dipolar and electric quadrupolar interactions, have also been
used for studying the various jump frequencies of interstitial iron atoms in Al, Fe, Zr, Nb
(YosHIDA [1989]).

2.2.2.3. Quasi-elastic neutron scattering. A monoenergetic neutron beam can be
scattered by nuclei embedded in a solid without any energy transfer, that is, without
phonon emission or creation. This is the exact parallel, in the case of neutrons, of the
Mossbauer effect for y photons. More precisely, VAN HOVE [1954] has shown that eq.
(69) gives the incoherent scattering differential cross-section for scattering vector K and
energy transfer w. In this case I' has to be taken as zero, and o appears to be the (r,t)
Fourier transform of G, Therefore atomic motions, as given by G(rt), induce a
broadening of the elastic peak, the measurement of which versus w gives access to
atomic mobility. The formula (70) works for describing the K and jump vectors depen-
dences of the broadening.

Two experimental techniques can be used (SPRINGER [1972]). For the first, one uses
small K values, corresponding to large r, where G,(r,t) is well represented by:

G,(r,t) = (4mDt)™* exp(-r* /4 Dx)

The quasi-elastic peak then has a Lorentzian shape with a FWHM of 2 # K?> D. The use
of this method, at low K, is therefore limited by the energy resolution of spectrometers.

In the second method, one starts from a diffusion model which allows G, to be
calculated. One then fits the parameters of the model to scattering measurements at
various K vectors, using the K dependence of the broadening. If one works with fairly
large K, then small r, the method is very sensitive to the details of the jump mechanism,
(PETRY and VoGL [ref. M)], VOGL et al. [1989)).

Neutron scattering techniques, owing to an energy resolution of the spectrometers
much more limited than in the case of Mossbauer spectroscopy (~ 107 with back-
scattering geometry, against ~ 107 eV), are best suited for fast diffusion, like that of
hydrogen in metals (GISSLER [1972]), sodium self-diffusion (AT SALEM et al. [1979]) or
high temperature studies in 8-Ti, a fast diffuser (PETRY er al. [1991]).

3. Self-diffusion in pure metals

The pure metals are undoubtedly the most studied with regards to their point defects
and diffusion properties. The traditional distinction was between normal and anomalous
self-diffusion, the latter taking place in about ten body-centered cubic metals. A detailed
review on this point of view can be found in PETERSON [1978]. However, there has been
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deep progress in the understanding of this aspect in the last years, and the paradigm has
now changed to distinguish between diffusion in close-packed phases, i.e. fcc and hcp
ones, as opposed to diffusion in bee ones.

Diffusion parameters for various pure elements have been gathered in table 2.

According to LE CLAIRE [1976], normal self-diffusion complies with the three
following empirical rules:

— tke diffusion coefficient obeys the Arrhenius law: D =D, exp (- Q/kT);

~ the D, values range from 5x 107 to 5x 107~ m¥s;

~ the activation energy is related to the melting temperature by the expression: Q =34T,,,
(Q in calories per mole), or 0.14 T, (Q in kJ/mole), where T,, is the melting point of the
metal (in Kelvin). This behaviour, forming the base of the Van Liempt relation, is well
obeyed by compact metals (see fig. 8a for fcc ones). In bee structures the dispersion is
much greater (fig 8b).

All these properties can be qualitatively understood in the framework of the above
mentioned theories of diffusion by the vacancy mechanism, keeping in mind that a
proper formation energy for a vacancy has to be related to the cohesive energy of the
material and therefore to its melting point.

The term of anomalous diffusion was formerly reserved for describing ten systems
which present very low values of the frequency factor D, and of the activation energy Q:
B-Ti, B-Zr, B-Hf, y-U, &-Pu, y-La, §-Ce, B-Pr, y-Yb and 3-Gd. All these metals also
display a more or less important curvature of the Arrhenius plot (fig. 9b).

However, one often observes a slight positive curvature in the Arrhenius plot even in
the so-called normal metals (Al, Ag, Au, Cu and Ni); it is frequently restricted to high
temperatures but sometimes it is present over the whole temperature range. This
curvature is always upward.

self-diffusion fcc self-diffusion bee
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L Re w
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Fig. 8. Van Liempt relation for metals. Fig 8a) fcc metals, fig 8b) bce metals, The straight line represents the
Van Liempt relation: @ =0.14 Ty, in kJ/mole. bee structures are widely dispersed around the line, contrarily to
fcc ones.
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Fig. 9. Diffusion coefficients in an Arrhenius plot normalized to the melting point of the element considered.
a) in fcc metals; the range of diffusion values is quite narrow and the curvatures, if any, are small. b) same
curves in bee metals; the diffusion coefficient vares widely from one element to the other according to a
systematics controlled by the row number in the Mendeleev classification, the curvatures also are frequently
strong.

3.1. Self-diffusion in fcc and hep metals

The vacancy assumption for the diffusion in these metals is now well accepted by
everyone (but see also § 4.2.2). Nevertheless there are still some controversies as regard
to the origin of the possible curvature of the Arrhenius plots. In order to explain this
curvature, three hypotheses can be retained among all the possibilities which have been
discussed in § 1.4.3.1.:

— A vacancy mechanism occurs over the whole temperature range but because of a
strong thermal expansion coefficient for the vacancy, (GILDER and LAZaRrUS [1975]), or
due to the variation of the elastic constants with the temperature, (VAROTSOS and
ALEXOPOULOS [1986]), D, and Q increase with temperature.

— Both vacancies and divacancies contribute to the diffusion, with an increasing
participation of the latter at high temperatures (SEEGER and MEHRER [19701).



Table 2

Self-diffusion parameters for pure elements.

Element (see com- C.S. T, (K) D, (m*s™)x 10° @ (ki/mole) Temp. range Q=.1422T, D(T)m%™") D (ph. tr) (m’s™) Reference

ments at end) (K) Van Liempt

Ag fcc 1234 D, =0.046 0,=1698 594994 175.5 49x 107" Rem and MEHRER (1982)
Dy,=3.3 0,=218.1

Al fcc 933 2.25 144.4 673-883 132.7 1.85% 1072 BEYELER and ADDA (1968)

Au fcc 1336 0.084 174.1 1031-1333 190 1.3x 1072 HERZIG et al. (1978)

Be hex 1560 lc 052 157.4 836-1342 221.8 2.79% 10 DuPpouy et al. (1966)
/¢ 0.62 165 841-1321 id 1.85% 107°

Ca bec 1116 8.3 161.2 773-1073 158.7 2.36x 107" PAVLINOV et al. (1968)

Cd hex 594 Lc 018 82 420-587 B84.5 1.11x107™ Mao (1972)
e 012 71.9 id id 1.69x 1072

Cey T<999 fec  y/8 999 0.55 153.2 801-965 152.3% 537x 107 (999 K)  DARIEL ez al. (1971)

Ced T>999 bec 1071 0.007 84.7 1018-1064  152.3 49x10™ 236X 107" (999 K)  LANGUILLE et al. (1973)

Co fcc 1768 2.54 304 944-1743 2514 2.65x 107" LEE et al. (1988)

Cr bec 2130 1280 4419 1073-1446  302.9 1.86x 1072 MUNDY et al. (1981)

Cu fecc 1357 Dy, =0.13 Q,=198.5 1010-1352 193 597x 107" BARTDORFF et al. (1978)
Dy, =4.6 0,=238.6

Er hex 1795 Lc 451 302.6 1475-1685  255.2 7.05x 107" SPEDDING and SHIBA (1972)
e 37 301.6 id 62x 107"

Bu bcc 1099 1 144 771-1074 156.2 1.43x 107" FROMONT and MARBACH (1977)

Fea T<1183 bec  e/y 1183 121 281.6 1067-1168  257.2% 445x 107" (1183 K)  GeisE and HERZIG (1987)

Fe y 1183<T<1663 fcc  y/8 1663  0.49 284.1 1444-1634  257.2% 14x 1077 (1183 K)  Heuman and IMM (1968)

5.83% 107 (1663 K)
Fed T>1663 bec 1809 2.01 240.7 1701-1765  257.2 225x 10" 55%x 107 (1663 K)  JaMEs and LEAK (1966)




Element CS. T,(K) Dy (m’s™)x 10* Q (K/mole) Temp. range Q=.1422T, D(T,Jm’s™) D (ph. tr.) (m’s™") Reference
K) Van Liempt
Gd g bec 1585 0.01 136.9 1549-1581 2254 3.07x 107" FROMONT and MARBACH (1977)
Hfa 7<2013 hex «/B82013 Lc 0.28 348.3 1538-1883  355.5% 2.56x% 107 Davis and MCMULLEN (1972)
/lc 086 370.1 14701883 2.14x 107 (2013 X)
Hf 3 7>2013 bec 2500 0.0011 159.2 2012-2351 3555 5.19%x10™"  8.13x 1072 (2013 K) HERZIG et al. (1982)
In tetr 430 lc 37 78.5 312-417 61.1 1.08x 107"
e 27 78.5 id id 7.85% 107" DICKEY (1959)
Ir fecc 2716 0.36 438.8 2092-2664 3862 1.3x 107" ARKHIPOVA (1986)
K bec 336 Dy, =0.05 Q1=372 221-335 478 1.32x 107" MUNDY et al. (1971)
Dy,=1 Q2=47
Lag T<1134 fcc B/y1134 15 188.8 923-1123 169.6* 3% 107 (1134 K) DARIEL et al. (1969)
Lay T>1134 bec 1193 0.11 125.2 1151-1183  169.6 3.62x 107" 1.88% 107 (1134 K) LANGUILLE and CALAIS (1974)
Li bec 454 Dy =0.19 Q1=53 220-454 64.5 3.13x 107" HEITIANS et al. (1985)
Dy, =95 02=762
Mg hex 922 Llc 175 1382 775-906 131.1 2.59% 1072 COMBRONDE and BREBEC
/e 178 139 237x 107" (1971)
Mo bec 2893 8 488.2 13602773 4114 1.22x 107 MAIER et al. (1979)
Na bec 371 Dy, =57 Q1=35.7 194-370 52.7 1.75x 107" Munpy (1971)
D,=0.72 02=48.1
Nb bec 2740 0.524 395.6 13542690  389.6 1.5x 1072 EINZIGER et al. (1978)
Ni fcc 1726 Dy, =0.92 Q1=278 815-1193 245.4 9.35x 107" MAEER et al. (1976)
Dy, =370 02=357
Pb fcc 601 0.887 106.8 470-573 854 4.63x 107" MILLER (1969)
Pd fec 1825 0.205 266.3 1323-1773 2595 49x107™" PETERSON (1964)




Element CS. T, (K) D; (ms™")x 10*° Q (k}/mole) Temp. range Q=.1422T, D(T,)m%™) D (ph. tr) (m%™) Reference
(K) Van Liempt
Prg T>1068 bec 1205 0.087 123.1 1075-1150 171.3 4x10™" DARIEL et al. (1969)
Pt fcc 2042 Dy, =0.06 Q1=259.7  850-1265 290.3 1.4% 107" REIN et al. (1978)
Dy,=0.6 @2=365
PufB 395<T<480 m  B/y 480 0.0169 108 409-454 129.8% 2.98% 107 (480 K)  WADE et al. (1978)
Puy 480<T<588 ort  v/8 588 0.038 118.4 484--546 129.8* 4.95% 107 (480 K)  WADE et al. (1978)
1.15% 107 (588 K)
Pud 588<T<730 fec 8/8 730 0.0517 126.4 594-715 129.8* 3.05x 1077 (588 K)  WADE et al. (1978)
4.66% 107 (730 K)
Pue T>753 bcc 913 0.003 65.7 788-849 129.8 522x 10" 83x 107 (753K)  CorneT (1971)
Rb bec 312 0.23 39.3 280-312 444 6.05% 107 HoLcoMB and NORBERG (1955)
Re hex 3453 511.4 1520-1560 491 NOIMANN et al. (1964)
Rh fcc 2239 391 903-2043 3184 SHALAYEV ez al. (1970)
Sb trig 904 Lc 01 149.9 773-903 1285 2.17x 107" CorbEs and KiM (1966)
/lc 56 201 1.36x 107"
Se hex 494 Lc 100 135.1 425-488 702 5.18x 1077 BRATTER and GOBRECHT (1970)
e 02 115.8 1.1x 1077
Sn tetr 505 Llc 21 108.4 455-500 71.8 1.29% 107 HUANG and HUNTINGTON
llc 128 108.9 6.9x% 107" (1974)
Ta bcc 3288 0.21 4236 1261-2993 4675 3.9% 107 WERNER et al. (1983)
Te tig 723 Llc 20 166 496-640 102.8 2.03x 107" WERNER ef al. (1983)
/lc 0.6 147.6 13%x 107"
Tha T<1636 fcc a/B 1636 395 299.8 998-1140 287.7* Scumitz and Fock (1967)
Tia T<1155 hex a/B 1155 6.6x10° 169.1 1013-1149  275.8* 1.48x 107" (1155 K)  DyMeNT (1980)




Element CS. T,(X) D, (m*s™")x 10° Q (kJ/mole) Temp. range Q=.1422T, D(T,Ym%™) D (ph.tr) (m%™) Reference
(X) Van Liempt
Tig T>1155 bee 1940 D(m%™")=3.5% 107 x 1176-1893 2758 31x 107" 54% 107 (1155 K)  KOHLER and HERZIG (1987)
exp(—328/RT)xexp{4.1 (T, /T)*}
Tla T<507 hex a/B 507 lc 04 94.6 420-500 82+ 7.16x 107" SHIRN (1955)
/lc 04 95.9 5.2x 1078 (507 K)
TIB T>507 bcc 577 0.42 80.2 513-573 82 23%x 107 2.29% 107 (507 K)  CHIRON and FAIVRE (1985)
Ua T<9%l ot a/B 941 0.002 167.5 853-923 199.8*% 1% 107" (941 K) ADDA and KIRIANENKO (1962)
UpB941<T<1048 tetr B/y 1048  0.0135 175.8 973-1028 199.8* 235x 1076 (941 X)  ADDA et al. (1959)
2.33% 107" (1048 K)
Uy T>108 bec 1405 0.0018 115.1 1073-1323 1998 9.46x 102 3.29x 107 (1048 K) ADDA and KIRIANENKO (1959)
v bec 2175 1.79 331.9 1323-1823  309.3 3.05x 10™ ABLITZER et al. (1983)
26.81 372.4 1823-2147
w bec 3673 Dy, =0.04 0,=525.8 1705-3409  522.3 1.7x 1072 MUNDY et al. (1978)
Dy, =46 Q,=665.7
Ya T<1752 hex a/B1752 Lc 5.2 280.9 1173-1573 2564 2.19% 107" GORNY and ALTOVSK1I (1970)
/lc 0.82 252.5 2.43% 107 (1752 K)
Yba T<993 hex a/B 993 0.034 146.8 813-990 156% 6.4x10™" (993 K)  FROMONT et al. (1974)
YbB T>993 bec 1097 0.12 121 995-1086 156 208x 10"  518x 1072 (993 K)  FROMONT et al. (1974)
Zn hex 693 Lc 018 96.3 513-691 98.5 9.92x 107 PETERSON and ROTHMAN (1967)
/e 013 91.7 1.59% 10
Zra T<1136 hex a/B 1136 no value Curved 779~1128 302* =5107"% (1136 K) HORVATH et al, (1984)
Ath. plot 6.14% 107 (1136 K)
ZrB T>1136 bec 2125 D(m2s™)=3x10%x 1189-2000 302 137x 107" HERZIG and ECKSELER (1979)

exp(-3.01/RT) x
exp{3.39(T,/T)"}
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Comments on table

These self diffusion data have been extracted from the compilation by MEHRER et al. (Ref. B).

Column 1: Symbol of the metal.

Column 2: Crystal stucture. bcc = body centered cubic, fcc = face centered cubic, hex = hexagonal, m =
monoclinic, ort = orthorhombic, tetr = tetragonal, trig = trigonal.

Column 3: Melting temperature. For the phases which do not melt (for instance Ce y, Fe a etc.) we have
given the temperature of the phase transition.

Column 4: Experimental D, The value in m’s™ is multiplied by 10° (so that it is in cm’s™).
For some of the metals the Arrhenius plot is curved and D has the form: D= Djexp (- Q,/RT) +
Dgexp (- Q/RT), in these cases Dy, and Dy, are given (they are also multiplied by 10°).
For Ti and Zr which have strongly curved Arrhenius plots special expressions are given for D (in
m?s'without any multiplying factor).

Column 5: Experimental Q in kJ mole™. Same remarks as for column 4.

Column 6: Temperature range of the experimental determination of D.

Column 7: Empirical value of Q according to the Van Liempt relation. For the phases which do not melt this
value is followed by an *,

Column 8: Value of D at the melting point.

Colurnn 9:  For metals which display several phases the values of D are given at the temperature boundaries
of the phase. For instance U, is stable between 941 and 1048 K, D values at these temperatures
are given in column 9.

Column 10: References.

— A vacancy mechanism occurs and the curvature is due to the dynamical correlation
between successive jumps (vacancy double jumps) (DA FANO and Jacuccr [1977]).

Experimentally the following data are available: frequency factor D,, activation
energy Q, isotope effect E and activation volume AV. When the Arrhenius plot is curved,
we notice that D, and Q increase with T whereas E decreases; for example, for silver
self-diffusion, E decreases from 0.72 to 0.58 when T increases from 673 to 954°C. Any
of the three assumptions can explain these experimental data: the decrease with tempera-
ture of the isotope effect is obvious for the mixed vacancy—divacancy mechanism since
the correlation factor for the divacancy mechanism is smaller than for the vacancy
mechanism. As a result, since the contribution of the divacancies to the diffusion
increases with T, the apparent correlation factor and then the isotope effect will decrease.
But this variation of E with T can also be explained with the two other assumptions.
Likewise the variation of D, and Q with T is compatible with all three hypothesis. The
variations of AV with P and T have not been frequently studied; in the case of silver AV
increases with T, but remains constant for gold and aluminium. The increase with T has
been interpreted as resulting from an increase of the divacancy contribution at high
temperatures (REIN and MEHRER [1982]).

However, measurements of defect properties after quenching can only be understood
if vacancies and divacancies are present (PETERSON [1978]); in addition, the analysis of
tracer and NMR data on self-diffusion in sodium seems also to favour the mixed
vacancy—divacancy mechanism (BRUNGER et al. [1980]). Although these two statements
are not very general a consensus does exist in favour of the mixed vacancy—divacancy
mechanism. Thus, in general when the Arrhenius plots are curved the data are fitted by
assuming a two-defect mechanism; in addition a possible dependence of enthalpies and
entropies on temperature is sometimes taken into account (see for instance SEEGER and

References: p. 651.
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MEHRER [1970] or PETERSON [1978]). Nevertheless the discussion is still open, since
divacancies might also be formed during the quench, and the role of divacancies is
among the “Unsolved Problems” for some experts (MUNDY [1992]).

In hcp metals the limited number of available data is compatible with a slight
decrease of the ratio of the activation energies of the diffusion parallel to perpendicular
to the ¢ axis with increasing ¢/a ratio, the activation energies being the same in the ideal
lattice (Hoob [1993]).

3.2. Diffusion in bce metals

Self-diffusion in bcc metals presents three characteristics which do not comply with
the previous picture. At first there is a much larger scatter of the diffusivity in bcc metals
than in the compact phases, and some of them display an unusually large absolute value
of D (fig. 9b); second, they frequently exhibit much larger curvatures than the fcc or hep
systems, much to large to be accounted for by a divacancy contribution; last they show
a systematic variation of D with the position in the classification which has to be
explained, e.g. metals of the same column, like Ti, Zr, Hf in the group 4, have for all of
them a very small activation energy and a large curvature (fig 9b). Many explanations
have been proposed in order to account for these anomalies: strong contribution of short-
circuits, presence of extrinsic vacancies due to impurities, interstitial mechanisms, etc.
All these assumptions have been ruled out by experiments. The very origin of this
behaviour is now recognized to be linked to the electronic structure of the metal and to
the structural properties of the bce lattice.

At first the diffusion mechanism is now proved by quasi elastic neutron scattering
experiments, to be the vacancy one with nearest-neighbour jumps, either in sodium (AIT
SALEM et al. [1979]) or in B-Ti (PETRY et al. [1991]). A small fraction of N.N.N. jumps
could also contribute, the fraction being independent of temperature. The same mechan-
ism very likely is also at work in other bcc metals.

The key point now is the recognition that the bce structure is intrinsically soft with
respect to some specific shear deformations; moreover this intrinsic softness can be
enhanced (as in B-Ti) or lowered (as in Cr) according to specific features of the
electronic structure controlled by the number of d electrons (HO et al. [1983, 1984]). This
softness is the very origin of the numerous martensitic phase transformations observed
between bce and hep or @ phases, under ambient or high pressure in several of the
metals displaying a range of stability in the bcc structure. It is also manifested by the
presence in the phonon dispersion curves of a whole branch of soft phonons at large
wave vector, from the longitudinal q=2/3[111] to the q=1/2[110] phonons. These
phonons are precisely the ones which control most efficiently both the jump of the
vacancy and the martensitic bcc to hep phase transformation (1/2 [110]) or to @ phase
(273 [111]). Being of low frequency, they contribute to large fluctuations of the reaction
coordinate and therefore give rise to a small migration enthalpy as well as to high
diffusion coefficients (see § 1.4.2.2 and eq. (52-53)) (HERZIG and KOHLER [1987], PETRY
et al. [1991]). Using experimental dispersion curves, in the framework of the dynamical
theory, it is possible to calculate migration enthalpies in good agreement with the
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experimental values (SCHOBER et al. [1992]). In this respect the 1/2[110] phonon is twice
as efficient as the 2/3[111] one to promote the jump (WILLAIME [1991]).

Moreover, using inelastic neutron diffraction methods, the 1/2[110] phonon has been
shown to be strongly anharmonic and to soften as temperature decreases in the “most
curved” metals (Ti, Zr and Hf) (PETRY and col. [1991]). In this approach the curvature
of the Arrhenius plots also can be qualitatively explained, as well as the decrease of the
isotopic effect with decreasing temperature (from 0.285 at 916°C to 0.411 at 1727°C in
Zr), in contrast with the data of isotope effects in self-diffusion in other structures.

In this picture the whole of the effect appears to be due to the migration term, being
small and T-dependent. However we can also expect that these soft phonons will be
linked with large relaxations around the vacancy, corresponding to specific features also
for the formation contribution in bce metals. Indeed it is recognized (SCHULTZ [1991],
SCHOBER et al. [1992]) that in this respect Cr displays an anomalously large formation
enthalpy and Ti an anomalously small one. In Cr the 1/2[110] phonon softens with
increasing temperature. Since the diffusion activation enthalpy appears to be a constant
in the whole temperature range, the formation enthalpy should then increase with T
according to the preceding analysis (SCHOBER et al. [1992]). The analysis of the
electronic structure of bee metals indeed allows for a systematic variation of the vacancy
properties with the number of d electrons: due to the presence of a quasi-band gap in the
band structure for a number of electrons of 4, and a maximum around 2, the above
mentioned variations of formation terms can be understood (WILLAIME and NASTAR
[1994]).

Negative activation volumes have been found for §-Ce and &-Pu, pointing possibly to
an interstitial diffusion mechanism resulting from specific electronic structure effects
(CornNET [1971]).

In alkali metals the migration enthalpy is very low, of the order of one tenth of the
formation part (SCHULTZ [1991]). The calculated vacancy formation enthalpy also forms
a very important part of the experimental activation enthalpy, or is even greater than it.
An interpretation in term of a Zener ring mechanism (see § 1.1.1), has been recently
proposed (SEEGER [1993]).

3.3. Prediction of the self-diffusion coefficients

There are three possible ways to predict the diffusion coefficients:
— by theoretical calculations;
— by simulation (see § 1.5.)
-- by empirical laws.

3.3.1. Theoretical calculations of D

Using one of the theories given in paragraph 1.4 and 1.5, the calculation of the
enthalpies and entropies of formation and migration of the defect involved in the
diffusion mechanism allows the determination of the diffusion coefficient. The techniques
used in this type of calculation are beyond the scope of this review and we refer the

References: p. 651.
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reader to the general references at the end of this chapter and to specialized treatises, for
instance GERL and LANNOO [1978] (see also ch. 18 by WOLLENBERGER).

3.3.2. Empirical relations

Empirical relations are numerous, and we only present the most important;

— The Zener formula (ZENER [1951]). This has been established for interstitial
solutions and therefore deals only with migration. The idea is that the migration free
enthalpy is due to the elastic work required to strain the lattice so that the interstitial can
jump. The relation has been empirically extended to self-diffusion. This expression
relates the entropy of diffusion AS to the activation energy Q via Young’s modulus (or
shear modulus):

As = 2P2
Ty

where A is a constant which depends on the lattice (A =0.55 for fcc and 1 for bec);
B =-d (u/py)/d(T/Ty,), where p is Young’s modulus (or shear modulus) and u, the
value of w at 0 K; T, is the melting temperature. The review by LAZARUS [1960] shows
that there is a pretty good agreement between experimental and calculated values of AS.

— The Varotsos formula (VAROTSOS [1978], VAROTSOS and ALEXOPOULOS [1986]).
This is based on the idea that the free enthalpy of diffusion has the form AG=CB{),
where C is a constant which depends on the lattice, B is the bulk modulus (the inverse
of the compressibility y) and ) the atomic volume. Thus for cubic materials:

D= azyexp(—@) p=l__y®
kT X av
The agreement with experimental data seems fairly good.

— Other empirical relations. These include the Van Liempt relation: Q=32 Ty (at
present one prefers Q=34 T,); the Nachirieb relation: Q=16.5 L,, (at present one
prefers Q=15.2 L), L, is the latent heat of melting; finally the Keyes relation:
AV =4xQ, where AV is the activation volume.

4. Self- and solute-diffusion in dilute alloys

This section recalls the expressions of the tracer diffusion coefficients, correlation
factors, and phenomenological coefficients L;’s as functions of the atomic jump
frequencies in the frame of standard models which are today widely accepted as good
descriptions of impurity effect in diffusion studies. The two methods which have been
currently used in the past to establish the expression of the L;’s are also briefly
reviewed. Finally, it is recalled how to determine the atomic jump frequencies starting
from the experimental determination of various macroscopic quantities, together with the
difficulties usually encountered.

The first part of this section deals with the substitutional alloys for which the vacancy
mechanism is expected to be dominant. A short second part deals with the interstitial
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dumbbell mechanism in substitutional alloys, since this case is encountered in irradiation
experiments. The third part deals with those alloys which do not meet the requirements
of a “normal” diffusion behaviour and in which the solute diffusivity is often much
larger than the solvent diffusivity.

4.1. Vacancy diffusion in dilute A-B alloys

4.1.1. Standard models for bec and fce alloys

In the fcc lattice, the difference between the first and second neighbour distances is
large enough to allow us to ignore the interaction between a solute atom and a vacancy
beyond the nearest-neighbour distance. The same dissociative jump frequency w, is
therefore attributed to the three possible dissociative jumps (fig. 10) which separate a
vacancy from a neighbouring solute atom; w, is the frequency of the reverse jump. w,
stands for the solute-vacancy exchange and w, for the vacancy jump around the solute
atom which does not break the solute-vacancy complex. w, is a jump not affected by the
solute atom. Detailed balancing implies that:

w,/w; = exp(-Ez/kT)

where E; is the binding energy of the vacancy-solute pair (Ep is negative for an
attractive binding). This is the so-called “five-frequency model”.

All the physical quantities which will be compared to experimental diffusion data in
dilute alloys are functions of only three independent ratios of these five jump fre-
quencies, namely w,/w,, w,/w, and w,/w,.

In the bece lattice, conversely, the second-neighbour distance is close to the first-
neighbour distance and the solute-vacancy interaction energy is not negligible at the
second-neighbour distance. Four distinct dissociative frequencies are defined for a
vacancy escaping from the first-neighbour shell (w;, w; and w;’) and from the second-
neighbour shell (w;). The frequencies of the reverse jumps are w,, w;, w; and w,,
respectively (fig. 11). The solute-vacancy exchange frequency is w,. If we denote the
interaction energies at the first- and second-neighbour distances by E;, and Eg,,
respectively, detailed balancing requires that:

wi/W, = w/w} = exp(~Ey,/KT)
we/ws = exp(~Ep,/kT)
WeW,/Wswy = Wy /W)

The calculation of tracer diffusion coefficients has never been performed with the
whole set of frequencies. Simplifying assumptions have always been made to reduce the
large number of unknown parameters.

—MODELI assumes that w; = w” = wg=w,. These equalities imply in tums w; = w;" and
w,Ws=w,w,. All the physical quantities which will be compared to experimental data
can be expressed as function of wy/w, and w,/w; only.

— MODEL II restricts the interaction to first neighbour distances and assumes that
w;=w; =w, and ws=ws=w, These equalities imply w,=w,;=w,". The physical
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Fig. 10. Standard five-frequency model for solute diffusion in fcc lattices by a vacancy mechanism. The
encircled figures denote more and more distant shells of neighbours around the solute atom (solid circle).

quantities which are to be compared with the experimental data are function of w,/w, and
w,/w, only.

4.1.2. Kinetic expressions of the phenomenological coefficients L, ,, L3, Ly,

and Ly,

The purpose of the calculation is to express these coefficients as functions of the
jump frequencies, the solute and vacancy concentrations, and the various interaction
energies between the species. Two methods have been used so far.

4,1.2.1. Kinetic theory. In this theory, also-called pair association method, the
stationary fluxes J,, J; and J are calculated in the presence of a constant electric field
E, which biases the jump frequencies of the vacancy. The bias can take two distinct
values, ¢, and &g, according to the chemical nature of the atom which exchanges with
the vacancy. Hence:

wy =wy(ltey),  wi=w(l+e,) fori=2

where the superscript + stands for a jump fequency in the direction of the electric field
(+) or in the reverse direction (). It can be shown that £, and gy are proportional to the
thermodynamic forces Z, ¢E and Z; ¢E, respectively, which act upon the species A and
B. The final kinetic expressions of the fluxes are then compared with the
phenomenological expressions in order to deduce the L;’s.

For an fcc lattice, the calculation has been carried out at first order in Cy and to an
increasing degree of accuracy by including more and more distant shells from the solute
(HowARD and LiDIARD [1963], MANNING [1968], BOCQUET [1974]). For a bec lattice
the calculation has been published in the frame of the two approximations quoted above
(SERRUYS and BREBEC [1982b]). For both structures, the common form of the results is
the following:
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Fig. 11. Standard model for solute diffusion in bee lattices by a vacancy mecharism.

nD,,(0)
=—A"(1+p,C
a4 f,kT (1+5,C5)
nC.D..(0
Ly =Ly = BkTB()G
nCyD;.(0)
Lo = kT

where n is the number of lattice sites per unit volume; D,. (0) and Dg. (0) are the
solvent and solute tracer diffusion coefficients in pure A (C;=0); G is the vacancy wind
term L ,5/Lgg Which accounts for the coupling between J, and Jy through the vacancy
flux J,,. Tables 3 and 4 summarize the expressions of D,. (0), Dg. (0), b, and G for both
structures. A comprehensive series of papers by FRANKLIN and LIDIARD [1983, 1984],
and LIDIARD [1985, 1986] gives a full account of a synthetic reformulation for this
method.

The function F, always smaller than unity, is a correction to the escape frequency w,
or w, which accounts for that fraction of the vacancies which finally returns in the
neighbourhood of a tracer atom: the same function appears in the expression of the
correlation factor and in the phenomenological coefficients for all the models where the
solute vacancy interaction is restricted to a first neighbour distance (fcc model and bcc
mode) II). More functions appear in the other case (bcc model I). The accuracy in the
calculation of these functions increases with the size of the matrix used for the random
walk calculation of the defect. The first evaluations (MANNING [1964]) have been
recently revised by integral methods (KOIWA and ISHIOKA [1983]). In the same way, the
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Table 3
Theoretical expressions of various quantities entering the phenomenological coefficients in an fec lattice
(f,=0.78145)

D,. = 25*C,w,f., D,.(0) = 25%C, %;— Wofy!
u=w,/w, v=wi/w, w=w,/wy;

DA‘(CB) = DA‘(O)(I + blCB);
fo =2+ TFV)/(2 +2u + TFv);

X
b, = —34+16§i+1(4—'+14xz);
v

[i] V]
G (Bv-2)+(T-TFp(Yyw -1}
- 1+ 3.5Fy ’

14(1 = F)(1= w)[3v = 2+ (1 + u + 35v)(w = 1)] + (w/v)(3v - 2)*
1+u+35Fy
10w* +1803122w + 924.3303w? + 1338.0577w
2w +40.1478w’ +2533w? + 595.9725w + 4352839

b, =-19+w(4/v +14) -

.
b

F=7-

C. is the vacancy concentration in pure A; s is the jump distance.

expression of the linear enhancement factor for self-diffusion b, contains coefficients X,
X, and X, for the fcc lattice and X, X,, X; and X, for the bce one: these coefficients are
functions of the partial correlation factors for the different solvent jump types in the
vicinity of an impurity; they reduce identically to f, when all the jumps frequencies are
equal, that is, for the case of self-diffusion. They have been numerically tabulated for the
fcc lattice (HOWARD and MANNING [1967]) as well as for the bec lattice (LE CLAIRE
[1970b], JonEs and LE CLAIRE [1972]). Defining a larger number of solvent jump types,
revised and more accurate values have been obtained recently (IsHiokA and Korwa
[1984]).

4.1.2.2. Linear response method. In the linear response method, a time-dependent
(but spatially uniform) external field E(t) is applied to the alloy and instantaneous values
of the fluxes J,, J5 and Jy are calculated. It is shown that the calculation of the L;’s
reduces to the solution, by a Green’s function method, of closely related random-walk
problems in the unperturbed (E=0) state of the system. This general formalism has been
adapted for the first time to mass transport in solids (ALLNATT [1965]): all the possible
trajectories of the vacancy around the tracer atom are automatically taken into account
and not only those contained in a few coordination shells, as was done in the pair
association method.

The formalism has been illustrated by an application to various cubic structures
(ALLNATT [1981], OxaMURA and ALLNATT [1983a]) and has confirmed (and
generalised) the results previously obtained by the kinetic method, namely the general
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Table 4
Theoretical expressions of various quantities entering the phenomenological coefficients in a bec lattice
(£,=0.72714)

4 4 , W) TFw;
D,.(0) = = s*C,w, Dy {0) = =s°Cow, —* =—31 _
A( ) 3 ofo s( ) 3 sCw, W, 5 T 2w, + TFw,

DA‘(CB) = DA'(O)(l + blcn)

Quantity Expression
Model I Model II
u wy/ Wy wy/ W,
v wy/ Wi wy/ Wy
6X 8X 6X, +8X.
b, _3g4 1t T _age oty
0 0
, 8% 18X, , 6%+ 18X,
% %
F, =2 +2F,(u-2)u-1)
+3F, (3u+3.096)
F (u- 1)2
: u +0.8082
F u+0.1713
! u +0.8082
p w2 rE-1) 2471 -F)(u-1)
7F 4, 7Fu
F, +2F v S1\
b Ta6u-22- ~15 + l4u|1-(1 - P 22
A o 2v+TF T (-5 u
put-10-F@ -1y
@v+TPu
TF 2u?+5.175u +2.466 31> +33.43u° +97.384 + 66.06
u +0.8082 u? +8.68u°% +18.35u +9.433

forms for the phenomenological coefficients, and the number of distinct functions F to
be used (ALLNATT and OKAMURA [1984]). Finally, the equivalence between the kinetic
and linear response methods has been demonstrated by LIDIARD [1987], and ALLNATT
and LipIARD [1987a]: the former theory focusses on the jumps of a given chemical
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species when paired to the defect which causes its migration and is well suited to dilute
alloys where such pairs can be easily defined; the latter follows the path of a given
species by separating it into a direct part when in contact with a defect, and a correlated
part where the immobile species waits for the return of the defect. It is more general and
can be applied to concentrated alloys (see below § 5).

4.,1.3. Experimentally accessible quantities

We restrict ourselves to the experiments which are commonly used to deduce the
vacancy jump frequencies at the root of the models for bee and fec lattices.

The measurements performed on pure solvent A consist in determining:

— the solvent and solute tracer diffusivities D,. (0) and Dg. (0);

— the isotope effect for solute diffusion, f; AKy. The AKjy factor must be evaluated in
some way to extract fy. Several theories have tried to determine AKj as a function of the
ratio my/mg where my and m, are the masses of the solute and of the solvent respectively
(AcHAR [1970], FEIT [1972]): but they apparently do not fit with the experiments
performed in lithium (MUNDY and McFaLL [1973]).

The measurements of alloying effects are performed on dilute A-B alloys and
comparison is made with the same quantities determined in pure A, in order to extract
the slope of the linear resulting variation. These measurements usually determine:

— The linear enhancement factor b, for solvent tracer diffusion D,. (C;), defined by

D,.(C5) = D,.(0)(1 + b,Cy).

Tables 3 and 4 give the expressions for the enhancement factor b, which contain the
coefficients X, X, and X, for the fcc lattice and X, X,, X;and X, already defined above.

The solute diffusion coefficient Dy, also varies linearly with the solute concentra-
tion, according to:

D,.(Cy) = Dy (0)(1 + BC,).

The expression of B, has been calculated only in the frame of simplified models which
do not take into account the solvent partial correlation factors in the presence of solute
pairs. But it introduces additional frequencies of the vacancy in the vicinity of two solute
atoms (which were not necessary for b,) as well as the binding energy between solute
atoms. A thorough overview has been presented recently on this point (LE CLAIRE
[1993]). It is experimentally observed that b, and B, often have the same sign and are
roughly of equal magnitude whenever the diffusion mechanism is the same for A" and B
in the alloy (it is not true in Pb-based alloys, § 4.2.2). This means physically that the
preponderant effect of the solute is to increase (or decrease if b,, is negative) the total
vacancy concentration, which affects solvent and solute diffusivity roughly to the same
extent.

— The linear enhancement factors by and by for the shift of inert markers and solvent
tracer markers in an electric field. If we denote the rates of these shifts by V,, and V.,
by and by are defined according to:
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Vi (Cs) = V(01 +b4Cs),  Vau(Cs) = Viu(0)1 + b,C)

b, and b; have been calculated as functions of the vacancy jump frequencies (DOAN
(1972]; BocQuEer [1973]; DoaN and BoCQUET [1975]; LIMOGE [1976a)) and are given
by:

Z, D (0)
Z, D,.(0)

D,.(0)
b, =b, +f, 2~
M A Q DA.(O)li

Z

b, =b, +1+f,G .
T A 6 zZ

(1+G)+G]

— The vacancy wind term G=L,z/Ly; can be measured from the solute enrichment or
depletion in the neighbourhood of a sink (ANTHONY [1971, 1975]) or by combining
tracer diffusion experiments with Kirkendall shift measurements in differential couples
A+ A—-B (HEUMANN [1979]; HosHINO et al. [1981a]; HAGENSCHULTE and HEUMANN
[1989]).

4.14. Determination of vacancy jump frequencies

Jump frequencies depend on the interatomic potential which should, in principle, be
deduced from ab-initio calculations. Unfortunately an accurate knowledge of these
potentials is far from being currently acquired, except for particular systems, and one
usually proceeds differently. Jump frequencies are instead fitted to the experimental
results.

As already mentioned, diffusion data yield only three jump frequency ratios for an fcc
lattice and only two for a bcc one; thus only three independent measurements are
required in the former case and two in the latter. Any additional result is highly desirable
and is used to check the consistency of the experiments. If this consistency cannot be
maintained in view of a new result, this may mean that one (or more) experimental
results are not worthy of confidence or that the model does not correctly represent the
experimental system.

All the dilute alloys of fcc structure, for which we know the jump frequency ratios,
are displayed in table 5. Whenever the number of experiments is equal to three, one
reference only is quoted. When the experimental data are redundant, several references
are given. The error bars on the final values of these ratios are large: at least 50% for the
best cases, up to an order of magnitude for the worst. We have to keep in mind that any
ratio which departs too much from unity (say less than 107 or larger than 10%) may be
an indication that the weak perturbation assumption at the root of the model is violated
in the alloy under consideration. A similar table of jump frequency ratios has been
published elsewhere (HERZIG et al. [1982]). For bce alloys, similar tables can be found
in fairly recent reviews (LE CLAIRE [1978], AGARWALA [1984]).

The search for the frequency ratios is not always straightforward, as can be seen from
the following examples:

— Al-Cu: the value of the self-diffusion coefficient is still today highly controversial. At
585 K it is measured or evaluated to be 1.66 10 m%s (FRADIN and ROWLAND [1967]),
3.03 107 m¥s (SEEGER et al. [1971]), 3.66 107 m*/s (BEYELER and ADDA [1968)), 3.73
1073 m¥s (LuNDY and MURDOCK [1962]) and 4.51 107" m?/s (PETERSON and ROTHMAN
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Table 5
Jump frequency ratios for dilute fcc alloys.
Alloy T(K) Dg/Dye S b, by G Ref. wy/w, wi/w,  w,/w,
Ag-Cd 1060 3.8 0.4} 4 c 2.6 0.3 0.85
1133 3.28 0.71 9.2 b 0.49 0.07 0.52
1153 3.18 6.5 -12 a 0.5 0.07 0.46
1197 2.96 0.62 13.7 b 1.7 0.8 1.7
Ag-In 1064 5.7 0.35 17.5 c 4.7 0.7 1.9
Ag-Sn 1043 5.8 0.46 15.6 c 1.8 0.2 1.1
Ag-Zn 1010 4.1 0.52 12.6 d 1.53 0.27 1.15
1153 3.9 0.57 12.7 d 1.54 0.39 1.30
1153 39 12.7 6 a 1.20 0.26 1.12
Au-In 1075 8.6 0.26 71 e 212 45 5.5
1175 7.5 0.26 49 e 40 73 42
Au-Sn 1059 16.4 0.16 130 e NO SOLUTION
16.4 0.16 73 f 1.5 1.2 6.3
1129 12.93 73 -0.5 n 312 42 7.1
Au-Zn 1058 6.2 0.15 24 e 942 85 29
1117 57 0.15 23 e 973 85 2.6
Cu-Au 1133 1.15 0.9 8.1 g 0.2 0.1 0.6
Cu-Cd 1076 10.2 35 -0.7 h 0.1 1 3
1076 10.2 022 35 h 7.6 0.6 2.8
Cu—Co 1133 0.81 0.85 0 g 2 42 1.2
1133 0.81 0.88 0 g 0.3 0.4 0.76
Cu-Fe 1293 1.1 0.8 -5 i 04 0.09 03
Cu-In 1005 133 42 -0.71 j 18 0.5 3
1089 11.4 43 -0.57 j 11 1 4
1089 12 0.07 43 e 33 0.8 3.2
Cu-Mn 1199 4.2 0.36 5 ¢ 34 0.35 0.95
Cu-Ni 1273 036 -5 0.07 k 0.2 1 1
1273 0.36 -53 0.12 1 027 0.42 0.53
Cu-Sb 1005  24.1 79 -1.2 i 15 0.40 5
Cu-Sn 1014 15.5 40 ~-1.06 J 13 0.2 2
1014 17 0.15 40 e 7.5 0.14 1.7
1089 13.6 48 -0.84 j 7 0.33 3
1089 14.1 0.15 48 e 11 05 33
Cu-Zn 1168 3.56 0.47 7.3 m 25 0.5 1.2
1168 33 8 -0.22 k 3 0.5 1
1220 34 0.47 8.8 m 3.6 0.9 1.5

* DOAN and BOCQUET [1975]; ® BHARATI and SINHA [1977]; © HERZIG et al. [1982]; ¢ ROTHMAN and PETERSON
[1967); ° HiLGepIECK [1981]; ' REINHOLD ef al. [1980]; * ECkSELER and HERZIG [1978); " HOSHINO ef al.
[1981b]; | BocQuET [1972]; ! HOSHING et al, [1982]); * HIRANO [1981]; | DAMKOHLER and HEUMANN [1982];
™ PETERSON and ROTHMAN {1971]; " HAGENSCHULTE and HEUMANN [1989].
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[1970]). Using ANTHONY'’s result, which establishes that no detectable solute redistribu-
tion occurs in the neighbourhood of a vacancy sink, very different values of G=L,g/Ly,
are deduced according to the value which is retained for the self-diffusion coefficient. It
is easy to check that one obtains G=-0.4; — 0.01; + 0.203; + 0.226, and + 0.43, respective-
ly. The jump frequency ratios which stem from such scattered values of G are highly
different of course; in addition they do not fit with the measurement of inert marker
shifts in dilute alloys (LIMOGE [1976a]).

Finally, according to SEEGER et al. [1971], 40% of the total diffusivity at 858 K is

due to divacancies. This fact cannot be ignored any longer, and a revised version of the
atomic model should be presented to take properly into account the contribution of the
divacancies to diffusion and electromigration.
— Au-Sn: the extracted value for b, is sometimes very sensitive to the way chosen for the
fitting whenever D,.(Cg) exhibits a pronounced curvature. A rough fitting extracts a
value which is not compatible with the other data and does not allow to deduce the jump
frequency ratios (HERZIG and HEUMANN [1972]); a more careful fitting gives reasonable
values (REINHOLD et al. [1980]). It must be noted however that the direct measurement
of the vacancy flow factor G at a slightly different temperature on dilute couples yields
noticeably different values (HAGENSCHULTE and HEUMANN {1989]): the departure from
the previous ones cannot be accounted for by the small temperature difference, or would
imply unusually high activation energies for these frequency ratios.

Although the partial correlation factors are not analytically known, it is possible to
check the internal consistency of the experimentally determined quantities in the frame
of a given diffusion mechanism. For instance, once the ratio Dg./D,. is known, a
constraint on the possible values for u,v and w is imposed, which in turn, restrains the
possible range for other quantities like b, or G. For instance, b, is kept to a minimum if
the vacancy spends most of its time in exchanging with the solute (u=w,/w, — o) and
keeping the exchanges with the solvent to the lowest possible value which is compatible
with the solute diffusion (v=w=0). Assuming that X, =f; and using the tabulated value
X, (u—> oo, v=w=0)=0.4682 yields (MILLER [1969]):

b = 18 + 1945 2"

A*

I the experimental value for this term is noticeably smaller, it means that the vacancy
mechanism alone cannot account for the diffusional behaviour of the system and that,
probably, other diffusion mechanisms must be looked for. A similar limitation has been
established for the bce structure, although no simple analytical formula is available (LE
CLAIRE [1983]). In the same spirit, it has been shown that the vacancy flow term G in
bee alloys ranges from —2 to a maximum value which depends on the same ratio
Dg./D,. and on the model (I or II) to be chosen (ILNMA et al. [1985]).

— Pb-Cd: self-diffusion in lead meets the usual requierements of normal diffusion. On the
other hand, the solute diffusivity is roughly 20 times larger than the solvent diffusivity:
this fact alone is not an indisputable proof that another mechanism is operating. MILLER
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{1969] poinied out that the linear enhancement factor b, exhibited a value which was
noticeably smaller than b}™. This is the reason why he proposed a new mechanism with
interstitial-vacancy pairs (§4.2.2).

Like the fcc alloys, there are several bec systems in which the b, factor is too small
to be compatible with the high value of the solute-to-solvent diffusivity ratio, namely Zr-
based alloys (Co, Cr, Fe), Ti-Co, Nb-Fe and U—Co. The isotope effect measurements,
when available in these systems (ABLITZER [1977]; ABLITZER and VIGNES [1978]), are
not compatible with the frequency ratios in the frame of a pure vacancy mechanism:
another mechanism resting on a dissociative model similar to MILLER’s one for Cd in Pb
is commonly thought to come into play.

4.1.5. Determination of the solute-vacancy binding energy

The only relevant quantity for determining the binding energy Ep of the
solute~vacancy complex is the ratio w,/w,, which cannot be deduced from the knowledge
of wy/w,, wy/w, and w,/w,.

DIRkES and HEUMANN [1982] worked out a simple procedure for simulating the
vacancy trajectory around the solute and proposed to extract from this trajectory the
desired quantity. It is true that the only knowledge of the ratios w,/w,, wy/w, and w,/w,
is sufficient to determine, at each step of a Monte Carlo simulation, the direction of the
most probable next jump. But these authors used an incorrect definition of the vacancy
concentration on a first neighbour site of the solute. This concentration is not related to
the number of times that the vacancy was located on a first-neighbour site of the solute,
but rather to the time the vacancy actually spent on this site.

This definition needs the knowledge of the mean residence time of the vacancy on
each site (that is, the inverse of the total escape frequency from this site). It is easily
checked that the fraction of the total time which has been spent on a first-neighbour site
involves one more independent frequency ratio w,/w, (BOCQUET {1983a]). Moreover, the
assumption w,+4w,+7w;=12w, which is invoked here and there in the diffusion
literature for the fcc alloys has no physical justification and is totally arbitrary.

Diffusion experiments by themselves are not sufficient to determine this binding
energy. Experiments of another kind must be added: for instance a direct determination
of the total vacancy concentration in a dilute alloy, by comparing the macroscopic
thermal expansion and the increase in lattice parameter as already done for Al-Ag and
Al-Mg (BEAMAN et al. [1964]; BEAMAN and BALLUFFI [1965]).

4.2. Dumb-bell interstitial diffusion in dilute A-B alloys

The self-interstitial atom in a compact structure is too large to content itself with an
octahedral or tetrahedral position as smaller solute atoms do; it minimizes the distortion
of the surrounding lattice by sharing a lattice site with a neighbouring atom and making
up a dumb-bell-shaped defect denoted by I, , aligned along <100> (<110>) direction in
a fce (bee) structure. The migration mechanism involves a translation to a first neighbour
site combined to a rotation of its dissociation axis (see chap. 18). The diffusion coeffi-
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cient of a substitutional solute atom has been calculated with this mechanism at work for
bee and fee lattices, under the assumption that it can be incorporated into the defect
under the form of a mixed dumb-bell I,; which does not possess necessarily the same
symmetry (BoCcQUET [1983b, 1991]); the phenomenological coefficients have been
calculated for the fcc lattice by the kinetic method (ALLNATT et al. [1983]) as well as by
the linear response one (OKAMURA and ALLNATT [1986], CHATURVEDI and ALLNATT
[1992], SINGH and CHATURVEDI [1993]). But these models cannot be checked experi-
mentally as thoroughly as in the vacancy case, since the frequencies cannot be deter-
mined by a clever combination of diffusion experiments; the interstitial defects are
necessarily produced by irradiating the solid, and their contribution to diffusion is
intricately linked with that of thermal and irradiation-produced vacancies.

4.3. A-B alloys with a high solute diffusivity

4.3.1. Purely interstitial solutes

Light elements like H, C, N, O are known to dissolve interstitially in many bcc and
fcc metals. No theoretical criterion has yet been found to predict with confidence the
localization of the interstitial atom in the host lattice. In many bcc metals C, O and N are
believed to be located on octahedral sites; but dual-occupancy models
(octahedral + tetrahedral position) have been invoked to account for the upward curvature
of their Arrhenius plot at high temperatures (FARRARO and McLELLAN [1979]). For the
case of hydrogen, a simple empirical rule has been proposed (SOMENKOV and SHIL’ STEIN
[1979]): H dissolves in the tetrahedral position in all the host metals which have an
atomic radius larger than 0.137 nm (Sc, Ti, Y, Zr, Nb, La, Hf, Ta, W) and in the
octahedral position for the others (Cr, Mn, Ni, Pd). Vanadium is the link between the
two groups and is believed to have a dual occupancy. In Fe, H is expected to be located
in octahedral sites although no clear experimental proof has ever been given. The
insertion into the host lattice is accompanied by a (generally) large distortion of the
surroundings, which can give rise to Snoek-type or Gorsky-type relaxations (§ 2.2).

Although in an interstitial location, the solute atom is believed to interact with
vacancies of the host; the diffusivity and the phenomenological coefficients have been
calculated with the linear response method (OKAMURA and ALLNATT [1983b]).

The diffusivity of such interstitials in metals has been measured over orders of
magnitude by complementary techniques (relaxation methods, tracers, out-gassing, etc...).
The Arrhenius plot is straight or exhibits a small curvature at high temperatures. This
curvature has been tentatively explained by different models (FARRARO and MCLELLAN
[1979]), either a single mechanism with a temperature-dependent activation energy or
several mechanisms (or defects) acting in parallel.

For very light interstitials like hydrogen and its isotopes, or the positive muon w”,
quantum effects play a significant role at low temperatures. Several regimes are expected
to be observed in the following order with increasing temperature (STONEHAM [1979];
Kenr [1978]):

(1) coherent tunneling, the interstitial propagates through the lattice like a free electron;
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(ii) incoherent (or phonon-assisted) tunneling, the ground state levels of an occupied and
an unoccupied interstitial site have different energies; the tunneling process requires the
assistance of phonons which help to equalize the levels of neighbouring sites;

(iii) classical regime, the jumping atom receives from the lattice the amount of energy
which is required to overcome the potential barrier of the saddlepoint configuration;
(iv) high-temperature regime, the residence time on a site is comparable to the time of
flight between two neighbouring sites.

The second and third regimes have been observed in many systems. Whether coherent
tunneling can actually be observed in real systems or not is still controversial (STONEHAM
[1979]; GRAF et al. [1980]).

Let us mention the reversed isotope effect which is observed in fcc metals at low
temperatures: tritium is found to diffuse faster than deuterium, which diffuses faster than
hydrogen. Several models have been proposed to account for this anomaly (TEICHLER
[1979]; KAUR and PRAKASH [1982]). See also ch. 18, § 3.3.2.7 for the interaction of self-
interstitials with solute atoms.

4.3.2. Complex diffusion mechanisms

The most widely studied case is that of dilute Pb-based alloys.

In lead, several solute atoms (Cu, Ag, Au, Pd, Ni, Zr) diffuse from 10° to 10° times
faster than the solvent tracer. Other elements (Na, Bi, Sn, T1) diffuse roughly at the same
rate. A third group (Cd, Hg) diffuses at rates between the two extremes. It is well
established that these properties are in no way related to any short-circuit diffusion path
and that they reflect a bulk property. We already mentioned in §4.1.4 why a pure
vacancy mechanism should be rejected for cadmium diffusion in lead.

The high value of the diffusivities led many investigators in the past to think in terms
of an interstitial-like diffusion mechanism; it can be shown however, by particular
examples, that a purely interstitial mechanism would not yield a value of the linear
enhancement factor b, consistent with experiment. This is why many authors proposed
more complex mechanisms involving interstitial-vacancy complexes, interstitial clusters,
and today the consensus is roughly as follows:

- very fast diffusers dissolve partly as substitutionals and partly as interstitials in lead.
The total diffusivity is therefore the sum of both contributions; pairs made up of an
interstitial solute and a host vacancy are expected to play a dominant role; the
phenomenological coefficients L;; have been calculated for this mechanism (HUNTLEY
[1974], OkAMURA and ALLNATT [1984]);

— multidefects (interstitial solute atoms sharing one substitutional lattice site) are
necessary to account for the diversity of experimental results, especially for the signs and
the orders of magnitude of the linear enhancement coefficients b, and B, (WARBURTON
[1975], KusuNOKI et al. [1981]), as well as for the low value of the isotope effect
measurements;

— solute atoms which diffuse roughly as fast as the solvent dissolve presumably as
substitutionals (except Sn: DECKER et al. [1977]);

A general and detailed atomic model including all these defects is still lacking, apart
from an attempt by VANFLEET [1980]. The reader is referred to an extensive review by
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WARBURTON and TURNBULL [1975].

Lead is not a unique case however, since similar problems arise in other polyvalent
metals like Sn, In or Tl (WARBURTON and TURNBULL [1975]; LE CLAIRE [1978]), in the
«-phase of Zr, Ti and Hf (Hoop [1993], NakaJiMa and Koiwa [1993], KOPPERS et al.
[1993]), in bee metals like Nb (ABLITZER [1977]; SERRUYS and BREBEC [1982a]), and for
rare-gas diffusion (He) in fcc metals like Au, Ni, Al (WiLsoN and Bisson [19737;
MEL:US and WILSON [1980]; SCHILLING [1981]). The interaction energy between the
smaller solutes and the intrinsic point defects of the host, namely the vacancy one, is
believed to be high (above 1 eV); this feature, when combined with a very low solubility
in the host, can lead to behaviours, which have puzzled the experimentalists for long.
The general interpretation (KOPPERS er al. [1993]) distinguishes three different tempera-
ture ranges: in the first (high-temperature) one, the native intrinsic vacancies are more
numerous than those trapped by the impurity atoms, and the self-diffusion is normal; at
intermediate temperatures (second range), the extrinsic vacancies trapped by the impurity
atoms become dominant, and the apparent activation energy for self-diffusion is markedly
decreased; at the lower temperatures (third range) where the impurity atoms precipitate
into clusters, the number of trapping sites is reduced to such an extent that the intrinsic
defects play again the dominant role. It ensues an unusual downward curvature of the
Arrhenius plot over the low and intermediate temperature ranges. Depending on the ratio
of the melting temperature to the -8 transformation temperature, the interaction
energies between impurity and vacancies and between impurities themselves, not all the
three regimes are automatically observed. In a-Zr, which has been for long the arche-
type, the (practically unavoidable) Fe impurity has been found to give rise to the regimes
2 and 3 with the downward curvature observed for self- as well as solute-diffusion; the
determining experiments have been carried out only recently since ultra-high purity Zr
was not available before (HooD [1993]). For a-Hf, only regimes 1 and 2 are observed,
but the impurity which is responsible of the upward curvature is not yet identified
(KOPPERS et al. [1993]). At last for «-Ti, the impurity is believed to be oxygen which is
easily incorporated into this highly reactive metal (NAKAJIMA and Koiwa [1993}).

5. Diffusion in concentrated alloys

We shall restrict ourselves to binary alloys. The first two sections are devoted to the
diffusion of A* and B* tracer atoms in homogeneous disordered and ordered alloys. The
third section will deal with chemical diffusion, that is, diffusion in the presence of
chemical gradients.

5.1. Diffusion of A* and B* tracers in homogeneous disordered alloys

5.1.1. Experimental results

Diffusion measurements in concentrated binary alloys are legion, but only few alloys
have been investigated throughout the whole composition range: Ag—Au (MALLARD et al.
[1963]), Au-Ni (KURTZ et al. {1955]; REYNOLDS et al. [1957]), Co-Ni (MILLION and
KuUcera {1969, 1971], HIRANO et al. [1962]); Cu-Ni (MONMA et al. [1964]), Fe-Ni
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(CapLAIN and CHAMBRON [1977], MILLION et al. [1981]), Fe-Pd (FILLON and CALAIS
[1977]), Ge-Si (McVAY and DUCHARME [1974]), Nb-Ti (GIBBS et al. [1963]; PONTAU
and LAZARUS [1979)), Pb-T1 (RESING and NACHTRIEB [1961}). For Fe-Ni, the diffusion
has been studied both through a magnetic relaxation method which yields apparent values
for the formation and migration energies of the vacancy and by tracers.

Two general trends can be outlined:
— The same kind of empirical correlation as for self-diffusion in pure metals are observed
between the preexponential factors D, and the activation energy Q, or between Q and the
melting temperature T,, of the alloy.
— The diffusion coefficients D, and Dg for a given temperature and composition do
not differ by more than one order of magnitude. When they do, it might be an indication
that the diffusion mechanism for the two tracers is not the same (Ge~Si or Pb—TI). Some
cases still offer matter for controversy, like Ge—Si alloys (PIKE et al. [1974]). For brevity,
DA? and Dj? will be denoted by D,. and Dy, in what follows.

5.1.2. Manning’s random alloy model

In this model, the simplest which can be thought of, the alloy is assumed to be
random and the vacancy exchanges at rate w, with A atoms, and wg with B atoms,
whatever the detailed atomic configuration of the local surroundings (fig. 12). The most
important finding lies in the fact that the vacancy no longer follows a random walk; its
successive jumps are correlated and a vacancy correlation factor f, smaller than unity
shows up in the final expressions (MANNING [1968], [1971]):

_ 2 . 2 —
DA“‘(B‘) - M CVfA(B)wA(B) DV = /\s fVW

where f,=(C,w,f, + Cgwpfp)/f; and =M/ (M, +2) is the correlation factor for self-
diffusion, w=C,w, + Cywy, and finally, f, 5 =Mf, W/ (Mf, W+2w,4) for A(B).

Consistent expressions of the phenomenological coefficients L; have been established
in this frame:

kT M,D’
c,Cc.D,..D
L = L — 2 A~ B™A* *B‘
an = T = ST TM, D
L, = "Celax (|, 2CaDy
kT M,D

where n is the average number of sites per unit volume, and D is the average
CaD,« + CgDge. At last it can be easily shown that the vacancy wind corrections showing
up in the expressions of the intrinsic diffusivities [see egs. (17)] are given by:
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Fig. 12. Manning’s random alloy model.
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The L;’s are not independent since they are functions of D,. and Dy. only; they obey the
relationship:

12
L, = folLu * L) (1 Lol f(f)LMLBB} _1

2(1 + fO) f:(LAA + LBE)2

The same expressions have been later recovered following two different routes:

i) in a formal derivation resting on two macroscopic assumptions related to the
invariance of the functional relationship between mobility and flux between the pure
substance and the average alloy (LIDIARD [1986]);

ii) in a mean-field treatment of the diffusion problem, resting on the adoption of a
preliminary consistency equation over the diffusivities, namely:

C,D,. +C,D,. =£,C,D,

the right-hand side of the above equality being nothing but the tracer self-diffusivity in
the average alloy (BocQuer [1987]).

Manning’s approximation appeared fascinating and very appealing since the only
independent quantities are the easily accessible tracer diffusivities. It has been the object
of very numerous Monte Carlo simulations, which can take into account the detailed
occupancy of the sites surrounding the vacancy and can check the accuracy of the
approximation. These simulations essentially show that the approximation is indeed
quantitatively excellent over the whole concentration range, as long as the disparity
between the jump frequencies is not too large, say 10° < W,/ W < 10° (BOCQUET [1973],
DE BRUIN ef al. [1975], [1977], ALLNATT and ALLNATT [1984]). An analytical more
sophisticated method for the self-consistent decoupling of the kinetic equations has been
worked out and yields the same conclusion (HOLDSWORTH and ELLIOTT [1986],
ALLNATT [1991]). Even in dilute alloys, the approximation turns out to be satisfactory

References: p. 651,



598 J. L. Bocquet, G. Brebec, Y. Limoge Ch.7, 85

for all quantities but the linear enhancement factor b, (ALLNATT and LiDIARD [1987b]).

In the same spirit, the same kind of approximation has been worked out for the
dumbbell interstitial mechanism in random two-frequency alloys on fcc and bec lattices.
Although no simple analytical expressions can be established for the tracer diffusivities
(BOCQUET [1986]), a similar functional dependence of the L;’s versus the D;.’s as above
can be proposed after replacing f, by the product fyu, (BOCQUET [1987]), where u, is the
ratio of the tracer average squared jump length to that of the defect. u,=1/2 for fcc
structures and 7/15 for bee ones (BOCQUET [1983b, 1991]). The numerical simulations
show a good agreement only in special cases for the fcc lattice, and a disagreement for
all the cases investigated in the bcc lattice (BOcQUET [1990b]): the reason for these
discrepancies has not been elucidated so far, in spite of a recent treatment involving the
more sophisticated linear response method (CHATURVEDI and ALLNATT [1994]).

5.1.3. Atomic models for diffusion in non-random disordered alloy

The attempts to improve the alloy model beyond the random approximation and to
include the effect of short-range ordering on diffusion have historically followed two
different routes.

The first one consisted in extending the dilute alloy models by including more and
more solute clusters of increasing size together with the corresponding modifications of
the solute and solvent jump frequencies in their neighbourhood. This route turned out to
be not well fitted to this purpose, due to the rapidly increasing number of unknown
parameters which yielded intractable results, together with the intrinsic impossibility to
deal with cluster overlap (BOCQUET [1973]); only rough approximations can be proposed
by selecting a few solute clusters which are believed to have a dominant influence
(FaupeL and HeEHENkAMP [1987]). But this choice is totally arbitrary and physically
unjustified; as a consequence, this route has now been abandoned.

The second route, at the expense of some loss of accuracy, approximates the effect
of the local surroundings on the height of the potential barrier by using a small number
of pair interaction energies for the stable (E;) and the saddle-point (Eijf ) configurations.
The merit of such a description lies in the fact that it connects simply and consistently
the thermodynamics (reflected in the E;’s) and the kinetic behaviour of the alloy
(reflected in the Eijf’s). The model was used first to account for the kinetics of short-
range ordering in Ag-Au alloys (RADELAAR {1968, 1970]) and Fe-Ni alloys (CAPLAIN
and CHAMBRON [1977]). Later it was improved to take into account correlation effects
in short-range ordered alloys (STOLWIK [1981], ALLNATT and ALLNATT [1992]): the
analytical formula obtained for the tracer diffusivities and the associated correlation
factors are in fair agreement with Monte-Carlo simulations over a reasonably large range
of the thermodynamic parameter mastering the order, namely [2 E,p — (E,, + Egg)l/kT.
The agreement deteriorates to some extent for the lower temperatures where systematic
departures show up.

Independently from the search for better expressions of the D,.’s, a systematic
investigation of the phenomenological coefficients L;’s has been carried out numerically
by simulating non-random alloys using such pair energies; and the most intriguing result
of the last ten years is that the functional dependence of the Ly’s upon the D;’s
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established by Manning for random alloys is still preserved in non-random ones with a
fairly good quantitative agreement (MURCH [1982a, 1982b, 1982c}, ZHANG et al.
[1989a], ALLNATT and ALLNATT [1991]), except at the lower temperatures or dilute
concentrations; the latter restrictions are not a surprise, since they correspond to those
actual situations where the departure from randomness is expected to be the largest. The
basic reason for such an agreement is still not understood. Following previous tentative
papers (HEUMANN [1979]; DAYANANDA [1981]), an active research effort has recently
been undertaken to establish more general relationships between the L;’s and the various
diffusivities (tracer, chemical) (ALLNATT and LIDIARD [1987c], LIDIARD et al. [1990],
QN and MURCH [1993a)).

Before closing this section, the main limitations of such models in the present state
of the art must be recalled:

— they do not calculate D,. and Dy. but only the activation energies for diffusion Q,.
and Qg., with the correlation effects included in the best case. The preexponential factors
Dy, and Dy are not known and are arbitrary assumed to remain constant, since no model
is available which would account for their variations throughout the whole composition
range.

— they use pair energies and assume implicitly that the energy of the alloy can be
sumrned in this way, which is not always true (namely, transition metals). Even if
effective pair energies can be defined, the electronic theory of alloys must be used to
predict the variations of these pair energies as function of the composition on physically
grounded arguments for each specific alloy (DUCASTELLE [1978])).

~ finally, they cannot have any predictive power: while pair energies in the stable
position can be deduced from thermodynamic measurements, saddle-point pair energies
conversely can only be deduced from experiments involving diffusion jumps, that is,
from the diffusion experiments themselves.

5.2. Diffusion of A" and B’ tracers in ordered binary alloys

In the last ten years, intermetallics have been the object of intensive study for their
attractive practical properties: some of them are indeed characterized by a high melting
temperature, high elastic limit (see ch. 24), high resistance against corrosion and (or)
creep (LIU eral. [1992}). Before reviewing in more detail the different ordered structures,
some preliminary and general ideas should be recalled here.

Tae progress in the understanding of phase stability from ab initio calculations based
on the local density functional approximation (LDF) has allowed research people to
address very basic points, namely, the physical reasons leading a given alloy to adopt a
well-defined structure or symmetry. Such calculations are able to explain the reason why
Ti Al, is tetragonal (DO,,), while Ti; Al is hexagonal (DO,,) and Ti Al is cubic (L1,);
or why Ni, Al (L1,) exists whereas there is no corresponding close-packed phase for Ni
Al; (PETTIFOR [1992]). However, the problem of the point defects has not yet been
addressed.

The existence of the so-called constitutional (or structural) defects is probably
connected to the preceding point but has not yet received an unambiguous experimental
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confirmation as well as a firmly grounded theoretical explanation. Starting with the
simple case of the B2 structure as an illustration, the stoichiometric A-B alloy is
perfectly ordered at 0 K and the N, (Ny) atoms occupy the a (8)-sites. When the
temperature is raised, several kinds of defect are believed to appear:

— antistructure or substitutional defects: A atoms can occupy B-sites and are denoted A,,
their number is N,;, B atoms can occupy a-sites (B,, Ng,);

~ vacancies denoted by V, on a-sites and V, on B-sites. Depending on the atomic
interactions, the alloy will choose preferentially one type of defect or the other (or some
combination of the two). Up to this point, these defects have been introduced as a pure
manifestation of thermal excitation in a stoichiometric alloy.

However, for a non-stoichiometric alloy, one must think of the way to accommodate
the departure from stoichiometry. The same defects (antistructure atoms or vacancies)
have been also invoked; but in this case they are expected to be much more numerous
than in the thermal case, since their concentrations will be of the order of the
stoichiometry offset (up to several percent) and to survive even at O K unlike thermal
ones. The difficult point in looking at actual systems at finite temperatures is to decide
which part of the observed vacancies or antisite defects has a thermal origin and which
part has a structural one. The undisputable fingerprint of structural defects (their non-null
concentration at 0 K) is unfortunately very difficult to use practically: in many systems
indeed, high concentrations of vacancies (at room temperature and above) have un-
doubtedly been evidenced by a careful comparison between density and lattice parameter
measurements: but their apparent migration energy has often be found to be large, and
one cannot safely state that equilibrium properties rather than quenched-in defects ones
are measured. Phenomenological models like bond-breaking pictures (NEUMANN [1980],
KiM [1991]) or the Miedema “macroscopic atom” model (DE BOER et al. [1988]) using
rough expressions for configurational entropies cannot claim to be anything but guiding
approximations to decide which type of defect is most likely to appear. A rapidly
growing number of model defect calculations using semi-empirical potentials is presently
observed (CLERI and ROSATO [1993], REY-LOSADA et al. [1993]) but the approximations
involved are probably still too crude to solve this question. The problem requires
undoubtedly accurate ab initio calculations of ground-state energies, together with a
minimisation procedure which would allow charge transfers (KocH and KOENIG [1986]),
local relaxations as well as the settlement of an arbitrary vacancy concentration; such
calculations would tell us whether the ternary (A,B,V) is most stable in the investigated
lattice structure at low temperatures or whether a phase separation between ordered
phases of other symmetries (and, or) concentrations occurs. If the existence of these
structural vacancies can be theoretically proven, one must remember however that their
properties are in no way different from those of the so-called thermal ones although they
have received a different name. Indeed, the total vacancy concentration at finite
temperatures minimizes the free-energy of the alloy: but in the present case, the existence
of two sublattices and of suitable atomic interactions implies that the result of the
calculation is more sensitive to a small variation of the composition, than to a tempera-
ture change, unlike the case of the disordered alloy at the same concentration.

Tracer diffusion measurements are still performed and are still highly desirable, as a
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first insight into the transport mechanisms. Correlation factors have been calculated in
various structures and for various jump mechanisms (BAKKER [1979], ARITA ef al
[1989]1, WEILER et al. [1984], SZABO et al. [1991]). While isotope effects were measured
with the hope of determining the jump mechanism, it was shown later that, for B2
structures, such a measurement does not yield the correlation factor (ZHANG et al.
[1989b}); this is rather unfortunate since these (very difficult) experiments have been
performed only on alloys with this symmetry (PETERSON and ROTHMAN [1971],
HiLGEDIECK and HERZIG [1983]).

Spectroscopic methods like nuclear magnetic resonance (NMR), quasi-elastic Moss-
bauer line broadening (QEMLB) and quasi-elastic neutron scattering (QENS) appear
today as the best candidates to clarify the atomic diffusion mechanisms in ordered alloys;
NMR techniques measure the frequency (ies) of the diffusing species (TARCZON ef al.
[1988]), while QEMLB and QENS give besides access to the individual jump vectors
(see §2.2.2 and VOGL et al. [1992]). Although some intermediate modelling is still
necessary for the final interpretation, they yield the most confident information gained so
far. The most important result obtained up to now is that diffusion in ordered structures
seems to proceed simply via nearest-neighbour jumps of a vacancy defect. Finally, the
ability of the positron annihilation (PA) technique to measure vacancy concentration with
confidence is also being currently improved (BALOGH et al. [1992]).

The preceding point helps to solve old ill-formulated problems about the migration
mechanisms in ordered alloys. The 6—jump cycle was initially designed for transporting
atoms without altering the long-range order (McCoMBaIE and ELcock [1958], ELcock
[1959], HUNTINGTON ef al. [1961]): this condition is unnecessarily stringent since local
and thermally activated fluctuations of the long-range order (LRO) must necessarily
occur in a real system, the only requirement being the conservation of the average LRO
through detailed balancing: this remark has been the starting point of a new formalism
(Path Probability Method or PPM) for the evolution of cooperative systems (KIKUCHI
[1966]; SATO [1984]). The 6—jump cycle is thus not necessary. Moreover, it is also very
improbable: many computer simulations show that such cycles never go to completion
and are destroyed while underway by strongly correlated backward jumps (ARNHOLD
[1981]). In the same way, the triple defect has been introduced only for thermostatistical
reasons (large difference between vacancy formation energies on both lattices): but it was
implicitly thought that it should migrate as a whole, that is, without dissociating. This
unnecessary constraint has led previous investigators to imagine a mechanism of highly
concerted vacancy jumps (STOLWUK et al. [1980], VAN OMNEN and DE MIRANDA
[1981]), which has never been clearly evidenced neither experimentally nor theoretically.

At last, a growing body of practical knowledge has been gained through the use of
macroscopic measurements like chemical diffusivity (DAYANANDA [1992]), kinetics of
long range order recovery after irradiation or plastic deformation (CAHN [1992]), internal
friction (GHILARDUCCI and AHLERS [1983]), degradation of superconducting temperature
in A5 compounds (BAKKER [1993]): these experiments yield effective quantities which
are of importance for mastering the practical properties of these materials. But a detailed
atomistic model is still lacking which would link these effective energies to the usual
parameters deduced from tracer diffusion experiments.
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For sake of space, the reader will be referred to a recent compilation of experimental
results (WEVER [1992]).

5.2.1. Ordered alloys with B2 structure

The B2 structure has been more extensively studied than the others: it is made of two
interpenetrating simple cubic lattices, & and 8. Each a-site is surrounded by eight first-
neighbour B-sites and conversely. The existing alloys belong to two distinct groups:

(i) In the first group (AgCd, AgMg, AgZn, AuCd, AuZn, BeCu, BeNi, CuZn, NiZn)
the defects are mainly antistructure defects on both sublattices (A, and B,) the departure
from stoichiometry is compensated by Ag defects for A-rich alloys and B, defects for B-
rich alloys. The apparent formation energy Ey of thermal vacancies can be different on
the two sublattices.

(ii) In the second group (CoAl, FeAl, NiAl, PdAl, CoGa, NiGa, PdIn), for which
will denote the sublattice of the transition metal A, maintenance of equal @ and 8 site
numbers allows formation of paired defects only (Ag +B, or V, +V,). If V;; costs more
energy than A, +V,, then V, +V; converts into the triple defect A, +2V,. Symmetrically,
if B, costs more than 2V, (mainly due to size effects), then B, + A; converts also into
the same triple defect. The departure from stoichiometry is therefore compensated in two
different ways: for an A-rich alloy the major defect is Ag; for a B-rich alloy, the major
defect is V,. In the latter case, very high structural vacancy concentrations on one
sublattice are expected and (indeed) experimentally observed (up to 10% in CoGa on the
gallium-rich side). All the theoretical calculations performed so far (e.g., EDELIN [1979])
are based on a zeroth-order treatment (BRAGG and WILLIAMS [1934]); not withstanding
their crudeness, they account qualitatively well for all the presently known experimental
situations, provided reasonable values of the adjustable pair energies E; are chosen.

A first and simple explanation has been proposed to account for the fact that a
particular alloy belongs to the first or to the second group (NEUMANN [1980]). Using a
crude bond-breaking picture, this author shows that the number of substitutional defects
is dominant whenever the mixing enthalpy AH; is (algebraically) higher than —0.3
eV/atom; the number of triple defects is dominant otherwise. It is very gratifying to
ascertain that this correlation is very well obeyed. The existence of structural defects
(namely in CoGa) has been however questioned recently on the basis of a similar model
(Kim [1991]): but the controversy rests entirely on the relative values of the bond
energies, which are nothing but phenomenological parameters and which cannot be
extracted from experimental quantities by undisputable procedures.

In a growing number of experimental systems, a combination of lattice parameter and
sample length measurements (SIMMONS and BALLUFFI's technique; ch. 18, §2.2.2.2)
yields the total vacancy concentration increase between a reference state at room
temperature and the high temperature state: (CoGa: VAN OMNEN and DE MIRANDA
[1981]; AlFe: Ho and DopD [1978], Paris and LESBATS [1978]; GaNi: Ho et al. [1977],
CoSc and InPd: WAEGEMAEKERS [1990]). The concentration of vacancies for the
reference state is determined by a density measurement at room temperature. PA
techniques have also been used, which confirm the previous determinations. But the
concentration of anti-site defects is usually not directly reachable through spectroscopic
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methods; only an indirect determination of their number is possible if such defects can
be associated with some macroscopically measurable quantity. As an example, from the
measurement of the quenched-in magnetisation of a Co—Ga alloy, the number of antisite
atoms Cog,, which are the only Co atoms to be surrounded by like neighbours and, as
such, are assumed to be the only ones to bear a magnetic moment, is indeed found equal
to half of the number of vacancies. This beautiful result points strongly in favor of the
very existence of the triple defect in this alloy (Lo Cascio [1992]).

Other experimental techniques are necessary in order to gain a sharper insight into the
defect populations on each sublattice. First results have been obtained through positron
annihilation in CuZn (CHABIK and ROZENFELD [1981]) or direct observation in a field
ion microscope in AlFe (PARIS and LESBATS [1975]); but extracting meaningful values
from the raw data requires a delicate analysis of positron trapping at vacancies for the
first technique, and a careful analysis of image contrast for the second.

5.2.1.1, Experimental results. Most of the experiments measured the tracer
diffusion coefficients D,. and Dg. as a function of temperature and composition. The
reader is referred to a recent compilation for the detailed results and references (WEVER
[1992]]. Without entering into details, the following trends can be outlined:

— At constant composition, the activation energy for diffusion is higher in the ordered
than in the disordered phase (when it exists). There is a break of the Arrhenius plot at
the critical temperature T, of ordering, and a large fraction of the increase in activation
energy is due to correlation effects. In the ordered phase, the Arrhenius plot is often
more or less curved (KUPER et al. [1956]). Simple models show that the migration and
formation energies (Ey, E;) of the vacancy and, therefore, the total activation energy Q,
exhibit a quadratic dependence upon the long-range order parameter S (GIRIFALCO [1964]):

Ey = Ep(l+2,8*) Ep = E)1+a,8*) and Q= Q{1+ ,S%)

The experiments are not entirely conclusive however:

— In CuZn, the diffusion coefficients of Cu® and Zn" tracers (KUPER et al. [1956]) have
been plotted logarithmically as function of (1+apS?)/T (GIRIFALCO [1964]). The
Arrhenius plot is a straight line only if the theoretical values Sgy, of the long-range order
parameter (BW stands for Bragg and Williams) are arbitrarily replaced by the experimen-
tal values S,,, which have been determined by X-ray measurements. It has been checked
however that S, is not well accounted for by a Bragg-Williams approximation and that
a more sophisticated treatment including short-range order (SRO) must be used instead
(CowLEY [1950]). An interesting observation is that SCZ‘leey is equal to Sy, at the same
temperature: therefore the quadratic dependence of Q upon Seip can be interpreted as a
linear dependence of Q on Sy as well. The last difficulty lies in the fact that, as already
mentioned above, most of the change in the activation energy comes from the tempera-
ture dependence of the correlation factor, which is not included in Girifalco’s analysis.
— In AlFe alloys, the migration energy of the vacancies which have been retained by
quenching varies roughly as S? (RIVIERE and GRILHE [1974]). But it is clear from the
data that the results, within the error bars, can as well be accounted for by a linear law.
— In CoFe alloys, the observation of a Portevin—Le Chatelier effect is related to vacancy

References: p. 651.



604 J. L. Bocquet, G. Brebec, Y. Limoge Ch.7,85

migration and the effective migration energy varies quadratically over a large range of
S extending from 0.1 to 0.9 (DINHUT et al. [1976]).
— At constant temperature, the diffusion coefficients vary with composition and exhibit
a minimum at stoichiometry (or in the close neighbourhood of stoichiometry). This
minimum is more or less pronounced (V-shaped curve for AgMg or AINi) and corre-
sponds to a maximum of the activation energy. The existence of this maximum is
understandable, since the formation and migration energies of the vacancy are both
increasing functions of the long-range order parameter which goes through a maximum
at stoichiometry. D,. and Dy, differ by no more than a factor of two or three for the
alloys in which the defects are predominantly of substitutional type (AgMg, AuCd,
AuZn).
~ For alloys belonging to group ii), a marked asymmetry between hypo-and-hyper
stoichiometric compositions is exhibited: very high vacancy contents show up which
correspond to an excess of B component (Ga in NiGa and CoGa; Al in FeAl or CoAl).
The difference between D,. and Dg. is more pronounced than above for the alloys
{between one and two orders of magnitude).The apparent vacancy formation energy is
usually low (typically 0.4 eV per vacancy), and a minimum shows up at stoichiometry.
An effective migration energy can also be determined by following the kinetics of
thermal equilibration through the macroscopic length of the sample: the previous analysis
of NiGa and CoGa in terms of two diffusion mechanisms (nearest-neighbour plus next-
nearest-neighbour jumps: VAN OMNEN and DE MIRANDA [1981]) has been recently
revisited: with the only assumption that the departure from the equilibrium value of the
vacancy concentration follows a first order kinetics, it turns out that a simple vacancy
mechanism with NN jumps only can account fairly well for the observed kinetics
(WAEGEMAEKERS [1990]). A puzzling result however is that the sum of the effective
formation and migration enthalpies is approximately equal to the activation energies for
tracer diffusion in NiGa, but significantly lower in the case of CoGa,

5.2.1.2. Atomic mechanisms for diffusion in ordered B, alloys. Several atomic
mechanisms have been proposed: nearest-neighbour (NN) or next-nearest-neighbour
(NNN) jumps. The triple-defect (TD) has been unnecessarily assumed to migrate as a
whole and the migration of the divacancy 2V, was supposed to occur through a
correlated sequence of NN vacancy jumps with species A and NNN vacancy jumps with
B. The direct determination of jump vectors has been performed only very recently on
FeAl alloys. The most probable path for Fe diffusion consists of sequences of two
consecutive NN jumps, implying a transitory residence on a 8-site and resulting in the
net displacements along <110>, <100> and <111> depicted on figure 13a (SEPIOL and
VoGL [1993Db]).

5.2.2. Ordered alloys with L1, structure

The L1, structure of the A;B compound is such that the B component occupies one
of the four sc lattices which make up the host fcc lattice: each B atom has twelve
nearest-neighbour A atoms, whereas each A atom has four unlike neighbours and eight
like ones. Due to this last property, it is commonly believed that A should diffuse
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Fig. 13. Observed jump mechanisms for ordered alloys by QEMLB: (a) B2 structure with a — b — a jump
sequences; (b) DO; structure withe & 8,0 & ¥, 8 & S and y & & jumps; (c) B8 structure with (oi) &> (dti)
jumps.

markedly faster than B species: it has been experimentally checked only recently on
Ni;Ge where Ni (as well as Fe or Co tracer) diffusivity is indeed found to be one order
of magnitude larger than Ge diffusivity (YASUDA et al. [1993]). Direct measurements of
vacancy concentrations in Ni;Al suggest that mainly antistructure atoms accommodate the
departure from stoichiometry (AOKI and Izumr [1975]): model calculations with the
embedded atom method (EAM) agree with this picture and predict low vacancy concen-
trations on both sublattices, with a marked preference for the sublattice of the major
component (FOILES and DAw [1987]; XIE and FARKAS [1994]); the same results are
suggested by EAM calculations for Cu;Au (JOHNSON and BROWN [1992]). It is worth
noticing that Ni Al is the only alloy in which the vibrational entropy has been measured
in the ordered and disordered phase (ANTHONY et al. [1993]): the reduction in entropy
when passing to the ordered phase is equal to 0.3 k; per atom. In Co,Ti alloys, on the
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Ti-poor side, the diffusivity of Co tracer increases with approaching stoichiometry and
the isotope effect, which can be shown to equal f AK in L1, structures (ITO ef al. [1990]),
is small (ITOH et al. [1989]).

5.2.3. Ordered alloys with L1, structure

The L1, compound AB is such that the (001) planes of the host fcc lattice are
alternately filled with A and B atoms. In TiAl alloys, the diffusion of Ti tracer complies
the empirical rules of normal diffusion in compact structures (KROLL et al. [1993]) and
no structural vacancies are expected from PA measurements on either side of the
stoichiometric composition (SHIRAI et al. [1992]).

5.2.4. Ordered alloys with DO, structure

The DO, structure for this A,B compound can be viewed as the occupancy by B
atoms (Al, Si, Sn, Sb) of a fcc lattice (named B), the parameter of which is twice that of
the host bce lattice; the others sites belong to three other fcc lattices with the same lattice
parameter (e, ¥, 8) which are occupied by A atoms (Fe, Ni, Cu, Ag). A, and A; have 4
A, +4B, as first neighbours, while A, and B, have 4A, +4A; (fig. 13b). As a conse-
quence, B atoms have only unlike nearest neighbours. The major component has
generally the larger diffusivity which increases with increasing the concentration of the
minor component: Cu,Sn (PRINZ and WEvVER [1980], ARrITA et al. [1991]); Cu,Sb
(HEUMANN et al. [1970]), Ni,Sb (HeumManNN and STUER [1966]). QEMLB in
stoichiometric Fe,Si (SEpioL and VOGL [1993a]) and QENS in Ni, .Sb,,, (SEPIOL ef al.
[1994]) indicate that the transition metal (Fe, Ni) atoms diffuse by NN jumps between
«, v and & sublattices; the departure from stoichiometry for Fe,,, Si,_, is accommodated
by antisite Fe; which are shown to participate also strongly to diffusion. PA measure-
ments in Fe,  Al,_, cannot separate Vg from V, and gives an apparent vacancy
formation energy of 1.2 eV (SCHAEFER et al. [1990]): structural vacancies are not
expected from the data.

5.2.5. Ordered alloys with B8 structure

The B8 structure for this AB compound is made of a compressed hcp lattice for the
B component (In, Sn, Sb, As, Ge) with a ¢/a ratio of the order of 1.3; the A component
(Ni) occupies either the octahedral interstices (o0i) or the doubly tetrahedral ones (dti).
Antistructure atoms Nij, are however believed in Niln. The large number of (oi) + (dti)
sites allows the compounds to accommodate a significant positive departure of Ni atoms
from stoichiometry, while still maintaining high concentrations of vacancies on the (oi)
sites as large as several percent, even for Ni-rich alloys. The Ni* diffusivity is roughly
10? times that of Sb* (HAHNEL et al. [1986]) or Sn* (SCHMIDT et al. [1992a, 1992b)).
The determination of Ni jump vectors in NiSb compounds shows that Ni atoms jumps
essentially from (oi) to (dti) sites, the vacancies on (oi) sites being crucial for allowing
easy (dti) to (oi) backward jumps (fig 13c). Direct (0i—oi) or (dti—dti) jumps are excluded
(VoGL et al. [1993]).
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5.2.6. Ordered alloys with B3, structure

The B3, structure for this AB compound is made of two interpenetrating diamond
lattices. Only two ordered alloys have been investigated so far, namely 8-Li-Al and 8-Li-
In. Structural vacancies V; and antisite Li,, (or Lij,) are believed to be the dominant
defects, both defects coexisting at stoichiometry with noticeable concentrations. Li
diffusion studied by NMR relaxation exhibits an activation energy of the order of one
tenth of an eV and a diffusion coefficient in the range 10°-10”" cm?™ at room tempera-
ture. A significant interaction is found between the immobile Li,, or Li,, antisite atom
and the vacancy on the Li sublattice (attraction for the first, repulsion for the second).
(TARCZON et al. [1988], TOKUHIRO et al. [1989]).

5.2.7. Ordered alloys with A1S structure

The A15 structure for this A;B compound is made of a bee lattice for B atoms (Ga,
Sn, Au, Si), together with a split interstitial A-A (A=Nb, V, Cr) dissociated along
<100>, <010> and <001> directions in the faces (001), (100) and (010) of the elementary
cubic cell, respectively. When bringing together the cubic cells, the split interstitials
make up linear chains along the corresponding directions. The only alloy in which both
diffusivities have been measured is V,Ga: the activation energy of the transition element
is high (4.3 eV), and Ga, which is found to diffuse in grain-boundaries with an unex-
pectedly high activation energy, is probably the slowest component in bulk diffusion
(BAKKER [1984]). Superconductivity occurs along the chains of the transition metal; the
thermal disorder, which is believed to be mainly antistructural by analogy with Nb,Sn
(WELCH et al. [1984]), can be retained by quenching from higher temperatures: it
degrades the superconducting transition temperature T, in a reversible way, since a
subsequent annealing restores the original value. A simple model relates the drop of T,
to the amount of antistructural defects (the vacancies, which are necessary for atomic
transport, are neglected) (FAHNLE [1982]]. An apparent formation energy of 0.65 eV for
antisite defects is deduced from the variation of T, with the quenching temperature (VAN
WINKEL et al. [1984]). The healing kinetics of T,, attributed to vacancy bulk migration,
is dominated by the slowest bulk diffusivity of Ga atoms: it has been measured at
different temperatures with an apparent migration energy of 2.2 eV; however one is left
with the contradiction that Ga is the slowest component with the lower activation energy
(VAN WINKEL and BAKKER [1985]). Further studies on these compounds are currently
in progress (Lo CaSCIO et al. [1992]).

5.3. Chemical diffusion

When diffusion takes place in a region of the sample where the chemical gradients
cannot be ignored, the diffusion coefficients of the various components are no longer
constant, as in homogeneous alloys, but depend on space and time through the composi-
tion.

In what follows, we examine the case of chemical diffusion and the Kirkendall effect
in binary alloys. The reader is referred to more extensive reviews for the case of multi-
phase and multi-component systems (ADpDA and PHILIBERT [1966], KIRKALDY and

References: p. 651.



608 J. L. Bocquet, G. Brebec, Y. Limoge Ch. 7, §5

Young [1987}). The interdiffusion of two elements having different partial molar
volumes implies a volume change of the sample which must be taken into account for an
accurate measurement of chemical diffusivities (BALLUFFI [19601). The change of the
average atomic volume in neighbouring parts of the sample induces however the birth
and the development of stresses, which are usually partially released by some amount of
plastic deformation. The inclusion of such effects in the analysis of Kirkendall effects
started only recently and is currently under progress (STEPHENSON [1988]; SzABO et al.
[1993}); they will be ignored in what follows.

5.3.1. Chemical diffusion in binary systems and Kirkendall effect

5.3.1.1. Description and interpretation of a typical experiment. The simplest
diffusion experiment to carry out consists in clamping together two pieces of pure metals
A and B, to anneal this couple long enough and to determine, at the end of the run, the
concentration profile all along the sample. What is observed is a spreading of the initially
step-like profile together with a shift of the initial welding interface (defined by inert
markers such as oxide particles or tungsten wires) with respect to the ends of the couple
which have not been affected by the diffusion (fig. 14). This shift results from the
Kirkendall effect and finds its origin in the fact that the diffusivities D, and Dy are not
equal. Indeed, if D, is larger than Dy, species A penetrates into B at a faster rate than B
into A: as a consequence, the B-rich part of the sample must increase its volume to
accommodate the net positive inward flux of matter. This increase will be achieved at the
expense of the A-rich part by shifting the interface towards A. This observation was
reported for the first time by SMIGELK S and KIRKENDALL [1947] on copper—zinc alloys:
the zinc is the faster diffuser and the welding interface (called Kirkendall plane) shifts
towards the zinc-rich side of the couple. This experiment was a milestone in the history
of solid-state diffusion: it definitely ruled out the assumption of a direct exchange A <> B
mechanism which was formerly proposed and which would have implied equal diffusivi-
ties for both species.

It must be noted that a Kirkendall effect has also been observed in fluids: it is
expected indeed to be very general, since the first convincing interpretation of the
phenomenon is not based on any detailed mechanism for matter transport (DARKEN
[1948]).

The simultaneous measurements of the displacement rate v of the Kirkendall plane
and of the chemical diffusivity D in that plane yield the intrinsic diffusion coefficients
D, and Dy for the composition of the Kirkendall plane. In order to know D, and D; at
several concentrations, one should prepare the corresponding number of differential
couples, which are made of two alloys with different compositions. In fact it can be
shown that a single experiment is needed, provided that a complete set of inert markers
has been inserted on both sides of the welding interface (CORNET and CALAIS [1972]).

In what follows we suppose that the observed effect is unidirectional, and that only
one space coordinate x is needed, in conjunction with the time variable t, to describe the
evolution of the system. The transformation x/ \/t— —A in Fick’s second Law shows that
the solution C(x,t) can be expressed as a one-variable function C(A). We know from



Ch.7, §5 Diffusion in metals and alloys 609

?e(x) DA> DB

1 .

A : B
° 3 T
s (X) ¥k Ax
1 i
o s x

Fig. 14. Kirkendall effect experiment with a diffusion couple made of two pure metals A and B.

experiment that the Kirkendall plane has a constant concentration during the diffusion
anneal, and accordingly that it is characterized by a constant value of A. As a conse-
quence, the Kirkendall shift Ax varies as \/t— ; Do exception to this simple law has ever
been reported.

A similar behaviour has also been observed for any inert marker which is not located
in the Kirkendall plane at t=0; after a time lag, the duration of which depends on the
distance from the Kirkendall plane, the inert marker starts moving with the same time
law (LEVASSEUR and PRHILIBERT [1967]; MoNTY [1972]).

Up to now no atomic mechanism for matter transport has been mentioned; but if we
know it, something more can be said about the Kirkendall plane.

We suppose in the following that the vacancy mechanism is operating. In all the
experiments performed so far, the inert markers are invariably made of materials which
have a high melting temperature. The formation and migration energies of the vacancy
in such materials are significantly larger than in the surrounding matrix. As a conse-
quence, the markers are impermeable to the vacancy flux. Under this condition, it can be
shown that such a marker shifts along with the lattice planes (KRIvOGLAZ [1969]),
whatever the type of its interface with the matrix (coherent or incoherent). Thus the
measurement of the Kirkendall shift is nothing but the measurement of the lattice plane
shift.

The above formalism can be easily enlarged to account for the case in which the
average atomic volume varies with the concentration of the alloy (BALLUFFI [1960]).

5.3.1.2. Vacancy wind effect — Manning’s approximation. In the original formula-
tion of the Kirkendall effect, the flux J, of species A stems only from the chemical
potential gradient Vi, of species A (DARKEN [1948]).

At infinite dilution, the solid solution becomes ideal (¢ = 1) and the intrinsic diffusion
coefficient D, must tend towards the tracer diffusion coefficient D,, . Hence:

Dy =Dy - ¢, Dy = Dy, - ¢.

These relationships are known as Darken’s equations; we know however, from the
thermodynamics of irreversible processes, that the off-diagonal term cannot be neglected.
More general expressions can be established [see egs. (6)]:
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There is no simple way to relate theoretically the L;’s to experimentally accessible
quantities such as tracer (or intrinsic) diffusion coefficients. This has been done only in
the particular case of a simplified random-alloy model (MANNING [1968]) for which
¢ =1. These expressions are arbitrary assumed to hold even for a non-random alloy
where the thermodynamic factor ¢ is no longer unity. Hence the final expressions for the
intrinsic diffusivities are still given by eqs. (17) with the random values of the vacancy
wind corrections r, and ry recalled in § 5.1.2. Hence:

C,Co(Dy — Dy.)’
M,D"(C,Dy. +C5D,.)

D=(C,Dy + CBDA.){I +2

The last term in the brackets is called a vacancy wind term since it reflects the coupling
between the transport of species A and B through the vacancy flux. We note that
Manning’s equations predict a chemical diffusion coefficient D always larger than that
given by Darken’s equations. The match of both sets of equations with experimental
results will be reviewed in the following section.

Before closing this section, a last remark should be made concerning the structure of
Darken’s or Manning’s expressions: in both sets of equations the thermodynamic factor
¢ enters in a multiplicative way. In some cases the variations of ¢ with the respect to
concentration or temperature may outweigh the variations of other factors. This situation
can be met accidentally as in Au-80 at % Ni (REYNOLDS et al. [1975]) but is also
expected to happen in well-defined situations: for any alloy which tends to unmix at low
temperatures, ¢ goes through zero at the top of the coexistence curve at some critical
temperature T,. It is easy to show that the maximum of the coexistence curve is such that
the second derivative of the molar free energy, df/dCy, vanishes. A short derivation
yields:

d* kT (l+dlogyA] kT

act ¢\ Taege, ) cc,

where vy, is the activity coefficient of species A.

A convincing illustration of a vanishing D has been reported for Nb-34 at % H

(VOLKL and ALEFELD [1978]). At critical temperature T, the Arrhenius plot of D bends
downwards and D falls several orders of magnitude, whereas the Arrhenius plot of the
hydrogen tracer diffusion exhibits a normal behaviour. This phenomenon is called critical
slowing down; the top of the coexistence curve is the very point where the alloy hesitates
between two conflicting forms of behaviour:
— high-temperature behaviour where all the concentration fluctuations flatten out (D > 0);
— low-temperature behaviour where the concentration fluctuations of large wave-lengths
are amplified (D <0) in order to allow the system to decompose into two phases of
different compositions (spinodal decomposition).
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5.3.1.3. Experimental check of vacancy wind effect. Let us recall first that accurate
measurements are difficult: in many cases the Kirkendall shift is of the same order of
magnitude as the diameter of the inert markers; cavities are often observed on the side
of the faster diffusing species, indicating a local vacancy supersaturation; the thermody-
namic factor is not known better than within 5-10 percent (ELDRIDGE and KOMAREK
[1964]). The departure of the actual experimental conditions from the theoretical
assumptions (vacancies everywhere at thermal equilibrium, purely unidirectional fluxes,
etc.) probably induce further errors of unknown magnitude.

Only a few systems have been explicitly studied to compare Manning’s and Darken’s
formulations, namely: AgAu (MEYER [1969], DALLWITZ [1972], MoNTY [1972], AgCd
(ButrYMOWICZ and MANNING [1978], IORIO et al. [1973], AINi (SHANAR and SEIGLE
[1978], AuCu (HEUMANN and ROTTWINKEL [1978], CuZn (SCHMATZ et al. [1966], TiVa
(CARLSON [1976]). Without entering into great detail, two general trends can be extracted
from these studies:

— In most cases, Manning’s vacancy wind correction to Darken’s expressions for D,
and Dy improves the agreement of the experimentally measured values of the Kirkendall
shift Ax and of the ratio D,/Dy with the corresponding calculated quantities. “Calculated”
means that D, and Dy, are evaluated by plugging the experimental values of D, ., Dy, and
@ into Manning’s or Darken’s equations.

— However, whereas the ratio D,/Dy is fairly well accounted for, the individual values
of D, and Dy are often larger than the calculated ones (by a factor of two in the case of
AuCu!) and the experimental Kirkendall shift has also a tendency to be larger than the
theoretical one. (Except for AINi, where D, is smaller than D, for both models.)

The reason for the discrepancy is not yet clearly understood. As pointed out by
CARLSON [1978], Manning’s correction to Darken’s expressions holds only for a random
alloy, a condition which is never fulfilled in real systems. But, as outlined above,
Manning’s approximation is quantitatively reasonable even in the non-random case; the
problem of the experimental accuracy should be clarified first.

5.3.2. Ternary alloys

The expressions of the three matter fluxes I, J,, J; in the lattice reference frame
introduce nine independent phenomenological coefficients (or intrinsic diffusion
coefficients if the chemical potentials gradients are expressed as concentration gradients).
Neglecting the vacancy concentration C, against the matter concentrations C,, C, and C;
and eliminating one of the concentrations (say C;) yields flux expressions with only six
independent new coefficients. Expressing at last, the three fluxes in the laboratory
reference frame, together with the condition J 2410 +10=0 we are finally left with only
four independent chemical diffusion coefficients D}, D3, D), D, the superscript ‘3’
recalling that C, is the dependent concentration and is evaluated through C;=1-C,—-C,
and the tilde (~) recalling that interdiffusion coefficients are determined (BOCQUET
[1990a]). A beautiful analytical approach has been worked out on simplified systems,
where the above diffusion coefficients are assumed to be concentration independent, a
condition which holds in practice whenever the terminal concentrations of the diffusion
couples are close to one another (differential couples). This analysis enlightens all the
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characteristic features to be encountered in the practical studies of ternaries, namely, the
existence of maxima in the concentration—penetration curves, the possible occurrence of
zero-flux planes, together with the general properties of diffusion paths (THOMPSON and
MORRAL [1986]). The extension to concentration dependent diffusivities can be made
straightforwardly with the help of numerical methods.

6. Electro- and thermomigration

At temperatures where diffusion is noticeable, atoms of a pure metal, or of an alloy,
are caused to drift by a gradient of electric potential or temperature. We saw (§4.1.2)
that this phenomenon, also called the Soret effect in the case of thermal gradients, has
been used to study phenomenological coefficients. It has also been used practically to
purify some refractory metals. Last, but not least, it is a way to study the electronic
structure of point defects (vacancies, impurity atoms) at high temperatures and its
variation during a jump. Careful reviews of all aspects of electromigration can be found
in VERBRUGGEN [1988] and Ho and Kwok [1989].

6.1. Thermodynamic aspects

Starting with the equations (1)~(5) in §1.2.2,, if J, and J, are the electron and the
heat flux, respectively, we define (Doan [1971]) the valency and the heat of transport

by:
" J . J
2= (—] and g, = [—") an
JA Jg=E=0 JA Jp=VT=0

The effective valence Z, and the reduced heat of transport Q, introduced in § 1.2.2.
are then given by:

Z,=z,-z4 and Q, =g, —AH,, (72)

and the equivalent relations for the B component.

The form of Q, is due to the effect of the temperature gradient on the vacancies. It
is derived under the hypothesis of a local equilibrium concentration of vacancies. It has
therefore no counterpart in the electric field case. Any deviation from this equilibrium

(see § 8) invalidates the comparison between microscopic evaluations of g* and experi-
mental Q*.

In self-diffusion, B stands for an isotope of A, so eqs. (1)—(5) give, in the case of
electromigration:
eE D,
Zn,
kT f,
where {, is the self-diffusion correlation factor. The thermomigration case is given by an
analogous equation, Q, and —VT/T replacing Z, and E.

Jyuw=-D.Vn,.+2Z,
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Such self-diffusion experiments then give access to the true values Z, and Q, .
For solute diffusion, one calculates easily (dropping the Vng, term):

eE} - « L . eE
Jy = ngDy. E[ZB +Z, ﬁ} =ZgnyDy, 7(.7

Measurements can then give access only to the apparent effective valence Z; (or heat
of transport Qg"). This value differs from the true one, Zj, by the vacancy wind term
Z, L,/Lap (MANNING [1968]). The ratio L,y/Lgy varies approximately from +2 to —2
and can then give a very large correction to Zg, especially in polyvalent solvents.
Equations (1)—~(5) are written in the lattice frame, and so are defined the Z}, andQ}
values. But if the fluxes are, for some reason, measured in another reference frame, they
give access to other values of coupling coefficients. For example in the laboratory frame,
one obtains:

eE * D. *
13=n,,o,,*;7—,[z; D—z*j

where the bracketed term defines the apparent effective valence in the fixed frame.

6.2. Microscopic analysis

Atoms in a metal under a gradient of potential or temperature are submitted to a force
which has a double origin. On one hand, one finds a static part called direct in the
electric case, or intrinsic in the thermal one. The direct force is due to the unscreened
action of the electric field on the true ionic charge [eq. (72), term z,] and the intrinsic
contribution corresponds to the enthalpy transfer due to an atomic jump (WIRTZ [1943],
BRINKMAN [1954], LE CLAIRE [1954]). In this approximation the heat of transportq,
[eq. (72)] is nothing else than a part of the migration enthalpy (HUNTINGTON [1968]). On
the other hand electrons and phonons in metals are highly mobile carriers, either thermal
or electrical. Therefore their scattering at atoms which are neighbours of a vacancy gives
rise to a second contribution: the electron or phonon breeze.

In the case of electromigration FIxS [1959] and HUNTINGTON and GRONE [1961]
have given a model of this scattering part, treating electrons as semiclassical particles.
BosvIEUX and FRIEDEL [1962] have used the free-electron model in the Born approxima-
tion to give a quantum-mechanical expression of the z* term. More rigorous treatments
of this term have been developed later, either in the framework of the linear response
theory, or of the muffin-tin approach (KUMAR and SORBELLO [1975], TURBAN et al.
[1976], ScHAICH [1976], RIMBEY and SORBELLO [1980], GuprTa [1982], VAN EK and
LopDER [1991]). Controversies are still running on the existence either of a screening
effect in z*, which could partially or exactly cancel the direct force (TURBAN et al.
[1976], LopDER [1991]), or other contributions behind the carrier scattering (GUPTA
{1986]). However all these treatments give essentially the same basic results, their main
interest being to define more precisely the range of validity for the preceding models.
The results are the following:

References: p. 651.
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(i) For a free electron gas the scattering part of the effective valence is given by:

saddle stable
Z = -Z—A[mou-— - fo] (73)
2 Py

where Ap™™ and Ap{™" are the residual resistivities (expressed in wQcm per at%) of
atoms of species i (i=B or A) in saddle or stable position (their sum, Ap{™" + Ap;™*,
is denoted by Apg, in table 8, below); p, is the matrix resistivity and f; is a correction
term due to the neighbouring vacancy (zeroed for an interstitial solute). We find that in
normal metals, owing to the order of magnitude of Ar and p,, the (possible) direct term
is completely negligible.

(ii) In polyvalent metals, or transition metals, with a hole conductivity, one has to
take into account the details of the Fermi surface and of the scattering atom, electron
velocities, wave function character, anisotropic scattering. Schematically two opposite
contributions like eq. (73) are found, one for electrons and one for holes, which yields
a partial compensation between them. The link with the residual resistivities is lost. In
that case, the effective valence is much lower, and the calculations are quite involved
(FIks [1973], HUNTINGTON and Ho [1963], LIMOGE [1976b], GUPTA [1982], VAN EK
and LoDDER [1991]).

The situation is more troublesome in thermomigration. FIKs [1961], GERL [1967] and
SORBELLO [1972] have calculated the phonon scattering contribution. The result, as given
by Gerl, is a positive term, of the order of 100 kJ/mole (or lower after CROLET [1971])
and linear in temperature, contrary to SCHOTTKY’s calculation {1965]. The electron term
is more firmly established and according to GERL [1967]:

q; o Z"

and so gives a negative contribution in normal metals. The final Q" is then the result of
the compensation between four terms, and theoretical calculations are very questionable
(DOoAN et al. [1976]). Some years ago, it was proposed to use directly the thermodynamic
definition of q* eq. (71) to calculate it (GILLAN [1977]); but this way has not been much
followed till now to give quantitative results.

6.3. Experimental methods

In electro- or thermotransport, three techniques have been used. In the first, one
measures the total atomic flux J,+J, =~ J,. This is done by measuring the displacement
of inert markers with respect to the ends of the sample. This method can be used only
for self-diffusion but is able to yield a good accuracy if vacancy elimination conditions
are well controlled (GERL [1968]; LIMOGE [1976a]).

In the second method one establishes a steady state between the external force, either
E or VT, and the induced concentration gradient. Measurement of the contration profile
gives access to effective valence, or heat of transport, in the laboratory frame (fig. 15a).
The accuracy is generally not very high and the method is restricted to solute diffusion.
Moreover the assumptions concerning the equilibrinm vacancy concentration must be
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carefully checked.

In the third method one uses a thin deposit of tracer between two bulk samples of
solvent. This deposit will spread (§1.2.5.), as a Gaussian in electromigration, and
simultaneously displace (fig. 15b) due to the extemnal force. This displacement with
respect to the welding interface gives the coefficient Z**, or Q**, The accuracy is very
high and the method is as suitable for self-diffusion as for solute diffusion (GILDER and
LAzARUS [1966], DOAN [1971]), although its use in thermomigration needs some care
(CrOLET [1971]).

6.4. Experimental results and discussion

The reader can find an exhaustive review of experimental results on electromigration
in PRATT and SELLORS’ monograph [1973]. For thermomigration he is referred to
ORIANI’s article [1969], see also WEVER [1983].

Let us first discuss thermomigration results.

6.4.1. Thermomigration

In table 6, the heat of transport q for interstitial solutes are displayed: this case does
not raise of course the delicate problem of the vacancy local equilibrium! It can be
noticed first that q, has generally the same sign for all solutes in a given solvent. There
is also some correlation between Z, and qg, but opposite to the one predicted by Gerl’s
model. According to NAKAJIMA et al. [1987] there is a good correlation between theqg
and the migration enthalpies of the three isotopes of Hydrogen in V, Nb and Ta. In table
7, we display the heat of transport in self-diffusion in common metals. The strong
scattering of the experimental values can be seen at once, either for a given

Lefore
pure A solvent
¥
1
anade : cathode
|
steady state ] [3
, thin layer of ltracer
concentrahan
after
T
I
anode : !
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initial solute concentralion A N ;
aussian: distribation of tracer
< 0 9 : g
B —_—
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Fig. 15. Experimental methods in electro- and thermomigration. (a) Steady state method: initially the sample
has a homogeneous solute concentration; during the current flows a steady-state gradient of concentration is
established, the force due to the current flow being equilibrated by the force due to the gradient. (b) The tracer,
initially deposited as a thin layer, is spread as a Gaussian in electromigration and also displaced as a whole
with respect to the welding interface.
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Table 6

Effective valences and heats of transport of interstitial impurities.

Iy

Solvent Solute Zy qy (kJ/mole)
Ti H ~1° +21.7°
C »0? _
(0] <0? -
\' H L5¢ 1.41
o l1to1.5° 171029 ¢
N - 171029 ¢
c - —421
Fe, H 0.25° -33t0-23"
D 04° -3310-23°
C 43* —7110-100°
N 5.7°% —75°%
Ni H 05° -63t0-0.8"
D 07°® -6310-08"°
C - _
Y H -03t10-09% -
N -09t0-28* -
o -12t0-26° -
Zr, C >0° -
N - >0°
o <0? -
Nb H 2514 121
C 06° 54"
o 65t0-2* -67"1
Pd H »0* _
Ta H 05¢ 28,51
o Oto2® -20t0 ~80¢
N - - 10to—40¢

* PRATT and SELLORS [1973]; ® ORIANI [1969]; © MARECHE et al. [1979];
4 ERCKMANN and WIPF [1976]; ¢ MATHUNI ef al. [1976]; f PETERSON
and SmiTH. [1982); ¢ MATHUNI er al. [1979]; * CARLSON and SCHMIDT
[1981}; { Uz and CARLSON [1986]; ' NAKAJIMA ef al. [1987].

Ch.7, §6

element or for similar elements. This underlines the experimental difficulties and also a
possible departure from equilibrium of the vacancy distribution (§§ 1.2.2, 6.1 and 8.1).
Transition metals display large Q. values. This has been explained by HUNTINGTON
[1966] as the result of additive contributions of electrons and holes, contributions which
are of opposite sign in electromigration, leading to small Z*,

6.4.2. Electromigration

In table 6 are also given the Z 5 values for interstitial solutes. As in thermomigration,
most interstitial solutes migrate in the same direction in a given solvent. The hole
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Table 7
Thermomigration — effective heats of transport
in self-diffusion, after OR1IANI [1969].

Metal Q,, (kJ/mole) *
Na -63

Al -63to—84;+46
Cu -22.6;0; +16.7
Ag 0

Au =-27;0

Pb +8.8

Zn -0.8; 0; +9.6 to 14.6
Fc"} <0; 0; +38 0 314
Fe,

Co +221 to + 1380
Ni <0

Pt +38 to +56

Ti <0; +773

Zr -29 to -502

* For some elements there are several ex-
perimental values from different authors,
separated by commas.

contribution is clearly seen in transition metals with hole conductivity. In table 8 are
displayed Z g of various solutes in copper, silver and aluminium. We have also shown
the residual resistivities Ap), given by resistivity measurements in dilute alloys and Apg,,
deduced from electromigration studies using relation (73) (LIMOGE [1976b]). Unlike
thermomigration, we see that our predictive understanding of the electron breeze term is
fairly good in these quasi free-electron metals, provided experimental resistivities are
used. The solute valence effect, varying as zg(zz—z,), is for example well reproduced in
copper and silver. The case of aluminium is less satisfactory, probably owing to (i) a
badly accounted-for vacancy wind effect and (ii) fairly strong band-structure effects in
this polyvalent metal. For the same reason the solvent and the various solutes have low
Z' in lead, smaller than in Al (RockoscH and HERZIG [1983]). Transition metal solutes
give rise to large valences due to the formation of a virtual bound level.

6.5. Electromigration in short-circuits

Migration under external forces, mainly an electric field, takes place also in diffusion
short-circuits, such as surfaces and grain boundaries (GB) (Apam [1971]). A first
manifestation of this phenomenon is the induced migration of GB under an electric field.

This result is now well established both at high temperatures, T/T,,>0.7 (LORMAND
[1970]) and at lower temperatures, T/T, ~0.3 (HAESSNER et al. [1974]). The interpreta-
tion however is not clear; namely, it is not obvious how to deduce the migration of an
atomic configuration, such as a GB, from the sum of the forces exerted on the constitu-
ent atoms. A second manifestation, of great technological impact, is the large matter
transport along short circuits in the samples which have a high ratio (surface + GB

References: p. 651.
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Table 8
Valence effect in solute electromigration in normal solvents
(after LIMOGE [1976b}).

Solvent Solute  Zp (a) Apgy Apy
Puem/at%)  ©(ulcm/at%)
Copper Cu -8 0.98 033
(1300 K) Ag -6 0.62 0.35
Cd -9 1.14 1.31
In - 16 2.36 3.95
Sn -30 5.13 83
Sb - 40 6.64 10.9
Silver Ag -75 043 038
(1150 K) Zn - 187 2.1 2.9
Cd -30 38 2.2
In -435 5.7 6.1
Sn - 69 9.9 11.6
Sb -103 15 15
Aluminium Al -13.7 0.73 <0.9
(900 K) Cu -62 0.26 L5
Ag -173 1.01 2.1
Cd - 169 1.02 L5
Au -194 1.21 >22
Fe — 148 9.9 11.6

s Zg is the true effective valence. .
® The resistivity sum App,, is deduced from Zy by eq. (73).
¢ Ap,, is the resistivity sum as directly measured.

area)/(bulk). This is the case for the very thin stripes of evaporated aluminium used as
electrical connections in solid-state electronic devices, run through by current density as
high as 10° Amp/cm?. The local divergences of atomic fluxes (triple junctions, hot points)
tend to develop vacancy supersaturations and stresses, leading to the formation of voids
and hillocks. Rapid breaking or short-circuits intervene, even at low temperatures
(D’HEURLE [1971]). Experiments done under well-controlled conditions, for solute
diffusion in silver bicrystals (MARTIN [1972)) or in thin aluminium films (D’HEURLE and
GANGULEE [1972]), do not show any striking difference between volume and grain
boundary valences. Nevertheless, a theory of the GB electromigration force remains to
be built. The addition of some solutes (copper, chromium, magnesium) that segregate
and/or precipitate at grain boundaries, can enhance the life time by orders of magnitude
(D’HEURLE and GANGULEE [1972]). The precise role of these solute is not well under-
stood (LLOYD [1990], SMALL and SMITH[1992]).

6.6. Electromigration as a purification process

Reviews of this topic have been done by PETERSON [1977] and ForT [1987]. The
basis of the method is very simple: if a solute impurity displays a non-zero effective
apparent valence Zy , it will segregate to one end of a sample, of length 1, during an
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electromigration experiment (see fig. 15a). There remains then a depleted, purified, zone
elsewhere. But as the time needed is proportional to 41*/(Z ; D,), one easily sees that this
method is especially efficient for interstitial solutes, or in the liquid state. In fact it has
been used mainly for interstitial gaseous impurities in refractory metals, but also for
transition metal solutes in Zr (ZEg [1989]) or rare earth (FORT [1987]).

7. Diffusion along short-circuits

Short-circuits consist of all the regions of the lattice which have lost their perfectly
ordered structure: dislocations, grain boundaries and interfaces, free surfaces. They have
in common the following properties:

— The diffusivity is much higher than in the bulk and is detectable in a temperature range
where bulk diffusion is negligible.

— The disordered regions interact chemically with the point defects, the diffusing species
and with the components of the alloy: the concentrations in the short-circuits are different
from those in the bulk.

— They can be modified by the diffusion process itself, which can lead to changes in the
ledge and kink densities on a surface, diffusion-induced migration of a grain boundary,
etc.

— Their detailed atomic structure is often unknown; when an approximate knowledge is
available (as in the case of low-index surfaces), the structure always appears very
complex. Extensive simulation work in the last ten years have tried to correlate the
macroscopic properties of the boundary (energy per unit area, cleavage fracture energy)
to basic microscopic properties (compacity and orientation of the crystalline planes
brought into contact) through the use of various semi-empirical potentials: the densest
planes seem generally to give rise to low energy grain-boundaries with high cleavage
fracture energy (see WOLF [1990a, 1990b, 1991] and references therein). However, no
relationship with the behaviour at higher temperatures is available, where point defect
generation and possible reconstruction are expected.

— The properties of point defects at surfaces and grain boundaries (formation and
migration energies, interaction with the substrate or with other defects) are not yet firmly
established.

We recall first the phenomenological approach which has been fruitfully used to
interpret grain-boundary diffusion experiments, as well as some recent progress in this
area. We next treat the atomistic approach to grain-boundary diffusion and will mention
the use of molecular dynamics calculations. The case of surface diffusion will be treated
separately.

7.1. Phenomenological approach

The basic idea of the continuous models consists of modeling the (one-) two-
dimensional short-circuit as a (pipe) slab, along which the diffusion coefficient D" is
much larger than that in the bulk D.

The diffusion equations are then written in both media with suitable matching

References: p. 651.
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conditions at the interfaces. For the grain boundary depicted in fig. 16, the two following
equations are written:

% _ DAc > a
ot

for the balance equation in the bulk; 2a is the thickness of the boundary, and

ac’ ,d9*¢ D adc N
= —2+'——“la+e |xl<a,s-—)0
o dy ox

for the balance equation in the grain boundary; the first term is the usual flux divergence
term along the y direction; the second term accounts for the lateral exchanges between
the slab and the bulk; the concentration inside the boundary is assumed independent of x.

The matching conditions at the interface x=+a depend on the problem under

consideration:

— for self-diffusion, ¢’ =c,

— for solute diffusion ¢’ =kc, where k is the grain-boundary segregation factor and under
the assumption that ¢’ remains much smaller than the solute concentration inside the
boundary at saturation. For the case of a grain boundary in a concentrated alloy or the
case of an interface in a two-phase system, the reader is referred to BERNARDINI and
MARTIN [1976]. (See also ch. 13 concerning equilibrium grain-boundary segregation,
especially §4).

The solution has been calculated only under simplifying assumptions pertaining to the
geometry of the short-circuit or the type of the source. Only one isolated short-circuit is
considered; it is assumed to be perpendicular to the surface where the source is
deposited.

— Whenever the source is of finite thickness, its concentration is uniform along the plane
y=0; the surface diffusion coefficient of the deposited species is taken to be infinitely

— 'P
| O
>

grain 1 grain 2

Dy tD2
t t ¢ttt gt tt tt ¢t
° .a

Fig. 16. Equiconcentration profile in the continuous model of grain-boundary diffusion. The slab thickness is
2a; y=0 is the plane of the tracer deposit.
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fast to prevent any depletion of the tracer in the area where the short-circuit emerges
from the bulk.

7.1.1. Semi-infinite bicrystal

The problem of an infinite source (constant surface concentration) has been solved in
an approximate way by FISHER [1951] and in exact form by WHIPPLE [1954]. The
problem of the finite source has been solved by Suzuoka [1961a,b, 1964].

The theoretical quantity which is used to analyze the experiments is not the concen-
tration C(x,t) but its integral T along a plane at depth y from the surface:

Cy.1) = J C(x,y, t)dx + J C'(y,t)dx + J C(x, y,t)dx
oo +a a

It is ascertained that:
— The grain-boundary diffusion coefficient D’ cannot be directly determined, because it
shows up in all the expressions in the form 2akD’. A separate measurement of k and an
evaluation of 2a is needed to go further.
— The overall shape of the solution is practically independent of the initial condition
(infinite source or thin layer) provided that the quantity b=(D’/D)[ka/(Dt)"?] is large
enough (in practice, larger than 5). In that case, log C varies as y% (Lg CLAIRE [1963]).
A more detailed discussion of the validity of the above solution can be found elsewhere
(MARTIN and PERRAILLON [1979]).

7.1.2. Semi-infinite crystal with an isolated dislocation

A revised version of the calculation has been proposed (LE CLAIRE and RABINOVITCH
[1981]). It is shown that log C varies linearly with y for distances which are large
compared to the penetration depth into the bulk {y >4(Dt)"?3;

ral ’ 172
é‘logC =—A/(k azD _az)
dy D

where A is a slowly varying function of the time and a the radius of the pipe. The slope
of the straight line is thus nearly independent of time in the case of diffusion along an
isolated dislocation pipe: this is in contrast with the case where the dislocations are
closely arranged into walls or boundaries and in which the slope varies as t* (LE
CLAIRE [1963]). The calculation of correlation effects in dislocation pipe diffusion
requires an atomistic modelling of the dislocation core: the two attempts made so far on
simple structural models show that the usual form of the correlation factor can be used
even in the case where bulk and pipe diffusivities are widely different (ROBINSON and
PETERSON [1972], QIN and MURCH [1993b, 1993c]). Molecular Dynamics (MD)
simulations of vacancy and interstitial diffusion along a dissociated edge dislocation in
copper show that the mobility of the interstitial defect is much larger than that of the
vacancy; but that their respective contribution to mass transport are comparable; at last,
the existence of the stacking-fault ribbon extends the dimensionality of their migration
path to 2-D, slowing down their mobility accordingly (HUANG et al. [1991]).

References: p. 651.
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7.1.3. Short-circuit networks

In actual crystals, short-circuits are present in high concentration and their orienta-
tions with respect to the diffusion direction are more or less random. They make up
some kind of connected network along which diffusion is much faster than in the bulk.
Three diffusion regimes can be distinguished, according to the bulk penetration depth
(D) being smaller than, equal to or larger than a characteristic length 1 of the network:
1 is the average diameter of the grains in the case of a grain-boundary network and the
average distance between two pinning points in the case of a dislocation network
(HARRISON [19611]):

(i) When bulk diffusion is totally negligible and when the penetration depth along the
network is larger than 1, the concentration profile is expected to be similar to a bulk
diffusion profile with D’ instead of D. This is called Harrison'’s C regime.

(ii) When bulk diffusion is not negligible but (Dt)”? remains much smaller than 1, the
short-circuits do not interact with each other: no significant amount of the diffusing
species which has diffused through and out of a first short-circuit ever reaches another
short-circuit. It can be shown that an approximate value of 2akD’ (or ka’D’) can be
deduced from plotting log C as a function of y (LEVINE and MACCALLUM [1960]): this
is called Harrison’s B regime.

(iii) Whenever the bulk diffusion depth is larger than 1, the diffusion fields of
neighbouring short-circuits overlap and none of the solutions quoted above can be used.
This is Harrison’s A regime. A simple expression of the effective diffusivity D, can be
proposed, taking into account the fraction f of the lattice sites which belong to the short-
circuits (HART [1957]):

Dy =fD'+(1-£)D

A detailed mathematical analysis of the penetration profiles versus dislocation density
shows that the effective diffusion coefficient D,; is reasonably given by Hart’s formula,
as soon as the bulk penetration distance (Dt)? is larger than 10 I; this limit, which is
grounded on a firmer basis, is one order of magnitude lower than that determined by
Harrison (LE CLAIRE and RABINOVITCH [1983]). The same analysis shows further that
the influence of existing dislocation densities upon the determination of bulk diffusivities
in pure metals performed so far should be negligible (LE CLAIRE and RABINOVITCH
[1982)).

Harrison’s classification has been later extended to the case where the grain bound-
aries are moving at rate V (CAHN and BALLUFFI [1979]); Harrisson’s A regime is
encountered whenever (Dt)'? or Vt is larger than 1; Harrison’s B regime is split into
distinct regimes according to the velocity of the grain boundary; Harrison’s C regime
remains untouched.

Let us mention that a continuous approach has been proposed for Harrison’s A
regime (AIFANTIS [1979]; HiLL [1979]). A diffusion field is associated with each family
of high-diffusivity paths. The total solution results from the superposition of these
diffusional fields, which are connected with each other and with the bulk through quasi-
chemical reactions. Interesting new features have been predicted, in particular a non-
Fickean character of the diffusion in simple cases.
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7.1.4. Experimental results

The reader is referred to the compilation of experiments by MARTIN and PERRAILLON
[1979]. It is observed that:
— For self-diffusion, the apparent activation energy in a grain boundary is roughly
0.4-0.6 times the activation energy for bulk diffusion.
— For solute diffusion, the apparent activation energy includes the interaction energy of
the solute with the boundary.
— For diffusion along the interface separating two phases of different chemical composi-
tions, the results are still too scarce and somewhat controversial, The first experiments
in Ag-Fe (BONDY et al. [1971]; JOB et al. [1974]) or Ag—Cu (PERINET [1975]) showed
unusually large activation energies; recent experiments in a/y interfaces of stainless
steels JUVE-DuC et al. [1980]), however, exhibit activation energies which agree fairly
well with the activation energy for diffusion along grain boundaries of the y-phase.

7.2. New advances in grain-boundary diffusion

7.2.1. Impurity effects
This topic is treated in chapter 13, §5.2.

7.2.2. Diffusion-induced grain-boundary migration (DIGM)

The diffusion of two chemically different species along a grain boundary may under
certain conditions induce a lateral displacement of this boundary (DIGM). In the same
way, a thin liquid film (during sintering for instance) often migrates towards one grain
at the cost of the other (LFM). Contrarily to the initial observations, the condition of a
vanishingly small lattice diffusion is not a prerequisite; and the displacement is observed
in a fairly large temperature range and for an increasing number of alloy systems. This
lateral movement (perpendicular to the grain-boundary plane) is not necessarily uniform
along the boundary and as a consequence the latter is very often distorted. The swept
area which is left in its wake has a different chemical composition from that of the bulk
(fig. 17) and may correspond to a better mixing of the alloy or to phase separation. The
driving force of this evolution is still highly controversed. A first series of models
attributes its origin to the free energy decrease which accompanies the change in
chemical composition of the swept area (FOURNELLE [1991]). In a second series of
models, the driving force stems from the release of elastic energy: the solute diffusing in
the grain-boundary leaks out of the latter and changes the composition of the nearby
zone, building up a coherency strain with respect to the undiffused bulk (a situation
which prevails only if the bulk diffusivity of the solute is not too large, that is, if the
solute does not migrate as fast as an interstitial); the elastic constants are generally
anisotropic and the amount of elastic energy will necessarily be different in the two
adjacent grains. The grain with the higher elastic energy will shrink and dissolve at the
benefit of the other by the sweeping movement of the boundary or of the liquid film
(Baik and YOON [1990]). In both cases, the free energy loss over-compensates the
energy increase due to the increase of the grain boundary surface. The only mechanism
proposed so far invokes the climb of grain-boundary dislocations (BALLUFFI and CAHN
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Fig. 17. Lateral displacement of a grain boundary due to a Kirkendall effect along the boundary. The hatched
regions have a composition different from that of the surrounding matrix. The dashed line is the initial position
of the boundary.

[1981]); it embodies no driving force in itself but offers only a means to move laterally
the boundary. It holds however only for DIGM and not for LFM. Beautiful experiments
on carefully oriented Cu bicrystals (symmetrical and asymmetrical tilt boundaries)
immersed in Zn vapor suggest that the coherency strain model, together with the climb
of dislocations in the core of the grain boundary, accounts only roughly for the experi-
mental results concerning the low misorientations (KING and DixiT [1990]); but the
results depend heavily on the detailed structure of the boundary which varies while
changing its orientation during the experiments. On the other hand, the calculated elastic
effects are often found to be much too low to be consistent with the heavy curvatures of
the boundaries sustained in many experiments (LIU et al. [1989], KUuO and FOURNELLE
[1991]); this observation points back to the relevance of the chemical effects.

7.3. Atomistic approach to diffusion in short-circuits

7.3.1. Atomic model for grain-boundary diffusion

The continuous approach has proved its efficiency for interpreting the experimental
results which have been collected up to now. However, it raises several questions:

— What is the grain boundary thickness? How can it be defined in a precise way?

— What is a diffusion coefficient inside a grain-boundary?

— Is the assumption of local equilibrium between the bulk and the grain boundary
Jjustified?

—~ What does the solution looks like for very short times, i.e. , times smaller than a jump
period in the bulk?

BENOIST and MARTIN [1975a, b]) were able to answer these questions with the
following simple model. The grain boundary is modelled as a (100) plane of a simple
cubic array, in which the atom jump frequency is I and is supposed to be larger than
the jump frequency I of the atom in the rest of the lattice. T'; and I’y stand for the atom
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jump frequencies from the bulk into the grain-boundary and conversely. The starting
transport equation is written as follows:

L) S (L, - ()T,

ot
where C(r,t) stands for the tracer concentration on site r at time t; I, _, , for the jump
frequency from site r’ to site r; X, is extended to sites 1’ which are first neighbours of
site 1. The solution is calculated with a boundary condition corresponding to the instan-
taneous source of the continuous approach. The main results can be summarized as
follows:
— In the limit of large bulk penetration (more precisely, a large number of jumps in the
bulk, i.e. t>>1), the solution is equivalent to Suzuoka’s solution (see §7.1.1).
The expression for the parameter 3 is:

gD da TN 1
D (py)? T T, )"

Since the bulk diffusion coefficient is I'b? (b is the lattice parameter), the comparison of
the two solutions yields D’ =T"b? the segregation factor k is equal to I'/T', and the grain-
boundary thickness is b.

In the case where the grain boundary is modelled as p parallel planes, it is found that
its thickness is pb. It must be noticed that this thickness is not altered even if the bonds
between the sites in the bulk and the sites in the boundary are stretched perpendicularly
to the boundary plane. The “thickness” of the grain-boundary is not related to the actual
atomic relaxations at the grain-boundary but only to the number of high-diffusivity paths
which are available for the tracer.

— In the limit of a small penetration depth into the bulk, the identification with the
continuous solution is impossible. At very short times (I't<0.1) the exact solution tends
towards a Gaussian with I"b? as diffusion coefficient.

This model has been modified to account for more realistic grain-boundary structures,
but still disregard the correlation effects. We refer the reader to the original papers
(CoOSTE et al. [1976]).

For long, the sophistication of the modelling has been several steps forward with
respect to the available experimental information. Only recently, an impressive series of
grain-boundary Ag diffusivity measurements, using a clever accumulation method of
improved accuracy, has been undertaken in Au bicrystals of well-controlled tilt angle
(Ma and BALLUFFI [1993a]); the diffusion coefficients (and the activation energies as
well) do not exhibit any cusp at those particular orientations which correspond to
coincidence site lattice boundaries (CSLB) of short-period and low-2. This was taken as
an indication that the core of the boundary is made up of several structural units derived
from relatively short-period delimiting boundaries which are nearby in the series; in this
picture, the change in tilt angle is reflected in a continuous change in the mixture of
these structural units. An atomistic modelling resting on the embedded atom method
(EAM) suggests that vacancy, direct interstitial and intersticialcy mechanisms are
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probable candidates for matter transport along the boundary. The change in activation
energy experimentally observed is accounted for by additional jumps of higher energies
(MA and BALLUFFI [1993b]). At last, the magnitude of the correlation factor for the
intersticialcy mechanism is found to be roughly equal to that of the vacancy one. Thus,
a relatively large correlation factor is no longer the indisputable fingerprint of a vacancy
mechanism at work, contrarily to previous findings (ROBINSON and PETERSON [1972]).
This last result, together with that concerning the diffusion in a dissociated dislocation,
suggests that the vacancy mechanism is not necessarily the dominant mass transport
mechanism, as thought before from preliminary simulation work (BALLUFFI et al. [1981];
Kwok et al. [1981]; CicCOTTI et al. [1983]). It is worth mentioning however that the
activation volume for self-diffusion in a tilt boundary of Ag bicrystals is consistent with
the vacancy mechanism (MARTIN et al. [1967]).

7.4. Surface diffusion

Although free surfaces can actually play the role of short-circuits for bulk diffusion
(inner surfaces of cavities, surfaces along a crack), they have been mostly studied for
their own sakes.

We shall not repeat hereafter the continuous approach which has been already used
for interface or grain-boundary diffusion; grain 2 in fig. 16 has only to be replaced by
vacuum and the exchanges between the surface and the vacuum suppressed. As in the
case of a grain boundary, the characteristic quantity which appears in equations is 6D,,
where & is the “thickness” of the surface layer and D, the surface diffusion coefficient.
We will focus in the following on the atomistic point of view.

7.4.1. Atomic structure and point defects

A surface is essentially made up of terraces which are portions of low-index surfaces;
these terraces are separated by ledges of atomic height, along which kinks are present
(TLK model: fig. 18). Ledges and kinks have a double origin:

— A geometrical one, to provide the misorientation of the actual surface with respect
to the dense planes of the terraces (® and o angles in fig. 18).

— A thermally activated one for entropy purposes.

Such a description is thought to hold in a range of low temperatures where the
formation free energy of ledges is large enough to keep their thermal density at a low
level and where reconstruction or faceting are not observed (in practice between 0 K and
0.5T,).

As predicted by BURTON et al. [1951] a dramatic change in the surface topology
occurs at some transition temperature Ty, at which the formation free energy of the
ledges vanishes (or becomes very small): as a consequence the surface becomes
delocalized (ch. 8, §5.1). This transition (called roughness transition) is due to a large
number of steps of increasing height which make the edges of the terraces indistinguish-
able. This has been clearly illustrated by Monte Carlo simulations on (100) surfaces of
a simple cubic lattice (LEaAMY and GILMER [1974]; VAN DER EERDEN et al. [1978])
Figure 17 of ch. 8 shows examples of LEAMY and GILMER’s computations. Ty is roughly
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Fig. 18. Terrace-Ledge~Kink (TLK) model for low~index surfaces. The formation of adatoms (the exira atoms
bulging out from the plane of a low-index surface) and advacancies (the anti-defects to adatoms) is represented.

given by
Tr=0.5¢/k,

where ¢ is the strength of the first-neighbour bond. This transition has indeed been
observed on several metals using He scattering spectroscopy (for a recent overview, see
LAPUIOULADE [1994]). In what follows, we restrict ourselves to surfaces maintained
below Tjg.

Point defects are also present, namely adatoms and advacancies (see fig. 18); they can
be created pairwise at a site of a terrace or separately at a ledge or a kink. The latter
case is energetically favoured with respect to the others and is thought to be dominant.
Multi-defects can also form by clustering adatoms or advacancies.

Theoretical calculations of point-defect properties on low-index surfaces have so far
been performed first with very crude potentials (WYNBLATT and GIOSTEIN [1968];
PERRAILLON ef al. [1972]; FLAHIVE and GRAHAM [1980a]), and later, refined with atomic
potentials derived from the embedded atom method (EAM) (THOMPSON and HUTTING-
TON [1982], DESJONQUERES and SPANJAARD [1982], Liu et al. [1991], Liu and ADAMS
[1992], SANDERS and Dg PRrISTO [1992]). It is worth noticing that their results do not
differ very much, even quantitatively: this is undoubtedly an indication that the formation
energies of point defects depend only on very fundamental and simple properties of the
surfaces (like the number of lateral neighbours or the packing):

— The formation and migration energies for adatoms and advacancies are found to be
highly sensitive to surface orientation.

- The formation energies for both kinds of defect are comparable, except for the (100)
surface of an fcc lattice, where the formation energy of the advacancy is significantly
smaller than the corresponding energy for the adatom. Therefore, both defects are
expected to contribute significantly to matter transport. They will be created in roughly
equal amounts, either separately at kinks or pairwise at terrace sites.

— The migration energies have been mainly calculated for adatoms on fcc and bec
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surfaces, and for the vacancy on Cu (PERRAILLON et al. [1972}) and Ni (L1U and ADAMS
[1992]) surfaces; the advacancy is in most cases the slower-diffusing defect.

For fcc lattices, the migration energies of adatoms increase roughly with increasing
surface roughness: E_ (111)<E_ (113)~ E_, (331)<E,, (001)<E,, (210). For bcc lattices,
the migration energies are roughly in the following order: E, (110)~E, 211)~E_
(321)<E, (310)<E_, (001)<E_ (111). It is worth noticing however that, due to the
presence of the defect concentration term, the surface self-diffusivities are not necessarily
in the same order: a compensation effect occurs, which pairs a low migration to a large
defect formation energy (on the (111) surface of fcc lattice, namely). As a result, the
surface diffusivity of Ni is expected to be noticeably larger on (113) and (133) surfaces
than on any other (L1U and ADAMS [1992]).

A further difficulty stems from the fact that diffusion is expected to be highly
anisotropic on non-perfect surfaces: the migration energy along dense rows or in deep
channels is usually smaller than the migration energy across these rows or channels. This
may obscure the ordering of low-index surfaces with respect to their migrational
properties.

Diffusion is thought to take place through individual jumps only at very low
temperature and to exhibit a marked anisotropy due to atomic roughness (T <0.15T,). At
higher temperatures, several new mechanisms have been proposed: jumps to more distant
neighbours, contribution of multidefects performing collective jumps caused by a strong
forward dynamical correlation. Exchange mechanisms involving two or more atoms are
believed to play a significant role since they imply a smaller distortion of the surround-
ing than the hopping of a single atom: after having been observed and simultaneously
calculated for the change of channel of the diffusing adatom (BASSETT and WEBBER
[1978], HALICIOGLU and POUND [1979]), they have been invoked for the crossing of
steps on (111) Al surfaces (STUMPF and SCHEFFLER [1994]), and even recently for the
mere migration on (100) Cu (HANSEN ef al. [1993], BLACK and TIAN [1993]) or the
dimer migration on (100), (110) and (111) Ir (SHIANG and TSONG [1994]). Similar
mechanisms have also been proposed for bulk or surface diffusion of semi-conductors
(PANDEY [1986], FEIBELMAN [1990], KaXIRAS and ERLEBACHER [1994]). All these
mechanisms had been previously observed in molecular dynamics calculations on fcc
Lennard—Jones crystals (TULLY et al. [1979]; DE LORENZI et al. [1982]). At last, at still
higher temperatures, a delocalization of the adatom is predicted, which spends most of
its time in flight rather than on equilibrium sites. The theory of atomic jump at a surface
rests on the same model as that for the bulk, namely the reaction rate theory, which
considers the saddle point configuration as a possible equilibrium fluctuation; but the
dynamical corrections (multiple crossings of the saddle surface, dynamical forward
correlation leading to multiple jumps) have been treated slightly differently, starting from
the flux—flux correlation function formalism used in the theory of chemical reactions
(CuANDLER [1978, 1986, 1988], VOTER and DoLL [1985]). Only recently, a more
phenomenological theory has been developed, which covers all the diffusive regimes
from the lower temperatures (individual jumps) to the higher ones ((2-D flight of a
nearly free adatom over the surface): the particle is described by a continuous equation
of motion, including an effective friction term which accounts for the interaction with the
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vibrating substrate (ALA-NISSILA and YING [1992]). Quantum effects are easily taken
into account and reproduce the diffusion by tunneling expected for very light atoms (H)
on metal surfaces (HAUG and METIU [1991], ZHANG et al. [1990]).

The next step in the analysis is to deduce a macroscopic surface diffusion coefficient
Dy as a function of the individual atomic jump frequencies (that is, including the defect
concentrations) which have been measured or calculated. Following CHOI and SHEWMON
[1962], one is intuitively led to write it as:

1& .
Dy =—Y Td’
4i=1

where p is the total number of jump types, I'; and d, their frequency and length.
However, this expression holds only under restrictive conditions:

— All the diffusion mechanisms must contribute independently to matter transport. At
each step, the diffusing atom should be allowed to make a choice between all the p
available jump types which are at its disposal.

— All the sites of the surface should be equivalent. The defects should be in equilibrium
everywhere and their concentrations should be uniform all over the surface, with no
preferential occupancy or trapping sites. This requirement can only be met for close-
packed perfect surfaces with no ledges or kinks, e.g., a (111) surface in the fcc lattice.

Real surfaces are not perfect: ledges and kinks are thought to trap the defects.
Moreover the jump frequency for the motion along a ledge is different from the
frequency for jumping over the ledge. If ledges and kinks could be uniformly distributed
over the surface, the equivalence of the surface sites would be maintained and the same
expressicn of Dg could still be used.

As a matter of fact, we know that the misorientation of a real surface from a perfect
one is provided by one (or more) periodic array(s) of ledges and kinks. This periodicity
(as opposed to uniformity) contradicts the assumption of equivalence between sites, and
a new analysis has to be carried out. This has been done only for (310), (h10) and (h11)
surfaces (h is any positive integer) of the fcc lattice (COUSTY et al. [1981]; CousTy
[1981]), thanks to the atomistic approach which has been already worked out for grain-
boundary diffusion (BENOIST and MARTIN [1975a, b]): the method consists of defining
a new unit supercell containing all the different types of sites and making up such a
basic pattern that it can be used to generate the surface sites by translations in two
directions. Effective jump frequencies across this cell, in the direction of the ledges and
perpendicularly to them, can be determined by matching the solution of the discrete
approach to Suzukoa’s solution with the same boundary conditions. The exchanges of
matter between bulk and surface are taken into account; but, in its present form, this
model requires the knowledge of the atom jump frequencies out of (and into) all the
different types of surfaces sites, which is far beyond the scarce experimental information
presently available. Careful tracer measurements have been performed con such Cu
surfaces, yielding the diffusion coefficients parallel D, and perpendicular D, to the steps.
The main result is that D, is found not to depend on the step density; conversely, D,
increases linearly with it, and is thought to decrease with the kink density along the steps.
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7.4.2. Experimental results

74.2.1. Microscopic data. The Field Ton Microscope (FIM) technique (ch. 10,
§5.2.1.) has provided an irreplaceable insight into the migration mechanisms and
migration energies of adatoms deposited on low-index surfaces. Table 9 sums up the
experimental values (rounded to the nearest tenth of an eV for simplicity) which have
been obtained on W (CowaN and TSONG [1975], GRAHAM and EHRLICH [1974, 1975],
FLAHIVE and GRAHAM [1980b]), Ni (TUNG and GrRAHAM [1980]), Rh (AYRAULT and
EHRLICH [1974]) and Pt (BASSETT and WEBBER [1978]). Solute adatoms diffusing on
surfaces have been reviewed (EHRLICH and STOLT [1980]), and the modification of self-
diffusion on surfaces to which impurities have segregated is treated in ch, 13, §5.2. An
interesting and recently published overview must be quoted (EHRLICH [1994]). Calcu-
lated values have not been included since they are intrinsically short-lived and submitted
to the fluctuations of the continuous theoretical improvements appearing on the scientific
market.

The anisotropy of the adatom jump frequency, which is theoretically expected from
the geometrical structure of the surface, is often observed. But it depends on the
chemical nature of the diffusing adatom: on the (110) surface of Pt, Au adatoms diffuse
only along channels parallel to <110> whereas Pt and Ir adatoms diffuse two-
dimensionally with no noticeable anisotropy (BASSETT and WEBBER [1978]).

All the calculations performed so far indicate that diffusion should be very easy on
(111) surfaces of fcc metals; this is experimentally observed for Rh but not for Ni, and
this difference is not yet understood.

Recent FIM experiments have measured the trapping energy of a self-adatom to a
foreign one buried in the first surface layer (KELLOG [1994]); a complex exchange
mechanism has also been observed for Re deposited on an (100) Ir surface (CHEN and
TSONG [1994]); the trapping energy, when measured, is large and comparable to (or even
higher than) the migration energy on the surface.

Remarkable results have been obtained by the promising technique of He scattering
spectroscopy, since not only the frequencies but also the jump vectors are measured. The
diffusion anisotropy (and, thus, the crystalline character) is maintained on (110) surfaces
of Pb close to the melting point: jumps along close-packed rows are more frequent and
often multiple, when compared to transverse ones. The resulting diffusion coefficient is
larger than that in the bulk liquid phase (FRENKEN et al. [1990]); this result is not in
agreement with recent simulations on metallic Cu aggregates suggesting that partial
surface melting might occur at high temperatures (NIELSEN et al. [1994]). The diffusion
of isolated Na atoms on (100) Cu surfaces proceeds via a significant fraction of multiple
jumps between 200 K and 300 K (ELL1s and ToenNNIES [1993]); but the extraction of a
migration energy requires a careful separation of the vibrational and of the diffusional
component of the observed spectra (CHEN and YING [1993)).

‘We must remember however that such data, although of importance, cannot be used
to deduce straightforwardly an absolute value of the surface diffusion coefficient Dg or
any information about its possible anisotropy, for two reasons:
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Table 9
Experimental values of migration energies of self-and-solute adatoms on various low-index planes
obtained by FIM technique (in eV).

Diffusing Studied surface
adatom (// and | stand for paralle] and perpendicular to dense rows)

W (110) W (211), W (321),
w 0.9 0.75 0.85
Ta 0.75 0.5 0.7
Re 1. 0.85 0.9
Ir 0.75 0.6
Pt 0.65
Mo 0.55

Rh (100) Rh (110), Rh(110),  Rh (111 Rh(113),  Rh(133),
Rh 0.9 0.6 0.9 0.15 0.55 0.65

Pt (110), Pt (110), Pt (113), Pt (133),

Pt 0.85 0.8 0.7 0.85
Au 0.65 0.55
Ir 0.8 0.8 0.75

Ni (100) Ni (110), Ni (110), Ni (111) Ni (113), Ni (133),
Ni 0.65 0.25 0.3 0.35 0.3 045

— The surface diffusion coefficient Dy incorporates the concentration of defects, which
cannot be reached by the FIM technique since the diffusing atom is deposited from a
vapour onto the surface at a temperature where no matter exchange between the bulk and
the surface is allowed: the adatom is therefore in high supersaturation and its formation
energy cannot be measured with this technique. On the other hand, the formation energy
of advacancies has been tentatively measured above room temperature by positron
annihilation on copper and silver. The values which are reported are close to 1 eV within
experimental uncertainty, that is, only 20% lower than the corresponding energy in the
bulk (LYNN and WELCH [1980]). But an appropriate model for the state of a positron at
a metallic surface is not presently available and the validity of this technique for probing
the advacancies is still questioned (KOGEL [1992], STEINDL et al. [1992]).
— The surface diffusion coefficient Dg is usually measured at a range of much higher
temperatures where other diffusion mechanisms may come into play.

7.4.2.2. Macroscopic data. Mass transfer experiments consist in measuring the rate
at which a solid changes its shape (at constant volume) in order to minimize its surface
free energy. Several techniques can be used: thermal grooving of a grain boundary
(MuLLINS and SHEWMON [1959]), blunting of a sharp tip observed by conventional
transmission electron microscopy (NICHOLS and MULLINS [1965a]) or scanning tunneling
microscopy (DRECHSLER et al. [1989]), decaying of an isolated (or of a periodic array of)
scratch (es) (KING and MULLINS [1962]; NicHOLS and MULLINS [1965b], JAUNET e al.
[1982]). The possible contributions of bulk diffusion or the evaporation—condensation
mechanism must be subtracted to deduce the part due to surface diffusion only. This
technique does not yield the surface diffusion coefficient Dg but the product ysD, (where
vs is the surface tension) or, more precisely, some average of this product over the
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orientation of all the facets making up the macroscopic profile.

A second technique involves the use of a radioactive tracer and consists in measuring
the concentration profile of the diffusing species on surfaces of well-defined orientation:
it has been used for pure copper (COUSTY et al. [1981], GHALEB [1983]). This technique
does not yields Dg but the product §Dg where 8 is some “thickness” of the surface layer
in the continuous approach. For both techniques two crucial points must be checked
throughout the diffusion run:

— The absence of any impurity or any two-dimensional superstructure of impurities, both
of which might significantly alter the diffusion rate (BONZEL [1976]).

— The absence of any reconstruction of the surface: this point can only be checked for
the radiotracer technique, because mass transfer experiments are performed on surfaces,
the profile of which evolves in time.

Three points must be noted: (i) The apparent activation energy for self-diffusion is
systematically and significantly larger than the migration energy of adatoms which is
measured with the FIM technique. The difference is attributed to the energy which is
required to form the defects contributing to matter transport. This means physically that
the density of defect sources and sinks (steps, kinks) is probably large enough to insure
the equilibrium defect concentration throughout the experiment at such temperatures. (ii)
The self-diffusion Arrhenius plot is often curved (RHEAD [1975]). If this curvature is not
an artefact of the experimental techniques, several explanations can be proposed:
contribution of several kinds of defects (advacancies and adatoms, clusters of adatoms,
etc.), contribution of multiple jumps, formation of thermal kinks (NEUMAN and HIRSCH-
WALD [1972]), local melting of the surface (RHEAD [1975]). (iii) Whether the crystallo-
graphic structure of the surface induces a marked anisotropy of the surface diffusion
coefficient or not is still a matter of controversy: at 0.6 T,, on (110) surfaces of pure
nickel, the scratch-decaying technique shows a rather large anisotropy (between one and
two orders of magnitude: BONZEL and LATTA [1978], JAUNET et al. [1982]), whereas the
tracer technique for copper self-diffusion (Cousty [1981]) or for silver diffusion on
copper (ROULET [1973]) exhibits only small differences (at most a factor of 4).

Another route has been followed with diffusion studies at higher coverages ranging
from several tenths of a monoatomic layer to several layers (thick deposites) (BUTZ and
WAGNER [1979]): these experiments yield a chemical diffusion coefficient, implying the
intervention of significant adsorbate—adsorbate interactions. Extensive numerical
simulations have been performed to explain how to determine the pronounced maximum
of the diffusion at compositions corresponding to ordered structures (BOWKER and KING
[1978a,b], UEBING and GOMER [1991], TRINGIDES and GOMER [1992]).

Several points remain somewhat obscure today:

— in the presence of various contaminants (Bi, S, Cl) the surface self-diffusivity can
be increased by orders of magnitude and reach much higher values than those typical of
bulk liquid state, as high as 10 m%s (RHEAD [1975]). As a rule, chemical interactions
of non-metallic character play an important role and give rise to very high surface
diffusivities on ionic crystals like alkali-halides for instance (YANG and FLYNN [1989]).

- surface electromigration of metallic adatoms on semi-conductor surfaces differs
markedly from the bulk case; the electrostatic field is 10° times larger, whereas the
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current density is 10° times smaller. As a result, the electrostatic driving force on the
solute adatom is much larger than the wind force from the charge carriers, and the
metallic ions move in most cases towards the cathode. However, the reversal of the
migration direction for Al on (111) Si as a function of the deposited layer thickness is
not understood (YASUNAGA [1991]).

— the connection between diffusion and the possible existence of precursor effects in
wetting is not understood (ADDA ef al. [1994]).

8. Diffusion under non-equilibrium defect concentrations

Up to now we have discussed diffusion problems involving point defects in thermal
equilibrium. In particular, we focused mainly on vacancies; but in some conditions, often
of a great technological importance, a high supersaturation of point defects, interstitials
and vacancies, can be sustained in steady state. With respect to diffusion, an acceleration
of kinetics is the main phenomenon to be observed. Interstitials however have in most
cases a high formation enthalpy, and therefore a zero equilibrium concentration. In the
case where interstitials are created, apart from an acceleration, new phenomena which are
unknown at equilibrium can appear, as we shall see in § 8.3.2.

If point defects are created in a material exceeding their thermal equilibrium
concentration, a supersaturation will build up, which results from a competition between
creation and elimination, and enhances the diffusion. The new diffusion coefficient can
often be written as :

Dacc = kava + kiDiCi (74)

where k;, and k, are coefficients depending on the various jump frequencies of the
defects, D, and D, are their diffusion coefficients and C, and C, their fotal concentrations.
The problem of enhanced diffusion is then to calculate the actual C; and C, according to
the experimental conditions of creation and elimination.

Many situations are now known in materials science where this situation prevails.
Without claiming to be exhaustive, we mention the following cases: (i) If vacancy sinks
are not very efficient in a sample submitted either to a quench or to a temperature
gradient, we can observe a vacancy supersaturation. (ii) Such a supersaturation can also
be created in an alloy by vacancy injection from the surface by a Kirkendall mechanism
due to preferential depletion of one of the components, by dissolution or oxidation
(BURTON [1982], STOLWUK et al. [1994]). (iii) Point defects are also created during
plastic deformation. (iv) Under irradiation by energetic particles, a high level of
supersaturation can be sustained.

In all these cases the point defect supersaturation is able to accelerate the diffusion
and to induce various phase transformations. Let us look first at those cases which
involve vacancies only.

8.1. Quenched-in vacancies

Vacancy sinks include free surfaces, dislocations and grain boundaries. Vacancies can
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also be lost for diffusion by agglomeration as dislocation loops, stacking fault tetrahedra
or voids. In some cases (very low dislocation density or surface oxidation for example),
the sinks become ineffective, and a supersaturation builds up in the volume which in turn
enhances diffusion beyond the thermal equilibrium value. A very important example of
the role of quenched-in vacancies is given by the kinetics of age-hardening in alloys
displaying precipitation-hardening. We know that GP zone formation is far too rapid to be
accounted for by thermal diffusion only: the role of quenched-in vacancies was stressed
early (GUINIER [1959]) and later the importance of vacancy-solute complexes (GIRIFALCO
and HERMAN [1965]) was recognized in the so-called “vacancy pump” model.

Another very interesting application is the enhancement after a quench of the ordering
kinetics in alloys. This phenomenon is at the root of a method for studying defect
properties in metals by relaxation measurements (§ 2.2: see also ROBROCK [1981]).

The quenched-in vacancies could also be at work in samples undergoing diffusion
under strong thermal gradients (MATLOCK and STARK [1971]). These authors measured
the heat of transport of aluminium and found Q,; values of 46 kJ/mole in a single
crystal and —8.4 kJ/mole in a polycrystalline sample, pointing to the importance of the
vacancy formation enthalpy in eq. (72). The same conclusion was drawn from measure-
ments of solute diffusion in a temperature gradient in aluminium or silver (MCKEE and
STarK [1975]), SHIH and STARK [1978]). In all these cases, grain boundaries are
apparently the only efficient vacancy sinks. The polycrystalline sample is then at
equilibrium but not the single crystal. In this last case the hot end imposes its vacancy
concentration to the cold one. Therefore the diffusion coefficient is fixed by (i) the hot-
end vacancy concentration, (ii) the local vacancy mobility, and is then strongly enhanced
in the cold part of the sample. The same effect has been recently observed by HEHEN-
KAMP [1993] in silver using radiotracer measurements and the positron annihilation
method. The level of supersaturation observed is of the order of 50 to 100. One can
wonder wether at these levels, nucleation of cavities or vacancy clusters should not
occur, since they have already been observed in Kirkendall’s or electromigration
experiments at much lower supersaturations in the same material (MONTY [1972]).
Moreover carefully controlled experiments failed to detect such an effect in aluminium,
either by measuring the local silver diffusion coefficient at different places along the
gradient (BREBEC [1977]), or by measuring the actual vacancy sink activity also all along
the gradient by a method using the deplacement of inert markers (LIMOGE [1976a]).
Indeed the establishment of a strong enough temperature gradient in a metallic sample is
a difficult task, and artefacts are not always avoided, giving rise to an actual gradient
much less than expected.

8.2. Cold-work-induced defects

It is now firmly established that during plastic deformation, point defects, probably
mainly vacancies, are created by dislocation interactions (WINTENBERGER [1959],
FRIEDEL [1964], GONZALES ef al. [1975a,b]). Two main origins have been proposed. The
first one correspond to the annihilation of sufficiently elongated dipoles of edge
dislocations which “evaporate” as defects, and the second to non conservative motion of
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jogs. The first process is believed to occur mainly in the walls of the dislocation cell
structure observed during fatigue experiments or in persistent slip bands (P.S.B.). If we
neglect the thermal elimination of defects, a typical concentration could amount to 107
at. (EssMAN and MUGHRABI [1979]). However, the very high dislocation density in that
case probably prevents such a high supersaturation level (RUOFF and BALLUFFI [1963]).
In the second case the production rate could amount to 107 at. in typical low cycle
fatigue experiments, and elimination occurs by diffusion to the walls of the cell or by
sweeping by the moving dislocations (TSoU and QUESNEL [1983]). The supersaturation
can be quite large at not too high temperatures. Whatever the production mechanism,
these excess vacancies have been shown to produce cavity nucleation and growth during
fatigue tests in various alloys (ARNAUD er al. [1985]). It is then clear that diffusion will
be also accelerated, but that any attempt to determine this enhancement by classical
macroscopic methods (§ 2.1) is hopeless. Artefacts due to surface roughness induced by
the slip bands (RUOFF [1967]) or pipe diffusion in dislocation will always screen the
actual effect. However, this enhancement can be rendered visible by a local method
sensitive to a small number of jumps, such as the Zener effect (NEUMANN et al. [1961])
or GP zone formation kinetics (KELLY and CHioOU [1958]). Indeed an acceleration of
diffusion has been observed by NNM.R. (see §2.2.2.1.) in a deformed NaCl crystal
(DETEMPLE et al. [1991]). The same phenomenon is believed to be at the origin of the
dynamic boron segregation at grain boundaries in microalloyed steels: the excess
vacancies created during rolling (deformation rates of 1-10/sec.) drag the boron atoms
to boundaries by a flux coupling mechanism (MILITZER et al. [1994]).

8.3. Irradiation-induced defects

The knowledge of the various effects of the irradiation of solids by energetic
particles, electrons, neutrons, ions, or photons, is of paramount importance in several
domains of materials science: nuclear industry, microelectronics or surface treatment,
among others. The topic has been reviewed several times, but not exclusively, by ADDA
et al. [1975], S1zMAN [1978], ROTHMAN [1981], BREBEC [1990], WOLLENBERGER ef al.
[1992], MARTIN and BARBU [1993]. The domain encompasses three main topics:
radiation-enhanced diffusion, segregation and precipitation and phase changes, all of them
being generally more or less present simultaneously in any radiation environment.

8.3.1. Irradiation-enhanced diffusion

Fig. 19 shows the result of a diffusion measurement by a tracer method in nickel
under self-ion irradiation at an energy of 300 KeV. Three parts can be seen in this graph:
thermal diffusion at high temperature; between 1000 K and 700 K, a radiation-enhanced
domain corresponding to a thermally activated regime with a lower activation energy;
and below 700 K, an athermal part. The efficiency of this last mode is quite high, the
resulting squared displacement amounting to 125 A*dpa. (MULLER et al. [1988]). Clearly
the origins of the enhancement must be multiple in order to explain this behaviour.

References: p. 651.
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Fig. 19. Self-diffusion coefficient in nickel under self-ion irradiation at 1.2 10 dpa/s, full symbols, or 1.2 10
dpa/s, empty dots, dashed line thermal self-diffusion.

8.3.1.1. Defect creation. Under irradiation by energetic particles, the atoms of an
alloy suffer elastic and inelastic collisions with the projectiles. Except for very high
densities of energy transfer, of the order of several KeV/Angstrom (BARBU et al. [1991]),
the electronic excitations are not expected to produce defects. On the contrary the part of
the energy which is transfered elastically to a target atom (the primary knocked atom or
PK.A. ) will displace it, if the transfer is higher than a threshold E; of the order of 20
to 50 eV in metals. A Frenkel pair is then created, a lattice vacancy on the initial site
and an interstitial on the arrest position. If the energy received by the P.K.A. is high
enough, it will in turn act as a projectile and initiate a cascade of displacements, also
called a displacement spike, in the target. The interstitials being created generally at the
end of a replacement collision sequence (R.C.S.) will be found at the periphery of the
cascade and the vacancies form a dense core at the center. The higher the collisionnal
cross section between the moving atoms and the atoms at rest, the more frequent the
collisions and the denser the cascade. However a new picture has appeared recently
according to which the cascade core is in fact in a molten state, the so-called thermal
spike, since the mean kinetic energy of the atoms in the cascade core during 10™ sec can
amount approximately to 1 eV. This picture is mainly based on Molecular Dynamics
simulation results (DiaZ DELA RUBIA et al. [1987]). In this picture the vacancy creation
is the result of the ultra fast quench of the molten core, the interstitials are created either
by the few R.C.S. escaping from the melt or by a new mechanism of interstitial loops
punching from the melt (DIAZ DELARUBIA and GUINAN [1992]).

The number of defects created is generally given in the literature with respect to the
formula Ny=KT/2E, (TORRENS and ROBINSON [1972]) where Ty, is the elastic energy
given to the lattice and K an efficiency factor near 0.8. However as soon as the energy
of the PK.A. is higher than a few keV, the vacancy rich core contains too many defects,
and collapses more or less into clusters, even at liquid He temperature. The number of
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detectable defects is therefore reduced to roughly one third of the above mentioned N,
(AVERBACK et al. [1978]). At higher temperatures the defects start to diffuse thermally,
and their very inhomogeneous distribution triggers an efficient elimination, either by
vacancy-interstitial recombination or by clustering. Finally the fraction of defects able to
produce radiation enhanced diffusion is further reduced down to a few percents of N, in
the case of dense cascades. The efficiency of the radiations for producing the so-called
freely migrating defects is therefore decreasing from 1 MeV electrons, which are
producing only isolated Frenkel pairs with an efficiency of 1, to the heavy ions and even
more neutrons which give rise to an efficiency going down to a few 107 (WIEDERSICH
[1990]). (See also ch. 18, §4.)

8.3.1.2. Collisional diffusion. This effect is also frequently called Jon-Beam Mixing,
and has been recently reviewed (AVERBACK and SEIDMAN [1987], REHN and OKAMOTO
[1989], CHENG [1990]). Indeed, inside a collision cascade the atoms, as a result of the
collisions or of the molten state of the matter, will experience an enhanced diffusion not
solely due to the presence of point defects. Four origins have been proposed for this new
mobility: i) the direct displacement of the knocked atoms, ii) the displacement under
subthreshold collisions of the defects already present, iii) the activated jumps of the same
defects in the intense thermal field of the spike, iv) the diffusion in the molten core. The
first term has been repeatedly shown to give rise to too low a mobility, some A%sec at
most under heaviest ion irradiations, for explaining the kinetics of ion-beam mixing
(LIMOGE et al. {1977], SERAN and LiMOGE [1981], BARCZ et al. [1984]), despite careful
theoretical modeling (LITTMARK and HOFFER [1980]). Nevertheless this negative result
has been recently questioned, at least in low Z matrices (KOPONEN [1991]). In the second
approach (SERAN and LIMOGE [1981]), the vacancy defects are expected to jump under
subtreshold collisions along dense rows ([110] in fcc metals), i. e. involving an energy
lower than E,;. Taking into account the actual vacancy concentration in the cascade the
above mentioned order of magnitude (fig. 19) is easily explained without any further
assumption. The third approach also furnishes the proper order of magnitude provided the
migration enthalpy is reduced to roughly one third of the normal value (KM et al.
[1988]). The differences between these last two approaches is probably rather small, and
they can be viewed as different points of view on the same phenomenon, since each of
them rely on a highly idealized description of the state of the matter inside the core,
discrete energy transfers in the first case, and equilibrium thermal effects in the second.
In the fourth model, atoms are diffusing in the liquid core of the cascade (JOHNSON et al.
[1985]). Assuming even in the liquid state a thermally activated diffusion scaling with
the cohesive energy of the solid, and taking into account the thermodynamical factor in
the liquid (see eq. (7)), a qualitative agreement with experimental results can be obtained.

Nevertheless the present authors have the feeling that several well established results
(correlation between mixing efficiency and characteristics of diffusion by a vacancy
mechanism in the solid, no effects of the solute atomic mass on the mixing (KIM et al.
[1988])), are not well accounted for in this approach. On the one hand the actual mixing
is probably the result of the superposition of at least the first three effects; on the other
hand we are still lacking of a proper model for the physical structure of the cascade core, for
which neither the liquid droplet nor the heavily damaged solid are perfectly adapted concepts.

References: p. 651.
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8.3.1.3. Diffusion by thermally activated jumps. This mode of diffusion enhance-
ment, usually called radiation-enhanced diffusion (R.E.D.), can be observed in a medium
temperature range, fig. 19, where it is controlled by the thermally activated jumps of the
freely migrating defects created by the irradiation. According to the § 8.3.1.2. the denser
the cascade, the higher the plateau due to ion-beam mixing, and therefore the narrower
the domain of R.E.D. The contribution of the free defects to diffusion is controlled by
the equation (74). Two methods have been used for calculating the defect concentrations
C, and C,. The first is the Monte Carlo simulation method (DORAN [1970], LANORE
[1974]). We have no space to discuss it here and refer the reader to the original articles.
The other one, a quasi-chemical approach, was initially proposed by LOMER [1954] and
progressively refined since. The ingredients of Lomer’s model are the following:
— production rate G of spatially uncorrelated point defects (the so called freely migrating
ones)
~ motion by random walk with coefficients D; and D,
- annealing by mutual recombination at a rate K, at fixed sinks (supposed to be
uniformly distributed) at rates K; and K,, or at surfaces, generally treated as a boundary
condition
- only pure metals where considered in the initial formulation, but now the extension at
least to dilute alloys has been done, in the limit of a solution remaining homogeneous.

Since interstitials are present the set of equation (1)-(3) (§1.2.2.) has to be com-
pleted. The necessary coefficients have been calculated by BARBU [1980] and ALLNATT
et al. [1983] for fcc dilute solutions (see also §4.2 and § 5.1.2 for concentrated alloys).
It can be shown using a proper thermodynamic model of the solution that the four fluxes
can be written:

QJ; = =D, VC, — Dy, VC, — (M, + M3 VG,
QJ, = -D,VC, - D,,VC,

QJ, = -D,VC, - D,VC,

J,==dg+1J, -1,

(75a)

These equations define i) in the absence of solute concentration gradients the
diffusion coefficient of the defects Dy and Dy, written above D, and D, for simplicity,
ii) in the absence of defect concentration gradients the diffusion coefficient of B,
My, + My, which can be put easily in the form (74). If the solute concentration remains
homogeneous, the defect concentrations are then solutions of the following equations:

ac,

=G-— DiV(QJV) - KrCle - KV(CV - C‘(") )’
K (75b)
E=G- Div(QJ,) - K,CC, - K,C,

where Cy is the concentration of thermal vacancies.
These equations have generally to be solved numerically. Nevertheless, far from the
surface, after a very complex transient regime, the duration of which is of the order of
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1/K, with K the lower of K, and K;, one obtains under the hypothesis of the interstitials
being the more mobile defects, a steady-state regime characterized by:

- D,C;=D, (C,— Cy) when elimination at sinks prevails

-C=C,- Cy when mutual recombinations prevail

- C,~(G/D,)" at low temperatures, i.e., for dominant mutual recombination

- C,~(G/D,) L at high temperatures, i.e., for dominant sink elimination, where L is the
mean distance between sinks. At very high temperatures, T/T, =0.5, the defect mobility
is sufficient to prevent any noticeable defect supersaturation, and the enhancement is
negligible. In table 10 are given the main characteristics of D,_, [see eq. (74)] in Lomer’s
model. To analyze the experiments it must be kept in mind that in most cases they are
done near the surface: a correction is then necessary (ERMERT et al. [1968]).

In dilute solid solutions we can observe rather severe effects on defect mobility
whenever i) a strong defect-solute attractive interaction exists, ii) the pair is immobile (in
the case where the pair cannot migrate without dissociating). These two conditions are
not linked to one another for the vacancy, but are for the dumbbell interstitial in fcc
structures, except may be for very small solutes. In this case the so-called caging effect
induces a strong decrease of the mobility of the interstitial defect in the alloy, as long as
the concentration is not higher than the percolation limit in the given structure. Beyond
this limit the defect can find diffusion paths which do not break the pair (ROCQUET
[1986]).

The enhancement being noticeable only at low temperatures, that is at low mobility,
D,.. will be lower than 107 m%s, and the experiments are very difficult. This fact, as
well as the badly known actual level of freely migrating defects, can explain the fairly
general discrepancy which has been observed for long between the tracer experiments
and the predictions of Lomer’s model. The measured values were generally too high,
either in self or solute diffusion (ADDA et al. [1975], BREBEC [1990]). However, Lomer’s
model also rests on numerous approximations, for example in the calculations of the
various rate terms, K, K; or K,, particularly in concentrated alloys [eq. (74)].

Relaxation methods, however, are well suited to this case, owing to their high
sensitivity, and their ability to follow all along the kinetics during the complex transient

Table 10
Characteristics of D, ., in Lomer’s model [eq. (74)]; after ADDA ef al. [1975]

Régime of climination Activation energy of D, Dose-rate dependence
(G =dose rate)

Term due to Term due to Total

interstitials vacancies
Recombination only iH, H,-\H. complex G
in the transient regime
Elimination on sinks 0 0 0 G
Elimination both by
recombination and on sinks  1H}, iH, +H, G

Hi, and H, are the migration enthalpy of, respectively, the interstitial and the vacancy.

References: p. 651.
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regime preceding the stationary state. The results of HALBWACHS [1977], HALBWACHS
and HILLAIRET [1978] and of HALBWACHS et al. [1978a,b] on Ag—Zn alloys by Zener
relaxation display a good agreement with the predictions of Lomer’s model, if one
assumes that, in these alloys, the vacancies are less mobile than interstitials. The use of
electron irradiations avoided the ambiguity of the actual level of freely migrating defect
production. This result, confirmed by electron-microscopy studies (REGNIER and
HALBWACHS [1980]), has given the first evidence of the large pairing effect on the
interstitial mobility in solid solutions.

The tracer experiment which has probably for the first time evidenced the R.E.D. in
self-diffusion is the one depicted in fig. 19. The authors have been able to adjust in a
coherent manner on the experimental results the various parameters entering the model;
in particular they invoke a temperature dependent sink density and an efficiency for the
production of freely migrating defects amounting to 1.5% only of the Kinchin and Pease
value, in agreement with the recent simulation results on defect production in cascades.

8.3.2. Irradiation-induced segregation and precipitation

Irradiation-induced segregation, leading eventually to precipitation in undersaturated
alloys, is now a well established phenomenon in a large number of systems (for a quite
recent review of experimental results see RUSSELL [1985], also ENGLISH ef al. [1990]).
We display in table 11 the characteristics of such precipitation in a few binary alloys.
This effect has to be clearly distinguished from a simple radiation-enhanced precipitation
in an oversaturated alloy.

At a given defect creation rate G, the segregation or the precipitation of a non-
equilibrium phase appear in a well defined temperature interval (see figs. 20 and 21). A
new variable, or more precisely a new control parameter, has to be added to the classical
phase diagram: the defect creation rate (or irradiation flux), in addition to temperature,
pressure and composition (ADDA et al. [1975]).

Two ways have been explored to explain these results. The first one is a constraint-
equilibrium one: the stored energy due to point defects might displace the free enthalpy
curves, to such an extent that it renders stable under irradiation a phase which is
normally unstable. Careful calculations of this effect have shown that the order of
magnitude of the possible displacement is too low to explain the great majority of the
results (BOCQUET and MARTIN [1979]). In the second approach, initially proposed by
ANTHONY [1972] for vacancies, the elimination of irradiation-created point defects by
diffusion to sinks, like surfaces or dislocations, results in defect fluxes which induce,
through the flux coupling terms, local solute supersaturations. These supersaturations can
grow beyond the solubility limit, resulting in a precipitation. Indeed both terms Dgy, and
Dy, (eq. 75a)), if positive, can give rise to such a segregation.

Many authors have developed this idea for dilute alloys and proposed more or less
approximate expressions for the coupling terms due to interstitials (OxAMOTO and
WIEDERSICH [1974], JoHNSON and LAM [1976], BARBU [1978, 1980]).

As shown in table 11, two forms of segregation or precipitation have been observed,
and can be explained in the present framework. The first one is heterogeneous, and
occurs on sinks, either pre-existing to, or created by, the irradiation. The most elaborate
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Fig. 20. “Phase diagram”, in a flux-temperature section, for the system Ni-Si irradiated by 1 MeV electrons
(after BARBU and MARTIN [1977]). Solid line; precipitation borderline for a concentration of 6 at% Si, dashed
line idem for 2 at% Si.

numerical solutions of the above set of equations give a fairly good account of experi-
mental results. In particular, the role of sinks, dislocation loops or surfaces is well
understood. Nevertheless in this approach the position and the slope of the low-tempera-
ture borderline remains to be explained (BARBU [1978]). In all theses models the solute
supersaturation results from a balance between the interstitials, which always carry the
solute down the gradient and the vacancies, which can act in both directions (BARBU
[1980]). At higher temperatures the phenomenon disappears owing to the lowering of the
defect supersaturation.

A second kind of precipitation, the homogeneous precipitation, was discovered later
(table 11), where precipitates are not associated with any pre-existing defect sink. By
studying the stability of the set of equations (75) with respect to concentration fluctu-
ations, CAUVIN and MARTIN ([1981], [1982]) have been able to show that, due to the
recombination term, the homogeneous solution can become unstable with respect to small
concentration fluctuations, giving rise to solute precipitation. Before reaching this
instability, the system may become metastable with respect to the growth of large enough
precipitates. The analysis of the nucleation problem taking into account the
supersaturation of defects, allows to calculate a solubility limit under irradiation. Models
have been proposed for incoherent precipitates of oversized solutes (MAYDET and
RusSELL [1977]), or coherent ones, wether over- or under-sized (CAUVIN and MARTIN
[1981], [1982]), the latter providing a good agreement with results obtained in Al-Zn

References: p. 651.
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Fig. 21. Solvus line in the Al-Zn system under 1 MeV electron irradiation (after CAUVIN and MARTIN [1981]).
Open half-circles: no precipitation; solid half-circles: precipitation at low, or high, flux; dashed line: solvus line
without irradiation.

Table 11
Binary alloys where radiation-induced precipitation has been found.
Alloy Projectile Precipitate Morphology
Ni-Be Ni* jons B-NiBe at interstitial dislocation loops
Ni-Si neutrons v’-Ni,Si at interstitial dislocation loops
Ni* ions v’-Ni,Si at interstitial dislocation loops
electrons v’-Ni;Si at interstitial dislocation loops
H* ions v’-Ni,Si homogeneous, coherent, in regions of
non-uniform defect production
Ni-Ge electrons v’-Ni,Ge at cavities or dislocations lines
Al-Zn neutrons B-Zn homogeneous precipitation
electrons GP zones +3-Zn homogeneous precipitation
Al-Ag electrons {100} silver-rich homogeneous precipitation
platelets
Pd-w H*, N* ions bcc W at dislocation loops
electrons Pd; W homogeneous
W-Re neutrons X-WRe, homogeneous
Cu-Be electrons G.P. zones+y homogeneous
Mg-Cd electrons Mg,Cd ?
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alloys under electron irradiations. The origin of this mode of precipitation is to be found
in the enhanced recombination probability for the defects in solute rich zones in case of
attractive solute-defect interaction.

The theoretical situation is less favourable for concentrated alloys since the available
models both for the thermodynamics and for the phenomenological coefficients are much
less safe (see § 5.1.2). They are generally based on the random alloy model of MANNING
[1971] and discard the specific trapping effects of solutes on the interstitials. As a
consequence they do not introduce properly the coupling terms (WIEDERSICH et al.
[1979]), The more elaborate treatments still suffer from restrictive assumptions
(BOCQUET [1987], LIDIARD et al. [1990]). The interest of treating the thermodynamics of
the alloy and the dynamics at the same level of approximation, has been evidenced by
GRANDIEAN et al. [1994], who where able to reproduce a whole segregation profile in
NiCu alloys.

8.3.3. Irradiation-induced phase transformations

In the two preceding paragraphs we have sketched specific models for irradiation
enhanced diffusion and segregation/precipitation phenomena. More generally an alloy
under irradiation can be described as a dissipative dynamical system which can display
a very rich behaviour in response to an irradiation: the system will develop an evolving
microstructure with voids, dislocations loops, precipitates, displaying, or not, steady
states. The nature and the relative stability of these states can be studied thanks to a
whole bunch of methods like deterministic approaches, Langevin equations, Master
equation, Monte Carlo simulation, ... which allow to draw dynamical phase diagrams.
These topics however are too far from the point of view of the diffusion and the
interested reader can found in the specific section of the bibliography the relevant
references.

Irradiation-induced segregation and phase transformations are further discussed in
ch. 18, §4.7.

9. Diffusion in amorphous metallic alloys

The study of diffusion properties in amorphous metallic alloys (A.M.A.), has been
quite active in the past ten years both because these materials have been used as models
of disorder for more complex glasses, like oxide ones, but also because they pose an
interesting question from the point of view of solid-state physics: what level of structural
disorder is sufficient and/or necessary for invalidating the notion of point defect (LIMOGE
et al. [1982])? The reader is referred to recent reviews (AKTHAR ef al. [1982], ADDA et
al. [1987], MEHRER and DORNER [1989] and LiMOGE [1992b]), and to the general
references on metallic glasses given at the end. The topic is still highly controversial on
some points, so the present authors will try, as everybody engaged in the hottest debates,
to separate as clearly as possible the established facts from more subjective interpreta-
tions.

References: p. 651.
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9.1. A primer of metallic glasses

Whatever the preparation mode, vapor condensation, ultrafast quench, it is now
recognized that after a proper annealing a unique metastable equilibrium structure is
obtained. We have given in fig. 22 a schematic picture of the evolution of the viscosity
and self-diffusion in a supercooled liquid during a quench. Two parts are clearly
distinguishable. First a high-temperature one, above the so-called glass transition T,
where the system flows. The diffusion mechanism is of a collective type and, as far as
it can be checked, the Stokes—Einstein relationship is obeyed. In this part the well-known
WiLLIAMS-LANDEL-FERRY [1955] expression works as a mere fit at least as well as any
other expression; in particular it describes rather well the near divergence of the viscosity
at a finite temperature T, which gives rise to the phenomenon of the glass transition.
Around T, a rather abrupt change is observed and a new regime sets in, which has all the
characteristics of a mobility in solids. In the following, we will be interested in this latter
part, that is, sufficiently below T,.

As a consequence of these very rapid quenches the glassy alloys are metastable, and
as compared to silicate glasses, more “meta” than “stable”. As soon as an enhanced
temperature allows a sufficient mobility they evolve in a twofold manner. On the one
hand they relax towards the (hypothetical) equilibrium liquid structure, probably
becoming locally more ordered, and therefore decreasing the mobility. On the other hand
if sufficiently large fluctuations of topological and chemical order can form, they will
crystallize; the crystallization is controlled by diffusion.

The study of diffusion is thus a quite difficult task. First the allowed (mobility X
time) window is very limited by the onset of crystallization: most of the measurements
are for example done in a temperature range of less than 100 K, and over two decades
of D at most, the total penetration being typically less than 100 nm in tracer experiments.
Needless to say, the D values obtained are at the lower limit of the available techniques,
imperatively restricting the temperature range where diffusion can be studied. As a
second drawback, during this short time the structure itself will evolve: a proper
preliminary anneal is generally needed for obtaining a reasonably stabilized structure.
This minimum requirement as not been always met in the first studies. Finally, a
characteristic feature of the glasses is the wide distribution of physical properties
prevailing in non translationally invariant systems. As probed by local methods (see
§ 2.2) activation energy spectra are frequently found with halfwidth of the order of tenths
of an eV.

Glassy alloys have now been discovered in a great number of systems. With respect
to diffusion two families only have been studied: the M-Me group where M is a late
transition metal or a noble one (or a mixing of them), and Me a metalloid in a concen-
tration between 15% and 25% at.; and the M-M group, alloying an early transition metal
(and big) with a late (and small) one in a broader composition range, from 20% to 80%
at. approximately. The level of local order is thought to be much more developed in the
first class than in the second. As a consequence the properties of the two groups are
possibly different. (See also ch. 19, §4).





