Vibrational spectroscopy

(IR and Raman spectroscopy)
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5.1 Fundamentals of vibrational spectroscopy

Definition of vibrational spectroscopy

Vibrational spectroscopy is concerned with the
detection of transitions between energy levels in
molecules that result from stretching and bending

vibrations of the interatomic bonds.
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Fundamentals of vibrational spectroscopy
Vibrational frequencies

Be characteristic of particular functional
groups in molecules.

Be sensitive to

It is a useful method for the structure analysis
of materials.
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Fundamentals of vibrational spectroscopy

State of
molecules

Excited vibrational
states

>

< Energy

Ground vibrational states

At room temperature, most molecules exist in their ground
vibrational states.
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Fundamentals of vibrational spectroscopy
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Fundamentals of vibrational spectroscopy

Kinds of vibrational

spectroscopy
Infra—red spectroscopy
(Polarized)
Raman spectroscopy (Non-—
polarized)
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Infrared spectroscopy

EM radiation of an appropriate frequency

l

Molecular

l

Bond dipole moment
l

Infrared absorbance

When the vibrating dipole is 1in phase with the
electric vector of the 1incident radiation the
vibrations are enhanced and there 1is transfer of
energy from the incident radiation to the molecule.
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Infrared spectroscopy
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Infrared spectroscopy

Vibrating of Disulfide carbon

- m @ Symmetrical stretching
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Infrared spectroscopy

Diatomic molecule model
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Infrared spectroscopy

Diatomic molecule model

The vibration frequency (v) is then
expressed:

where k 1s the force constant
w=m,m,/ (m+m,) : reduced mass
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Infrared spectroscopy

The vibration frequency (v)

low

v
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Infrared spectroscopy

The vibration frequency (v)
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Infrared spectroscopy

The detection of the energy
absorption constitutes IR
spectroscopy.

In continuous recording spectrometers
the spectral transitions are detected
by scanning through the frequency
whilst continuously monitoring the
transmitted light intensity.

RIS RS (PRI FVADY R miRAE 15/94



Methybenzene

1.0
T O[Tl
CHz /_\
0.2 @
Taluene
0.5
*‘7 o
0.4 —
i 730+ 20 cm! corresponds ta the
' symmetric out-of-plone bending  of
the ring hydrogens. Shifts to higher
frequency  with  fewer odjocent
hydrogens [use overlay menu.)
0.0
<4000 2500 000 2500 2000 1200 100 1400 1200 1000 200 €00 cm”~ 1 400

RIS RS (PRI FVADY R miRAE 16/94



<tL
DY
R

1.0

i ——

0.g
]
0.e& WH
Heptaldehyde
0.4 N
0.2
2861 cm-1 - CH»
symmetric stretch.
0.0

2200 2100 2000

RIS RS (PRI FVADY R miRAE

2900

2800

2700

ern 1

2600

17/94



Raman spectroscopy

= Raman spectroscopy is concerned with
detection of light scattered inelastically
by molecules interacting with incident
monochromatic radiation.
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Raman spectroscopy

= When EM radiation interacts with matter, a certain

fraction of the incident radiation is scattered.

Two kinds of scattering:
Rayleigh: elastically (1 in 10%)
Raman: inelastically (1 in 109)

The difference between the wavelengths of the scattered and
incident radiation arise due to induced transitions of the
vibrational states of the molecules.
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Raman spectroscopy
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Raman spectroscopy

Elastically scattered: its frequency remains
unchanged.

Stokes lines: corresponding to energy transfer
from the incident photon to the specimen, when the
transitions from =0 to »=1 occur.

Anti-stokes lines: when transitions are induced
from the excited to the ground state and energy is
transferred to the photon from the specimen.
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Raman spectroscopy
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Raman spectroscopy

Stokes lines: v,—v_,, corresponding to
energy transfer from the incident photon

to the specimen

Anti-Stokes lines: v, ,tv_,, transitions
are 1induced from the excited to the
ground state and energy is transferred

to the photon from the specimen.
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Vibrations in Molecules

Degrees of freedom (two atoms rigid molecular)

3 translational (F#2) degrees of freedom

3 rotational (Jjg%) degrees of freedom
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Vibrations in Molecules

Degrees of freedom

(molecular consisting of n atoms)

Total degrees of freedom is 3n

The number of vibrational degrees of freedom
1S 3n — ©

For linear molecules, it is increased to 3n-b
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Vibrations in Molecules

Degrees of freedom (H,0) : 3%3-6=3

3 é " t\/
H/\H H/'\H Y
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Vibrations in Molecules

Degrees of freedom (C0O,) : 3%3-5=4

1) - 6 =C= 6
C atom is the center of +. - charge. /=0,
u=0 (dipole moment=0)
IR inactive.

—_—

2) : BZEZO
Vas: 2349cm-1
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Vibrations in Molecules
Degrees of freedom (C0O,) : 3%3-5=4

3) m-plane bending: (T):C:é
5: 667 cm! ‘
® 0 @
4) out-of-plane bending: O=C=0
y: 667 cm’!
@ 1ndicates “out’, © indicates “m”

The vibrational engery for (3) and (4) is the same.
So only one absorbing peak at 667 cm-!
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Vibraitonal modes (methylene group)

(a) stretching

(b) in-plane bending

(c) out-of-plane bending (i) twisting

|
(i) symmetrical ——C _I_.
H

(ii) asymmetrical —_—
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(ii) rocking T/
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Hexane

T
CHgWCHE
Hezcane
a.
0.5
Four peaks
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0.4 apectrol interpretation cbwoys starts ot the
high end, becouse these are the best group
frequencies oand they ore the eosiest to
interpret. Mo pecks oppeor obove 3000
cm-l, the cot-off for  unsoturoted  C-H
0 stretches. The four peoks below 3200 cme!
ore saturated C-H stretching moces.
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Hexane

T
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Hexane
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The peck ot 2962 cm-! is assigned to
the antisymmetric stretch of the CHj
groug. This vilbrotion is alwoys found in
the ronge 2962+10 cm-l. There are
actually two degenerate antisyrmmetric
stretching modes [only one shown).
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Hexane

T
CH3WCH3
Hexane
0s
=

At 2926 cirl, the CH;
antisymmetric  stretch
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Hexane

At 2872 coml, the CHj
symmetric  stretch absorbs.

0.4 Mormal ronge: 2872+ 10 cm-1
0.2
0.0
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At 2853 cml, the CH:
symmetric stretch  absorbs.

0.4 Mormal ronge: 2853£10 cm-!.
0z :
0.0
2200 Z100 Z000 2900 2800 2700 el 2e00
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Hexane

CHgHHﬁfxmjgﬂuCHg
Hexane

1470cm-!

This is the €-H bending region,
exponced to show the neorly
overlopping peaks for the CHj
and CHz bends. Use the overloy
meny to compare to cyclohesone
and 2, 3-dimethylbutane. Click on
o peak to see its' gssighment.
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Hexane

1.0
T
CHEWCHg
He:xane
.
0.5
!
0.4 YWhen four or more TH=
1 groups are in o chain, o
rOCklng vibration ot 720+ 13 cm-!
corresponds to concerted
rocking of all of the CH2's.
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Vibrational modes of —OH (hydroxyl)

‘\

in-plane bending C—o0O /B (5)

/H@e

'out-of-plane bending C—O (V)
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Hexanol

1.0
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0.2
0.e
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3334 cr! - OH stretch. Mormaol
range: 3350+ 150 cmel. This is
o wvery chorocteristic  group
0.2 frecuency. All of the pecks due
ta the OH group are brood due
to hydrogen bonding.
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Hexanol

1.0
T
Hezanol
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1430 cmr! - OH bend. Mormol
ronge: 1400+ 1330 cm-l. This
brood peak is buried under the

] CH bending modes.
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Hexanol

1.0
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Aromatic ring expansion (Methylbenzene)

1.0
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0.s CH3
Toluene
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At 1601 cm-l, the symmetric ring
stretch cbsorbs. Ronge:
1990+ 13 cm-l. This  vibrotion
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chsorbs in IR) only  when not

04 4

symmetrically  substituted.  The
Only n()t intensity of this bond clso vories
0.2 . with the substituent. Compare to
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Aromatic ring expansion (Methylbenzene)
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Use of vibration spectra

The group theory determine the expected
normal vibrations from the symmetry of the
molecule

Predicts whether vibrations are IR active
or Raman active.

The force constants can be estimated for
each vibration based on Hook's law.

Detailed assignments of the absorption peaks
can be made by comparison with observed
spectra.
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Comparing of IR and Raman Spectroscopy

IR requires changes
in dipole moments

In IR, symmetrical
vibrations are weak

Symmetric vibrations
of (O=C=0) , no dipole
moment

change ,inactive in the
infrared.
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Raman involves changes
in polarizability of the
bonds

In Raman, asymmetrical
vibrations are weak

Symmetric vibrations of
(O=C=0),but a larger
polarizability so that

they are Raman active.
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Comparing of IR and Raman Spectroscopy

For antisymmetric
vibrations the
dipoles do not
cancel and a net
dipole exists so
that they are
infrared active.
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the
polarizabilities
of two dipoles
change in
opposite senses
and cancel, hence
they are Raman
1nactive.
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Comparing of IR and Raman Spectroscopy

For less symmetrical molecules, some vibrations
are IR and some are Raman active.

For vibrations that are active in both Raman and
IR, asymmetric vibrations are strong in IR but
give only weak absorptions in Raman.

Detailed analysis of the vibrational modes in
polymers requires complementary use of both IR
and Raman spectroscopy.
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Comparing of IR and Raman Spectroscopy

——

wCH> 1CH>

asymmetrical

(@) \ ] -

symmetrical

7L B O

(b)

3 i i L 1
1800 1600 1400 1200 ]0’00 800
cm '/ cm}

Liner PE: (a) IR; (b) Raman
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Group frequencies

> Most investigations rely on a more
empirical approach;

Vibrational frequencies of particular
chemical groups in molecules tend to
behave largely independently of the
rest of the molecule of which they are
apart;

A\
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Group frequencies

> The absorption frequencies for a particular
chemical group are essentially constant;

Absorption bands appear in roughly the
same region of the spectra;

A\

Assign particular absorption bands to
vibrations in the groups by reference to
standard correlation tables.

\%

Computer database---automatic assignment

\%
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Table 5.1 Characteristic vibration modes for
common groupings found in polymers

Type of vibration  Characteristic frequencies (cm)

O—H {stretching} 3650-3000
N—H {stretching} 3500-3300
C—H {stretching} 3200-2800
S—H {stretching} 2600-2550
C=N {stretching} 2255-2220
C=C {stretching} 2250-2100
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3334 cr! - OH stretch, Mormol
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1.0

T
0.5
B MH=
& Hezyl amine
0.5
0.

3390 c! - MH2 antisymm.
0.2 stretch. Mormal  range:
JIC0£100 cmel. Muoch
weaker  obsorption  thon
the ©H stretch in hexonol.
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Toluene
0.5
L
0.4

=4

3050+53 cm! corresponds
.z to the cromatic or unsoturated
Clspa-H o ostretch, Abwoys
ohove 3000 cmrl,  these
bonds are not assigned  to
specific vibrational modes.
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1.0

M
1-Hexene
o=
(=
0.4

3080 cm-! - =CH:  anfisymmetric
stretch. An cbsorbtion ohove 3000
cm-! indicates the presence of on
unsctorotion (double or triple bond
or an aromatic ring).
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1.0
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Hexane
0.&
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0.4 opectral interpretation alwoys starts ot the
high end, becouse these are the best group
frequencies ond they are the eosiest to
interpret. Mo peoks oppeor cbove 3000
cm-!, the cut-off for unsoturoted  C-H
0= stretches. The four pecks below 3030 om-l
cre saturated C-H stretching modes.
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1.0
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Heptyl cy anide

0.&
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2247 cr! - C=M stretch. Mormal ronge:

2290+ 10 cml, lowered 1032-20 cm-l

when conjugoted. Compore to the C=C

stretch in 1-heptyne (2119 cm-1).
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C=0 {stretching}
C=C {stretching}
C=N {stretching}

N=N {stretching}
— aliphatic
N=N {stretching}
— aromatic
C — NO,
{stretching}
C — SO, — C
{stretching}
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1820-1680

1900-1500

1680-1610

1580-1550

1440-1410

1590--
1380--
1350-"
1160-1

530 {asymmetric}

340 {symmetric}

310 {asymmetric}

120 {symmetric}
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0
Ethyl Acetate

1742 cm-1 - C=0 Stretch. Inosmall ring
esters, this vibrotion is shifted to higher
frequency by coupling to the stretch
of the adjocent O—C and C—C honds.
The amount of coupling depends on
the O—L0O—C angle. As with other
carbonyl groups, conjugotion lowers
the frequency. [See overloy menu).
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1.0

T
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1-Hexene
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1670410 em! for trans, ti ond tetro
substituted.  Trons-Z2-hexene  [owverloy
meny) hos only o very weak cbsorption,
0.2 - because there is wery little dipole
' chonge when oan interncl double  bond
L stretches (it is necrly symmetric) .
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C=S {stretching} 1250-1000
CH, {bending} 1470-1400

CH; {bending} 1380
C — C {aromatc — 1600,1580,1500,1450,1000

stretching}

C — C ({alicyclic — 1300-600

stretching}

C—0O—C {stretching} 1150-1060 {asymmetric} 970-800
{symmetric}

Si—C—Si {stretching} = 1110-1000 {asymmetric} 550-540
{symmetric}

O—O0 {stretching} 900-845
S—S {stretching} 550-430
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The brood peak. ot opprosimotely
1462 cml s octuolly  two
overlopping pecaks. At 1460+ 10
cm-1, the antisymmetric bend of
the CHy group absorbs. This is o
degenerage bend [one shown.)
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1.0

0.2

0.

0.4

0.z

0.0

CH3WCH3
Hexane

At 1375+10 cm-1, the CHz symmetric
bend [olso coled the “umbrelo”  bend)
obszorbs. This peck is very useful becouse it
iz isolated from the other pedoks. Compore
the spectrum of cyclohesone. The most
prominent  difference  between  the  two
spectra is the absence of o CHz symmetric
bend in the cyclohesone spectrum.
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Se—Se {stretching} 330-290

C (aromatic) — S 1100-1080
{stretching}

C (alicyclic) — S 790-630
{stretching}

C—ClI {stretching} 800-550
C—Br {stretching} 700-500
C—I {stretching} 660-480
C—C {blending} 400-250
lattice vibrations — 200-20

accordion modles
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Coupling

Coupling of groups causes shift of spectra

Shifts of spectra provide valuable
information on the molecular environment
of the particular chemical group

The magnitude of the coupling effect
1s smallest when the atoms of
neighbouring groups have significantly
different masses or when the bond
vibrations possess relatively large

force constants.
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Coupling

The force constants are greater for
bond stretching vibrations than for
bending deformations;

The absorption frequencies for
stretching modes are essentially
invariant whereas those for bending

modes show more significant shifts due
to coupling;
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Coupling

For most hydrocarbons, assignment of
specific vibration frequencies to
particular group motions is usually
possible:

In case of fluorinated polymers, the
coupling of vibration and bending
motions leads to group vibrations which
are very sensitive to the effects of
substitution;
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Quantitative analysis

Beer-Lambert Law

/
A=log—=¢c/
/ 0
A Absorbance;

Zy: Incident light intensity;
/ : Intensity at a depth / in the absorbing
medium;

¢ : the concentration of the absorbing species;
¢: a constant for the material termed the

absorptivity or extinction coefficient.
>k Most spectrometers display the spectrum as percentage

transmittance ¥s wavenumber.
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Quantitative analysis

Beer-Lambert Law

Transmittance :
I'=17/1,

Percentage transmittance:
100 x 277,

Absorbance:
A=log (/ /7).
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Quantitative analysis

In principle, if extinction coefficient is known,
absorbance can be made by direct application of the

Beer-Lambert Law

Quantitative analysis is best carried out in
solution with appropriate concentration.

And more usually there is need to examine

polymers in the solid state. (thin film, in

the form of KBr discs or Nujol mulls)

RIS RS (PRI FVADY R miRAE 70/94



Quantitative analysis

For absolute measurements, there are some
problems:

Uniform film thickness

Homogeneous distribution of absorbing
species (particularly additives)

Optical effects such as extraneous
light scattering
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Quantitative analysis

More reliable results are usually obtained:

Compare the sample under investigation
with a standard reference material located
in the reference beam of dual beam
spectrometers;

Use internal reference standards;
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Instrumentation
(a) Dispersive infrared spectrometers
Double beam mode

The source emits radiation over the whole IR
region (a black body source (globar))

Use more than one monochromator:
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Instrumentation

(b) Fourier transform spectrometers

Whole infrared region

FTIR instruments have largely replaced the
traditional double beam instruments.
Higher singal-to—noise ratios compared to
dispersive instruments

Capability of complex data handling

Also permit investigation of transient
structural changes during deformation of

polymers
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Instrumentation

(b) Fourier transform

HeNe
\ laser

Two
mIrrors
one
fixed
and one
movable

Beam
splitter

Id
I
]
1
LY \
~
LY S
~
N
N
A
b Y
A

spectrometers

IR
<« Tdetector

Sample area
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Instrumentation

(= e N
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Instrumentation

(b) Fourier transform spectrometers

(b)

Fixed Mirror

Beam splitter

Source

e

Moving mirror
Sample | position 9

Detector
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Instrumentation

(b) Fourier transform spectrometers

constructive
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- Moving mirror

Fix mirror

destructive
interference

| : source

Scanner

oscillatory
pattern or
interferogram

RIS RS (PRI FVADY R miRAE 78/94



Instrumentation

(b) Fourier transform spectrometers

mirrors are located
equidistant,the optical
path difference is an
Integral number of
wavelengths

| - -

AN A NN the reflected beams are
VRV, - . in phase
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Instrumentation

(b) Fourier transform spectrometers

1 e sl s e the optical path
e difference is an odd
number of half
wavelengths
: destructive interference
Fixed mirror : m m

Moving mirror : ﬂ m
VAV
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(c) Raman spectrometers

High intensity

monochromatic laser
light sources: argon

ion, krypton ion,
helium-neon gas
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(d) Attenuated Total Reflectance (ATR)

» IR spectra of surfaces

» Provide 1information on surface
oxidation
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Infrared Dichroism

Pae . e € ) -ﬁoocm"'_

. ‘ i i 'ﬁ'

m s macmesseies
RIS RS (PRI FVADY R miRAE 84/94



Infrared Dichroism and Raman Polarization

Use polarized light source;

Determine the extent of IR dichroism
and/or Raman depolarization

Provide structural information of
molecular chain orientation.
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Infrared Dichroism

The maximum absorption of IR radiation
occurs when the electric vibrating of
the incident EM radiation is parallel
to the dipole of the vibrating group;

Absorption of IR radiation 1is zero 1in
the perpendicular direction.
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Infrared Dichroism
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Infrared Dichroism
Two situations:

Random orientated molecules

(The measured absorbance is independent of
the polarization of the incident light.)

Oriented specimens

(The observed spectra will differ depending
on the direction of the plane of polarization
relative to the molecular orientation.)
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Infrared Dichroism

Dichroic ratio:
D=A,/A D,=2cot2qa,

/= [3< cot20>-1]/2 = (D-1)(D,+2)/(D,~1)(D+2)

where A, and A) are the apsorbances deflined with
respect to a reference axis in the sample,
typically the orientation direction. f£f1is the chain
orientation factor. o is the transition moment angle,
which is the angle between the direction of the nitrile
group’s dipole moment and the chain axis. For PANJit is

70°. And O is the angle of the molecular segment relative to
1. BETE CRERTUTED R iREe 89/94



Raman Polarization

The directional properties of Raman
spectra are determined by:
The symmetry of the vibrations

The orientation of the molecules
relative to the plane of polarization.
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Raman Polarization

For randomly orientated
molecules, the intensities of Raman

lines are dependent on:

The polarization of the incident
beam;

The symmetry of the vibrational modes.
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Raman Polarization

For oriented specimens, the intensity
of the scattered light 1s dependent
also on:

The molecular orientation relative
to the plane of polarization of the
incident radiation:

The direction and plane of
polarization of the scattered
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Raman Polarization

Polarization effects are expressed
quantitatively by depolarization ratio (p)

P = i

[ L
where I, is the intensity of the light scattered with its
plane of polarization in the same direction as that of
the incident light;
I |, is the intensity of light having its plane of

polarization at right angles to that of the incident
light.
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Raman Polarization

Depolarization:
p=0.75

Polarization:
pL0. 75
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