2013 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

- 1. 答案必须写在答题纸上,写在试卷上均不给分。
- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。
- 4. p^{Θ} =100kPa≈101.325 kPa∘
- 一、选择题(30分)
- 1. 下列说法不正确的是
 - A. 临界温度是气体能够液化的最低温度
 - B. 临界温度下, 临界压力是气体能够液化的最低压力
 - C. 同种气体在不同温度时的压缩因子可以大于、小于或等于零
 - D. 同温度时不同种类气体的压缩因子可以大于、小于或等于零
- 2. 下列说法正确的是
- A. 1mol 理想气体从同一始态出发分别经绝热可逆和绝热不可逆过程到相同体积时 W 相等
- B. 1mol 两气体分别遵循 $pV_{\rm m}$ =C 和 $p(V_{\rm m}$ - $\alpha)$ =C (α 为常数) ,等温可逆由 $V_1 \rightarrow V_2$ 时 ΔU 相等
 - C. 某气体分别经节流膨胀和等外压绝热膨胀过程,温度由 $T_1 \rightarrow T_2$,系统的 ΔH 相等
 - D. 始终态确定后,某实际气态经历等温过程的 ΔA 和 ΔG 相等
- 3. 对于克—克方程的积分式: $\ln \frac{p_2}{p_1} = -\frac{\Delta_{vap}H_m}{R} \left(\frac{1}{T_2} \frac{1}{T_1}\right)$, 下列哪些条件不正确
 - A. $V_g>>V_l$, 忽略 V_l

- B. $\Delta_{\text{vap}}H_{\text{m}}$ 视为常数
- C. 适用于任何两相平衡
- D. 气体视为理想气体
- 4. 对于 $\left(\frac{\partial T}{\partial p}\right)_c$, 下列说法正确的是:
 - A. 绝热条件下,温度随着压力变化的变化率;
- $B. = \frac{V}{nP}$
 - C. 绝热可逆条件下,温度随着压力变化的变化率; D. $=\frac{V}{C}$
- 5. 对封闭系统,下列自发性判据不正确的是___。
 - A. 等温且 W=0 的过程: $\Delta A \leq W_{\text{felt}}$ B. 恒熵恒压且 W=0 过程: $\Delta H \leq 0$

- C. 任意过程: $\Delta S_{\text{Rig}} = \Delta S_{\text{sk}} + \Delta S_{\text{rt}} \leq 0$ D. 恒熵恒容过程: $\Delta U \leq W$
- 6. A、B 二组分形成理想稀溶液,在温度 T 时达气液平衡。该温度下 $p_{\scriptscriptstyle A}^*$ =50.0 kPa。已知气 相中 A 的组成 $y_A=0.89$, 液相中 B 的组成为 $x_B=0.15$, 则溶质 B 的亨利常数 $k_{x_1,B}=$ _____。
 - A. 42.5 kPa
- B. 50.0 kPa
- C. 47.8 kPa
- D. 35.0 kPa

- 7. 对下列化学势表示式或说明不正确的是
 - A. $\mu_B = \mu_B^{\Theta}(pg, T) + RT \ln \frac{p_B}{p^{\Theta}}$ 表示理想气体混合物某一组分 B 的化学势
 - B. $\mu_{\!\scriptscriptstyle A} = \! \mu_{\!\scriptscriptstyle A}^{\ominus}(l, T) + RT \ln a_{\!\scriptscriptstyle A}$ 表示理想稀溶液溶剂 A 的化学势
 - C. $\mu_B = \mu_B^{\Theta}(pg, T) + RT \ln \frac{p_B}{p_{\Theta}}$ 表示真实气体混合物某一组分 B 的化学势
 - D. $\mu_B = \mu_B^*(l, T) + RT \ln x_B$ 表示理想液态混合物某一组分 B 的化学势
- 8. 在温度 T、 p^{Θ} 条件下, $1 \text{mol } N_2O_4(g)$ 发生分解: $N_2O_4(g) \rightarrow 2 NO_2(g)$,达平衡时有 0.5 mol N_2O_4 分解生成 $NO_2(g)$, 则下列正确的是:
 - A. 该温度下反应的 $K^{\Theta}=1.33$
- B. 等温等容条件下加惰性气体平衡向左移动
- C. 当反应的总压力增加 $10 \in K^{\Theta} = 13.3$ D. 等温等压条件下加惰性气体平衡不移动
- 9. 己知: $E_{\Pi^{3+}/\Pi^{1}}^{\Theta} = -0.34 \text{ V}$, $E_{\Pi^{3+}/\Pi^{1}}^{\Theta} = 0.72 \text{ V}$, 则 $E_{\Pi^{3+}/\Pi^{+}}^{\Theta} =$ ______。
 - A. 1.42 V
- B. 1.25 V
- C. 1.06 V
- D. 0.38 V
- 10. 0.1 mol.kg⁻¹ NaCl, BaCl₂, CuSO₄ 水溶液,离子平均活度系数₂的关系为_____。

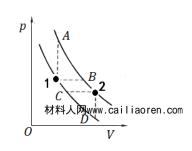
 - A. $\gamma_{\pm}(\text{NaCl}) > \gamma_{\pm}(\text{BaCl}_2) > \gamma_{\pm}(\text{CuSO}_4)$ B. $\gamma_{\pm}(\text{NaCl}) < \gamma_{\pm}(\text{BaCl}_2) < \gamma_{\pm}(\text{CuSO}_4)$
 - C. $\gamma_{\pm}(\text{NaCl}) > \gamma_{\pm}(\text{CuSO}_4) > \gamma_{\pm}(\text{BaCl}_2)$ D. $\gamma_{\pm}(\text{NaCl}) < \gamma_{\pm}(\text{CuSO}_4) < \gamma_{\pm}(\text{BaCl}_2)$
- 11. 定域子系统某分布的微态数 $W_D=$ _____
 - A. $N!\prod_{i}\frac{n_{i}^{g_{i}}}{n_{i}!}$ B. $N!\prod_{i}\frac{g_{i}^{n_{i}}}{n_{i}!}$ C. $\prod_{i}\frac{n_{i}^{g_{i}}}{n_{i}!}$ D. $\prod_{i}\frac{g_{i}^{n_{i}}}{n_{i}!}$

- 12. 溶液中发生表面吸附时,溶质在表面层的浓度 c_{*} 与其本体浓度 c_{*} 体的关系是:
- A. $c_{\bar{\pi}}>c_{\bar{\pi}}$ B. $c_{\bar{\pi}}<c_{\bar{\pi}}$ C. $c_{\bar{\pi}}=c_{\bar{\pi}}$ D. 不能确定
- 13. 强电解质溶液的电导率随浓度变化的规律为:
 - A. 随浓度增大而增大
- B. 随浓度增大减小

- C. 随浓度增大先减小后增大 D. 随浓度增大先增大后减小
- 14. 某化学反应,反应物消耗 3/4 是它消耗 1/2 所需时间的 3 倍,则该反应的级数为:
 - A. 零级
- B. 一级
- C. 二级
- D. 三级
- 15. 温度 T 时,将干净毛细管放入含 B 的浓度为 c_1 、 c_2 (c_2 > c_1) 的水溶液中,两种溶液在 毛细管中上升的高度分别为 h_1 、 h_2 (h_2 > h_1)。该溶液中 B 的表面过剩量 Γ
 - A. >0
- B. <0
- $\mathbf{C} \cdot = 0$
- D. 无法判断

- 二. 简答题(24分)
- 1. 以水的液→气相变为例,举一不可逆相变化的实例(温度和压力要标明具体数据),用公 式表示该相变化过程的Q、W、 ΔU 、 ΔH ,设计的过程用框图表示(不用计算具体数值)。
- 2. 已知偏摩尔吉布斯函数与偏摩尔焓之间的关系式: $\left[\frac{\partial (G_B/T)}{\partial T}\right]_B = -\frac{H_B}{T^2}$, 证明理想液态混 合物混合过程的 $\Delta_{mix}H=0$ 。
- 3. 己知蔗糖水解反应:

$$C_{12}H_{22}O_{11}(l) + H_2O(l) \xrightarrow{H^-} C_6H_{12}O_6(l) + C_6H_{12}O_6(l)$$
 蔗糖(右旋) 葡萄糖(右旋) 果糖(左旋)


说明可采用旋光仪测定该反应速率常数的理由?该实验采用了什么方法可以避免测 t。时刻 的旋光度?若反应 100min 后系统旋光度基本不变,设计合理的测定时间间隔?本实验所用 旋光仪是否需要进行零点校正,说明理由?

- 4. 说明胶体粒子为什么能稳定存在?若将胶体溶液加热或加入其他电解质,对胶体的稳定 性会产生什么影响?说明理由。
- 5. 简述光化学反应与热反应的主要区别。
- 6. 已知双原子分子的振动特征温度为 3219 K, 求 2000 K 时振动能级中基态能级的分布分 数。

三. 综合题

1. (18 分) 右图中两条线曲线分别为 T_1 =300 K 和 T_2 =600 K 时的等温可逆线。现有 1mol 单 原子理想气体分别经历如下四个过程从状态 $1(p_1=200\text{kPa},V_1)$ 变化到状态 $2(p_2=100\text{kPa},V_2)$:

①由状态 $1\rightarrow A(p_A, V_1, T_2) \rightarrow$ 状态 2;

②由状态 $1\rightarrow B(p_1, V_B, T_2)\rightarrow$ 状态 2;

③由状态 $1\rightarrow C(p_2, V_C, T_1)\rightarrow$ 状态 2;

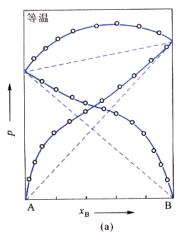
④由状态 $1\rightarrow D(p_D, V_2, T_1)\rightarrow$ 状态 2;

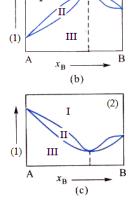
计算:

(1) 四个过程由状态 1→状态 2 的系统的 ΔU , ΔH ;

- (2) 过程①和过程②的 ΔS 系統;
- (3) 系统经绝热过程由状态 $1\rightarrow$ 状态 2 的 ΔU , ΔH , ΔS , 由计算结果说明该过程的可逆性;
- (4) 比较 $|W_{1\rightarrow A\rightarrow B\rightarrow 1}|$ 与 $|W_{2\rightarrow C\rightarrow D\rightarrow 2}|$ 的大小。
- 2. (15分)

反应 $PCl_5(g) = PCl_3(g) + Cl_2(g)$ 标准平衡常数与温度的关系式为:


$$\ln K^{\ominus} = 21.19 - \frac{10573}{T/[K]}$$


- (1)计算反应温度为 473K,反应总压为 200kPa 下 PCl_5 的解离度 α ;
- (2)计算 $\Delta_r H_m^{\ominus}$ (假设 $\Delta_r H_m^{\ominus}$ 在反应温度区间为常数)及 473K 时反应的 $\Delta_r G_m^{\ominus}$ 和 $\Delta_r S_m^{\ominus}$;
- (3)在(1)中平衡条件下,为防止 PCl5 进一步解离可以采用的措施有哪些?给出理由。

3. (13分)

二组分气液平衡相图由(a)图可以绘制出(b)图和(c)图,如图所示:

- (1) 完成下表;
- (2) 说明该体系对拉乌尔定律产生的偏差性质;
- (3) 某压力下,现有 2 mol 组成为 x_B =0.5 的该系统混合物,当精馏进入气液两相 区域,平衡时液相组成和气相组成分别 为 0.40 和 0.55,计算此时液相和气相的 物质的量;

(2)

(4) 若对(3)中的混合物进行精馏分离,说明塔顶和塔底分别得到的物质。

图中(1)处	图中(2)处	区域Ⅰ		区域 II		区域 III				
物理量	的实验条	相数	相态	自由	相数	相态	自由	相数	相态	自由

	件		度数		度数		度数
图(b)							
图(c)							

4. (18分)

电池: Pb(s) | PbSO₄(s) | SO₄²⁻(a=0.01) || SO₄²⁻(a=0.01), S₂O₈²⁻(a=1) | Pt(s)电动势的温度 系数 $\left(\frac{\partial E}{\partial T}\right)_p = -4.9 \times 10^{-4} \text{ V} \cdot \text{K}^{-1}$,已知 298 K 时: $E_{\text{Pb}^{2+}/\text{Pb}}^{\Theta} = -0.126 \text{ V}$, $E_{\text{S}_2\text{O}_8^{2-}/\text{SO}_4^{2-}}^{\Theta} = 2.01 \text{ V}$, $E_{\text{Pb}/\text{PbSO}_4}^{\Theta} = -0.356 \text{ V}$ 。

- (1) 写出电极、电池反应方程式;
- (2) 计算 $\left(\partial E \nearrow \partial T\right)_p$ 及 310 K 时电池的电动势 E;
- (3) 计算电池可逆放电时的电功 $W_{\mathrm{r,m}}$, $Q_{\mathrm{r,m}}$ 及电池反应的 $\Delta_{r}S_{\mathrm{m}}^{\Theta}$;
- (4) 设计电池计算 298 K 时 $PbSO_4$ 溶液的 K_{sp} 。

5. (18分)

由两个基元反应所构成的平行反应:

2A
$$k_{A1}$$
 B+C k_{A2} C+D

其活化能 E=100 kJ·mol⁻¹。在 560 K 时,将 c_{A0}=0.2 mol·dm⁻¹ 的 A 放入抽空的反应器中进行反应,测得 A 的半衰期为 10 min,且在反应过程中 B、D 的浓度之比恒为 1.5。

- (1) 写出总反应速率方程 $-\frac{dc_A}{dT}$ 并计算两基元反应速率常数 k_{A1} 和 k_{A2} ;
- (2) 当反应进行 20 min 时, 计算系统中 B、C 的浓度;
- (3) 若要在 5 min 内使 A 的转化率达到 75%, 需要将反应温度控制为多少?
- 6. (6分)

表面反应控制的气一固表面催化反应:

$$A(g)$$
 $\xrightarrow{\text{催化剂(S)}} B(g)$,机理:
$$A(g)+S = \bigoplus_{k=1}^{k} A - S$$

$$A-S \xrightarrow{k_2} B(g)+S$$

导出该反应的速率方程。

7. (8分)

实验室在加热纯水时,为防止瀑沸通常要加入沸石等助沸物。现将直径为 4×10^{-3} cm 的毛细管放入水中作为助沸物,(已知 100°C时水的饱和蒸汽压为 101.325 kPa,水在毛细管中的接触角为 18°,水的表面张力为 58.9×10^{-3} N·m⁻¹,100°C时水的汽化热 $\Delta_{\text{vap}}H$ =40656 J·mol⁻¹)。

计算:

- (1) 该毛细管产生最大气泡的泡压(忽略水的静压强);
- (2) 外压在 101.325 kPa 时将水加热到开始沸腾时的温度。

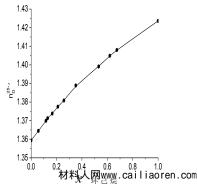
2014年攻读硕士学位研究生入学考试

物理化学试题

	1222			
		注意事项		
1.	答案必须写在答题纸上	上,写在试卷上均不给	ì分。	
2.	答题时可不抄题, 但必	必须写清题号。		
3.	答题必须用蓝、黑墨水	、笔或圆珠笔,用红笔	三 或铅笔均不给分。	
4.	p^{Θ} =100kPa.			
一、选择及填空	题(30分)			
1. 1mol 单原子5	里想气体从始态 (p_1,V_1,T_1)	在绝热条件下压缩至	至终态(p2,V2,T2),则	o
A. $T_1 > T_2$	B. $T_1 = T_2$	C. $T_1 < T_2$	D. 不能确定	
	不可逆循环,则。			
A. $\Delta U = 0$,	$\Delta S > 0$ B. $\Delta U > 0, \Delta S > 0$	> 0 C. $\Delta U = 0, \Delta S$	< 0 D. $\Delta U = 0, \Delta S = 0$)
3. 己知 298 K、	100 kPa 时化学反应 $\frac{1}{2}$ H	$I_2(g) + \frac{1}{2}Cl_2(g) \rightarrow HCl(g)$	(g) 的 $\Delta_r H_m = -92.5 \text{ kJ m}$	ol ⁻¹ ,则
298K 时该反应的	$J \Delta_r U_m = kJ \text{ mol}^{-1}$			
A. > -92.5	B. <-92.5	C. = -92.5	D90.0	
4. 温度为 <i>T</i> 的理	里想气体等温膨胀时吸热	Q,所做的功是达到	相同终态的最大功的2	.0%,则
系统的熵变 ΔS =	=。			
A. $\frac{5Q}{T}$	B. $\frac{Q}{5T}$	C. $\frac{Q}{T}$	D. $-\frac{Q}{T}$	
5. 在温度 T 时,	某化学反应的标准热力	」学平衡常数 K [⊖] 随着	温度的升高而减小,贝	引该反应
的 Δ _r G_{m}^{Θ} 。				
A. >0	B. <0	C. = 0	D. 无法确定	
6. 己知 50℃时,	液体组分A的饱和蒸气	瓦 B 饱和蒸气压的	勺 3 倍,A、B 两组分司	J形成理
想液态混合物。x	c _A =0.5 的 A、B 液态混合	物在该温度达气液平	衡时,气相中 B 的摩尔	《分数为
o				
A. 0.15	B. 0.25	C. 0.5	D. 0.65	
7. 电池 Pb(s) I	$PbSO_4(s) \mid SO_4^{2-}(a_1) SO$	a_4^{2-} (a ₂) PbSO ₄ (s)	Pb(s),下列表述不正确	的是:
o				
A. 阳极反应	$ \overset{\circ}{\boxtimes} : \operatorname{Pb}(s) + \operatorname{SO_4}^{2-}(a_1) \to \operatorname{Pb}(s) $	$OSO_4(s) + 2e^{-s}$	3. $a_1 > a_2$	
C. 电池反应	$\Sigma: SO_4^{2-}(a_1) \to SO_4^{2-}(a_2)$	D. 阴极反应: Pt	$oSO_4(s) + 2 e^{-} \rightarrow Pb^{2+} + So$	$O_4^{2-}(a_2)$
8. 电极的极化会	;导致原电池、电解池中	发生电化学反应的电	极电势偏离平衡电极电	1势,下
列关于电极极化	说法不正确是。			

A. 由于电极极化,发生电解反应时 $E_{\text{ EW}} > E_{\text{ Pm}}$

B. 由于电极极化,原电池放电时 $E_{\text{MK}} > E_{\text{TM}}$


- C. 当电流密度趋于零时,极化现象可以忽略
- D. 电极反应与离子扩散速率不一致是产生极化的原因之一
- 9. 关于朗格缪尔吸附理论的基本假设,下列说法不正确的是____。
 - A. 固体表面对气体分子的吸附是单分子层吸附
 - B. 固体表面是均匀的
 - C. 被吸附的分子之间无相互作用力
 - D. 吸附达平衡后被吸附的分子达静止且数目不变
- 10. 关于光化学反应,下列表述不正确的是____。
 - A. 量子效率可以大于1、等于1或小于1
 - B. 在等温等压条件下可以进行 $\Delta_r G_m > 0$ 的反应
 - C. 光化学反应的初级过程,对反应物的反应级数呈一级
 - D. 只有被反应物分子吸收的光子才可能引发光化学反应
- 11. 在统计热力学中,零点能的选择对 $U \cup H \cup S \cup G \cup C_{p,m} \cup p$ 的值产生影响的是______
- 12. 己知298K时,反应① $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$ 的 $\Delta_r G_m^{\ominus} = -237.2 \text{kJ} \cdot \text{mol}^{-1}$

- 13. 反应 $2A+B \xrightarrow{k} 2P$ 的反应机理为: 2A = 0 (快速平衡), $D+B \xrightarrow{k_B, E_3} 2P$ (速
- 控步骤)。则 $\frac{dc_P}{dt}$ = ______,反应的表观活化能 Ea=______。
- 14. (*NUV*)确定的系统,平衡分布的数学表达式为_____。某气体在 360K 时,基态能级、第 1 激发态能级上的能量分别为 ε_0 =2.2×10⁻²¹J、 ε_1 =5.8×10⁻²¹J,简并度分别为 g_0 =2, g_1 =3,则该系统中两能级的粒子数之比 n_0/n_1 =_____。(玻尔兹曼常数 k=1.381×10⁻²³J K⁻¹)
- 15. 实验测得甲醇蒸汽在 0.2326 g 吸附剂表面上的饱和吸附量 Γ_{∞} =8.299×10⁻³ g,已知甲醇分子的截面积 0.25 nm²,该吸附剂的比表面积 $S_{\rm g}$ = _____m² g⁻¹ 。(设吸附为单分子层吸附)

二、简答题(22分)

- 1. T、p 一定时,若向 A、B 二组分理想液态混合系统中加入一定量的 A,是否会影响 A、B 二组分的化学势?说明理由。
- 2. 化学反应 $aA(g) + bB(g) \rightarrow cC(g) + dD(g)(c+d>a+b)$ 在 T、p 条件下达平衡。若在系统中加入一定量的惰性气体是否有利于向产物方向移动?说明理由。
- 3. 简要说明如何利用熵函数判断封闭系统系统发生变化的方向性。
- 4. 将 KI 溶液滴加到过量的 $AgNO_3$ 溶液中形成 AgI 溶胶,写出该胶团结构式并标出胶核、胶粒及胶团。指出下列电解质 NaCl, $MgCl_2$, Na_2SO_4 , $Al_2(SO_4)_3$, Na_3PO_4 中哪种对该胶体分散系统聚沉能力最强,说明理由。
- 5. 无水乙醇与环己烷组成的二组分气液平衡系统,两者对拉乌尔定律均产生最大正偏差,绘出该系统的 $T\sim x$ 相图示意图。实验测定 $T\sim x$ 相图是采用折光率测定系统的组成,折光率

 $n_D^{25\%}\sim x$ मटक्रि的关系曲线如右图所示,结合该曲线讨论在 $T\sim x$

相图中组成介于纯乙醇到恒沸混合物之间的气相组成的折光率 $n_D^{25^{\circ}}$ (g)和液相组成的折光率 $n_D^{25^{\circ}}$ (l)的关系。

6. 撒 AgI 小颗粒可进行人工降雨。若 AgI 颗粒的平均半径 r=4.132×10⁻⁶ m,计算 20℃时达到降雨条件时天空云层的饱和蒸汽压。(已知 20℃时水的正常饱和蒸汽压为 2337.7 Pa,水的表面张力为 72.75×10⁻³ N m⁻¹。)

三、(20分)

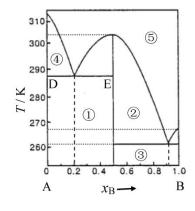
1mol 101.325 kPa,T=110℃的过热水向真空蒸发为相同温度、相同压力的水蒸气。

- 1. 计算过程的 ΔU 、 ΔH 、 ΔS 、 ΔG 。
- 2. 根据(1)的计算结果说明上述过程是否自发进行,说明理由。

已知水的定压摩尔热容及摩尔蒸发焓分别为 $C_{p,m}$ =75.32 J.mol $^{-1}$.K $^{-1}$ 、 $\Delta_{vap}H_m$ =46.024 kJ.mol $^{-1}$, 水蒸气的定压摩尔热容 $C_{p,m}$ =29.16 J.mol $^{-1}$.K $^{-1}$,且不随温度而变。假设水的体积不随 T、p 而变,与水蒸气相比水的体积化可忽略。水蒸气可视为理想气体。

四、(15分)

某气体服从状态方程: p(V-nb)=nRT, 其中 b 为常数。


1. 证明
$$\left(\frac{\partial C_p}{\partial p}\right)_T = 0$$

2. 若 1 mol 该气体从始态 p_1 、 T_1 等温膨胀至压力为 p_2 ,计算过程的 ΔH 、 ΔS 、 ΔG 。

五、(15分)

右图是 100 kPa 时有化合物 AB 生成的 A、B 二组分系统的固液平衡相图。根据相图回答下列问题:

- 1. 指出 A、B 及生成化合物的熔点。
- 2. 列表说明位于图中①、②、③、④、⑤区域及 DE 线上的系统的稳定相态及自由度数。
- 3. 若保持系统温度为 290 K 不变,在 x_B =0.1 的系统中连续加入 B,说明系统的变化情况。若将 x_B =0.5,温度 T=310 K 的系统缓慢降温,说明系统的变化情况。

4. 将 T=310 K, x_A =0.4 的 A、B 混合物 6 mol 降温,最多可以得到多少摩尔纯 AB? 六、(20 分)

298K 时,测得 AgCl 饱和水溶液的电导率 κ (AgCl)=3.41×10⁻⁴ S m⁻¹,该温度下纯水的电导率 κ (H₂O)=1.60×10⁻⁴ S m⁻¹。

(己知: $\Lambda_m^{\infty}(Ag^+)=61.92\times 10^{-4}S\cdot m^2\cdot mol^{-1}$, $\Lambda_m^{\infty}(Cl^-)=76.34\times 10^{-4}S\cdot m^2\cdot mol^{-1}$)

- 1. 计算 AgCl 的 K_{sn} ;
- 2. 将反应 Ag++Cl=AgCl(s) 设计成电池。
 - ① 写出电池表示式及电极反应;
 - ② 计算电池的 E^{Θ} ;

③ 计算 298K 条件下电池的 $\left(\frac{\partial E^{\Theta}}{\partial T}\right)_{\mathbb{R}}$ 。(298K 时,反应 $\mathbf{Ag^{+}} + \mathbf{Cl^{-}} = \mathbf{AgCl(s)}$ 的标准摩尔焓

$$\mathfrak{T}_{\Delta_r} H_m^{\Theta} = -65.488 \text{kJ} \cdot \text{mol}^{-1}$$
。)

七、(20分)

气相分解反应: A(g)目 B(g)+C(g),在 298K 时该反应的速率常数为: k_1 =0.20 s⁻¹, k_2 =5.0×10⁻⁹ Pa s⁻¹。

- 1. 计算 298K 时该反应的 K^{Θ} ;
- 2. 已知 298K 时 K^{Θ} 随温度的变化关系为: $d \ln K^{\Theta} /_{dT} = 0.2 \text{K}^{-1}$, 计算反应的 $\Delta_r H_m^{\Theta}$;
- 3. 已知温度从 298K 升高到 310K 时,正反应速率常数 k_1 增加 1 倍,计算正反应活化能 Ea_+ ;
- 4. 310K 时,将压力为 101.325kPa 的 A 导入刚性反应器中反应,经过多少时间系统总压力达到 151.99 kPa?

八、(8分)

(NUV)确定的系统中,由 6 个可辩粒子组成的体系,允许的能级为: 0, ε , 2 ε 和 3 ε 。当系统总能量为 3 ε 时,

1. 按照下表形式填入粒子分布的情况(能级简并度 g=1):

能级 分布	0	ε	2ε	3ε
I				
II				

2. 计算系统的总微观状态数 Ω 。

2015 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

1	答案必	须写在答题纸	⊢.	写在试卷	上均不给分。

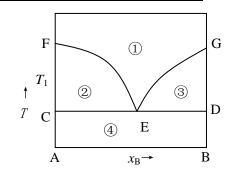
2. 答题时可不抄题, 但必须写清题号。

2.	合题时 可 个 抄 题 , 1	旦必须与消题亏。		
3.	答题必须用蓝、黑	墨水笔或圆珠笔,用约	工笔或铅笔均不约	合分。
4.	$p^{\Theta} = 100 \text{kPa} \approx 101.325$	5 kPa∘		
一、选择题(20分)				
1. 气体能够液化	的最高温度是。			
A. 沸点温度	夏 B. 波义尔	温度 C. 临界.	点温度 D.	三相点温度
2. 在温度 <i>T</i> 时测	则得 A、B 二组分液	 态混合物的气相总压力	夕 30 kPa,气相	中 B 的摩尔分数
y _B =0.82,该温度	时纯 A 的饱和蒸汽压	医为 32 kPa,则液态混	合物中 A 的活度	₹ a _A =。
A. 0.94	B. 0.77	C. 0.19	D	. 0.16
3. 某气体由始态	A 经绝热不可逆膨胀	K到终态 B,则 $S_{ m A}$	S_{B} .	
A. >	$\mathbf{B.} =$	C. <	D.	不能确定
4. 反应: CO(g)	$+2H_2(g)=CH_3OH(g)$,当 H ₂ 消耗了 0.5mo	1 时,反应进度	ξ=。
A. 0.25mol	B. 0.5mol	C. 1mol	D.	4mol
5. 物质的量一定	的理想气体从环境中	吸热 Q ,则系统的热	力学能将。	
A. 增大	B. 减小	C. 不变	D.	不能确定
6. 质量摩尔浓度	E为 b 的 FeCl₃溶液((假定完全电离),离	子的平均活度系数	数为 γ±,则 FeCl ₃
的活度 a=	:			
A. $4\gamma_{\pm}^4 \cdot \left(\frac{b_{\pm}}{b_{\pm}}\right)$	$\left(\frac{1}{b}\right)^4$ B. $\gamma_{\pm}^4 \cdot \left(\frac{b_{\pm}}{b^{\ominus}}\right)$	$\left(\frac{1}{2} \right)^4$ $\left(\frac{1}{2} \cdot \frac{1}{2} \right)^4$	$\left(\frac{b}{b^{\ominus}}\right)^4$ D.	$27\gamma_{\pm}^{4}\cdot\left(rac{b_{\pm}}{b^{\ominus}} ight)^{4}$
7. 下列状态函数	(,都与能量零点取值	百有关的是:		
A. <i>U</i> , <i>H</i> ,	G B. A , C_V ,	S C. U , H	$C_{\rm V}$ D.	G, A, S
8. 计算水的离子	积可以分别设计如了	、两电池来实现。		
电池 1	: $Pt H_2(p_{H_2}) H^+(a_{H^+})$	$\Big) \Big\ \mathrm{OH}^{\scriptscriptstyle{-}} \big(a_{\mathrm{OH}}^{\scriptscriptstyle{-}} \big) \Big \mathrm{H}_{\scriptscriptstyle{2}} \big(p_{\mathrm{H}_{\scriptscriptstyle{2}}} \big) \Big \mathrm{I}$	Pt	

电池 2:
$$Pt |O_2(p_{O_2})|H^+(a_{H^+})|OH^-(a_{OH^-})|O_2(p_{O_2})|Pt$$

两个电池对应的标准电池电动势分别为 E_1^Θ 和 E_2^Θ ,若电池反应转移的电子数相同时,电池反应的摩尔反应吉布斯函数分别为 $\Delta_r G_m^\Theta(1)$ 和 $\Delta_r G_m^\Theta(2)$,则下列说法正确的是_____:

A. $E_1^{\ominus} = E_2^{\ominus}$, $\Delta_r G_m^{\ominus}(1) = \Delta_r G_m^{\ominus}(2)$ B. $E_1^{\ominus} > E_2^{\ominus}$, $\Delta_r G_m^{\ominus}(1) > \Delta_r G_m^{\ominus}(2)$
C. $E_1^{\ominus} < E_2^{\ominus}$, $\Delta_r G_m^{\ominus}(1) < \Delta_r G_m^{\ominus}(2)$ D. $E_1^{\ominus} = E_2^{\ominus}$, $\Delta_r G_m^{\ominus}(1) = \Delta_r G_m^{\ominus}(2)$ 不一定相等
9. 空气中直径为 2×10^{-3} m 的肥皂泡,其表面张力为 $0.07N~m^{-1}$,肥皂泡内所承受的附加压力
为:
A. 0.14kPa B. 0.28kPa C. 0.56kPa D. 1.12kPa
10. 对于 AgI 溶胶,外加电解质的聚沉值为: KNO_3 的聚沉值为 136mmol dm^{-3} , $Cu(NO_3)_2$
的聚沉值为 2.6mmol dm ⁻³ ,则 Al(NO ₃) ₃ 的的聚沉值:
A. 小于 2.6mmol dm ⁻³ B. 大于 136mmol dm ⁻³
C. 介于 2.6 和 136 mmol dm ⁻³ 之间 D. 不能确定
二、综合概念题(40分)
1. 对理想气体化学反应 $\sum_{\nu_{\rm B}}$ B=0,其标准热力学平衡常数 K° =(用分压表示)。若在
该系统中加入惰性气体,讨论平衡移动的方向并说明理由。
2. 温度恒定时,孤立系统发生自发变化,则系统的 ΔA_{0} (填>, <, =), 说明理由。
3. 温度 T 时,纯液体 A 的化学势为 $\mu_A(1)$,若在 A 中加入少量溶质 B 形成稀溶液时 A 的化
学势为 $\mu_{A}(2)$,则: $\mu_{A}(1)$ $\mu_{A}(2)$,说明理由。
4. 1 mol 理想气体从状态 $A(T_1, p_1)$ 出发,分别经等温、等压及等容三个可逆过程再回到状
态 A,在 $p\sim V$ 图上画出上述变化的示意图,并结合 $p\sim V$ 图讨论过程的功(大小和方向)。
5. 采用希托夫法测定 \mathbf{Ag}^{+} 的迁移数时,对阳极区的 \mathbf{Ag}^{+} 进行物料衡算,测得电解前、后阳
极区含 Ag^+ 的物质的量分别为 n_{fi} 、 n_{fi} ,实验后银库仑计沉积 Ag 的物质的量为 n ,则 $t(Ag^+)$
=
6. 采用氧弹反应器测量萘的燃烧热的实验中, 雷诺曲线是用来校正; 若反应物燃
烧后理论上可以使系统温度升高 4℃,则反应配置水的最合适的起始温度是。
7. 写出玻尔兹曼分布公式,并证明选择不同的能量零点会影响配分函数的值,但对计算玻
尔兹曼分布中任意能级上粒子的分布 n _i 却没有影响。
8. 写出弯曲液面上蒸汽压的开尔文方程,用该方程原理比较微小液滴与平面液体饱和蒸汽
压的大小,并在 $p\sim T$ 上画出示意曲线,指出过饱和蒸气产生的原因及存在范围。
9. 在胶体分散系统的研究中,溶胶电学性质的四种电动现象是,其中在外电场作用
下,若溶胶粒子不动,而液体介质作定向流动,这种现象称为。
10. 有连串反应: $A \xrightarrow{k} \rightarrow B \xrightarrow{k} C$ 。在 $c \sim t$ 图上绘出三种物质的浓度随时间变化示意曲线。
若 B 是目的产物,说明如何计算 B 的浓度达到最大时的反应时间。
三、(25分)
在一个带活塞并用隔板隔开的绝热容器内分别装有温度为 $T=298$ K, 压力为 $p=100$ kPa
的 2 mol H_2 和 1 mol O_2 。抽开隔板后使气体混合并使 H_2 和 O_2 在等压下发生反应生成 H_2 O(g)。
计算过程的 W , ΔU , ΔH , ΔS , ΔG 。(气体可视为理想气体)


已知 $C_{n,m}(H_2O,g) = 33.577 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, $\Delta_f H_m(H_2O,g) = -241.818 \text{kJ} \cdot \text{mol}^{-1}$ 及标准熵数据如下:

物质	$H_2(g)$	$O_2(g)$	$H_2O(g)$
S_m^{\ominus} $J \cdot K^{-1} \cdot \text{mol}^{-1}$	130.684	205.138	188.825

四、(15分)

右图是压力为p时A、B二组分系统的固-液平衡相图。

- (1) 该相图为____的固液平衡相图(选填下列选项)。
- a. 固、液相均能完全互溶,b. 固相完全不互溶,液相部分互溶,c. 固相部分互溶,液相完全互溶,d. 固相完全不溶,液相完全互溶。

(2) 在答题纸上完成下表。

	区域①	区域②	区域③	区域④	E点
稳定相态					
自由度数					

- (3)温度为 T_1 条件下,在纯 A 中连续加入物质 B,说明系统的相态变化。
- (4)若物质 A 的固体、液体的蒸气压与温度的关系可分别用下式表示:

固体:
$$\lg(p/Pa) = 11.454 - \frac{1864.8}{T/K}$$
, 液体: $\lg p/Pa$) = $9.870 - \frac{1453}{T/K}$

计算物质 A 的三相点温度。

五、(8分)

液体A和B可形成理想液态混合物,气体可视为理想气体。

- (1) 若在 T、p 一定时将 1mol 纯 A 和 1mol 纯 B 混合,证明其混合熵 $\Delta_{mir}S > 0$ 。
- (2) 已知该温度时 A、B 的饱和蒸汽压 p_A^* 、 p_B^* 分别为 40530 Pa 和 121590 Pa 。 若在一个大气压下将组成为 x_A 的 A、B 液态混合物加热至温度为 T 时沸腾。计算该混合物的组成 x_A 。 六、(20 分)

有一氢氧燃料电池: $Pt,H_2(p^{\Theta}) \mid H_2SO_4(0.01 \text{mol kg}^{-1}) \mid O_2(p^{\Theta}),Pt$ 已知 298K 时 H_2O (I)的摩尔生成焓 $\Delta_{\mathcal{E}}H_{m}^{\Theta}$ 为-286.1 kJ mol^{-1} 。

- (1)写出电极及电池反应式;
- (2)已知 $E_{\text{H,O,OH}^-/O_2(g)}^{\Theta} = 0.401\text{V}$,设计电池计算 $E_{\text{H,O,H}^+/O_2}^{\Theta}$;
- (3) 计算该电池反应的 $_{\Delta_r}S_m^{\ominus}$ 及电池电动势的温度系数 $\left(\frac{\partial E^{\ominus}}{\partial T}\right)_p$;
- (4) 写出氢氧燃料电池中电极反应的能斯特方程式,计算该电池电动势并说明氢气和氧气的分压均为标准压力时,氢氧燃料电池的电动势在 pH 为 1~14 时为常数。

七、(16分)

理想气体化学反应: A(g)+B(g)=D(g)+2E(g)的机理为:

(1)导出以 $\frac{\mathrm{d}c_{\mathrm{D}}}{\mathrm{d}t}$ 表示的速率方程,说明在什么条件下反应级数为 2 级,并写出该 2 级反应的

表观活化能与各基元反应活化能之间的关系;

(2)若反应起始时 $p_{A0} = p_{B0}$, 测得实验数据如下:

T/K	p _{A,0} /kPa	t _{1/2} /S
967	39.20	1520
1030	48.00	212

计算反应的表观活化能;

(3)若在 1030K 时反应物的初始压力为 53.33kPa, 求总压达到 63.99 kPa 时所需的反应时间。 八、(6分)

已知平动子在立方箱中运动的能级公式为
$$\varepsilon_t = \frac{h^2}{8mV^{\frac{2}{3}}} \left(x^2 + y^2 + z^2\right)$$
°

- (1)写出第一、二、三能级的量子态,并指出各能级的简并度;
- (2)300K,101.325kPa 条件下,将 1mol H₂置于立方容器中,证明单个分子平动的能级差 $\Delta \varepsilon_t$ ≈10⁻¹⁹kT,。(h=6.626×10³⁴ J s)

2012 年攻读硕士学位研究生入学考试物理化学试题

注意事项

- 1. 答案必须写在答题纸上,写在试卷上均不给分。
- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。
- 4. 波尔兹曼常数 k=1.381×10⁻²³ J·K⁻¹, 法拉第常数 F=96500 C。

一、选择题(28分)

- 1. 将 Imol 在温度 T 及其饱和蒸汽压 p 下的 $H_2O(1)$ 分别经过程 I: 等温、等压蒸发及过程 II: 向真空蒸发,变为相同温度、相同压力下的 H2O(g)。下列关系正确的是___。
 - A. $\Delta G(1) \neq \Delta G(11)$, $\Delta H(1) = Q(1)$, $\Delta H(11) \neq Q(11)$
 - B. $\Delta G(1) = \Delta G(11)$, $\Delta U(1) = O(1)$, $\Delta H(1) = \Delta H(11)$
 - C. $\Delta G(I) = \Delta G(II)$, $\Delta H(I) = \Delta U(I)$, $\Delta H(II) \neq Q(II)$
 - D. $\Delta G(I) = \Delta G(II)$, $\Delta H(I) = Q(I)$, $\Delta H(II) \neq Q(II)$
- 2. 对封闭系统,下列自发性判据不正确的是___。

 - A. 等温且 W'=0 的过程: $\Delta A \leq W_{\#\#}$ B. 等温等压且 W'=0 的过程: $\Delta G \leq 0$
 - C. 任意过程: $\Delta S_{RX} = \Delta S_{RX} + \Delta S_{RX} \le 0$ D. 恒熵恒容过程: $\Delta U \le W'$
- 3. 下列既不是化学势又不是偏摩尔量的是___

A.
$$\left(\frac{\partial G}{\partial n_B}\right)_{T,p,q_{C} \neq n_B}$$
 B. $\left(\frac{\partial S}{\partial n_B}\right)_{T,V,n_{C} \neq n_B}$ C. $\left(\frac{\partial H}{\partial n_B}\right)_{S,p,n_{C} \neq n_B}$ D. $\left(\frac{\partial U}{\partial n_B}\right)_{S,V,n_{C} \neq n_B}$

- 4. 对于理想液态混合物的混合过程,混合前后下列关系正确的是__
 - A. $\Delta V=0$, $\Delta H=0$, $\Delta S>0$, $\Delta G<0$ B. $\Delta V<0$, $\Delta H>0$, $\Delta S>0$, $\Delta G<0$
 - C. $\Delta V < 0$, $\Delta H > 0$, $\Delta S < 0$, $\Delta G > 0$ D. $\Delta V = 0$, $\Delta H = 0$, $\Delta S < 0$, $\Delta G > 0$
- 5. 碳酸钙分解反应: $CaCO_1(s)$ →CaO(s)+ $CO_2(g)$, 不同温度时的标准平衡常数如下表:

٠.	47/147 1 474 141 12-11 11 11 11 11 11 11 11 11 11 11 11 11	011003(0) +111-(-)	2102		
	T/°C	600	897	1000	1200
	K [⊕]	2.45×10 ⁻³	1.013	3.92	29.1

下列表达正确的是。

- A. 该反应的分解温度是 897℃ C. 600℃时该反应的平衡压力为 2.45×10⁻³ kPa
- D. 该反应为放热反应降 B. 1200℃时分解压力为 29.1×10⁻² kPa
- 6. 反应器内放入 N₂(g)、O₂(g)及一种固体催化剂,反应达平衡时生成两种气态氮氧化物, 系统的独立组分数、相数及自由度数分别为: ___。
 - A. 3, 3, 2
- B. 3, 2, 3
- C. 2, 2, 2 D. 2, 3, 1

- 7. 下面关于光化学反应的说法正确的是: _
 - A. 一个光子只能活化一个原子或分子
 - B. 温度对光化学反应速率不产生影响
 - C. 自发进行的光化学反应可以是 $(\Delta_r G_m)_{T > p} > 0$
 - D. 光化学反应的平衡常数决定于吸收光子的能量

第1页 共4页

8. 刚性容器中发生如下反应:

$$A \xrightarrow{k_1} B$$

若开始时系统中只有 A,则反应进行至 t 时刻时 B、C 的浓度之比 $c_B:c_C=____$ 。

- A. $k_1 : k_2$ B. $k_2 : k_1$
- C. 1
- D. 以上都不对
- 9. 在纯水中加入表面活性剂将导致其表面张力: ___。
 - A. 减小
- B. 增大
- C. 不变

- 10. 电解时, ____。
 - A. 外加电压足够大时溶液中阳离子均在阴极反应
 - ·B. 超电势越小的阴离子在阳极的反应速率越大
 - C. 极化电极电势最小的阳离子在阴极优先反应
 - D. 超电势越小的阴离子在阳极优先反应
- 11. 己知水和玻璃的接触角小于 90°。将玻璃毛细管下端插入水中,毛细管中水面高度为
- h1, 若升高水的温度, 则毛细管中水面高度____。
 - $A. > h_1$
- $C_{\cdot} = h_1$
- D. 不能确定
- 12. 电池反应: $Hg_2Cl_2+2Ag-2AgCl+2Hg$, 298 K 时 $E_{Hg,Cl_2,Hg}^{\Theta}=0.2676$ V, $E_{AgCl/Ag}^{\Theta}=0.2224$ V,

则电池反应的 $\Delta_{\cdot}G^{\circ} =$ ____

- A. -4.3618 kJ
- B. -8.7236 k
- C. -17 4472 kJ D. -47.285 kJ
- 13. 某原电池在 298 K 时的电池电动势大于其在 300 K 时的电动势,则该原电池的电池反 应的 $\Delta_r H_m$ _____。
 - A. > 0
- C. < 0
- D. 不能确定
- 14. 某封闭系统从状态 A 变化至状态 B 时熵增人 L_0 $J \cdot K^{-1}$,其总微观状态数之比 Ω_B : Ω_A
 - A. 10^{7,25×10²²}
- B. 10^{602×10²³}
- C. $10^{315 \times 10^{22}}$
- D. 101.57×1022

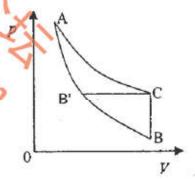
二、简答题(32分)

- 1. 某实际气体在 200 K、10.086 MPa 下的摩尔体积 V_m 为 0.26 dm³, 根据计算结果说明其 与理想气体相比较的压缩难易性,并讨论其偏离理想气体的主要因素。
- 2. 已知某实际气体的状态方程为 $pV_m=RT+\alpha p$,式中 α 为常数。推出该气体在等温条件下,
- 熵随着压力变化的变化率及温度 T 时该气体压力由 $p_1 \rightarrow p_2$ 时系 统的AS。
- 3. 温度 T 时, A、B 的饱和蒸汽压分别为 p_A*=56kPa, p_B*=76kPa。 在右图中分别画出 (1) 若 A、B 形成理想液态混合物, (2) 若 B 溶于 A 中形成理想稀溶液(亨利系数为 kx, B=46 kPa), 系统中 A、 B的蒸汽压与液相组成的关系曲线示意图(画在答题纸上)。若A、 B混合时 B物质对拉乌尔定律产生负偏差,分析 B的活度系数。

p/kPa 76 76 56 56 46 46 X8-

第2页 共4页

- 4. 某理想气体化学反应 $aA(\alpha)+bB(\beta)\to cC(\gamma)+dD(\delta)$,压力 p 时,其标准平衡常数随着温度的变化关系为: $\frac{d\ln K^{\Theta}}{dT}=\frac{\Delta_{c}H_{\alpha}^{\Theta}}{RT^{2}}$,根据该方程讨论温度对反应平衡移动的影响,并导出温度一定时压力与 K_{y} 的关系: $\left(\frac{\partial\ln K_{s}}{\partial p}\right)_{r}=?$
- 5. 乙酸乙酯皂化反应(二级反应): $CH_3COOC_2H_5+NaOH\rightarrow CH_3COONa+C_2H_5OH$ 的速率常数 k 可采用测定反应在不同时刻系统的电导率计算得到。已知反应物的初始浓度(c_0)相同时,电导率 κ 与时间 t 的关系为: $\kappa_t = \frac{1}{c_0 k} \frac{\kappa_0 \kappa_t}{t} + \kappa_x$ (式中 $\kappa_0 \times \kappa_t \times \kappa_x \rightarrow 0$ 别为 t=0 、 t=0 大 是 t=0 的电导率而得到。测量时为什么要求


 ∞ 时系统的电导率)。 κ_0 是通过测量 NaOH 浓度为 c_0 的电导率而得到,测量时为什么要求配制好 NaOH 溶液后立刻进行测量? 若将 NaOH 溶液放置一段时间后进行测量,分析对 κ_0 及 k 产生的误差。

- 6. 将过量的 AgNO₃ 加入 KBr 水溶液中能否制得稳定的 AgBr 胶体?说明理由。若能,写出胶团结构。
- 7. 若气体 A、B 在活性炭表面的吸附均服从 Langmuir 吸附模型,其吸附平衡常数分别为 k_A 、 k_B 。简要说明 Langmuir 吸附模型的要点,并导出 A、B 混合气体(A 的摩尔分数为 y_A) 中 A 在活性炭表面的覆盖度 θ_A 与气相总压力 p 的关系。
- 8. 已知 300 K 时双原子分子 A_2 的振动第一激发态能量为 15~kT,计算其振动特征温度 Θ 、及振动配分函数 q_{vo} 。

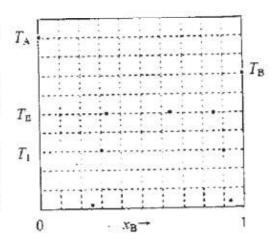
三、综合题(90分)

1. (15分)

右图中 A→C 为等温可逆过程,A→B 为绝热可逆过程,B→C 为等容过程,B'→C 为等压过程,状态 A、B 的温度分别 T_A =200K, T_B =100K。今有 Imol 单原子理想气体分别经过程 I: A→B→C 及过程 II: A→B'→C 从A 到 C。

- (1) 计算过程 1 的 Q、W、 ΔU 、 ΔH 、 ΔS 、 ΔG :
- (2) 利用 pVT 的关系验证 ΔSA-C=ΔSB-C:
- (3) 比较过程 1 与过程 1 的体积功,并在 $p \sim V$ 图上用阴形表示两过程做功的差值。(在答题纸中绘出示意图)

2. (15分)


理想气体化学反应: $2CO(g) + O_2(g) = 2CO_2(g)$, 温度 T 时 $K^{\Theta} = 3.23 \times 10^7$ 。

- (1) 温度 T 时,若系统中气体的分压分别为 $p_{\text{CO}}=1$ kPa, $p_{\text{O2}}=5$ kPa, $p_{\text{CO2}}=100$ kPa,通过计算说明该反应进行的方向。
- (2) 若使(1)的反应反方向进行,在保持 CO和 CO2的分压力不变时,需如何控制 O2的分压?
- (3) 在系统温度及总压不变时,加入惰性气体,平衡如何移动?若在系统温度及体积不变时加入惰性气体,平衡如何移动?

3. (15分)

压力p时A、B两组分可形成液相部分互溶系 统, 两相的平衡组成如右图所示。

- (1) 根据右图给出的部分相点信息, 其中 TE 为共 沸点,请绘出完整相图,并标出各区域的稳定相 态及指出三相线。(在答题纸中绘出示意图)
- (2) 已知 Ti 温度时 A、B 的饱和蒸汽压分别为 0.760 kPa、19.9 kPa。假设两相均为理想稀溶液,计算 T_1 时该溶液上方蒸汽分压 p_A 、 p_B 及系统 A、B 的 Henry 系数 ka 和 kB

4. (20分)

电池 $Pt(s) \mid H_2(g, p^{\Theta}) \mid HBr(aq, b) \mid AgBr(s) \mid Ag(s)$ 的 E^{Θ} 与温度的关系为: $E^{\circ}/V=0.07131-4.99\times10^{-1}(T/K-298)-3.45\times10^{-6}(T/K-298)^{2}$

- (1) 计算 298 K 时电池反应的标准成尔反应熵 Δ , S_{π}^{Θ} 。
- (2) HBr 溶液的浓度为 6-0,0001 mol·kg , 298K 时测得电池的电动势为 0.5451 V, 计算 HBr 溶液的平均活度系数。
- (3) 已知 298 K 时 $E_{\Lambda_s,\Lambda_s}^{\Theta} = 0.799$ V 设计电池计算 298 K 时 AgBr 在水中的溶度积 K_{sp} 。
- (4) 298 K 时测得饱和 AgBr 水溶液及纯水的电导率分别为 1.664×10⁻⁵ S·m⁻¹、5.497×10⁻⁶ S·m⁻¹, 已知 A_{*}(Br⁻) = 78.40×10⁻¹ S·m²·m₀(Ag

5. (15分)

乙醛分解: CH₃CHO(g)→CH₄(g)+CO(g)。518K时岩反应开始(t=0)时系统中只有乙醛。 (1) 测得 t=0 时系统压力分别为 48396 Pa、22531 Pa 时反应的半衰期为 410 s、880 s. 计算 反应的级数及速率常数。

- (2) 计算系统从 r=0 时压力为 50000 Pa 变为 60000 Pa 时,反应所需时间。
- (3) 反应温度升高一度, 其反应的速率常数增大 8.1%, 计算该反应的活化能。
- 6. (10分)

根据下述反应机理:

$$A_{2} \xrightarrow{k_{1}} A \cdot + A \cdot$$

$$A \cdot \xrightarrow{k_{2}} B \cdot + C$$

$$A \cdot + P \xrightarrow{k_{1}} B \cdot$$

$$A \cdot + B \cdot \xrightarrow{k_{4}} P$$

 $\frac{dc_c}{dc_c} = ?(k_1, k_2, 分别为 A_2, C 的速率常数, k_3, k_4 为 P 的速$ 用稳态近似法导出 C 的生成逐 率常数)。

> 第4页 共4页

2011 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

1	설宝 心	须写在签题	纸上	写在试券	上均不给分。
	古米安	次马任合政	24.1.1	31 LUL 15.	上がい知力。

- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。
- p[⊕]=100kPa.

	选择题	130	4
-	万工作的	COU	71

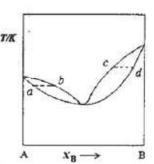
1. 气体在某温度以上	无论加多大压力都不能使其液化,	该温度为:
-------------	-----------------	-------

- A. 临界温度 B. 沸点温度 C.. 对比温度
- D. 波义尔温度
- 在 101.325kPa 条件下,将 1mof H₂O(I)从 25℃加热至 110℃的 H₂O(g),判断该过程自 发性可用下列哪个判据:
 - A. AA
- G、AS(绝热)
- D. AS (陽离)
- 3. 下列偏导数可采用麦克斯韦关系式进行转换的是:

A.
$$\left(\frac{\partial S}{\partial V}\right)$$

B.
$$\left(\frac{\partial S}{\partial T}\right)_{t}$$

C.
$$\left(\frac{\partial V}{\partial T}\right)$$


D.
$$\left(\frac{\partial T}{\partial S}\right)_{R}$$

4. 某理想气体反应, 在恒压条件下, 反应温度为 200K 时的平衡转化率是 500K 时的 2 倍; 若恒温条件下,系统压力为 100kPa 时的平衡转化率是 200kPa 时的 2 倍,该反应的特性是:

- A. K。与温度成反比、压力成正比 B. 是一个体积增加的放热反应
- C. 是一个体积增加的吸热反应 D. K⁹与温度成正比、压力成反比
- 5. 已知戊烷的标准摩尔燃烧焓为 a kJ·mol-1, CO₂(g)和 H₂O(l)的标准摩尔生成焓分别为 b kJ·mol⁻¹和 c kJ·mol⁻¹,则戊烷的标准摩尔生成焓为:
 - A. 5b+6c-a
- B. b+c-a
- C. a-b+c D. a-5b+6c
- 6. 下列有关偏摩尔物理量和化学势的说法不正确的是:
 - A. 偏際尔物理量为恒温恒压下增加 Imol 某物质的量对系统容量性质的贡献值
 - B. 某物质在 T、p 一定条件下达气液平衡时, 其气态化学势与液态化学势相等
 - C. 理想液态混合物在 T、p 一定条件下混合过程无吸放热现象及无体积变化
 - D. 恒温恒压下, 物质自发进行的方向是向着化学势减小的方向进行

第1页共4页

- 7. (N,U,V) 一定的系统,下列说法正确的是:
 - A. 选择不同的能量零点对系统统计熵的结果产生影响
 - B. 波尔兹曼分布是最概然分布并可代替平衡分布
 - C. 定、离域子系统的 $q\sim U$ 的关系式具有不同的表达式
 - D. 独立子系统中粒子的平动及振动能级均是简并的
- 8. A、B 二组分系统气液平衡相图可通过测定平衡时气液两相的 折光率进行绘制,如右图所示,已知纯 A 折光率为 $n_{25}^D=1.3594$, 纯 B 折光率为 $n_{25}^D = 1.4326$ 。下列说法不正确的是:

- A. 图中 a 点的折光率小于 b 点的折光率
- B. 图中 c 点的折光率大于 b 点的折光率
- C. 图中 d 点的折光率小于 c 点的折光率
- D. 当气相组成的折光率与液相组成的折光率相等时为最低恒沸点
- 9. 下列说法正确的是:
 - A. 1-1 型强电解质溶液的摩尔电导率等于两种离子的摩尔电导率之和
 - B. 强电解质溶液的摩尔电导率与其浓度的平方根呈线性关系
 - C. 强电解质溶液的电导率随浓度的增大而增长
 - D. 以上三种说法都不对
- 10. 已知 K2SO4 电解质溶液对某负溶胶的聚沉值为 a, 则 MgCl2对其的聚沉值为:

A.
$$\frac{a}{2}$$

B.
$$\frac{a}{2^{!}}$$

C.
$$\frac{a}{2^6}$$

D.
$$\frac{a}{2^7}$$

- 11. 气-同催化反应 A→P. 岩反应速率为表面反应控制,且反应物的吸附很弱时,该催化 反应的级数表现为:
 - A. 零级
- B. 一级
- C. 二级 D. 不能确定
- 12. 某温度条件下,若反应 A-P 的半衰期 $t_{\rm K}$ 与反应物消耗掉 3/4 的时间 $t_{
 m K}$ 之比为 1/5,

则该反应的级数为:

- A. 三级
- B. 二级 C. 一级
- D. 零级
- 13. 已知 H₂ 的转动特征温度为 85.4 K, 则 298 K 时其转动配分函数 q_r 为:
 - A. 0.58 B. 3.49
- C. 0.29
- D. 1.74

第2页共4页

14. 一定温度条件下, 同一液体中形成的两个大小不同气泡的饱和蒸气压 p * 与 p * 之间的 关系为:

- A. $p \not > p \uparrow$ B. $p \not = p \uparrow$ C. $p \not$
- D. 不能确定
- 15. 某温度条件下,反应 $A \rightarrow P$ 的速率常数 $k_A = 2.66 \text{ mol}^{-1} \cdot \text{dm}^3 \cdot \text{min}^{-1}$, A 的初始浓度为 1.0 mol·dm-3, 当反应进行到 2.0 min 时, A 的浓度为:

A. 0.23 mol·dm⁻³ B. 0.08 mol·dm⁻³ C. 0.16 mol·dm⁻³ D. 0.32 mol·dm⁻³

二、简答题(32分)

- 1. 推导焦耳-汤姆逊系数 $\mu_{J-T} = \frac{1}{C_{n-1}} \left\{ T \left(\frac{\partial V_m}{\partial T} \right)_o V_m \right\}$ 。
- 2. A、B 两组分可形成理想液态混合物,说明组分 B 的气相分压 pB 与气相组成 yB 和液相 组成xa之间所分别满足的关系式及xa和xa的关系。
- 3. 将 A 物质溶于 400g 纯乙醇中, 形成质量摩尔浓度 bA=1.43×10⁻¹ mol·kg⁻¹ 的溶液, 溶液 的沸点与纯乙醇相比上升 0.143 C; 若将 8g B 物质溶于 400g 纯乙醇中,溶液的沸点与纯 乙醇相比上升 0.125℃, 计算乙醇的沸点升高系数 Ko及 B 物质的摩尔质量 MB。
- 4. 由 A、B 组成的二组分平衡系统,两相平衡区域中,某组分在两相中的物质的量与其 在两相中的组成应满足的原理是?写出关系式。
- 什么是胶体的ζ电势?外加电解质的是否会对ζ电势产生影响、说明理由。
- 若将毛细管分别插入 Na₂SO₄ 水溶液、纯水及含有洗衣粉的水溶液中,会观察到什么现 象并解释。
- 7. 什么是超电势,简要说明电解时超电势对电极反应的影响。
- 8. 写出独立子系统中粒子全配分函数的表达式,并说明它与粒子的各独立运动配分函数 的关系。
- 三、(26 分) 将始态为 25°C, 101.325kPa 的 Imol H2O(l), 加热至 110°C 及 p*(饱和蒸汽压) 的 $H_2O(g)$,该过程的 $\triangle H=46.65$ kJ·mol⁻¹;继续绝热可逆膨胀至终态 $\frac{1}{2}p^*$ 。已知水在 100°C,

101.325kP 时的 $\Delta_{vap}H_m=40.67$ kJ·mol⁻¹(可视为常数), $H_2O(l)$ 和 $H_2O(g)$ 的恒压摩尔热容 分别为: $C_{p,m}[H_2O(1)] = 75.29 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, $C_{p,m}[H_2O(g)] = 33.58 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, 液态

- 1. 计算 110℃对应的压力 p*及终态温度 Ta;
- 2. 计算由始态到终态的 ΔH, ΔS, ΔG;
- 3. 如上计算的 ΔG 是否可用作判断如上变化进行的方向? 简述理由。

四、(22 分) 某温度条件下,将一定量 NaHCO $_3$ (s)放入一抽空的反应器内反应达平衡。化学反应方程式如下:

$$2NaHCO_3(s) = Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

- 1. 分析该平衡系统的相数、独立组分数、条件自由度数;
- 2. 若系统的总压为p,写出用p表示的该反应的标准平衡常数 K^{Θ} :
- 3. 已知该反应在 T_1 =70℃时系统的总压 p_1 =15.90 kPa, T_2 =100℃时系统的总压 p_2 =97.47 kPa. 计算该反应的 $\Delta_r H_m^\theta$ (在该温度区间可视为常数):
- 4. 推导出 $\ln \frac{P}{[kPa]}$ 与T的函数关系,并计算 $NaHCO_3(s)$ 的分解温度。

五、(20 分) 已知电池: Cu(s) 1. $Cu(Ac)_2(b=0.01 \text{ mol·kg}^{-1})$ | AgAc(s) | Ag(s) 的电动势 E 与 T 的关系可表示为:

 $E/V = 0.327 + 2.0 \times 10^{-4} (T/K - 298)$

- 1. 写出电池反应及电极反应;
- 2. 计算 T=298 K 时电池反应的AGm 及AHm;
- 3. 利用德拜休克尔极限公式{其中 $A=0.509 \text{ (mol^{-1} kg)}^{1/2}$ };计算 T=298 K 时电池的标准电池电动势 E^{Θ} 。

六、(20分)已知反应:

$$A \xrightarrow{k_1 E_1} P$$

的速率常数 k_1 =a mol⁻¹·dm³·min⁻¹, k_2 =b mol⁻¹·dm³·min⁻¹

- 1. 写出以 A 的消耗速率表示的速率方程;
- 2. 反应开始时系统中只有浓度为 c_{A0} 的 A 物质, 计算 A 的转化率为 90%时, 产物 P 的物质的量的浓度:
- 3. 若总反应的表观活化能为 E_a ,反应 A→P 的活化能为 E_b ,计算反应 A→B 的活化能 E_a 。

2010年攻读硕士学位研究生入学考试

物理化学试题

_	_	_	_	_	_	_
4. 3		-sphyre	-	-	-	75
W		-	- 51	н.		ш

1. 答案必须写在答题纸上,写在试卷上均不给分。

2. 答题时可不抄题, 但必须写清题号。
3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。
 p[⊕]=100kPa≈101.325 kPa。
一、选择题(30分)
1. 由理想气体状态方程 $pV_m=RT$ 作为模型进行压力、体积修正可得到真实气体状态方程。若其
气体的压力修正值为 a ,体积修正值为 b ,且 a 、 b 均大于零,则下列修正后的真实气体状态力
程正确的是
A. $(p+a)(V_m+b)=RT$ B. $(p+a)(V_m-b)=RT$
C. $(p-a)(V_m+b)=RT$ D. $(p-a)(V_m-b)=RT$
2. 在 25°C下,环丙烷 $C_3H_b(g)$ 的 $\Delta_c H_m^\theta = -2091.50 \text{kJ·mol}^{-1}$,则气态环丙烷的 $\Delta_f H_m^\theta =$ 。
(已知 $\Delta_f H_m^{\theta}(CO_2, g) = -393.51 kJ \cdot mol^{-1}, \Delta_f H_m^{\theta}(H_2O, 1) = -285.83 kJ \cdot mol^{-1}$)
0. 3.3
A53.5 kJ·mol ⁻¹ B1412.2 kJ·mol ⁻¹ C. 53.5 kJ·mol ⁻¹ D. 1412.2 kJ·mol ⁻¹
3. 通过改变温度测定了不同温度 T 时无水乙醇液体的饱和蒸汽压 p 的数据,以 $\ln p \sim \frac{1}{T}$ 作图
得到一条斜率为-5122 K 的直线,则无水乙醇液体的摩尔蒸发焓为。(摩尔蒸发焓视为常数
A. 42.59 J·mol ⁻¹ B42.59×10 ³ J·mol ⁻¹ C42.59J·mol ⁻¹ D. 42.59×10 ³ J·mol ⁻¹
4. 已知某真实气体的状态方程遵循 $p(V_m-b)=RT$, b 为大于零的常数。则。
A. 该气体的焓只与温度有关而热力学能不只与温度有关
B. 该气体的热力学能只与温度有关而焓不只与温度有关
C. 该气体的热力学能和焓均只与温度有关
D. 该气体的热力学能和焓均不只与温度有关
5. 由 $C(s)$ 、 $CO(g)$ 、 $CO_2(g)$ 、 $H_2(g)$ 、 $H_2O(g)$ 五种物质组成的平衡系统,独立组分数 C 为
A. 1 B. 2 C. 3 D. 4
6. 挥发性溶质 B 溶于溶剂 A 中形成理想稀溶液,在温度 T 时达气液平衡。若气相中 A 的组织
为 $y_A=0.89$,液相中 B 的组成为 $x_B=0.15$,则溶质 B 的亨利常数 $k_{x,B}=$ 。(已知该没有,
度下纯 A 的饱和蒸汽压为 50.0 kPa)
A. 42.5 kPa B. 50.0 kPa C. 47.8 kPa D. 35.0 kPa
7. 由 A、B 二组分形成液态混合物系统, 达成气-液平衡时, 对拉乌尔定律均产生一般正偏差
$\square p_A \underline{\hspace{1cm}} p_A^* x_A$, $\Delta_{\text{mix}} V \underline{\hspace{1cm}} 0$.
A. > , > B. > , < C. < , > D. <, <

第1页 共4页

8. 在一定温度下,分解反应 $AB(g)$ \longrightarrow $A(g)+B(g)$ 达解离平衡, AB 的解离度为 α 。 若使
α增加应采取的措施是。
A. 保持压力不变, 通入惰性气体使体积增加一倍
B. 保持体积不变, 通入惰性气体使压力增加一倍
C. 保持体积不变, 通入 B(g)使压力增加一倍
D. 增加压力使体积缩小一倍
9. 在 $AgNO_3$ 溶液与过量 KI 溶液反应制得的 AgI 溶胶中加入电解质溶液使 AgI 溶胶聚沉,下列电解
质中聚沉能力最强的是。
A. $La(NO_3)_3$ B. $Mg(NO_3)_2$ C. NaI D. Na_2SO_4
10. 恒温、恒容下,某化学反应的反应热为100 kJ· mol ⁻¹ ,则该反应的活化能E。
A. =100 kJ· mol ⁻¹ B. >100 kJ·mol ⁻¹ C. <100 kJ·mol ⁻¹ D. 以上都不对
11. 能润湿毛细管的液体在毛细管中上升的高度反比于。
A. 空气的压力 B. 液体的表面张力 C. 毛细管半径 D. 液体的粘度
12. 在 (NUV)确定的系统中,已知 I_2 的振动特征温度 Θ_v =307K,则25℃时分布在相邻两个振
动能级上的分子数之比 $n(v+1)$: $n(v)$ 。
A. 0.379 B. 2.801 C. 2.640 D. 0.357
13. 某化学反应的速率常数为4.62×10 ⁻² min ⁻¹ , 若反应物浓度为0.1 mol·dm ⁻³ , 则反应的半衰期
$t_{\gamma_2} = \underline{\hspace{1cm}}$
• 2 ====
A. 15 min B. 216 min C. 30 min D. 1.08 min.
14. 已知 $\Lambda_m^{\infty} \left(\frac{1}{2} Ca^{2+} \right) = 59.50 \times 10^{-4} \text{S} \cdot \text{m}^2 \cdot \text{mol}, \Lambda_m^{\infty}(CV) = 76.34 \times 10^{-4} \text{S} \cdot \text{m}^2 \cdot \text{mol}, \text{则}$
() 22
$\Lambda_m^{\infty}(CaCl_2) = \underline{\hspace{1cm}} \times 10^{-4} \text{ S} \cdot \text{ m}^2 \cdot \text{ mol}_{\circ}$
A. 135.84 B. 271.68 C. 212.18 D. 195.34 15. 若气体在固体表面发生单分子吸附,随着气体压力的不断增大,固体表面的吸附量
13. 名《存在固体农园及主华为了驳船,随着《体压力的》通道人,固体农国的牧船里
。 A. 持续增加 B. 保持不变 C. 趋于饱和 D. 不能确定
二. 简答题(25 分)
1. 在 373.15K, 101. 325kPa 条件下, 1mol 液态水可逆变为 1mol 水蒸气, 该过程的 ΔG 0 (填
$<$ 、 $>或=$): 若该变化过程为向真空蒸发至相同终态.则 ΔG_{0} (填 $<$ 、 $>或=$), 并说明原因。
2. 已知 $CO_2(g)$ 的焦耳-汤姆逊系数 $\mu_{J-T} = \left(\frac{\partial T}{\partial p}\right)_H = 1.07 \times 10^{-5} K \cdot kPa^{-1}$
(211)
$C_{p,m}=36.61 \text{J·K}^{-1} \cdot \text{mol}^{-1}$,推出该气体的 $\left(\frac{\partial H}{\partial p}\right)_T=?$
$\langle op \rangle_T$
3. 何为偏摩尔量? 举例说明它和化学势之间的区别。

- 4. 简述测定电极极化曲线的方法,并用简图表示电流密度与电极超电势的关系。
- 5. 由实验得到了某化学反应的不同时间的反应物浓度 $(c_{A}\sim t)$,简述一种确定反应级数 n 的方法。

三. 综合题

1. (20分)

1mol 双原子理想气体进行如下过程:

- ①由 T_1 =298.15 K、 V_1 =24.46 dm³ 的状态 A,经绝热可逆膨胀到 p_2 =50.66 kPa 的状态 B;
- ②由状态 B 恒压变温到 T3=298.15 K 的状态 C;
- ③由 T_1 =298.15 K、 V_1 =24.46 dm³ 的状态 A,经节流膨胀到 p_4 =50.66 kPa 的状态 D; 计算:
- (1) A→B 过程的 W, ΔU, ΔH, ΔS 素統:
- (2) B→C 过程的 ΔU, ΔH, ΔS 系统;
- (3) A \rightarrow D 过程的 ΔU , ΔH , ΔS жж, ΔS жж, ΔS мж, 由计算结果说明该过程进行的方向。
- 2. (13分)

有气相反应
$$A(g)$$
 \Longrightarrow $B(g)$, 已知 298K 时该反应的 $\left(\frac{\partial \ln K^{\theta}}{\partial T}\right)_{p} = -0.0567K^{-1}$,

$$\Delta_{r}S_{m}^{\theta} = -44.93J \cdot K^{-1} \cdot mol^{-1} \circ$$

- (1) 计算该反应 298K 时 Δ, H, K^Θ (298K).
- (2) 设反应的摩尔反应焓变不随温度变化,求 500K 时的 $K^{\Theta}(500K)$;
- (3) 若开始时在反应器中放入 0.5mol 的 A(g), 计算 500K 时达平衡时求转化率 α。
- 3. (12分)

采用沸点仪实验装置进行实验,获得 A、B 二组分气—液平衡时沸点 T 与气相,液相组成数据如下:

хн 1 •	溶浴	溶液1		夜 2
T/℃	气相组成 yB 液相组成 xB (气相组成 y _B	液相组成 x _B
81	_	-	1	1
78	0	0	0.85	0.97
75	0.1	0.02	0.76	0.95
72	0.2	0.04	0.68	0.93
70	0.26	0.08	0.65	0.92
68	0.31	0.12	0.62	0.91
65	0.38	0.2	0.57	0.85
63	0.48	0.48	0.48	0.48

- (1) 根据实验数据绘出该 A. B 二组分系统气—液平衡相图的示意图,指出气相线和液相线,并标明各相区的稳定相态和自由度数;
- (2) 根据相图分析该二组分系统对拉乌尔定律产生的偏差情况;
- (3) 温度为 T=70.0 °C时,若溶液的总组成为 x=0.85,总物质量为 n=10 mol,指出平衡时气、液相的组成,并计算该系统中 $n_B(g)$ 和 $n_B(l)$:
- (4) 将总组成为 x= 0.85 的溶液通过单塔蒸馏, 问塔顶、塔底蒸出物为何?

第3页 共4页

4. (20分)

有电池: Zn(s)|ZnCl₂(aq, b)|Hg₂Cl₂(s),Hg(l), 其中b为ZnCl₂的质量摩尔浓度。

- (1) 写出电极反应、电池反应及电池电动势E的能斯特方程式;
- (2) 在298 K条件下,若b=0.002 mol·kg⁻¹时该电池的电动势E=1.2582 V,计算ZnCl₂的平均质量摩尔浓度b+及平均活度系数 γ +:
- (3) 计算在298K时电池反应的标准平衡常数 K^{θ} 。(已知: $E^{\theta}_{Z_{0}^{2*}/Z_{0}} = -0.763V$, $E^{\theta}_{Hg_{3}Cl_{3}/Hg} = 0.268V$);
- (4) 已知电池反应的 $\Delta_r H_m^{\theta}$ =192.973 kJ·mo Γ^1 ,计算该电池标准电池电动势的温度系数 $\left(\frac{\partial E^{\theta}}{\partial T}\right)_p$ 。

5. (15分)

某气相反应A→P的反应机理如下:

①
$$A + A \xrightarrow{k_1} A^{\bullet} + A$$
 活化能: E_1

$$\bigcirc A^+ + A \xrightarrow{k_-} A + A$$

$$\otimes A' \xrightarrow{k_2} P$$

- (1) 用稳态近似法导出生成P的速率方程 $\frac{dc_p}{dt}$
- (2) 讨论当k_1cA>>k2及k_1cA<<k2时反应的级数
- (3) 由2中结果讨论如何测定反应①的活化能E₁,并写出其表达式。

6. (8分)

- (1) 已知293K时界面张力(γ)数据如下: $\gamma_{\pi}=0.4865 \text{ N.m}^{-1}$, $\gamma_{\pi}=0.02239 \text{ N·m}^{-1}$, $\gamma_{\pi,Z\pi}=0.3890 \text{ N·m}^{-1}$,用界面张力之间的关系说明乙醇在汞表面能铺展。
- (2) 若将一滴直径为1 mm汞滴放入乙醇中,计算恒温恒压条件下该过程的表面功(假设过程中 汞滴为球形)。

7.(7分)

在(UVN)确定的系统中,已知粒子各种运动形式的配分函数为:

平动配分函数 $q_{ir} = (\frac{2\pi mkT}{h^2})^{\frac{3}{2}}V$,转动配分函数 $q_{r} = \frac{T}{\sigma \Theta_{r}}$,振动配分函数 $q_{v} = \frac{e^{\frac{\Theta_{v}}{2T}}}{1-e^{\frac{\Theta_{v}}{T}}}$ 。

- (1) 用 q_{tr} 、 q_{r} 、 q_{v} 表示q,并写出q与热力学能U的关系式。(忽略电子运动及核运动)
- (2) 利用(1)中的关系式计算T=298 K时单原子理想气体的热力学能U。

2009 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

1. 答案必须写在答题纸上,写在试卷上均不给分。

2. 答题时可不抄题, 但必须写清题号。

	 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。 p^Θ=100kPa≈101.325 kPa。
_	、选择题(40分)
	一封闭绝热的刚性反应器内发生一燃烧反应, 使系统温度升高, 则刚性反应器内系统的热力学能变化 40
	A. <0 B. >0 C. =0 D. 不能确定
2.	选择下述正确的结论:
	A. 理想气体恒容且 $W=0$ 的过程 $\Delta H=n\int_{-n}^{\infty}nC_{V,m}dT$
	B. 理想气体恒压且 $W=0$ 的过程 $\Delta U=n\int_{-\infty}^{\infty}C_{\rho,m}\mathrm{d}T$
	C. 理想气体恒压且 $W=0$ 的过程 $\Delta U=n$ $\int_{\Gamma} e_{p,n} dT + p(\Delta V)$
	D. 理想气体恒容且 $W=0$ 的过程 $\Delta H=n\int_{t_{i}}^{t_{i}}nC_{v_{,m}}\mathrm{d}T+V(\Delta p)$
3.	下列各式中只适用于理想气体的有。
	A. $C_{p,m} - C_{V,m} = R$ B. $\Delta H = \Delta U + p \Delta V$
	C. $pV = 常数 (\gamma为任意数)$ D. $W = -p(h)\Delta V$
4.	100℃, 101.325 kPa 的 H ₂ O(l)的化学势为 μ¹, 100℃, 101.325 kPa 的 H ₂ O(g)的化学势
	为 μ ⁸ , 二者的关系是。
	A. $\mu^1 > \mu^8$ B. $\mu^1 = \mu^8$ C. $\mu^1 < \mu^8$ D. 没有确定关系
5	苯和甲苯能形成理想液态混合物,在20℃时,当 Imol 苯和 Imol 甲苯混合时,该过程
٠.	的 A mix G
	A. =0 B. >0 C. <0 D. 不能确定
	The state of the s
0.	对于组成恒定的系统,下列偏导数小于零的是。
	A. $\left(\frac{\partial H}{\partial S}\right)_{p}$ B. $\left(\frac{\partial G}{\partial p}\right)_{T}$ C. $\left(\frac{\partial U}{\partial S}\right)_{V}$ D. $\left(\frac{\partial A}{\partial V}\right)_{T}$

7.	二组分液相完全互溶系统的相图中,	对恒沸混合物的描写,	下列不正确的是
	A. 其沸点随外压的改变而改变		*
	B. 恒沸混合物的组成随压力的改变	而改变	*
	C. 平衡时, 气相和液相的组成相同	1	
	D. 与化合物一样, 具有确定的组成	ž.	
8.	在统计热力学中,分子能量零点的选	择对下列物理量不产生	影响的是。
	A. U B. H	C, S	D. <i>G</i>
9.	某化学反应其反应物消耗 3/4 所需的	寸间是其消耗 1/2 所需	时间的 2 倍, 其反应级数
	为。		
	A. 零级 B. 一级	C. 二级	D. 三级
10	. 对峙反应 A B, 温度一定时	由纯 A 开始反应,下列	说法不正确的是
	K-1		
		B. 开始时 A 的消耗速	(A) of the late of
		D. 反应的净速率为正	사용 이 경우 전 시간 아이들이 가장 하는 것이 없는 것이 없는데 없는데 없어요?
11.	. 将干净的毛细管分别插入纯水及含有		
	别为 h1、h2, 若 h1>h2, 则该物质在		
		C. 正吸附	
12.	. 对 b=0.002 mol·kg 1 的 Na ₂ SO ₄ 溶液。		
	A. 1.78×10 ⁻⁴ B. 2.28×10 ⁻³		D. 3.175×10 ⁻³
13.	· 胶体系统中, 下列对 ζ 电势的描述 λ	下正确的是。	
	A. 滑动面与本体溶液间的电势差	YX,	
	B. 少量外加电解质可对 ζ 电势产生	A A	
	C. 当双电层被压缩至溶剂化层时,C		
	D. 5 电势的绝对值大于其热力学电势	~ <	
14.	. 某反应的反应机理为: A $\frac{k_1}{k_{-1}}$ B,	B+C k2 D. 则 B f	的浓度随时间的变化率
	$-\frac{dc_B}{dt} = \underline{\hspace{1cm}}$	7	
	dt		
	A. k1CA-k2CBCC	B. k ₁ c _A - k-1c _B -k ₂ c	BCC
	Ck1cA+ k-1cB +k2cBcC	D. k1cA-k-1cB+	k2CBCC
15.	.分子运动的各配分函数中与压力有关的	的是。	
	A. 电子配分函数 B. 平动配分函	数 C. 转动配分函	数 D. 振动配分函数
16.	. 某反应在一定条件下的平衡转化率为	25%,当有催化剂存在	在时其转化率
	A. =25% B. <25%	C. >25%	D. 不能确定
17.	下列系统属于定域子系统的是	•	10
	A. 真实气体 B. 理想气体	C. 理想液态混	合物 D. 晶体
18.	用氧弹量热计测量物质燃烧热的实验	中,質诺曲线是用来核	在
	A. 搅拌所产生的热效应		N-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	C. 系统与环境间的热交换		

19. 298K 时,已知 E [⊖] Cu2+/Cu=0.34	V, E ^O Cu+/Cu=0.52 V,	则 E ^O Cu2+/Cu+=	•
A0.16 V B. 0.16	SOL STREET SACTORY	18 V D.	
20. 多孔硅胶具有吸水性能,当硬	主胶吸水后其表面吉	布斯函数将	
A. 减少 B. 增加			
二. 填空题(30分)			
1.1 mol 单原子理想气体,从 273 K	及 200 kPa 的初态约	epT=常数的可逆i	余径压缩到 400 kPa
的终态,终态温度 T ₂ =K			
2. 某物质 A 和 B 对拉乌尔产生偏			统,在101.325kPa,
317.5K 下达成气液平衡。实验测			
B的活度系数/%=。			
3. 在一定 T, p下, 反应 A(g)=	= Y(g) + Z(g) , 达	平衡时解离度为αi	,当加入惰性气体
而保持 T , p 不变时,解离度为 α_2			
4. AB 二组分系统的 T-x 平衡相图			
液相组成分别为 0.2 和 0.35; 若当	10.25	(E)	
成分别为 0.75 和 0.55, 该系统对拉			
"最大正","最大负"			
5. 电解时若增大电流密度 阳极	电极电势将	_, 阴极电极电势料	子。(填"增
大"、"减小"、"不变")	C 14		
6.下列电解质对 As ₂ S ₃ 溶胶的聚沉	值分别为 KCI (49.5	mmol·dm ⁻³), MgSO	4 (0.81 mmol·dm ⁻³),
AlCl ₃ (0.093 mmol·dm ⁻³), 则在电泳	实验中 As ₂ S ₃ 的胶料	响	填"正极"、"负极")
7. 将 0.02 mol·dm ⁻³ 的 KCl 溶液 0.	012 dm³与 0.05 mo	dm-3的 AgNO3 溶	液 10dm³ 混合制备
AgCI 溶胶,其胶团结构为	C'X /	>	
8. 光化学反应初级过程的反应速率	₽决定于 <u>/</u> .	-/-	
9. 在使用沸点仪测定二组分气液	平衡相图的实验中,	为准确测定液体	的沸点,温度计应
放置的位置是		1	_•
10. 直径为 1×10-2m 的球形肥皂	包所受的附加压力为	/Pa. (已知	肥皂泡的表面张力
为 0.025N·m ⁻¹)		70	
11. 298K 时,苯在活性炭上的吸附	符合 Langmiur 吸降	付等温式, 当苯蒸剂	气为 40Pa 时,覆盖
度 θ=0.05, 当 θ=0.5 时苯蒸汽的蒸	汽压力为	Pa.	
12. 己知 HI 的光解反应机理为:			
$HI+h\nu \rightarrow H^{\bullet}+I^{\bullet}$			
$H \cdot + HI \rightarrow H_2 + I \cdot$			
2 I•+M→I ₂ +M			
则该反应的量子效率 $\varphi =$			
三. 综合题(80分)			
1. (20分)			
(a)		•

1 mol某气体遵从状态方程 $\left(p + \frac{a}{V_m^2}\right) V_m = RT$,其中 a 为常数。

(1)证明该气体
$$\left(\frac{\partial U}{\partial V_{m}}\right)_{r}$$
.

- (2)若 1mol 该气体从 (p_1,V_1,T_1) 经恒温可逆膨胀至 V_2 , 导出过程的 $W_i\Delta U_iQ_i\Delta G$ 的表达式。
- (3)若 1 mol 该气体从 (p_1, V_1, T_1) 经过节流膨胀至 p_2, V_2, T_2 ,求过程的 $Q \setminus \Delta H \setminus W$,并根据推导结果讨论该气体经过节流膨胀后温度上升还是下降?

2. (15分)

A,B 可以形成理想液态混合物。已知 90℃时 B 的饱和蒸汽压为 40kPa,A 的正常沸点为 60℃,摩尔蒸发焓 Δ_H 为 8214J•mol 1 。

(1)求 90℃时的 p, ?

- (2) 90℃时当 p(总)=70kPa 时被相组成 xa, 和气相组成 ya 分别为多少?
- (2) 根据以上数据画出该系统的 p~xg 草图,并标明各区域的稳定相态;
- (3) 90℃, 当 p(总)=70kPa 时, 有系统组成 x=0.5 的 AB 混合物 10mol, 计算平衡系统中液相和气相的物质量 n n =
- 3. (20分)

25℃时,已知电池: Pt H2(g,100kPa) | HCl(b=0.1mol·kg-1) | AgCl(s) | Ag

该电池的温度系数 $\left(\frac{\partial E}{\partial T}\right)_{p} = 2.40 \times 10^{-3} \text{ V·K}^{-1}$. 当发生 1 mol 电子反应时,该电池反应的

Δ_cH_m=40.0 kJ·mol⁻¹, 0.1 mol·kg⁻¹ HCl 溶液的平均活度系数γ_s=0.7340。

- (1) 写出上述电池的电极反应式及电池反应式;/__
- (2) 计算 25℃时上述电池的电动势 E 及 AglAgCl 的标准电极电势 E AgCliAg:
- (3) 设计电池, 求 25℃时 AgCl 的溶度积 Ksp. (已知 E As+IAs=0.7991 V)
- 4. (15分)

某气相反应 $A(g)\rightarrow B(g)+C(g)$ 为二级反应,反应活化能 $E_a=250.8 \text{ kJ·mol}^{-1}$ 。反应开始时系统中只有 A(g),其初始压力为 40kPa,1200K 时测得反应的半衰期为 228s,若使反应在 1300K 时进行,试计算:

- (1) 反应的速率常数 4,0
- (2) 反应进行 100s 时系统的总压力。
- 5. (10分)
- (1) N_2 分子的转动特征温度为 $Q_1=2.68$ K, 试计算 300K 时 N_2 的转动配分函数 q_r 及摩尔转动热力学能 $U_{r,m}$ 、摩尔转动熵 $S_{r,m}$ 。
- (2) 将水蒸汽冷却会形成微小液滴。已知 25℃时形成半径为 1.5×10° m 液滴时其蒸气压为 平面液体饱和蒸气压的 2 倍,试计算水的表面张力。

2008 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

- 1. 答案必须写在答题纸上,写在试卷上均不给分。
- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。

一、选择题(30分)

- 1. 恒温时实验测定了某气体一系列低压下的 p 和 Vm 值, 若欲用外推法求取摩尔气体常数 R 的标准值, 应作的图是:
- A. p~V_m图; B. pV_m~p图; C. V_m~T图; † D. 无法作图。
- 2. 某气相分子数增加的放热化学反应在绝热钢瓶中进行,则:
 - A. Q>0, W>0, ΔU>0, ΔH>0;
- B. Q=0, W<0, ΔU<0, ΔH<0:
- C. O=0, W=0, \(\D \text{U=0}, \(\D \text{H*0}; \)
- D. Q<0, W>0, ΔU=0, ΔH>0.
- 3. 理想气体在绝热可逆过程中 $\left(\frac{\partial T}{\partial p}\right)_s$ 的值等在
- A. $\frac{V}{R}$; B. $\frac{V}{nR}$; C. $\frac{V}{C_{vv}}$; D. $\frac{V}{C}$.
- 4. 已知在 318K 时丙酮(A)的蒸汽压 $p_A^* = 43.06 kPa$ 。今有丙酮(A)—三氯甲烷(B)二组元 液态混合物,在该温度下达气液平衡时,液相中三氯甲烷(B)的摩尔分数为 x_B=0.30 时,气 相中丙酮(A)的蒸汽压 p_A=26.77kPa, 若以纯液体为标准态,则此液态混合物:
 - A. 丙酮(A)对拉乌尔定律呈负偏差 (γ_A<1); B. 为理想液态混合物;
- - C. 丙酮(A)对拉乌尔定律呈正偏差 (γ_A>1); D. 无法确定。
- 5. 在温度 T 时, 某化学反应的 Δ , $H_m^{\theta} < 0$, Δ , $S_m^{\theta} > 0$, 在该温度下, 该反应的标准平衡常 数 K^O应是:
 - A. K⁸>1,且随着温度升高而增加;
- B. K⁰>1, 且随着温度升高而减小:
- C. K^e<1, 且随着温度升高而增加:
- D. K[⊖]<1,且随着温度升高而减小。
- 6. 在一抽空的容器中放入过量的 NH4HCO3(s), 加热至某温度时发生下述反应并达到平衡: $NH_4HCO_3(s) == NH_3(g) + CO_2(g) + H_2O(g)$ 则上述平衡系统的组分数 C 和自由度数 F 为:
 - A. C=3, F=2; B. C=2, F=1; C. C=1, F=0; D. C=1, F=1.

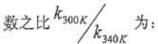
7. 298K 时,某纯液体 A 的蒸汽压为 p_{a} , 化学势为 μ_{a} , 已知在 100kPa 下 A 的凝固点为 T_f 。若在纯溶剂 A(I)中加入少许 B(非挥发性溶质, 且与 A 不形成固态溶液)形成稀溶液时,

该溶液中组元 A 的上述三个物理量分别为 p_A , μ_A , T_f ,则在该温度下,下列关系正确的是: \bigcirc

A.
$$p_A^* > p_A, \mu_A^* < \mu_A, T_f^* > T_f$$
,: B. $p_A^* < p_A, \mu_A^* < \mu_A, T_f^* < T_f$,

B.
$$p_A < p_A, \mu_A < \mu_A, T_f < T_f, K$$

C.
$$p_A^* < p_A, \mu_A^* > \mu_A, T_f^* > T_f, : \{ D. p_A^* > p_A, \mu_A^* > \mu_A, T_f^* > T_f, ... \}$$


- 8. 下列各系统属于独立子离域系统的是:
 - A. 理想气体:

B. 理想液态混合物:

C. 实际气体:

- D. 绝对零度下的晶体。
- 9. 用铜电极电解 CuCl₂ (a=1) 的水溶液,若不考虑超电势,在阳极上将会发生什么反应, 已知 $E^{\Theta}(Cu^{2+}/Cu)=0.34V$,则 $E^{\Theta}(O_2/H_2O)=1.23V$, $E^{\Theta}(Cl_2/Cl)=1.36V$ 。 D

 - A. 析出氧气: B. 铜电极溶解: C. 析出 Cu: D. 析出氯气。
- 10. 某一反应在 300K 时由初始浓度 Co开始反应, 当完成 20%时需时 12.6min, 在 340K 时由同一初始浓度 Co开始反应,当完成 20% 时需时 3.20min,该反应两温度下反应速率常

- A. 0.8824; B. 3.9375;
- C. 0.2539;
- 11. 加直流电场于胶体溶液,向某一电极做定向移动的是:
 - A. 胶核:
- B. 紧密层: C. 胶团:
- D. 胶粒。
- 12. 某溶液与玻璃的接触角 θ < 90°, 将玻璃毛细管下端插入该溶液中, 平衡时管内液面 呈 ____ 形,管中液面____ 管外液面。
 - A. 凹, 高于; B. 凹, 低于; C. 凸, 高于; D. 凸, 低于。

- 13. 采用氧弹实验装置测萘的燃烧热的实验中,用雷诺曲线温度校正法确定反应系统温度 变化 △T, 若称取 m 克萘可以使燃烧反应后系统中 3000ml 水升温 2℃, 为使反应过程中热 量损失最小, 当室温为 25℃时, 反应初始水温配制的温度最好为:
 - A. 25℃:
- B. 24℃:
- C. 23℃: D. 26℃.
- 14. 采用沸点仪实验装置测定二组分系统气液平衡相图,用水银温度计测量气液平衡时的 温度,实验装置中水银温度计的水银球的放置为:
 - A. 放在气相部分:

- B. 放在溶液中:
- C. 放在气相液相各一半; D. 没有要求。

- 二、(29分)
- 1. 某气体的状态方程为: $p(V_m-b) = RT$ (式中 b>0 的常数)
- (1)导出此气体的压缩因子 Z 的表达式为: $Z=1+\frac{bp}{pT}$;
- (2)证明该气体在等温下,压缩因子 Z 随气体压力的增加而增加;

③证明该气体的焦一汤系数
$$\mu_{J-T} = \left(\frac{\partial T}{\partial p}\right)_H < 0$$
。

2. 汞在 100kPa 时的沸点为 630K。已知在该条件下, $\Delta_{vap}H_m^\theta=64.9kJ\cdot mol^{-1}$,

 $C_{p,m}(Hg,l) = 28.0J \cdot K^{-1} \cdot mol^{-1}, C_{p,m}(Hg,g) = 20.8J \cdot K^{-1} \cdot mol^{-1},$ 且不随温度变化。

试求 1mol 汞恒压 p[⊕]下,发生下列过程的 W *, △S。

设 $V_m(I) << V_m(g)$, 且 Hg(g) 可视为理想气体。

三. (18分)

已知下列三个反应在 298.15K 达到平衡, 气相中水的分压为:

序号	- 反应	p/kPa
1	$CuSO_4(s)+H_2O(g)==CuSO_4 \cdot H_2O(s)$	0.107
2	$CuSO_4 \cdot H_2O(s) + 2H_2O(g) = CuSO_4 \cdot 3H_2O(s)$	0.747
3	$CuSO_4 \cdot 3H_2O(s) + 2H_2O(g) = CuSO_4 \cdot 5H_2O(s)$	1.040

有反应 CuSO4(s) +5H2O(g)== CuSO4 5H2O(s)

- 求上述反应在 298.15K 时标准平衡常数 K^Θ和 Δ_rG^Θ_m;
- ~ 2.1 已知 298.15K 水的饱和蒸汽压为 $p_{H_2O}=3.173kPa$ 求该反应能否有从左向右自动进行的趋势?
 - 3. 298K 时若气相中的水蒸汽压 p_{H_2O} 处于 0.747kPa< p_{H_2O} <1.040kPa 时,在上述 3 个可选择的反应中系统能稳定存在的物质是什么?

四. (15分)

已知 CCl₄(A)的蒸汽压方程为:

$$\ln\left(\frac{p}{Pa}\right) = -\frac{3637.1}{T/K} + C$$

该物质 100kPa 下沸点为 350K,若 $CCl_4(A)$ 与 $SnCl_4(B)$ 组成理想液态混合物,在 100kPa 下有某浓度下的理想液态混合物,加热到 373.15K 时开始沸腾,已知 373.15K 时 $SnCl_4(B)$ 的 饱和蒸汽压为 $p_B^*=66.66$ kPa。

- 1. 计算 $CCl_4(A)$ 的摩尔汽化热 $\Delta_{vap}H_m$ 和摩尔气化熵 $\Delta_{vap}S_m$;
- 2. 绘出此二元液态混合物系统在 373.15K 的蒸汽压~组成图 (p~x 示意图), 请在图上注明 气相线、液相线;
- 3. 计算该液态混合物在 373.15K 沸腾时液相组成和第一个气泡的组成。

五. (20分)

已知电池: Pt, $H_2(p_1)$ | HCl(b) | $H_2(p_2)$, Pt。设电池中氢气服从状态方程: $pV_m=RT+\alpha p$

式中 $\alpha = 1.48 \times 10^{-5} \text{m}^3 \cdot \text{mol}^{-1}$, (与 T, p 无关的常数)。电池中两极氢气的压力: $p_1 = 20 \text{p}^\Theta$, $p_2 = p^\Theta$ 。

- 1. 写出电极反应和电池反应式;
- 2. 导出在某温度下,发生 ξ =Imol 反应时: $\Delta_r G_m = RT \ln \frac{p_2}{p_1} + \alpha (p_2 p_1)$
- 3. 当 T=298K 时,求出该电池的 $\Delta_{r}G_{m}$, $\Delta_{r}S_{m}$, E。

六. (20分)

某气相恒容反应: $aA(g) \rightarrow B(g) + C(g)$, 反应速率方程遵从 $-\frac{dC_A}{dt} = k_A C_A^n$,

已知反应物反应掉 50%时所经历的时间与初始浓度 C_{A0} 成反比。当 967K 时,若 A 的初始 分压 $p_{A,0}=39.20$ k Pa 时,反应掉 50%的时间为 1520s。而在 1030K 时,若 A 的初始压力

 $p_{A,0} = 48.00 kPa$ 时,反应掉 90%时需时 1906s。

- 1. 试求此反应的反应级数;
- 2. 计算 967K, 1030K 时速率常数 k1, k2;
- 3. 计算反应的表观活化能。

七. (18分)

I. 已知(N、U、V)确定的系统粒子的平动配分函数为: $q_{tr} = \left(\frac{2\pi mkT}{h^2}\right)^{\frac{3}{2}}V$

试推出单原子理想气体的摩尔热力学能 $U_m = \frac{3}{2}RT$

- 2. 已知肥皂泡的表面张力 γ 与肥皂泡的浓度关系式为: $\gamma = \gamma_0 AC$ 式中 γ 。为 298K 时纯水的表面张力为: 0.0718N•m- 1 , A 为常数。
 - 1. 若此溶液的表面吸附遵从 Gibbs 等温式, 导出表面过剩量与表面张力的关系式为:

$$\Gamma = \frac{\gamma_0 - \gamma}{RT} \,;$$

2. 当 298. 15K 时该溶液的表面过剩量 $\Gamma = 4.33 \times 10^{-6} \, mol \cdot m^{-2}$ 时,计算该溶液的表面张力。

10.26 Eta

北京化工大学

2007年攻读硕士学位研究生入学考试

物理化学试题

注意事项

- 1. 答案必须写在答题纸上,写在试卷上均不给分。
- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。

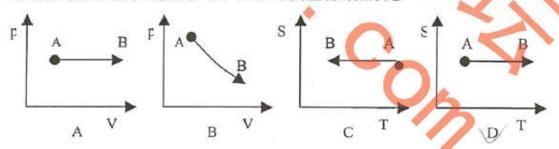
(30分)一、选择题

- 1. 对封闭系统, 当过程的始态和终态确定后, 下列各项中不能确定的值是:
 - B. Q+W
 - . Q+W / C. W
- C. W(当 Q=0 时)
- D. Q(当 W=0 时)
- - A. 2839 kJ·mol

B. -174 kJ•mol⁻¹

C. 171 kJ-mol

D. -2839 kJ·mol-1


52 (-295) +64 (-236)

3. 有反应: 2CuBr₂(s) = 2CuBr(s) + Br₂(g)

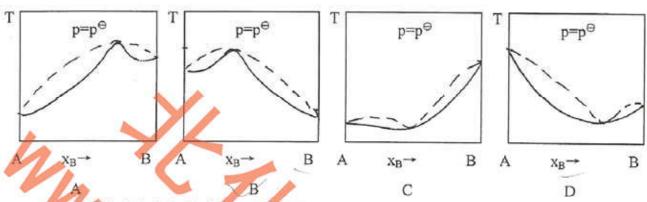
1975 3/91

已知 487K 时溴化铜 $CuBr_2(s)$ 的分解压力为 4.60kPa. 则此温度下上述反应的标准 平衡常数 K^{Θ} :

- A. 4.60
- B. 460
- C. 0.046
- 0.46
- 4. 某理想气体经绝热可逆压缩(A→B), 下列正确的图形是:

5. 有反应: $CO(g) + 2H_2(g) = CH_3OH(g)$ 当 H_2 因反应而消耗了 0.50mol 时,

反应进度 を 为:


- A. 0.25mol
- B. 0.50mol
- C. 1.0mol
- D. 4.0mol
- 6. 单组分系统相图中,固液平衡线的斜率 $\frac{dp}{dT}$ 的值应为:
- A. 大于零
- B. 不确定
- C. 小于零

D. 等于零

第1页只4页

7. 温度为 T 时,A(I)和 B(I)的饱和蒸汽压分别为 25.0kPa 和 40.0kPa。在该温度下 A(I)和 B(I)完全互溶,当汽液平衡时,液相组成 x_A =0.50 时,气相中 p_A =15.0kPa,则此二组分系统在常压下的沸点~组成图应是下列中哪一个:

8. A. g)在催化剂上发生分解反应,某温度下,测定初始压力和半衰期的数据如下:

PASO kPa	28.0	14.0	7.0	
t _½ /min	2.0	4.0	8.0	

则该催化剂反应为:

A. 零级

B. 三级

C. 一级

D./ 二级

9. CO 与 N_2 的分子质量 m 相同,若忽略 CO 和 N_2 分子的振动运动对熵的贡献的 差别,则 CO 和 N_2 的标准摩尔熵的大小关系为:

$$A./S_m^{\theta}(CO) > S_m^{\theta}(N_2)$$

B.
$$S_m^{\theta}(CO) \leqslant S_m^{\theta}(N_2)$$

C.
$$S_m^{\theta}(CO) = S_m^{\theta}(N_2)$$

D.不确定

10. 在 298K 时,平面水面上水的饱和蒸汽压为 3.168kPa,在相同温度下,若小水滴半径为 3nm,此时,水的饱和蒸汽压是该温度下平面液体报和蒸汽压的倍数为: (已知:此温度下水的表面张力 γ =0.072N•m⁻¹,水的密度为 1000kg•m⁻³)

B. 1.417

C. 3.168

D 0.706

11. 温度 T 时,浓度均为 0.01 mol·kg⁻¹的 NaCl, CaCl₂, LaCl₃ 三种电解质水溶液, 离子平均活度系数最小的是。

À/ NaCl

B. CaCl₂

C. LaCl₃

D. 都相后

12. 由 2 mol A 和 2 mol B 形成理想液态混合物, p_A = 90 kPa, p_B = 30 kPa。则气相摩尔分数之比 $y_A: y_B$ 为:

A. 8: 1

B. 4: 1

C. 6: 1

D. 3: 1

13.憎液溶胶与大分子溶液主要性质上的区别在于:

第2页共4页

- A. 是热力学上的不稳定系统
- B. 有渗透压
 - C. 扩散慢
 - D. 有电泳现象
- 14. 氨基甲酸铵的分解反应为:

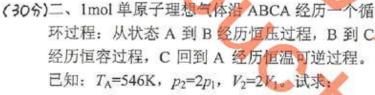
$$NH_2COONH_4(s) == 2NH_3(g) + CO_2(g)$$

等压计(示意图见右图)A管中装入氨基甲酸铵, 将等压计C管连接到抽气系统和测压系统,反应开始 要排A管上方空气,然后调节抽气或放气三通阀使BC 液面持平,这时测压计测得p。即为氨基甲酸铵上方压 力p。者p测得值偏大,说明系统:

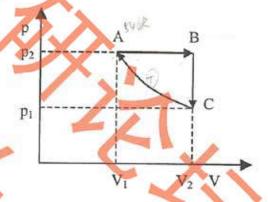
B. 空气没排干净

C. 两种可能都有

D 其他原因


15. 测定蔗糖水解反应速率常数用物理法在线测定浓度, 所用物理仪器是:

A. 电导仪


B.折光以

C. 旋光仪

D.pH 计

- (1) AB 过程的 Q, ΔS;
- (2) BC 过程的 Q, W, ΔU;
- (3) CA 过程的 Q, W, ΔS, ΔG;
- (4)A→B→C→A 整个循环过程的 W, ΔS , ΔG 。

(25%)三、有反应 $CuSO_4 \cdot 3H_2O(s) = CuSO_4(s) + 3H_2O(g)$ 该反应的标准平衡常数在 298K 和 323K 时分别为 10^6 和 10^4 。

- (1) 求 298K 达平衡时系统的组分数、相数和自由度数;
- (2)298K 时,将 $CuSO_4 \cdot 3H_2O(s)$ 暴露在水蒸汽压为 2×10^3 Pa 的空气中,用计算结果判断是否会发生上述脱水反应?
- (3)设反应的 $\Delta_r C_{p,m} = 0$,求 323K 时上述分解反应的 $\Delta_r H_m^{\theta}$ 、 $\Delta_r S_m^{\theta}$ 和 $\Delta_r G_m^{\theta}$ 。 (25分)四、暴露在大气中的铁在酸性介质中可能发生腐蚀的化学反应为:

$$Fe(s) + 2H^{+}(a_1) + \frac{1}{2}O_2(g) \rightarrow Fe^{2+}(a_2) + H_2O(l)$$

第3页点4页

- (1) 试将上述反应设计在电池中进行,写出电池的图示表示式:
- (2) 写出该电池的电极反应:
- (3) 若已知下述电池的标准电动势:

$$Pt, H_2(g, p^{\theta}) \mid H^+(a_{H^+} = 1) \mid O_2(g, p^{\theta}), Pt \qquad E_1^{\theta} = 1.229V$$

下列标准电极电势可以选用:

$$E_{Fe^{2+}/Fe}^{\theta} = -0.440V$$
, $E_{Fe^{3+}/Fe}^{\theta} = -0.036V$, $E_{Fe^{3+}/Fe^{2+}}^{\theta} = 0.770V$

请计算所设计电池的标准电动势 E_2^{θ} 及电池反应的标准摩尔 Gibbs 函数变 Δ , G_m^{θ} 。

 k_1 (20%)五、反应 A = B 正逆向均为 级反应,已知:正反应速率常数 k_1 和反应平衡常 k_{-1}

数 Kc与温度的关系分别为:

$$\lg \frac{k_1}{s^{-1}} = \frac{2000}{T/K} + 4.0$$

$$\lg K_C(平衡常数) = \frac{2000}{T/K} - 4.0$$

- (1) 计算逆向反应活化能:
- (2) 当反应初始时: 若 $C_{A,0}=0.50mol\cdot dm^{-3}$, $C_{B,0}=0.05mol\cdot dm^{-3}$, 计算 400K 时反应达平衡时 A 和 B 的浓度 $C_{Ae}=?C_{Be}=?$

(10分)六、试证明:对纯物质单相封闭系统有:

(1)
$$\left(\frac{\partial T}{\partial p}\right)_{S} = \frac{T}{C_{p}} \left(\frac{\partial V}{\partial T}\right)_{p}$$
;

- (2) 利用(1) 题结论证明, 理想气体经绝热可逆压缩后温度将升高
- (40分)七、 Cl_2 的振动可视为一维简谐振子的振动,(1)当振动第一激发态的能量等于 $\varepsilon_{v,l} = kT$ 时,求 Cl_2 的温度为多少? (已知 Cl_2 的振动特征温度 $\Theta_v = 801.3K$,式中 k 为 Boltzmann 常数)(2)常温(300K)下, Cl_2 分子振动运动处于基态还是激发态。

北京化工大学

2006 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

- 1. 答案必须写在答题纸上,写在试卷上均不给分。
- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。
- *4. 将选择题,填空题和相图题的答案填在附加答题纸的指定位置上。

一、选择题(30分)

- 1. 系统经历一个不可逆循环后:
 - A. 系统的熵增加:

B. 系统吸热大于对外作的功:

C. 环境的熵增加:

D. 系统的熵减少。

2. 下列偏导数中, 小丁零的是:

A.
$$\left(\frac{\partial G}{\partial p}\right)_T$$
: B. $\left(\frac{\partial H}{\partial S}\right)_P$:

$$C: \left(\frac{\partial U}{\partial V}\right)_{S}: D. \left(\frac{\partial S}{\partial V}\right)_{T}.$$

3. 某真实气体反应的标准平衡常数为 K^{θ} ,则 K^{θ} 的大小与下列因素有关的是:

A. 系统的总压力: B. 催化剂:

C. 惰性气体的量; D. 温度。

4. 有 HgS(s)的晶体转化反应为: α-HgS(s)=8-HgS(s)

已知该反应的: $\Delta_r G_m^{\theta}$ [$I_{1,mol}^{-1}$] = 980-1.456 T_r [K]. 在标准条件下,温度为

373K 时:

A. α-HgS(s) 较 β-HgS(s)稳定: B. 反应达到平衡;

C. β-HgS(s) 较 α-HgS(s)稳定: D. 无法判断。

5. 某反应 $A \rightarrow Y$,其速率常数 $k_A = 6.93 \text{ min}^{-1}$,则该反应物 A 的浓度从 $1.0 \text{ mol} \cdot \text{dm}^{-3}$ 变到 0.5 mol· dm 3 所需时间是:

A. 0.2min:

B. 1min: C. 0.5min:

D. 0.1min.

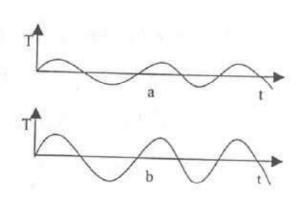
6. MgCl₂ 的无限稀释摩尔电导率与其离子的无限稀释摩尔电导率的关系为:

A.
$$\Lambda_m^{\infty}(MgCl_2) = \Lambda_m^{\infty}(Mg^{2+}) + \Lambda_m^{\infty}(Cl^{-})$$
:

B.
$$\Lambda_m^{\infty}(\frac{1}{2}MgCl_2) = \Lambda_m^{\infty}(Mg^{2+}) + \Lambda_m^{\infty}(2Cl^{-})$$
;

C.
$$\Lambda_m^{\infty}(\frac{1}{2}MgCl_2) = \Lambda_m^{\infty}(\frac{1}{2}Mg^{2+}) + \Lambda_m^{\infty}(Cl^{-})$$
:

第1页 共4页


D.
$$\Lambda_m^{\infty}(MgCl_2) = \frac{1}{2}\Lambda_m^{\infty}(Mg^{2+}) + \Lambda_m^{\infty}(Cl^-)$$
.

- 7. 反应速率的过渡态理论中, 化学反应势能面上的马鞍点是:
 - A. 最低能量途径上的最高点; B. 势能面上的最低点;
 - C. 最低能量途径上的最低点; D. 势能面上的最高点。
- 8. 与分子运动空间有关的分子运动配分函数是:
- A. q_v : B. q_r : C. q_t :
- 9. 298K 时, 乙醇水溶液的表面张力随活度的变化率符合下列公式: $\frac{d\sigma}{da} = (-5.00 \times 10^{-4} + 4.00 \times 10^{-4} a) \text{N·m}^{-1}$,式中 a 为乙醇的活度。当 a=0.5 时,溶液的表面过 剩量为:
- A. 6.05×10⁻⁴mol·m⁻²;
- B. 6.05×10⁻⁸mol·m⁻²:
- C. 5.06×10⁻⁸mol·m⁻²;
- D. 5.06×10⁻⁴mol·m⁻²。
- 10. 在恒温下采用最大气泡法实验装置(如右图)测定溶液 的表面张力时,实验中直接读取的数据是:
 - A. 毛细管的鼓泡数:
- B. 抽气管的液滴数:
- C. 压力计的最小压差
- D万力计的最大压差。

二、填空题(20分)

- 1. 1mol 单原子理想气体,从(p, V, T)状态,等容分却到(p, V, T,)状态,则该过程的 Δ U ₹ 0, Δ H < 0, Δ S < 0, ₩ = 0 (0 × 0 × 0).
- 2. 25 °C 时, 有 Imol C₆H₆ (液) 和 Imol C₆H₅ CH₅ (液) 形成了理想液态混合物,该温 度下若将此混合物等温分离为纯 C_6H_6 (液)和 C_6H_5 CH、(液)、则此分离过程的 Δ G > 0 . ΔS_<_0, ΔH_=_0 (填<,=以>)。
- 3. 冰的熔点随着压力降低而___; 正交硫的熔点随着压力的降低而___。(填上升或下降) 4. 有反应 AgCl(s)→Ag⁺ (aq)+Cl(aq) ,该反应设计为电池, Ag(s) | Ag⁺ (aq) || Cl(aq) | AgCl(s) | Ag(s) 。 298K 时, 己知 AgCl(s)的溶度积为: K_{sp}=1.75 × 10⁻¹⁰, $E^{\Theta}(C\Gamma,AgCI/Ag)=0.2221V$,则 $E^{\Theta}(Ag^{\dagger}/Ag)=(\underline{0.799})$ V。
- 5. 有一原电池, 己知 E>0, $\left(\frac{\partial E}{\partial T}\right)$ <0, 则该电池反应的 Δ H 为: _<_零 (填<, >或=)。
- 6. 己知 N₂ (g) 的转动特征温度Θ_r=2.889K, 298K 时 N₂ (g) 的转动配分函数 q_c 为 q_c 之。
- 7. 高分散度固体表面吸附气体后,可使固体表面的 吉布斯函数 境加 : 熵 <u>降低</u> 。(填:增加,降低 或不变)
- 8. 测恒温槽的灵敏度时,在一定温度下测量恒温槽 的 T (温度)~t (时间) 曲线如右图所示: 曲线 a 的 灵敏度比曲线 b 的灵敏度 € 。(好或差)。

三、计算题(84分)

1. (20分)

有 1mol 气体自 T₁, V₁状态绝热自由膨胀 (p *=0) 至终态 V₂。

(1) 证明: 对上述气体有
$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p$$
;

- (2) 若气体为理想气体, 求终态温度 T_2 , 并用题给的参数导出上述过程的 ΔS 、 ΔG 的表示式。
- (3) 若气体为 van der Waals 气体,且气体的热容与温度无关,请导出终态温度 T_2 的表示式。

2. (18分)

有硼烷脱氢反应: $5B_2H_6(g) = 2B_5H_9(g) + 6H_2(g)$

已知上述物质 298K 时数据如下:

物质	$\Delta_j H_m^{\theta} / kJ \cdot mol^{-1}$	$S_m^{\theta}/J \cdot mol^{-1} \cdot K^{-1}$
B ₂ H ₆ (g)	31.4	232.88
B ₅ H ₉ (g)	62:8	275.64
H ₂ (g)	170	130.59

设: 各气体均可视为理想气体, 试本:

(1) 298K 时反应的标准平衡常数 K®

(2) 若反应
$$\Delta$$
, $C_{P,m}=0$, 500K 时反应的 Δ , A_m^{θ}

3. (20分)

己知 298K 下:

(i)
$$HgO(s) = Hg(l) + \frac{1}{2}O_2(g)$$
 $\Delta_r G_m^{\theta}(1) = 58.5kJ \cdot mol^{-1}$

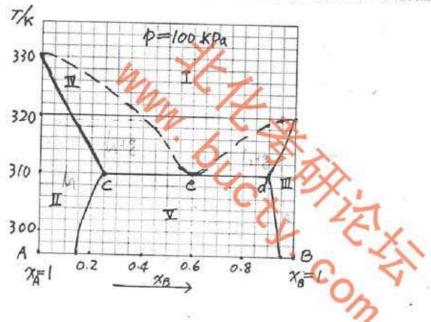
$$2H_2(g) + \frac{1}{2}O_2(g) = H_2O(l)$$
 $\Delta_r G_m^{\theta}(2) = -237.2kJ \cdot mol^{-1}$

- (1) 写出电池: H₂ (g, p[⊕]) | NaOH (aq), HgO (s) | Hg(l) 的电极反应和电池反应式:
- (2) 试求上述电池的标准电池电动势 E^Θ:
- (3) 若已知 298K 时各物质的标准熵为:

物质	$H_2(g)$	H ₂ O(I)	Hg(l)	HgO(s)
$S_m^{\theta}/[\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1}]$	130.60	69.94	77.40	70.29

计算该电池反应的可逆热及电池电动势的温度系数。

4. (26分)


反应物 A 的热分解反应为: A (g) \rightarrow 2B(g),已知单位时间内, 反应物浓度变化的分数($-\frac{dC_A}{C_A}$)为一常数,且该反应的半衰期为 t_{χ_2} =1175s。开始时反应器内只有

A 物质, 在 553K 下反应, 经过极长的时间后测得总压为 4.007×103Pa。试求:

- (1) 553K 时,该反应的表观速率常数 k(553K);
- (2) 553K 时, 当测得总压为 2.475×103Pa 时反应经历的时间为多少?
- (3) 已知 553K 时: $\frac{dk/k}{dT} = 6.65 \times 10^{-2} \, K^{-1}$, 求反应的表观活化能。

四、相图题 (16分)

在 100kPa 压力下, 有 A, B 液体形成部分互溶系统, 其沸点-组成如图所示:

(1) 请完成下表:(请填在答题纸的表中)

×域	相数	相态	A We do I should
ī	19.00	11723	条件自由度数
1 .			7
II	1%		
IV	4	4	
V	1	1	

- (2) 有系统组成为 X_A=0.65 的混合物, 封闭恒压加热沸腾时沸点温度为多少? 此时有儿相平衡? 沸点温度下各相的组成及气相中 A, B 的分压各多少?
- (3) 若有 Imol 上述混合物在封闭恒压系统中加热至 318K 时,此时存在的相数、相的组成及各相物质的量各为多少?

北京化工大学

2005 年攻读硕士学位研究生入学考试

物理化学试题

注意事项

1. 答案	必须写在答	题纸上,	写在试券	上均不给分	
-------	-------	------	------	-------	--

- 2. 答题时可不抄题, 但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红笔或铅笔均不给分。
- 4. 选择题 填空题和相图题的答案写在答题纸的指定位置上,写在试卷上

一、选技	¥题(2	20分)	(答案	填在答	颐纸	的指示	(位置)
------	------	------	-----	-----	----	-----	------

当理想气体反抗一恒外压作绝热膨胀时,则:

A. AH=0

B. A U=0

 $\Delta H > 0$

\ Ø. △U<0

A.
$$\left(\frac{\partial A}{\partial V}\right)_T$$

$$B_f \left(\frac{\partial H}{\partial S} \right)_P$$

C.
$$\left(\frac{\partial U}{\partial V}\right)_{S}$$

D.
$$\left(\frac{\partial G}{\partial T}\right)_P$$

3. AB 两组分可以形成固溶体, 若在组分 A 中加入 B, 可以使固溶体的熔点提高, 当固-液两相达平衡时,则组分 B 在此固溶体中的含量必(D)组分 B 在液相中的含量。

A. 大于

B. 小干

C. 等于

D. 不能确定

4. 某固体氧化物的分解反应是吸热反应, 当温度升高时, 固体氧化物的分解压力将;

A 增大

B. 减小

C. 不变

D 不能确定

5. 分子的平动、转动和振动的能级间隔可表示为 $\Delta \epsilon_{r}$ 、 $\Delta \epsilon_{r}$ 和 $\Delta \epsilon_{r}$. 第一次发态与基态能 记的能量差大小的顺序为:

A. $\Delta \varepsilon_v > \Delta \varepsilon_t > \Delta \varepsilon_r$

B. $\Delta \varepsilon > \Delta \varepsilon > \Delta \varepsilon$

C. Δε>Δε>Δε,

D. Δε,>Δε,>Δε.

6. 某化学反应在一定条件下的平衡转化率为 66%, 当加入合适的催化剂后, 反应速率提 高 10 倍. 则其平衡转化率将:

A. 大于 66%

B. 小于 66%

\C/ 不变

D. 不能确定

7. 下列分散系统中丁达尔效应最强的是:

A. 空气

B. 蔗糖水溶液

C. 高分子溶液

\D/ 硅胶溶液

8. 醌一氢醌电极电势与溶液中氢离子的活度有关, 称为氢离子指示电极。实验中测量溶 液 pH 值时该电极在一定范围内电极电势较稳定,稳定范围的 pH 值应是:

A. 大于 8.5 B. 小于 8.5 C. 等于 8.5

D. 没有限定

9. 有二级反应,在一定温度下反应物消耗 1/2 需时间 10min,若再消耗 1/2 还需时间为:

A. 10 min

B. 20 min C. 30 min

D. 40 min

10. 下列各电解质对某溶胶的聚沉值分别为:

电解质	KNO ₃	MgSO ₄	Al(NO ₃) ₃
聚沉值/mol·dm ⁻³	50	0. 81	0. 095

该胶粒的带电情况为:

一带负电

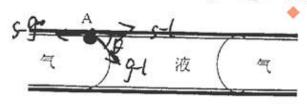
- B. 带正电 C. 不带点
- D. 无法确定

二、填空题(20分)(答案填在答题纸的指定位置)

1. 1mol 理想气体从 p₁=0. MPa 节流膨胀到 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₁=0. MPa 节流膨胀到 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₁=0. MPa 节流膨胀到 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₁=0. MPa 节流膨胀到 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₁=0. MPa 节流膨胀到 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 可流膨胀到 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想气体从 p₂=0. 1Mpa 时的熵变为 △ S= 13.38. 1. 1mol 理想

2. 60°C时, 某液体 A 的饱和蒸汽压是液体 B 饱和蒸汽压的 2 倍。A、B 两液体形成理想 液态混合物 当气液平衡时、若液相中 A 的摩尔分数为 0.5,则在气相中 B 的摩尔分数

3. 对 ABC 组成的 2组分系统中,最多相数为 5 最大的自由度数为 4 ;它们 T. P. XR. XC


4. 已知某气相反应 300℃,低层下的 K^Θ=3.8×10⁻³、当该反应在 300℃,高压下进行时 , (己知该反应的 K_ω=0.773)。

6. 某一级反应每分钟反应物转化掉6%,则该反应的速率常速 (=)

7. 在临界状态下,由于气液界面_____ 所以液体的表面张力

8. 强电解质 $MgCl_2$ 水溶液,其离子平均活度 a_2 与电解质活度 a_8 之间的关系为

9. 请在下列图中画出 A 点各界面张力 (s-g, s-l, g-l) 的方向和接触角 θ。

(画在指定位置答题纸 F)

10. 在酸性介质中蔗糖水解反应为:

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H'} C_6H_{12}O_6 + C_6H_{12}O_6$$

蔗糖 葡萄糖 果糖

由于蔗糖及其水解产物具有 旅光 性质、随着水解反应进行,体系的 流光 ,实验中采用 **为为支权**· (仪器) 进行测量。

三、(20分)

25℃条件下,密闭恒容的容器中有 1 mol 葡萄糖 $C_6H_{12}O_6(s)$ 在 $O_2(g)$ 中完全燃烧,生成同温下的 $CO_2(g)$ 和 $H_2O(l)$ 。过程放热 $2808kJ^*\text{mol}^{-1}$ 。若产生的气体可视为理想气体,已知 298.15K 下该反应的标准摩尔熵变 Δ , $S_m^\theta = 182.4 \text{ J*}K^{-1}\text{*mol}^{-1}$ 。已知下列物质的标准熵:

.8 /	CO ₂ (g)	H ₂ O(l)	O ₂ (g)
J•K ⁻¹ •mol ⁻¹	213.74	69.91	205.14

- 计算 298K 时 C₆H₁₂O₆(s)的标准熵 S^θ_m:
- 2. 计算 298K 时 $O_6(s)$ 的标准摩尔燃烧焓 $\Delta_C H_m^{\theta}$:
- 3. 计算 298K 时利用上述反应所能得到的最大功 Wmax 。

四、(10分)

某气体遵从状态方程 $pV_m=RT+bp$,且恒容热容 C_V 不随温度变化。

1. 证明:
$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p$$

2. 导出此气体的绝热可逆过程方程式。

五、(26分)

有晶形转变过程:

$$\alpha - H_2S(s, 红)$$
 $\beta - H_2S(s, 黑)$

已知上述过程 Δ , $G_m^\theta = [4184 - 5.44(T/K)]J \cdot mot^{-1}$

- 1. 试求某温度下晶形转变过程的 $\Delta, H_m^{\theta}, \Delta, S_m^{\theta}$:
- 2. 计算 α H₂S(s, 红) β -H₂S(s, 黑)的恒压热容差 Δ, C_{P,m}:
- 3. 试求 p=100kPa 时品形转变达平衡时的温度:
- 在 298K, p^Θ下 H₂S(s)稳定态是 α 型还是 β 型?
- 5. 计算在 525℃时,两相处于平衡时系统的压力。

已知: $\rho_{\text{LL}}^{\alpha} = 8.1g \cdot cm^{-3}$, $\rho_{\text{M}}^{\beta} = 7.7g \cdot cm^{-3}$ 且不随压力变化。

六、(12分)

己知 12 的下列有关数据:

	三相点O	临界点 C	正常熔点a	正常沸点 b
T/°C	113	512	114	184
p/kPa	12	11600	100	100

- 1. 画出 I_2 的示意相图,在图上标明 O,C,a 和 b 点的位置和各区域的相态; (画在答题纸的指定位置上)
- 2. 结合示意图完成下表: (填在答题纸的指定表中)

	组分数 C	相数P	自由度数 F
区域			日田及蚁下
OC 线			
O.点			

七、(22分)

有电池(A)(B)

- (A) Pt, H₂(g,p⁹) |H₂SO₄(b=7mol kg⁻¹) |Hg₂SO₄(s),Hg(l),Pt
- (B) Pt, H₂(g,p[©]) |H₂SO₄(b=7mol·kg⁻¹) |PbSO₄(s),Pb₂O₄(s) 在 298.15K 时测得上述电池电动势分别为 E_A=0.5655V, E_B=1.7501V。

已知: (A) 和 (B) 电池的标准电动势分别为 $E_A^{\theta} = 0.6152V$, $E_B^{\theta} = 1.6849V$ 。

- 1. 写出电池(A)和(B)的电极反应与电池反应:
- 计算 298.15K 时 H₂SO₄ 水溶液 (b=7mol kg⁻¹) 中水的活度。

八、(12分)

某对行反应机理如下:

在某温度下,已知 $k_1=8.0\times 10^{-3} min^{-1}$, $k_2=2.0\times 10^{-3} min^{-1}$, 今由纯 A 开始反应,试问: A,B 达到相同浓度时的反应时间?

九、(8分)

有 N 个粒子的某定域子系统,仅有三个非简并能级 (ϵ 。. ϵ ., ϵ .),已知相邻能级间隔值 Δ ϵ 等于 100K 时的 kT 值。若粒子在能级上的分布服从玻尔兹曼分布。当温度为 100K 时.

- 1. 粒子在各能级上与基态能级分布之比 n₁/n₀, n₂/n₀。
- 2. 若能量基准定在基态能级, 100K 时粒子的配分函数 q[®]?
- 3. 100K 时系统的摩尔热力学能 U_m^0 ?

北京化工大学

2004 年攻读硕士学位研究生入学考试

物理化学 试题

注意事项

- 1. 答案必须写在答题纸上,写在试卷上均不计成绩。
- 2. 回答选择题、作图题及表格题请写在答题纸的规定位置上,写在试卷上均不计成绩。
- 3. 答题时可不抄题, 但必须写清楚题号。
- 答题必须用蓝、黑墨水笔或圆珠笔,用红色或铅笔均不计成绩。
- $5.0^{\circ} = 100 \text{kPa} = 101.325 \text{kPa}$

一、选择题(50分)

(1. 1mol 理想气体经恒温膨胀、恒容加热和恒压冷却三步完成一个循环回到始态,此过程 气体吸热 20 0kJ。则该过程的 W: B

A. = 20. 0kJ
B

20. 0kJ :

C >20.0k I: D. 等于其它值。

2. 若要通过节流膨胀达到制冷的目的,则焦耳一汤姆生系数为: 乃

A.
$$\mu_{J-T} = \left(\frac{\partial T}{\partial p}\right)_H = 0$$

B.
$$\mu_{J-T} = \left(\frac{\partial T}{\partial p}\right)_H > 0$$

C.
$$\mu_{J-T} = \left(\frac{\partial T}{\partial p}\right)_H < 0$$

- 3. 若某化学反应的Δ·C。, =0, 则该反应的Δ·H。与温度的关系为: C
 - A. 随温度增加而增加:

B. 随温度增加而减少:

C. 与温度变化无关:

D. 与温度变化无规律

4. 1mol 理想气体经过一个恒温不可逆压缩过程,则该过程: %

A. $\Delta G > \Delta A$ B. $\Delta G = \Delta A$

C. ΔG<ΔA D. 无法比较</p>

5. 在 298K 时已知气相反应 $2A(g) + B(g) \longrightarrow 2C(g)$ 的 $\Delta_r G_m^{\theta}$ 为-514. 2kJ • mol⁻¹, 则

发生 1mol 反应的AA°: C

A. $\Delta A^{\theta} = -514.2 \text{ kJ·mol}^{-1}$

B. $\Delta A^{\theta} = 0$

C. $\Delta A^{\theta} > -514.2 \text{ kJ-mol}^{-1}$

D. $\Delta A^{0} < -514.2 \text{ kJ-mol}^{-1}$

- 6. 对于纯物质、单相、只做体积功的封闭系统, $(\frac{\partial G}{\partial n})_T$ 的值: AB. 小于零 C. 等于零 A. 大于零
- \sqrt{g} . 水的饱和蒸气压与温度的关系为: $\ln(p/\mathrm{kPa}) = A 4883.8/(T/\mathrm{K})$ 。水的摩尔蒸发

A. 40. 603×10³kJ • mol⁻¹

B. 4. 883×10³kJ • mol⁻¹;

C. O. 587×103k J • mol :

D. 其它值

8. 由 2 mol A 和 2 mol B 形成理想液态混合物,已知某温度下 Pa*= 90 kPa, Pa*= 30 kPa。 则平衡气相摩尔分数之比 yx: ys 为 A

B. 4:1

C. 6:1

D. 8:1

9. 由水(1)和甲醇(2)组成的二元溶液,下列各式不是甲醇在此溶液中的化学势的是: D

A.
$$\left(\frac{\partial H}{\partial n_2}\right)_{S,p,n_1}$$

$$B = \left(\frac{\partial G}{\partial n_2}\right)_{T, p, n_1}$$

$$C. \left(\frac{\partial A}{\partial n_2}\right)_{T,V,n_1}$$

D.
$$\left(\frac{\partial U}{\partial n_2}\right)_{I_1,p_1,p_2}$$

10. 298K 下,将两种液体恒温恒压混合,形成理想液态混合物,则混合前后下列热力学性 质的变化情况为: A

A. ΔS>0, ΔG<0

- B. ΔS=0, ΔG<0 . ΔS<0, ΔG>0

D. 无法确定

 $\sqrt{11}$. 恒温恒压下只作体积功的多组元 (B, C, ω , K), 多相(α, β, ω , Φ)系统, 自发过程或 达到平衡的判据是: (

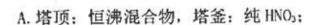
A.
$$\sum_{\alpha}^{\Phi} \sum_{B}^{K} \mu_{B}^{\alpha} dn_{B}^{\alpha} \ge 0$$
 自发

B.
$$\sum_{\alpha}^{\Phi} \sum_{B}^{K} \mu_{B}^{\alpha} dn_{B}^{\alpha} \leq 0$$

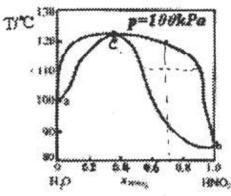
C.
$$\sum_{B}^{K} \mu_{B}^{\alpha} dn_{B}^{\alpha} \leq 0$$
 自发 平衡

D.
$$\sum_{B}^{K} \mu_{B}^{\alpha} dn_{B} \ge 0$$
 自发

12. 反应 $\frac{3}{2}H_2(g) + \frac{1}{2}N_2(g) = NH_3(g)$, 当 H_2 因反应消耗了 0.3mol 时,反应进度 § 应为: 岁


A. 0. 1

B. 0.3


C. 0. 5

D. 0.2

- 13. 理想气体化学反应平衡时 (Δv ≠ 0),加入惰性气体,平衡不发生移动的条件是: D A. 恒温恒压 B. 恒温恒容 C. 任意条件 D. 绝热恒压
- 14. 如图所示: 将含有 HNO3 为 70% (摩尔百分数) 的硝酸用高效精馏塔进行精馏时, 塔 顶及塔釜分别得到: 〇

- B. 塔顶: 纯 HNO3, 塔釜: 纯水;
- C. 塔顶: 纯 HNO。, 塔釜: 恒沸混合物:
- D. 塔顶: 纯水 塔盆: 恒沸混合物。
- 15. 1mo1 某双原子分子理想气体在 300K 等温膨胀时:

- A. qu. qu. qv. qe与 qn均不变。
- B. q_{ir}、变化, q_s、q_o、q_o与 q_n均不变;
- C. q₁不变, q₁、q₂、q₂与q₄均变;
- D. qu, qx, qv, q。与 qn 均变化。
- 16. 刚性转子的转动量子数为 J时, 其转动能级简并度数为 C
 - A. J

- B J(J+1)
- D. 非简并能级
- 17. 在吸附过程中,以下热力学量的变化正确的是: A
 - A. ΔG<0, ΔS<0, ΔH<0;

B. ΔG>0, ΔS>0, ΔH>0;

C. ΔG<0, ΔS>0, ΔH>0;

- D. ΔG>0. ΔS<0, ΔH<0.
- 18. 浓度为 0.3 mol·kg-1A₂B 电解质溶液的离子强度为 A
 - A. 0.9mol kg B. 0.3mol kg
- C. 0.6mol kg⁻¹
- D. 1.8mol kg-1
- 19. 温度 T 时,浓度均为 0.01 mol·kg⁻¹的 NaCl CaCl₂, LaCl₃三种电解质水溶液,离子 平均活度系数最小的是: ()
 - A. NaCl
- B. CaCl₂
- C. LaCl₃
- D. 都相同

20. 下列电极 298K 时其标准电极电势为:

电极	E ^θ /V	
1. Cu ⁺ +e ⁻ = Cu	0.522	UA
2. $Cu^{2+} + 2e^{-} = Cu$	0.340	
3. $Cu^{2+} + e^{-} = Cu^{+}$	0.158	

电池反应: Cu + Cu2+ = 2Cu+ 在 298K 的标准平衡常数 K6. 为: 8

- A. 1. 8×10⁻⁶ B. 6. 96×10⁻⁷
- C. 8. 34×10⁻⁴ D. 以上都不对

21. 298K 和 p 压力下, 有化学反应:

 $Ag_2SO_4(s)+H_2(p^9)=2Ag(s)+H_2SO_4(aq)$

已知: E°{Ag₂SO₄/Ag, SO₄²⁻}=0.627V, E°{Ag²/Ag}=0.799V。如上电池的标准电池电动 势 E[®]为: A

A. 0. 627V; B. -0. 172V;

C. 0. 799V; D. 0. 172V

22. 298K 和 p 压力 有电池如下:

$$Ag(s)|Ag^{+}(a_{Ag^{-}})|SO_{4}^{2-}(a_{SO_{4}^{2-}})|Ag_{2}SO_{4}(s),Ag(s)$$

已知: E {Ag₂SO₄/Ag, SO₂7 = 0.627V, E {Ag '/Ag} = 0.799V。如上电池的 Ksp 为: B A. 1. 72×10^{-6} ; B. 1.52×10^{-6} C. 1.72×10^{-9} ; D. 1.52×10^{-9}

23. 有恒温、恒容下的某气相反应 A(g) → B(g) + C(g) ,若用反应物 A 的分压 P_s * 对时间 t作图为一直线,则该反应的反应级数为

A. 0.4

C. 1.4

24. 有下列反应:

$$A(g) \stackrel{k_1}{\Longrightarrow} B(g) + C(g)$$

式中 k₁, k₂分别是正向逆向基元反应的速率常数, 298K 时其值分别为: 3. 33×10⁻³s⁻¹, 6. 67×10⁻⁷(s・p^θ)⁻¹。上述对行反应在 298K 时的平衡常数 K.: し

A. $5.0 \times 10^{-3} p^{6}$ B. $2.0 \times 10^{4} p^{6}$ C. $5.0 \times 10^{3} p^{6}$ D. $2.0 \times 10^{4} p^{6}$

25. 已知一平行反应, 由两个基元反应构成: A→B 的速率常数为 k₁, A→C 的速率常数为 k2,则该平行反应的总反应速率常数 k 为: A

A. $k_1 + k_2$

B. k_1/k_2

C. k2/k1

D. = k1

26. 293K 时, 乙醚-水、汞-乙醚、汞-水的界面张力为 0. 0107, 0. 379, 6. 375N · m , 在乙醚 与汞的界面上滴一滴水, 其接触角θ为: Δ

A. 68°

B. 112

C. 168°

D. 22°

27. 473: 2K 时测定氧在某催化剂上的吸附作用,其吸附量满足如下方程:

$$\Gamma = \frac{5.539(p^{\theta})^{-1} \times p}{1 + 1.22(p^{\theta})^{-1} \times p} = 2.27dm^{3} \cdot kg^{-1}$$

该吸附的饱和吸附量为: 乃

A. 2. 27dm³·kg⁻¹ B. 4. 54 dm³·kg⁻¹ C. 5. 539 dm³·kg⁻¹ D. 1. 22 dm³·kg⁻¹

28. Al (NO₃)₃, Mg (NO₃)₂和 NaNO₃对 AgI 水溶胶聚沉值分别为 0.067mol.dm⁻³, 2.60 mol.dm⁻³ 和 140 mol. dm 3 则该 Ag I 溶胶: C

A. 胶粒带正电,

B. 胶粒呈电中性; C. 胶粒带负电;

D. 无法确定

29. 乙酸乙酯皂化反应的动力学实验中,为了测定不同时间的乙酸乙酯的浓度变化,可采 用物理法, 选用的测量仪器是: 7

A. 折光仪

/30. 采用静态法测液体的饱和蒸汽压时,实验步骤中要将溶在液体中的空气排出,测定 不同温度下的饱和蒸汽压。若实验中空气没有排净,则实验测得的蒸汽压值比理论

A. 偏大

B. 偏小

D. 没有规律

二、(20分)

某气体服从状态方程: $(p + \frac{a}{V^2}) V_m = RT$ (设 Q > 0 常数)

(1) 证明: 温度恒定时气体的热力学能随体积增大而增加,即:

$$\left(\frac{\partial U_m}{\partial V_m}\right)_T > 0$$

(2) 1mol 该气体由始态(T, V_a)恒温可逆变化到终态(T, 2V_a), 计算过程的 W、Q、ΔU_a、 ΔH. ΔS..

三、(15分)

有化学反应:

$$U(s) + \frac{3}{2}H_2(g) = UH_3(s)$$

己知: 温度在 450K-725K 范围内, 反应系统中 H2的平衡压力遵从方程:

$$\ln\left(\frac{p}{Pa}\right) = 69.32 - \frac{1.464 \times 10^4}{T/K} - 5.65 \ln(T/K)$$

- (1) 写出 UH。(3)的标准摩尔生成焓与温度关系式;
- (2) 计算上述反应的标准热容差 Δ , $C_{p,m}^{\theta}$ 。

四、(10分)

己知 N₂(g)的振动特征温度O₂ 3388K, 若以振动基态为能量零点基准:

- (1) 计算 298. 15K 时 N₂ 分子振动配分函数 q°.
- (3) 若在某温度下风分子的振动配分函数 q, 2, 求此时系统的温度?

五、(20分)

已知 298K 时电池:

Pt, H2(100KPa) |稀 NaOH |Ag2O(s), Ag(s)

的电动势 E=1.172 V。

- (1)写出上述电池的电极与电池反应:
- (2)求 298K 时 Ag₂O (s)的 Δ_fG_m值
- (3)求该温度下 Ag₂O(s)分解压。

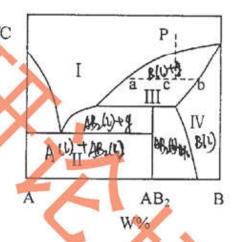
已知: 298K 时 $\Delta_f G_m^{\theta}$ [HzO(1)]=-237.19kJ/mol.

六、(20分)

实验测得不同温度下丙酮二羧酸在水溶液中分解反应的速率常数 k 值数据如下:

(此题图画在答题纸上的坐标纸上,答在此处不给成绩)

T/K	273. 2	293. 2	313. 2	333. 2
10 ⁶ k/s ⁻¹	0.41	7.92	96.0	913

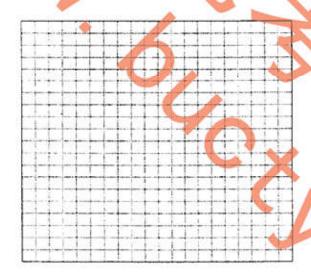

- (1) 采用作图法线性拟合,求反应的表观活化能 E₂及指前因子 k₀:
- (坐标纸在答题纸上)
- (2) 求 373.2K 时反应的半衰期 t_{1/2} 及反应 t=25s 时的转化率?

七、(15分)

- 己知 AB 二组分凝聚系统相图如下:
 - (此题图与表请答在试题纸上,答在此处不给成绩)
 - (1) 完成下表:

域域	I	II	Ш	IV
相数				
稳定相态				
自由度数				-

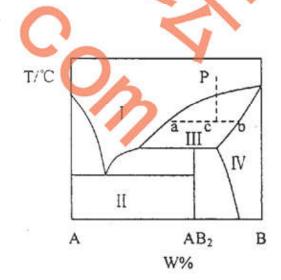
(2) 如右图所示:有质量为 3kg 的系统由 P 点冷却到 C 点,若 ac = 2cb 该系统处于几相平衡(注明具体相态),并在图中标出各相组成(示意点),计算各相质量为多少 kg?



答题纸:

一、选择题: (请在所选得答案上涂黑点).

1	A	В	С	D	11	Α	В	С	D	21	A	В	С	D
2	A	В	С	D	12	Α	В	С	D	22	A	В	С	D
3	A	В	С	D	13	A	В	С	D	23	A	В	С	D
4	A	В	С	D	14	A	В	С	D	24	A	В	C	D
5	Α	В	С	D	15	A	В	С	D	25	A	В	С	D
6	Α	В	С	D	16	Α	В	С	D	26	A	В	С	D
7	· A	В	C	D	17	Α	В	С	D	27	Α	В	С	D
8	Α	В	C	D	18	A	В	С	D	28	А	В	С	D
9	A	В	С	D	19	A	В	С	D	29	Α	В	С	D
10	A	В	С	D	20	Α	В	С	D	30	A	В	С	D


六、

七、

(1) 完成下表:

$\overline{\times}$	域	I	II	III	IV
相	数				
稳定	相态				
自由	度数				

北京化工大学

2003 年攻读硕士学位研究生入学考试

物理化学 试题

注意事项

- 答案必须写在答题纸上,写在试卷上均不给分。 1,
- 答题时可不抄题, 但必须写清题号。 2,
- 答题必须用蓝、黑水笔或圆珠笔,用红笔或铅笔均不给分。 3.
- 101.325kPa≈100kPa=p[®].
- 作图用铅笔, 且作图题答在指定页码的答题纸上。
- 一. 选择题(15分)
- 1. 理想气体恒温向真空膨胀过程,下列正确的是:

A. Δ U<0;

- B. Q>0;
- C. △ H=0:
- D. W<0.
- 2. 有理想写体反应: aA+bB=lL+mM。已知 $\sum v_B>0$,则对于该反应在恒温恒容条件下

加入惰性气体,平衡时将:

A.向左移动; B.不移动;

C.向石移动;

D.无法确定。

3. 与分子运动空间有关的分子运动配分函数是:

A. 振动运动配分函数 0.

B. 平动运动配分函数 q.;

C. 转动运动配分函数 q.:

D 核, 电子运动配分函数 q,,q,。

4. 对基元反应 $2A \xrightarrow{k} C$,下列反应速率方程式中正确的是:

A.
$$\frac{dC_C}{dt} = k_A C_A^2$$
;

C.
$$\frac{dC_C}{dt} = \frac{1}{2} k_A C_A^2;$$

B.
$$\frac{dC_C}{dt} = 2k_A C_A^2$$

$$D - \frac{dC_A}{dt} = 2k_A C_A^2$$

- 5. 光化反应的初级过程: $A + hv \rightarrow A$, 其反应速率应当:
 - A. 与反应物 A 的浓度和 hv 均无关; B. 与反应物 A 的浓度和 hv 均有关;

 - C. 与反应物 A 的浓度有关与hv 无关; D. 与反应物 A 的浓度无关与hv 有关。
- 6. 物理吸附的吸附作用力和吸附层分别是:
 - A. 范德华力、单、多分子层吸附:
- B. 范德华力、单分子层吸附;
- C. 化学键力、单、多分子层吸附; D. 化学键力、单分子层吸附。
- 7. 在含有 Zn²⁺、Cd²⁺、Ni²⁺的硝酸盐溶液中,若各金属离子的活度相同,已知它们的标 准电极电势如下: E°{Zn²+/Zn}=-0.7628V; E°{Cd²+/Cd}=-0.4026V; E°{Ni²+/Ni}=-0.2300V。电解时,在惰性电极上,金属的析出顺序为(各金属的析出时的超电势忽 略不计)。
- A. $Zn \rightarrow Cd \rightarrow Ni$; B. $Ni \rightarrow Cd \rightarrow Zn$; C. $Cd \rightarrow Zn \rightarrow Ni$; D. $Ni \rightarrow Zn \rightarrow Cd$.

二. 填空题 (39分)
1. 恒温 298K 条件下, 1 mol 某气体由 0.03m³ 被压缩至 0.01m³, 若该气体作为理想气体,
则该过程的 Δ U零: Δ H零。若该气体符合状态方程: pV_m =RT+ α p,
其中 α 为大于零的常数,则该过程的 Δ U零。 Δ H零。
(填:大于、小于或等于)
2. 1 mol 理想气体 (C _{v,m} =2.5R), 由 350K, 400 kPa, 经绝热可逆膨胀至 298K, 该过程
的 Δ S零; Δ H零。(填: 大于、小于或等于)
3. 当固体 SiO_2 微粒与水接触时,可生成弱酸 H_2SiO_3 ,它的电离产物 SiO_3^{2-} 不全扩散到
溶液中去, 而是有一部分仍然吸附在 SiO ₂ 微粒的表面上, 形成带电胶核, 该胶核带
电荷,为反离子,其胶闭结构式为
4. 双原子分子在平动、转动、振动的第一激发态上的简并度(统计权重)g,
g, g _v
5. 己知 298K 和 100 kPa 下, E ⁶ {H /H, (g)}=0V; E ⁶ {Cu²+/Cu}=0.34V; E ⁶ {Ni²+/Ni}=-0.23V。
利用上述电极设计以氢电极为阳极的电池为:(写出电池表
示)
计算 E ^θ (·电池) =
6. 右图为 A、B 两组分系统在 100 kPa 下的沸点 组成图。
在答题纸的指定位置中完成填容
(1) 在图中表出各区域的相态。
(2) 今有 4 mol A (液) 与 1 mol B (液) 的混合物在 100
kPa下 80℃达平衡时,y _B =; 80
n _i =mol; n _g =mol.
60
7. 实验题: 恒温槽主要由
等部件组成。继电器有常开、常闭接法,若采用常闭接
法,实验时当除继电器没工作,而其它器件全部接通电
源,此时恒温槽内的恒温浴介质的温度会(上升、不变)。
三. 计算题
. (20 分) 将装有 0.2mol 液体苯的小玻璃瓶放入 10dm³ 的恒容密闭的真空容器中,该
密闭容器置于 80.1℃的恒温水浴中。已知苯在 100kPa 下的沸点为 80.1℃,且苯的蒸发

- 焓 $\Delta_{vop}H_m^{\phi}=30.878 \mathrm{kJ\cdot mol^{-1}}$ 。若将盛有液体苯的小玻璃瓶破碎,直至苯蒸发至平衡。
- 计算:(1)恒容密闭容器中,苯蒸汽的压力;
 - (2) 该蒸发过程的 Q, W_{is} , ΔU 、 ΔH 、 ΔS 及 ΔG 。

- 设: 苯蒸汽可视为理想气体, 与气相体积相比液相体积可忽略不计。
- 2. (12 分) 有理想气体, 其过程方程式为 pV'' = C(C) 为某常数)。若系统从始态 (A 点)

出发,分别经过n=0,1和 γ (γ 为热容比 $C_{p,m}$ / $C_{v,m}$)的三种可逆膨胀过程。

(1) 此三种过程分别是什么过程?

漤

订

- (2) 请从 p-V 图上 A 点, S-T 图上 B 点出发, 在答题纸的指定图中分别表示上述过程的示意图。(设: 该气体(C_{p,m}/T)为常数)
- 3. (12 分) 已知: 下列反应的标准摩尔 Gbbis 函数与温度的关系为:

反应	$\left(\Delta_{r}G_{m}^{\theta}\right)_{l}/J \cdot mol^{-1}$
1. $C_{\overline{a}} = \frac{1}{2} O_2(g) \rightarrow CO(g)$	-26700-20.95T/K
2. $Si(s) + \frac{1}{2}O_2(g) \rightarrow SiO(s)$	-17300-15.71T/K
3. Si(s) + C 石油→SiC(s)	-12700 +1.66T/K
4. $ZrSiO_4(s) + 4C_{43} \rightarrow ZrC(s) + SiO(s) + 3CO(g)$	100570-47.62T/K

求下述反应在标准状态下反应能发生的最低温度。

ZrSiO₄ (s)+6 C 73 → ZrC(s)+ SiC(s) +4 CO(g)

- 4. $(8 \, f)$ 某独立的定域子系统,粒子分布在三个非简并的能级上,粒子的分布数为: n_0 , n_1 , n_2 。 若以基态为能级基点,其每个能级能量间隔为 25K 时的 kT 值。 计算、(1) 25K 时计算系统内粒子本条件像 f ***
- 计算: (1) 25K 时计算系统中粒子在各能级上的粒子数与基态上粒子数之比: $n_1/n_0=?$ $n_2/$ $n_0=?$
 - (2) 上述温度下,系统中分子的配分函数 q⁰值(基态能量规定为零)。
- 5. (18 分) 有电池: Pt,Cl₂(g,p⁶) | HCl(0.1mol·kg⁻¹) | AgCl(s), Ag 已知 298K 时物质的热力学性质如下:

	AgCl(s)	Cl ₂ (g)	Ag (s)
$\Delta_f H_m^{\theta} / kJ \cdot mol^{-1}$	-127.035	0	0
$\int_{m}^{\theta} \int_{J \cdot mol^{-1} \cdot K^{-1}}$	96.106	222.949	42.702

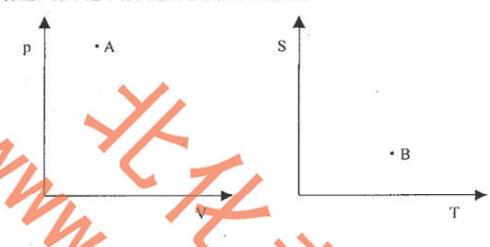
- (1)写出电池的电极与电池的反应式;
- (2)计算 298K 时, 该电池的电动势及电动势的温度系数:
- (3)298K 时电池可逆操作时,分解 1 mol AgCl(s)时与环境所交换的热:
- (4)计算 298K 时 AgCl(s)的分解压力。
- 6. (12分) 某平行反应, 其机理如下:

$$A \langle \xrightarrow{k_1} B \\ \xrightarrow{k_2} C$$

已知: 各基元步骤的反应速率常数 k 与温度的关系分别为:

$$\ln \frac{k_1}{\min^{-1}} = \frac{3000}{T/K} + 5.2$$

$$\ln \left(\frac{k_2}{\min} \right) = -\frac{2700}{T_K} + 5.2$$

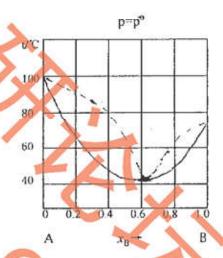

- (1) 写出总反应的速率方程式;
- (2) 写出反应活化能 E p与各基元反应活化能的关系式:
- (3) 计算: 500K 时,总反应的活化能。
- 7. (14 分) 气体 A 的分解反应为:

$$A(g) = 2B(g) + \frac{1}{2}C(g)$$

其反应速率常数为 k=4.8×10 秒 7。

- (1) 求反应的半衰期;
- (2) 求 10 分钟时反应的转化率;
- (3) 若 A 的初始压力为 50kPa, 问 10 分钟时系统的总压力为多少?

三. 计算题, 第2题。作图题请答在如下坐标中。


二. 填空题,第6题:

订

线.....

- (1) 在图中表出各区域的相态;
- (2) 今有 4 mol A (液) 与 1 mol B (液) 的混合物在 100 kPa 下 80℃达平衡时, y_B=_____: x_B=_____:

n_l=____mol; n_g=____mol.

北京化工大学 2002 年攻读硕士学位研究生入学考试 物理化学 试题

注意事项

1、答案必须写在答题纸上,写在试卷上均不给分。

2、答题时可不抄题,但必须写清题号。

3、答题必须用蓝、黑水笔或圆珠笔,用红笔或铅笔均不给分。
4、101.325kPa≈100kPa=p [†] 。
5、作图用铅笔,且作图题答在指定题号的答题纸上。
6、选做题得分不记入总分,但作为参考分。
一、填空题: (18分)
1、20℃时水的饱和蒸汽压为 2338Pa, 现有 20℃、2338Pa 的 H ₂ O(l), 分别经两种途径变成
20℃、2338Pa 的 H ₂ O(g), (1)在恒温恒压下进行,则 Δ G零; (2)在恒温 20℃、反抗
p _* =0 条件下进行,则ΔG
2、20°C时,HCI 气体溶于苯中形成理想稀溶液,当达到气液平衡时,液相中 HCI 的摩尔分
数为 0.0835, 气相中苯的摩尔分数为 0.095。又已知 20℃时纯苯的饱和蒸汽压为 10.010 kPa。
则气液平衡时气相总压 p=kPa。
3、已知某温度 T 时,下列两反应的标准平衡常数为:
$2A = 2B + C$ $K_{i}^{\theta} = 5.6 \times 10^{-10}$
$2 D = 2 E + C$ $K_2^{\theta} = 2.6 \times 10^{-9}$
则反应 D+B=A+E 的标准平衡常数 K ^e 3=。
4、为了理解纳米材料的表面效应,现将 293.2K, lp^{Θ} 下半径为 r_i =1.0× $l0^{3}$ m 的小水滴分散成
半径 $r_2=1.0\times10^{-9}$ m 的小水滴。已知 293.2K 时水的表面张力 $\sigma=0.0728$ N· m ⁻¹ ,则分散前后水
滴表面积增加值 △ A=m²,表面吉布斯函数增加值 △ G _A =J。
5 145 F 1 - 50 () 21 - 1/5 - 21 - 20 2/5 - 20 2
5、将反应 Ag ₂ SO ₄ (s) = 2Ag ⁺ (a _{Ag+})+SO ₄ ²⁻ (a _{SO₃²⁻})设计成电池:
。若
已知 E [®] {SO ₄ ² /Ag ₂ SO ₄ ,Ag} = 0.627V, E [®] {Ag ⁺ /Ag} = 0.799V,则在标准状态下该电池
自发电池。(填是或不是)
6、某理想气体 A 其分子的最低能级是非简并的,若取分子的基态作为能量零点,相邻能级
的能量为 ϵ_1 ,其简并度为 2,忽略更高的能级,则 A 分子的配分函数 $q=$,设 ϵ_1 =kT
则相邻两能级上的最概然分子数之比 n ₁ /n ₀ =。

7、乙酸乙酯皂化反应如下式:

NaOH + CH₃COOC₂H₅ --- CH₃COONa + C₂H₅OH

当确定该反应动力学方程时,需要测定不同时刻反应物的浓度。根据该反应的特点,采用何 种物理方法测定较好,并简述理由。

● 选做题: (10分)

A sample of perfect gas that initially occupies 15.0dm³ at 250K and 101.325kPa is compressed isothermally. To_____kPa pressure must the gas be compressed to reduce its entropy by 5.0J·K⁻¹.

- 二、选择题: (6分)
- 1、热力学基本方程 dG=-SdT+Vdp 可运用于下述何种过程:
- A. 298K, p⁹的 H₂O(I)蒸发过程;
- B. 理想气体向真空膨胀过程:
- C. 电解水制取 H2;
- D. N₂(g)+3H₂(g) --- 2NH₃(g)未达平衡。
- 2、Imol 液体苯在 298K 时置于弹式量热计中完全燃烧,生成 H2O (1) 和 CO2(g),方程如下:

 $C_6H_6(l) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(g)$ 同时放热 3264 kJ·mol⁻¹,则其等压燃烧焓为:

A. 3268 kJ-mol⁻¹

B. 3264 kJ-mol⁻¹

C. -3265kJ·mol⁻¹

- D. -3268 kJ-mol⁻¹
- 3、如果规定标准氢电极的电极电势 $E^0\{H^+/H_2\}=1V$,则其他电极的氢标可逆还原电极电势 $E^0\{$ 离子/电极}值与电池标准电动势 E^0_{ceil} 值将有何变化:
- A. E[®]{离子/电极}与 E[®]cell 各增加 IV;
- B E { 离子/电极 } 增加 1V, E cell 不变;
- C. E[®]{离子/电极}与 E[®]cell 各减小 1V;
- D. E[®]{离子/电极}减小 1V, E[®]coll 不变。
- 4、Al₂(SO₄)₃ 的化学势为μ, Al³⁺、SO₄²⁻的化学势分别为μ, μ。它们之间的关系为:
- A. μ=μ+μ_

B. μ=3μ+2μ_

C. μ=2μ+3μ_

D. μ=μ.·μ_

5、有两个一级反应构成平行反应,机理为 A 🕢 🛵

下列说法中错误的是:

$$B. \quad \frac{k_1}{k_2} = \frac{C_B}{C_C}$$

D.
$$t_{\frac{1}{2}} = \frac{\ln 2}{k_1 + k_2}$$

- 6、用同一滴管分别滴下 50cm³ 的 NaOH 水溶液、纯水、乙醇水溶液,各自的滴数多少次序为:
- A. 三者一样多:
- B. NaOH 水溶液>纯水>乙醇水溶液;
- C. 纯水>乙醇水溶液>NaOH 水溶液:
- D. 乙醇水溶液>纯水>NaOH水溶液。
- 三、(20分)(该题请答在指定题号的答题纸上)

Imol 单原子理想气体从始态 298K,200kPa 分别经下列两种途径使其体积加倍。

- (1)等温可逆变化:
- (2)沿着 p=A·V_m+B 的途径可逆变化,其中 A、B 是常数,且已知 A=10⁴Pa·dm³·mol⁻¹.
- 1、请在指定题号的答题纸的图中画出两条可逆途径的 p-V 图: (示意图)
- 2、试计算经等温可逆途径后该系统达到的终态压力及过程的 Q、W、 ΔU 和 ΔS:
- 3、试计算沿着 $p=A\cdot V_m+B$ 的途径可逆变化后该系统达到的终态压力及过程的 Q、W、 ΔU 和 ΔS 。

四、(18分)

298K 在恒容密闭容器中有起始压力为 p⁴ 的 A(g)。在该温度下 A(g)按下式分解:

$$A(g) \xrightarrow{k_1} \frac{1}{2}B(g) + C(g) \tag{1}$$

继后,生成物之一 B(g)发生下列反应,生成 D(g)并与之建立平衡:

$$B(g) \rightleftharpoons D(g)$$
 (2)

已知: A(g)分解反应(1)为一级反应, $k_1=0.1$ min⁻¹,反应(2)的平衡常数 K=10。

计算: 10 min 后在该容器中 A、B、C、D 各物质的分压。

五、(18分)

已知反应 $H_2(p^4) + Ag_2O(s) \longrightarrow 2Ag(s) + H_2O(l)$,在 298K 时的恒容反应器中进行,放热 252.79 $kJ \cdot mol^{-1}$,若将该反应设计成可逆电池,测得其电池电动势的温度系数

$$\left(\frac{dE}{dT}\right)_p = -5.044 \times 10^{-4} \text{V} \cdot \text{K}^{-1}.$$

- 1、写出所设计电池的表示式及该电池的电极反应:
- 2、计算 298K 时该反应的反应热 Δ,Hm 及电池电动势 E:
- 3、已知 298K 时 Kw=1×10⁻¹⁴, 计算标准还原电势 E[®]{OH/AgQ,Ag}。

六、(6分)

某气体遵从状态方程 $p(V_m - \alpha T^2) = RT$ 。式中 α 是与温度 T、压力 p 无关的常数。试证

明该气体的 Joule-Thomson 系数:
$$\mu_{J-T} = \left(\frac{\partial T}{\partial p}\right)_H = \frac{\alpha T^2}{C_{p,m}}$$

七、(14分)(该题请答在指定题号的答题纸上)

有 A 和 B 两组分组成的固相完全不互容的凝聚系统,已知纯 A 的熔点为 90° C,纯 B 的熔点为 110° C,且 A、B 两组分在题给温度范围内可形成化合物 C(组成为 $x_B=0.70$)。在温度为 40° C时,化合物 C 存在转熔反应:C(s)-B(s)+溶液($x_B=0.55$)。表一给出了不同组成的系统的热分析数据,列出了步冷曲线中出现转折和平台的温度数据。根据题给实验数据在指定题号答题纸的坐标纸上绘出相图,同时完成表二内容。(表二见指定题号的答题纸)

表一:

系统组成(x _B)	-		ß			
	0.15	0.30	0.45	0.65	0.70	0.80
t/°C						
90						转折点
70					转折点	
60	转折点			转折点		
40	,			平台	平台	平台
30			转折点			
0	平台	平台	平台	平台		

北京化工大学 二〇〇一年攻读硕士学位研究生入学考试 物理化学试题

注意事项

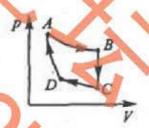
- 1. 答案必须写在答题纸上,写在试卷上均不给分。
- 2. 答题时可不少题,但必须写清题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红色笔或铅笔均不给分。
- 4 p9 = 101.325 kPa = 100 kPa
- 5. 作图用铅笔。
- 一、选择量:(10分)
- 1. 气体能被液化的条件是:

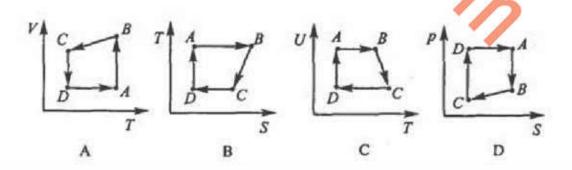
$$A.T = T_c, p < p_d$$

B.
$$T > T_e$$
, $p \ge p_e$

$$C. T < T_e, p < p$$

$$D.T. \leq 1, p \geq p$$


2.在 α、β 两相中均含有 A、B 两种物质, 当达到相平衡时下列化学势关 系中正确的是()。


$$A.\,\mu_A^*=\mu_B^*$$

$$B.\mu_A^* = \mu_A^*$$

$$C.\mu_A^\mu = \mu_B^\mu$$

3.右图表示理想气体经历的可逆循环示意图,其中 AB 是等温膨胀,BC 是等容降温,CD 是等温压缩,DA 是绝 热压缩。试问:下面以不同坐标表示的可逆循环示意图 中,哪一个图与 p~V图所表示的循环相同。

	2NaHCO3(s):	= Na ₂ CO ₃ (s) +	$CO_2(g) + H_2O(g)$)	
达到平衡的	寸,该系统的组	分数 C 与自由	1度 F 分别为() .	
A.4,3	B.2,1	C.3,2	D.1,0		
5.某化学员	远,当温度每	升高1 K时,该	该反应的速率常势	皮 k。增加	1%,则
该反应的活化館	EE. 约为().			
A. RT ^a	B. 100 RT	c.10 RT2	D.O.01 RT2		
6.298 K时	0.002 mol/kg	的 CuCl ₂ 溶液	的平均活度系数	(γ.), 与	同浓度
的 CuSO。溶液的	的平均活度系统	y(y,), 之间的	的关系为()。		
A.(Y/),>	(Y.)2	B.(y.),	(γ,)2		
C. (7.)	(Y,)2	D.无法比	校		
7.下列问题	夏中哪个不能 退	过电导实验	皇得到解决().	
A.求难溶盐	生的 K。	B.求离子	的平均活度系数	γ.	
C.求弱电射	屏质的电离度	g D.测定电台	解质溶液的浓度		
			时胶团结构式		nI-(n
- x)K+]*- · xK	10 V 0 V 10 V 10 V	All the second			
A.(AgI)		B (AgI) n	1-	7	
C.[(AgI)_	$nI^{-}(n-x)K^{*}$]*-D.[(Agl).	$nI^{-}(n-x)K^{+}$	· · xK	,
9.根据统计	十热力学原理 ,	298.15 K时下	列化合物中标准	摩尔熵最	大的化
合物是()。	NI WALL		•		7
A. He	B.Ar	C.Nz	D. CO		J
二、填空題	:(15分)				4
1.有 1 mol	H ₂ O(1),在373	K 100 kPa F	,向真空蒸发为	司道、同压	下的水
蒸汽,则此过程	;∆H	;ΔS(系统)_	▼ ;ΔS(环	境》	₹;∆G
零。(填					
2.1 mol 理	想气体从 p1、1	V ₁ 、T ₁ 分别经	① 绝热可逆压缩	到 p ₂ 、V ₂	$T_2; \mathbb{Q}$
			,则 T,最高不		
度,最低不能低	series de travar		eavante e esta estable de 120		
THE THE PLANTAGE THE PARTY THE					

4.将固体 NaHCO, 放入一抽空的容器中,发生如下化学反应:

3.298 K、100 kPa 混合苯和甲苯形成理想液态混合物,此混合过程 ΔV_-零:ΔH_ 零:ΔS_ 零:ΔC_ 零。(填:大于、小于或 等于) 4. 温度 T 时, 某反应物每分钟转化的百分数为一常数: 4×10-2。则该反 应转化 50% 时需时 分钟。 5. 按电池正确表示,将下列电极构成可逆电池: $(1)Cu^{2}$ $(b_1 = 1 \text{ mol·kg}^{-1}) | Cu(s);$ $(2) Cu^{2+} (b_2 = 1 \times 10^{-2} \text{ mol·kg}^{-1}) | Cu(s);$ 电池为: (1) (1) $(b_1 = 1 \text{ mol} \cdot \text{kg}^{-1})$, AgCI(s) | Ag(s); (2) Cl $(b_2 = 1 \times 10^{-2} \text{ mol kg}^{-1})$, AgCl(s) | Ag(s); 电池为: 6.已知 473 K 时 (g)在某催化剂表面上的吸附行为遵从 Langmuir 方 程: $\Gamma = \frac{55.52 \ p/[\text{MPa}]}{1 + 12.23 \ p/[\text{MPa}]} \text{ (cm · kg · 1)}$ 则该温度下 O₂(g)在该催化剂表面上的饱和吸附量: kg-1 三、(12分) 1.已知纯物质的恒压摩尔热容与恒容摩尔热容有如下关系 $C_{p,n} - C_{V,n} = \left[p + \left(\frac{\partial U_n}{\partial V_n} \right)_{-1} \right] \left(\frac{\partial V_n}{\partial T} \right)$

某气体服从状态方程 $pV_a = RT(1+bp)$,式中 b 为常数

试证①该气体的
$$\left(\frac{\partial U_{\alpha}}{\partial V_{\alpha}}\right)_{T} = bp^{2}; ② C_{p,\alpha} - C_{V,\alpha} = R(1+bp)^{2}$$

2.已知在压力 p[⊕]下,低温时某纯物质完美晶体的摩尔热容是温度的函数:

$$C_{p,n}^{\Theta}(T) = aT^3$$

式中 a 为常数;在温度 0K~ T 之间系统无相变化且摩尔热容服从上述

方程。试导出温度为 T 时该物质的标准摩尔熵值 $S_{\mathbf{n}}^{\Theta}(T) = \frac{C_{p,\mathbf{n}}^{\Theta}(T)}{3}$ 。

四、(15分)

已知反应:

$$SO_2(g) + \frac{1}{2}O_2(g) = SO_3(g)$$

在不同温度下的标准平衡常数 K^O为:

设标准摩尔反应焓与温度的关系服从线性方程 △ Ho = A + BT。

试示:1 常数 A、B 值;2 810 K 时该化学反应的 Δ, S 。

五、(18分)

298 K时,下列电池的电动势 E, = 0.372 V,

$$CulCu(Ac)_2(b_1 = 0.1 \text{ mol kg}^{-1})lAgAc(s)lAg$$

已知:1.298 K 时 E 1 = 0.800 V E ca2+ 10 = 0.337 V。

- 2.上述电池在 308 K 时电动势 $E_1 = 0.374$ V 且电动势的温度系数在 298 ~ 308 K 温度范围内可视为常数;
 - 3.Cu(Ac)₂溶液离子的平均活度系数 γ. ≈1。
 - ①写出电极反应与电池反应;
 - ②计算 298 K 时该电池反应的 A.H. A.S., A.U.;
 - ③计算 298 K 时 AgAc 的溶度积。

六、(20分)[注:该题答案在指定题号的答题编上]

某反应 aA→产物:

已知该化学反应反应物转化 50%的时间与反应物的初始浓度成反比, 实验测得 298 K 时不同时间反应物的浓度如下:

- 1.用作图法求出 298 K 时该反应的速率常数 k208;
- 2. 若该反应表观活化能 $E_* = 52.7$ kJ/mol,求当反应物的初始浓度 $c_{A,0} =$

0.1 mol/dm³ 时,反应物转化 50%需时 3.86 min,应控制反应温度为多少? 七、(10分)[注:该题答在指定题号的答题纸上]

若 A、B 两组分可形成液-液完全不互溶的气-液平衡系统。已知纯 A、B 的正常沸点分别为 70%、90%,当系统总组成为 $x_B = 0.40$ 时,在 101.325 kPa 压力下系统的共沸点 t = 40%,此时,系统内气相组成 $y_B = 0.40$ 。

- 1.根据已知条件绘出 A-B 二组分系统的沸点-组成相图(示意图)。
- 2.根据所绘制的示意图估算组分 B 在此温度范围的蒸发焓 Δ, β, Η, α,

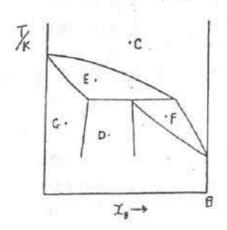
北京化工大学

2000年攻读硕士学位研究生入学考试

物理化学试题

300			- 144	
2.4	- 200	THE	Y 201	•
**	7.5	H	4 5 1	
1.7	217	48 Y	# U.I	-

- 1.答案必须写在答题纸上,写在试题纸上均不给分。
- 2. 答题时可不抄题, 但必须写题号。
- 3. 答题必须用蓝、黑墨水笔或圆珠笔,用红色笔或铅管均不给分。
- 4.为了简化舒题,可作如下近似:


4.29 7 10 (GATAG), 7 (1-20 1 AL) (2.
$1^{P} = 101.325 \text{ Fe} = 100 \text{ E} \text{ Fg}$
一、填空距(16分)
1. Imol 双原于理想气体山始态 370K、160kPa 分别经(1)等压过程,经(2)等容过程加热至
473K,则(1),(2)两个过程下列物理量的关系是 Q,
ΔII,, ΔS, ΔS,。(填"大于"、"小于"或"等于")
2. 200°Cl时, ABO(s)分解反应为:
$\Lambda g_s O(s) \longrightarrow 2\Lambda g(s) + \frac{2}{2}O_s(s)$
已知 200℃时固体 Ag O 的分解压为 137.8kPa。今让 Imol Ag O(s)在 200℃分解达平衡,则该过程
ΔC=、K =、反应过程系统与环境所交换的功业。 (忽略固体的体积
非设气体为理规气体)。
3. 根据电池反应设计原电池。已知电池反应
$AgCl(s) + I^{-}(a_{1}) \longrightarrow Agl(s) + Cl^{-}(a_{1})$
所设计的原电池为。
4. 有理规气体反应:
$\Lambda(g) + 2B(g) \longrightarrow C(g)$
在等温和总压不变的条件下进行,若原料气中 A 与 B 的物质的量之比为 1:2, 达平衡时系统的组分
数 C=,自由度数 f=。当温度一定时,增大压力则 K(填增大、减小或
不变》,平衡将
5. 在一个锥形容器中,放入一滴液体,如下图所示。试画出接触角 0。因 890(填
大于、小于或等于),则该液体对容器
7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
X X

6. 有(N、E、V)确定的理想气体,设分子的运动形式只有三个可及的能级,它们的能量和简并度分别为:
$\frac{\varepsilon_1}{k} = 0k , g_1 = 1$
$\frac{\varepsilon_2}{k} = 100k , g_2 = 3$
$\frac{\epsilon_3}{k} = 300k , g_0 = 5$
(式中 k 为玻尔兹曼常数)
当温度为 200K 时,分子的配分函数值为。在某温度下, 岩 e → 1 时, 三个能级
$C_6H_6(1) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + (3H_2O(g))$
的摩尔反应焓 A.H.。实验方法及理论依据是:
(不考虑用光谱或波谱方法)不要求写出实验步骤和实验装置)。
工、选择题(9分) 1 实际气体经节流膨胀过程,正确的结论是 (1) Q < 0 , ΔH = 0 , ΔP < 0 (3) Q = 0 , ΔH < 0 , ΔP < 0 (4) Q = 0 , ΔH = 0 , ΔP < 0 2. 某化学反应在恒容、绝热条件下进行,系统的温度由 T, 升到 T, 此过程内能的变化是 [] 若此反应在温度 T, 下恒温、恒容地进行,其内能的变化是 [] [] ΔU = 0 (2) ΔU > 0 (3) ΔU < 0 (4) 不能确定 3. 对于理想气体化学反应,若 Δ, H, 视为常数,则 lnK 与 T 的关系中,正确的是 [] 从 K
$ \begin{array}{c c} \hline T_{K} \\ \hline T_{K} \\ \hline T_{K} \end{array} $ $ \begin{array}{c c} \hline T_{K} \\ \hline T_{K} \end{array} $ $ \begin{array}{c c} \hline T_{K} \\ \hline T_{K} \end{array} $ $ \begin{array}{c c} \hline T_{K} \\ \hline T_{K} \end{array} $ $ \begin{array}{c c} \hline T_{K} \end{array} $ $ \begin{array}{c c} \hline T_{K} \end{array} $ $ \begin{array}{c c} \hline T_{K} \end{array} $

4.某二组分凝聚系统相图如下 系统点与相点含一的是

- (1) D点.C点
- (2) C点,C点
- (3) E点.F点
- (4) G点.F点

- 5. 等温等压下将一定质量的水,由一个大水球分散为许多小水滴时,以下的物理量中保持不变 的有
 - (1)表面 Gibbs 函数 (2)表面张方
- (3) 液面上的附加压力(4) 饱和蒸气压
- 6. 云一支干净的水平放置的玻璃毛细管中部注入一滴纯水,形成一自由移动的液柱,然后用微 贵注射管向液柱左侧注人少量 KOL 於溶液,设润湿性质不变,则液柱将
 - (1) 不移动
- (2)向右移动
- (3)向左移动
- (4) 无法确定

7. 某化学反应的陈率方程式为:

$$\frac{dC_0}{dt} = \frac{1}{2} (k_A C_A - k_A C_B) - k_B C_B$$

则该反应的机理为

(1) $2A \xrightarrow{k_1} B \xrightarrow{k_2} C$

(3)
$$2A \xrightarrow{k_{A_1}} B$$
, $B + C \xrightarrow{k_2} D$

$$(4) 2A \xrightarrow{k_A} 2B \xrightarrow{k_1} C$$

8.反应 $CO(g) + 2H_2(g)$ — $CH_3OH(g)$ 在某温度下进行。当无催化剂存在时,反应的表现 后化能为 E,标准平衡常数为 K;若加入催化剂后,反应速率加快(衰观指前因子不变),此时反应 的表观活化能为E。标准平衡常数为K"则

(1) $E_{\bullet} = E_{\bullet}$, $K^{-} = K^{-}$

(2) E < E , K > K

(3) $E_{s} > E_{s}^{\circ}$, K = K'

(4) E, > E, , K > K

三、(15分)

1mol 单原子理想气体从 300K、300kPa 的始态。沿 TV = 常数的途径可逆膨胀到 100kPa 的终态、 求该过程的 W、Q、 ΔU 、 ΔH 和 ΔS 。

四、(15分)

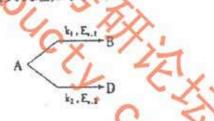
已知 CCL((I)的蒸气压与温度的关系为 lnp/Pa = - 3637.1 + C,其正常沸点为 350K。100℃时

SnCL(1)的饱和蒸气压 p_a = 56.66 Pa。若 CCL(1)与 SnCL(1)组成理想液态混合物。在 100 Pa 的用力下,加热该液态混合物至 100℃时开始沸腾。

- 1. 计算 CCI, (1)的摩尔气化热 Δ, H, 及正常沸点时的摩尔气化熵 Δ, S,;
- 2. 经出此二组分液态混合物在 100℃时的蒸气压 组成图(示意图)(绘图时以 A 代表 CCL, 均 B 代表 SnCL);
- 3. 计算该液态混合物在 100kPa、100℃下的平衡液相程成及筛腾时第一个气泡的组成。 五、(15分)

己知电池

少℃的电动势为 0.1705V。有关物质在 25℃的标准摩尔生成言布斯函数为:


 $\Delta_{r}G_{-}^{*}\{H_{2}SO_{4}(aq)\} = -742.99kJ \cdot mol^{-1}$

 $\Delta_t G_a^+ \{ PbSO_t(s) \} = -811.24 \text{kJ·mol}^-$

- 1 写出电极反应和电池反应;
- 2. 求 25℃时的标准电极电势 E (SO PbSO₄(s) Pb];
- 3 求 25℃时, H₂SO, 在浓度为 0.01 mol·kg ⁻¹溶液中的 a, 和 γ, 。

六、(18分)

1.在一恒容反应器中,进行某反应,其机理如下

- (1)实验测得 50℃时,产物 B 与 D 的物质的量浓度之比。2,旦该比例不随时间变化。当 反应进行 10min 时,A 的转化率为 50%,求速率常数 k₁ 和 k₂。
 - (2)若温度为60%时,实验测得C值为3,试求活化能E、与E、之差。
 - 2. 某反应 A₂ + B₂ → 2AB 已知反应机理如下:

$$A_2 \xrightarrow{k_1} 2A$$
 (快速平衡)
$$2A + B_2 \xrightarrow{k_2} 2AB$$

(1)证明该反应的速率方程式为:

$$\frac{dC_{AB}}{dt} = k_a C_{A_2} C_{B_2}$$

(2)若 A, 及 B, 的初始浓度皆为 0.01 mol·dm⁻¹, 且在某反应温度下表观速率常数 k, = 1.60 min⁻¹·mol⁻¹·dm¹, 水半衰期。

七、(12分)

已知下列两反应:

反应 1: FeO(s) + CO(g) — Fe(s) + CO₂(g)

反应 2: Fe₂O₄(s) + CO(g) - 3FeO(s) + CO₂(g)

的标准平衡常数分别为 片、片,它们与温度的关系如下:

$\frac{T}{K}$	k,	k_1^+
873	0.871	1.15
973	0.678	1.77

设两反应的 Δ,C, 均为零。试求:

- 1.反应1和反应2的标准摩尔反应烙入开,及入开,;
- 2. 在什么温度下, Fc(s)、Fe(s)、Fe, O, (d)、CO(g)、CO, (g)全可共存于平衡系统中; 升时,系统 SUCXL COM
- 3.上述两反应达平衡后,若温度再上升时,系统中即些物质可能消失?