附件 2: 笔试科目及考试大纲

原报考专业代码	报考专业名称	笔试科目
080501	材料物理与化学	陶瓷材料学 金属学及热处理 高分子化学与物理 三组试题,考生可任选其中一 组试题
080502	材料学	
0805Z1	纳米科学与技术	
080803	材料加工工程	材料成形工艺 材料成形装备及自动化 微连接原理 三组试题,考生可任选其中一 组试题
0805Z2	数字化材料成形	
0805Z3	电子封装	
085204	材料工程	材料科学基础 材料成形工艺 两组试题,考生可任选其中一 组作答

《陶瓷材料学》考试大纲

- 1. 绪论
 - 1.1 陶瓷材料的定义
 - 1.2 陶瓷材料的发展史
 - 1.3 陶瓷材料的键特性与基本性能
 - 1.4 典型陶瓷材料及其应用
 - 1.5 陶瓷材料未来发展及关键问题
- 2. 陶瓷材料的晶体结构
 - 2.1 离子晶体的结构规则—鲍林规则
 - 2.2 几种典型的晶体结构

MX 结构

MX2结构

M₂X 结构

M₂X₃结构

2.3 硅酸盐陶瓷的晶体结构

硅酸盐陶瓷的晶体结构特点及分类

岛状硅酸盐陶瓷晶体结构

组群状硅酸盐陶瓷晶体结构

链状硅酸盐陶瓷晶体结构

层状硅酸盐陶瓷晶体结构

架状硅酸盐陶瓷晶体结构

- 3. 非晶态与玻璃结构
 - 3.1 非晶态原子结构

非晶态原子结构特点

非晶态物质的结构表征方法

非晶态物质的热学参数表征

非晶态结构的制备方法

3.2 氧化物玻璃

硅酸盐玻璃

硼酸盐玻璃

磷酸盐玻璃

4. 陶瓷材料的平衡相图

- 4.1 陶瓷系统相平衡特点
- 4.2 单元系统相图

SiO2系统相图

ZrO2系统相图

4.3 二元系统相图

具有低共熔点的二元系统 生成一致熔融化合物的二元系统 生成不一致熔融化合物的二元系统 固相中有化合物形成或分解的系统 具有多晶转变的系统 具有液相分层的系统 形成连续固溶体的系统 形成连续固溶体的系统

4.4 三元系统相图

具有三元最低共熔点的系统 生成一个一致熔融二元化合物的三元系统相图 生成一个不一致熔融二元化合物的三元系统 生成一个固相分解的二元化合物的三元系统 具有低温稳定的二元化合物的三元系统 具有同组成熔融三元化合物的系统 具有异组成熔融三元化合物的系统 具有两种液相分层的三化合物的系统

- 5. 陶瓷材料的烧结
 - 5.1 概述
 - 5.2 烧结动力学
 - 5.3 固相烧结及机理
 - 5.4 液相烧结及机理
 - 5.5 陶瓷烧结的影响因素
 - 5.6 特色烧结方法及装备
- 6. 陶瓷材料的脆性与增韧
 - 6.1 陶瓷材料的脆性机理
 - 6.2 陶瓷材料的增韧

相变增韧

微裂纹增韧

裂纹偏折和弯曲增韧 裂纹分支增韧 桥联与拔出增韧 延性颗粒增韧 残余应力增韧 压电效应损耗能量增韧 电畴翻转增韧 复合韧化机制

- 7. 陶瓷材料的断裂力学
 - 7.1 陶瓷断裂强度的微裂纹理论
 - 7.2 裂纹尖端应力和应力场强度因子
 - 7.3 断裂韧度的测量与计算
- 8. 先进结构陶瓷
 - 8.1 氧化铝 (Al2O3) 结构陶瓷
 - 8.2 氮化硅 (Si3N4) 结构陶瓷
 - 8.3 碳化硅 (SiC)/高温结构陶瓷
 - 8.4 增韧氧化物结构陶瓷
 - 8.5 其他结构陶瓷

《金属学及热处理》考试大纲

- 1. 金属的晶体结构
 - 1.1 金属概述
 - 1.2 金属的晶体结构
 - 1.3 实际金属的晶体结构
- 2. 纯金属的结晶
 - 2.1 金属结晶的现象
 - 2.2 金属结晶的热力学条件
 - 2.3 金属结晶的结构条件
 - 2.4 晶核的形成
 - 2.5 晶核长大
 - 2.6 金属铸锭的宏观组织与缺陷
- 3. 二元合金的相结构与结晶
 - 3.1 合金中的相
 - 3.2 合金的相结构
 - 3.3 二元合金相图的建立
 - 3.4 匀晶相图及固溶体的结晶
 - 3.5 共晶相图及其合金的结晶
 - 3.6 包晶相图及其合金的结晶
 - 3.7 二元相图的分析和使用
- 4. 铁碳合金
 - 4.1 铁碳合金的组元及其基本相
 - 4.2 Fe—Fe₃C 合金相图分析
 - 4.3 典型合金的结晶过程及其组织
 - 4.4 含碳量对铁碳合金平衡组织和性能的影响
 - 4.5 钢中的杂质元素及钢锭组织
- 5. 金属及合金的塑性变形与断裂
 - 5.1 金属的变形特性
 - 5.2 单晶体的塑性变形
 - 5.3 多晶体的塑性变形
 - 5.4. 合金的塑性变形
 - 5.5 塑性变形对金属组织和性能的影响
- 6. 金属及合金的回复与再结晶
 - 6.1. 形变金属与合金在退火过程中的组织变化

- 6.2 回复
- 6.3 再结晶
- 6.4 晶粒长大
- 6.5 金属的热加工

7. 扩散

- 7.1 概述
- 7.2 扩散定律
- 7.3 影响扩散的因素

8.钢的热处理原理

- 8.1 概述
- 8.2 钢在加热时的转变
- 8.3 钢在冷却时的转变...
- 8.4 钢在回火时的转变

9. 钢的热处理工艺

- 9.1 钢的退火与正火
- 9.2 钢的淬火与回火
- 9.3 其他类型的热处理

10. 工业用钢及铸铁

- 10.1 钢的分类与编号
- 10.2 合金元素在钢中的作用
- 10.3 工程结构用钢
- 10.4 机器零件用钢
- 10.5 工具钢
- 10.6 特殊性能钢
- 10.7 常用铸铁
- 10.8 特殊性能铸铁

《高分子化学与物理》考试大纲

- 1. 高分子的基本概念
 - 1.1 聚合物的分类与命名
 - 1.2 聚合物的物理状态和主要性能
 - 1.3 聚合物材料和机械强度
- 2. 自由基聚合
 - 2.1 自由基聚合机理
 - 2.2 链引发反应
 - 2.3 聚合速率
 - 2.4 分子量和链转移反应
 - 2.5 阻聚和缓聚
 - 2.6 可控/ 活性 '自由基聚合
- 3. 自由基共聚合
 - 3.1 共聚物的类型和命名
 - 3.2 二元共聚物的组成
 - 3.3 竟聚率的测定和影响因素
 - 3.4 单体和自由基的活性
 - 3.5 Q-e 概念
- 4. 逐步聚合
 - 4.1 缩聚反应
 - 4.2 线型缩聚反应的机理及动力学
 - 4.3 影响线型缩物聚合度的因素和控制方法
 - 4.4 线型逐步聚合原理和方法的应用及重要线型逐步聚合物
 - 4.5 体型缩聚和凝胶化
- 5. 离子聚合
 - 5.1 阴离子聚合
 - 5.2 阳离子聚合
 - 5.3 离子聚合与自由基聚合的比较
 - 5.4 开环聚合
- 6. 配位聚合
 - 6.1 配位聚合的基本概念

- 6.2 聚合物的立体异构现象
- 6.3 Ziegler-Natta 引发剂
- 6.4a-烯烃的配位阴离子聚合
- 7. 聚合方法
 - 7.1 本体聚合
 - 7.2 溶液聚合
 - 7.3 悬浮聚合
 - 7.4 乳液聚合
- 8. 聚合物的化学反应
 - 8.1 聚合物的反应活性及影响因素
 - 8.2 聚合物的基团反应
 - 8.3 功能高分子
 - 8.4 聚合物的降解与老化

《材料成形工艺》考试大纲

- 1.模锻工艺及锻模设计
 - 3.1 金属材料塑性成形与锻造加热及冷却
 - 3.2 锻件分类与锻件图设计
 - 3.3 开式模锻的变形特征及模膛设计
 - 3.4 制坯工步的选择及模膛设计
 - 3.5 锻模结构设计
 - 3.6 闭式模锻工艺及模具设计
 - 3.7 精密模锻的特点及应用
- 2.冲压工艺及冲模设计
 - 4.1 冲裁工艺
 - 4.2 弯曲工艺
 - 4.3 拉深工艺
 - 4.4 冲压模具设计
- 3.金属连接成形的主要工艺
 - 5.1 焊接电弧物理基础
 - 5.2 焊接成形工艺
- 4.金属构件的焊接工艺设计
 - 6.1 金属构件常用材料的焊接
 - 6.2 焊接方法的选择
 - 6.3 金属构件焊接接头的设计
- 5.液态金属成形过程及控制
 - 7.1 液态金属充型过过程的水力学特性及流动情况
 - 7.2 浇注系统设计
 - 7.3 液态金属凝固收缩过程的工艺分析
 - 7.4 冒口设计
 - 7.5 冷铁设计
- 6.砂型铸造
 - 8.1 砂型和砂芯的制造方法
 - 8.2 粘土湿型
 - 8.3 型砂性能控制
 - 8.4 钠水玻璃砂
 - 8.5 树脂砂型(芯)
- 7.特种铸造
 - 9.1 熔模铸造
 - 9.2 消失模铸造
 - 9.3 压力铸造
 - 9.4 其他特种铸造

- 8.液态金属成形工艺设计
 - 8.1 铸造工艺方案的确定
 - 8.2 铸造工艺参数的确定
 - 8.3 液态金属成形工艺设计实例

《材料成形装备及自动化》考试大纲

- 1.金属液态成形装备及自动化
 - 1.1 金属熔化及浇注装备
 - 1.2 造型设备及自动化生产线
 - 1.3 制芯设备及系统
 - 1.4 特种铸造装备及自动化 (压力铸造、低压铸造、金属型铸造、熔模精铸)
 - 1.5 消失模精密铸造装备及生产线
- 2.金属塑性成形装备及自动化
 - 2.1 金属塑性成形装备分类
 - 2.2 机械压力机
 - 2.3 液压机
 - 2.4 伺服压力机
 - 2.5 其它塑性成形装备
- 3.金属焊接成形设备及自动化
 - 3.1 焊接的定义及其分类
 - 3.2 电弧焊设备及自动化
 - 3.3 电阻焊设备及控制
 - 3.4 高能束焊

《微连接原理》考试大纲

1.锡金属学

- 1.1 锡的简介
- 1.2 锡合金及其金属间化合物
- 1.3Sn-Cu二元相图
- 1.4 金属在液态锡中的溶解速度
- 1.5 软钎焊性
- 1.6 润湿
- 1.7 润湿的平价

2.焊料中的 Cu-Sn 反应

- 2.1SnPb共晶在 Cu 箔上的润湿反应
- 2.2 焊料成分对润湿反应的影响
- 2.3 纯 Sn 在 Cu 箔上的润湿反应
- 2.4Sn-Pb-Cu三相图
- 2.5SnPb共晶与 Cu 箔在固态下的反应
- 2.6 润湿反应和固态反应的比较
- 2.7 无铅共晶焊料在较厚的 Cu UBM 上的润湿

3.倒装互连中的可靠性

- 3.1 倒装焊点成份结构
- 3.2UBM 结构及其与焊料的反应
- 3.3 润湿反应中的扇贝状 IMC 生长
- 3.4 表面区域不变的非封闭熟化理论
- 3.5 柯肯达尔空洞
- 3.6 共晶 SnAgCu 凸点下的 UBM 设计

4.锡须

- 4.1 锡须生长形态
- 4.2Cu-Sn 反应导致的锡须生长的应力产生 (驱动力)
- 4.3 氧化物破裂机制
- 4.4 不可逆过程
- 4.5 晶界扩散和 Sn 锡须生长动力学
- 4.6Sn须生长的加速测试
- 4.7 锡须生长抑制

5.电迁移

- 5.1 金属互连的电迁移
- 5.2 电迁移中的电子风力
- 5.3 凸点电迁移(孔洞与小丘)
- 5.4 电迁移加速锡须生长

《材料科学基础》考试大纲

- 一、原子结构与键合
- 1.原子结构
 - (1)物质的组成
 - (2)原子的结构
 - (3)原子的电子结构
- 2.原子间的键合
 - (1) 金属键
 - (2)共价键
 - (3)离子键
 - (4)范德华力
 - (5)氢键
- 3. 高分子链
- 二、晶体结构
- 1. 晶体学基础
 - (1) 空间点阵和晶胞
 - (2) 晶向指数和晶面指数
 - (3) 晶体的对称性
- 2. 金属的晶体结构
 - (1) 三种典型的金属晶体结构
 - (2) 晶体的原子堆垛方式和间隙
 - (3) 多晶型性
- 3. 合金相结构
 - (1) 固溶体
 - (2) 中间相
- 4. 离子晶体结构
- 5. 共价晶体结构
- 三、晶体缺陷
- 1. 点缺陷
 - (1) 点缺陷的形成
 - (2) 点缺陷的平衡浓度
 - (3) 点缺陷的运动
- 2. 位错
 - (1) 位错的基本类型和特征
 - (2) 伯氏矢量
- 3. 表面及界面
 - (1) 外表面
 - (2) 晶界和亚晶界

四、扩散

- 1. 表象理论
 - (1) 菲克第一定律
 - (2) 菲克第二定律
- 2. 扩散的原子理论
 - (1) 扩散机制
 - (2) 原子跳跃和扩散系数
- 3. 影响扩散的因素
- 五、形变与再结晶
- 1. 晶体的塑性变形
 - (1) 单晶体的塑性变形
 - (2) 多晶体的塑性变形
 - (3) 合金的塑性变形
 - (4) 塑性变形对材料组织与性能的影响
- 2. 回复和再结晶
 - (1) 冷变形金属在加热时的组织与性能变化
 - (2) 回复
 - (3) 再结晶
 - (4) 晶粒长大
 - (5) 再结晶退火后的组织
- 3. 热变形与动态回复、再结晶
 - (1) 动态回复与动态再结晶
 - (2) 热加工对组织性能的影响
- 六、单组元相图及纯晶体的凝固
- 1. 单元系相变的热力学及相平衡
 - (1) 相平衡条件和相律
 - (2) 单元系相图
- 2. 纯晶体的凝固
 - (1) 液态结构
 - (2) 晶体凝固的热力学条件
 - (3) 形核
 - (4) 晶体长大
 - (5) 结晶动力学及凝固组织
 - (6) 凝固理论的应用
- 七、二元系相图及其合金的凝固
- 1. 相图的表示和测定方法
- 2. 相图热力学的基本要点
 - (1) 固溶体的自由能 成分曲线
 - (2) 多相平衡的公切线原理
 - (3) 混合物的自由能和杠杆法则
 - (4) 从自由能 成分曲线推测相图
 - (5) 二元相图的几何规律

- 3. 二元相图分析
 - (1) 匀晶相图和固溶体凝固
 - (2) 共晶相图及其合金凝固
 - (3) 包晶相图及其合金凝固
- 4. 二元合金的凝固理论
- (1) 固溶体的凝固理论
- (2) 共晶凝固理论
- (3) 合金铸锭 (件)的组织与缺陷
- 八、材料的亚稳态
- 1. 纳米晶材料
- 2. 准晶态
- 3. 非晶态材料
- 4. 固态相变形成的亚稳相
 - (1)固态相变概述
 - (2)固溶体脱溶分解产物
 - (3)马氏体相变
 - (4)贝氏体相变