2.6 Secondary Bonds

periodic table) and ZnSe is a 2-6 compound. The degree of ionic character in the
bonding of these compounds increases as the electronegativity between the atoms in
the compounds increases. Thus, one would expect a 2-6 compound to have more
ionic character than a 3-5 compound because of the greater electronegativity differ-
ence in the 2-6 compound. Example Problem 2.9 illustrates this.
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Calculate the percentage ionic character of the semiconducting compounds GaAs (3-5)
and ZnSe (2-6) by using Pauling’s equation
% ionic character = (1 — (™ /X~ X7)(100%)

a. For GaAs, electronegativities from Fig. 2.14 are Xg, = 1.6 and X, = 2.0.
Thus, .

% ionic character = (1 — (" V/A(16-207y(100%)
=(1- E(—1/4)(—0.4}1)(100%)
= (1 — 0.96)(100%) = 4%

b. For ZnSe, electronegativities from Fig. 2.14 are Xz, = 1,6 and Xg, = 2.4.
Thus, :

% ionic character = (1 — (= V4(16-24Y)(100%)
= (1 — &~ V9(-08%)(100%)
= (1 — 0.85)(100%) = 15%

EXAMPLE
PROBLEM 2.9

Note that as the electronegativities differ, more for the 2-6 compound, the percent-
age ionic character increases.

Metallic-Covalent Mixed Bonding Mixed metallic-covalent bonding occurs com-
monly. For example, the transition metals have mixed metallic-covalent bonding involv-
ing dsp bonding orbitals. The high melting points of the transition metals are attributed
to mixed metallic-covalent bonding. Also in group 4A of the periodic table, there is a
gradual transition from pure covalent bonding in carbon (diamond) to some metallic
character in silicon and germanium. Tin and lead are primarily metallically bonded.

Metallic-Ionic Mixed Bonding If there is a significant difference in electronega-
tivity in the elements that form an intermetallic compound, there may be a signifi-
cant amount of electron transfer (ionic binding) in the compound. Thus, some inter-
metallic compounds are good examples for mixed metallic-ionic bonding. Electron
transfer is especially important for intermetallic compounds such as NaZn,; and less
important for compounds AlyCo, and FesZn,, since the electronegativity differences
for the latter two compounds are much less.

2.6 SECONDARY BONDS

Until now, we have considered only primary bonding between atoms and showed
that it depends on the interaction of their valence electrons. The driving force for
primary atomic bonding is the lowering of the energy of the bonding electrons. Sec-
ondary bonds are relatively weak in contrast to primary bonds and have energies of
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only about 4 to 42 kJ/mol (1 to 10 kcal/mol). The driving force for secondary bond-
ing is the attraction of the electric dipoles contained in atoms or molecules.

An electric dipole moment is created when two equal and opposite charges are
separated, as shown in Fig. 2.29a. Electric dipoles are created in atoms or molecules
when positive and negative charge centers exist (Fig. 2.295).

Dipoles in atoms or molecules create dipole moments. A dipole moment is
defined as the charge value multiplied by the separation distance between positive
and negative charges, or

u=qd (2.13)
where i = dipole moment

g = magnitude of electric charge

d = separation distance between the charge centers

Dipole moments in atoms and molecules are measured in Coulomb-meters (C - m)
or in debye units, where 1 debye = 3.34 X 1073 C - m.

Electric dipoles interact with each other by electrostatic (Coulombic) forces, and
thus atoms or molecules containing dipoles are attracted to each other by these forces.
Even though the bonding energies of secondary bonds are weak, they become impor-
tant when they are the only bonds available to bond atoms or molecules together.

In general, there are two main kinds of secondary bonds between atoms or mole-
cules involving electric dipoles: fluctuating dipoles and permanent dipoles. Collectively,
these secondary dipole bonds are sometimes called van der Walls bonds (forces).

Very weak secondary bonding forces can develop between the atoms of noble-gas
elements that have complete outer-valence-electron shells (s? for helium and s?p® for
Ne, Ar, Kr, Xe, and Rn). These bonding forces arise because the asymmetrical distri-
bution of electron charges in these atoms creates electric dipoles. At any instant, there
is a high probability that there will be more electron charge on one side of an atom
than on the other (Fig. 2.30). Thus, in a particular atom, the electron charge cloud will
change with time, creating a “fluctuating dipole.” Fluctuating dipoles of nearby atoms
can attract each other, creating weak interatomic nondirectional bonds. The liquefac-
tion and solidification of the noble gases at low temperatures and high pressures are
attributed to fluctuating dipole bonds. The melting and boiling points of the noble gases
at atmospheric pressure are listed in Table 2.8. Note that as the atomic size of the noble
gases increases, the melting and boiling points also increase due to stronger bonding
forces since the electrons have more freedom to create stronger dipole moments.

g — ¢

(a) ®

Figure 2.29

(a) An electric dipole. The dipole moment is gd.
(b) An electric dipole moment in a covalently
bonded molecule.
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Table 2.8 The melting and boiling poinlé of various

noble gases.
Noble gas Melting point °C) ___ Boiling point (°C)
Helium -272.2 —268.9
Neon —248.7 —2459
Argon —189.2 —185.7
Krypton —157.0 —152.9
Xenon —-112.0 —-107.1

Radon —71.0 —61.8

(@) (b)

Figure 2.30

Electron charge distribution in a noble gas
atom. (a) An idealized symmetric charge
distribution in which the negative and positive
charge centers are superimposed at the
center. (b) The actual asymmetric distribution
of electrons causing a temporary dipole.

Weak bonding forces among covalently bonded molecules can be created if the
molecules contain permanent dipoles. For example, the methane molecule, CH,,
with its four C-H bonds arranged in a tetrahedral structure (Fig. 2.24), has a zero
dipole moment because of its symmetrical arrangement of four C-H bonds. That is,
the vectorial addition of its four dipole moments is zero. The chloromethane mole-
cule, CH;Cl, in contrast, has an asymmetrical tetrahedral arrangement of three C-H
bonds and one C-Cl bond, resulting in a net dipole moment of 2.0 debyes. The
replacement of one hydrogen atom n methane with one chlorine atom raises the boil-
ing point from —128°C for methane to —14°C for chloromethane. The much higher
boiling point of chloromethane is due to the permanent dipole bonding forces among
the chloromethane molecules.

The hydrogen bond is a special case of a permanent dipole-dipole interaction
between polar molecules. Hydrogen bonding occurs when a polar bond containing
the hydrogen atom, O-H or N-H, interacts with the electronegative atoms O, N, F,
or Cl. For example, the water molecule, H,0, has a permanent dipole moment of
1.84 debyes due to its asymmetrical structure with its two hydrogen atoms at an
angle of 105 with respect to its oxygen atom (Fig. 2.31a).



74

CHAPTER 2 Atomic Structure and Bonding

105°

(a) &)

Figure 2.31
(a) Permanent dipole nature of the water molecule. (b) Hydrogen bonding
among water molecules due to permanent dipole attraction.

The hydrogen atomic regions of the water molecule have positively charged cen-
ters, and the opposite end region of the oxygen atom has a negatively charged cen-
ter (Fig. 2.31a). In hydrogen bonding between water molecules, the negatively
charged region of one molecule is attracted by coulombic forces to the positively
charged region of another molecule (Fig 2.31b).

In liquid and solid water, relatively strong intermolecular permanent dipole forces
(hydrogen bonding) are formed among the water molecules. The energy associated
with the hydrogen bond is about 29kJ/mol (7 kcal/mol) as compared to about 2 to 8
kJ/mol (0.5 to 2 kcal/mol) for fluctuating dipole forces in the noble gases. The excep-
tionally high boiling point of water (100°C) for its molecular mass is attributed to the
effect of hydrogen bonding. Hydrogen bonding is also very important for strengthen-
ing the bonding between molecular chains of some types of polymeric materials.

27SUMMARY

Atoms consist mainly of three basic subatomic particles: pmtom‘, neurmm. and electrons.
The electrons are envisaged as forming a cloud of varying density around a denser atomic
nucleus containing almost all the mass of the atom. The outer electrons (high energy elec-
trons) are the valence electrons, and it is mainly their behavior that determines the chem-
ical reactivity of each atom,

Electrons obey the laws of quantum mechanics, and as a result, the energies of elec-
trons are’quantized. That is, an électron can have only certain allowed values of energies.
If an electron changes its energy, it must change to a new: allewed energy level. During
an epergy change, an electron emits or absorbs a photon of energy accordjng to Planck’s
equation AE = hv, where v is the frequency of the radiation. Each electron is associated
with four quantum numbers: the principal quantum number », the subsidiary quantum
number I, the magnetic quantum number m;, and the spin quantum number m,, According
to Pauli’s exclusion principle, no two electrons in the same atom can have all four quan-
tum numbers the same. Electrons also obey Heisenberg’s uncertainty principle, which
states that it is impossible to determine the momentum and position of an electron simul-
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taneously. Thus, the location of electrons in atoms must be considered in terms of elec-
tron density distributions.

There are two main types of atomic bonds: (1) strong primary bonds and (2) weak
secondary bonds. Primary bonds can be subdivided into (1) ionic, (2) covalent, and
(3) metallic bonds, and secondary bonds can be subdivided into (1) fluctuating dipoles
and (2) permanent dipoles.

Ionic bonds are formed by the transfer of one or more electrons from an electropos-
itive atom to an electronegative one. The jons are bonded together in a solid crystal by
electrostatic (coulombic) forces and are nondirectional. The size of the ions (geometric
factor) and electrical neutrality are the two main factors that determine the ion packing
arrangement. Covalent bonds are formed by the sharing of electrons in pairs by half-filled
orbitals. The more the bonding orbitals overlap, the stronger the bond. Covalent bonds are
directional. Metallic bonds are formed by metal atoms by a mutual sharing of valence
electrons in the form of delocalized electron charge clouds. In general, the fewer the valence
electrons, the more delocalized they are and the more metallic the bonding. Metallic bond-
ing only occurs among an aggregate of atoms and is nondirectional.

Secondary bonds are formed by the electrostatic attraction of electric dipoles within
atoms or molecules. Fluctuating dipoles bond atoms together due to an asymmetrical
distribution of electron charge within atoms. These bonding forces are important for the
liquefaction and solidification of noble gases. Permanent dipole bonds are important in the
bonding of polar covalently bonded molecules such as water and hydrocarbons.

Mixed bonding commonly occurs between atoms and in molecules. For example,
metals such as titanium and iron have mixed metailic-covalent bonds; covalently bonded
compounds such as GaAs and ZnSe have a certain amount of ionic character; some inter-
metallic compounds such as NaZn,; have some jonic bonding mixed with metallic bond-
ing. In general, bonding occurs between atoms or molecules because their energies are
lowered by the bonding process.

2.8 DEFINITIONS

Sec. 2.1

Law of multiple proportions: when atoms are combined, in specific simple fractions, they
form different compounds.

Law of mass conservation: a chemical reaction does not lead to creation or destruction
of matter.

Sec. 2.2

Atomic number (Z): the number of protons in the nucleus of an atom.

Atomic mass unit: defined as 1/12 the mass of a carbon atom.

Mass number (A): the sum of protons and neutrons in the nucleus of an atom.

Isotopes: atoms of the same element that have the same number of protons but not the same
number of neutrons.

Mole: the amount of substance that contains 6.02 X 10% elementary entities (ators or
molecules).

Law of chemical periodicity: properties of elements are functions of their atomic number
in a periodic manner.

Sec. 2.3

Quanta: a discrete (specific) amount of energy emitted by atoms and molecules.

Electromagnetic radiation: energy released and transmitted in the form of electro-
magnetic waves.

75
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Photon: quantum of energy emitted or released in the form of electromagnetic radiation with
a specific wavelength and frequency.

Ionization energy: the minimum energy required to separate an electron from its nucleus.

Uncertainty principle: it is impossible to simultaneously determine thc exact position and the
exact momentum of a body (for instance an electron).

Electron density: the probability of finding an electron of a given energy level in a given
region of space.

Orbitals: different wave functions that are solutions to the wave equation and can be
presented as electron density diagrams.

Boundary surface: an alternative to the electron density diagram showing the area inside
which one can find an electron with a probability of 90 percent.

Principal quantum number: A quantum number representing the energy level of the electron.

Orbital quantum number: the shape of the electron cloud or the boundary space of the
orbital is determined by this number.

Magnetic quantum number: represents the orientation of the orbitals within each subshell.

Spin quantum number: represents the spin of the electron.

Pauli’s exclusion principle: no two electrons can have the same set of four quantum numbers,

Nucleus charge effect: the higher the charge of the nucleus, the higher is the attraction force
on an electron and the lower the energy of the electron.

Shielding effect: when two electrons within the same energy level repel each other and thus
counteract the attraction force of the nucleus.

Sec. 2.4

Metallic radius: half the distance between the nuclei of two adjacent atoms in a sample of a
metallic element.

Covalent radius: half the distance between the nuclei of the identical atoms within the
covalent molecule.

First ionization energy: the energy required for the removal of the outermost electron.

Second ionization energy: the energy required to remove a second outer core electron (after
the first one has been removed).

Positive oxidation number: the number of outer electrons that an atom can give up through
the ionization process.

Electron affinity: the tendency of an atom to accept one or more electrons and release energy
in the process.

Negative oxidation number: the number of electrons that an atom can gain.

Reactive metals: metals with low ionization energies and little or no electron affinity.

Reactive nonmetals: nonmetals with high ionization energies and extensive electron affinity.

Metalloids: clements that can behave either in a metallic or a nonmetallic manner.

Electronegativity: the degree by which atoms attract electrons to themselves.

Hess Law: the total heat of formation is equal to the sum of the heat of formation in the five
steps of ionic solid formation.

Sec. 2.5

Primary bonds: strong bonds that form between atoms.

Ionic bonding: a primary bond that forms between metals and nonmetals or atoms with large
differences in their electronegativities.

Equilibrium interionic distance: the distance between the cation and the anion when the
bond is formed (at equilibrium).

Lattice energy: energy associated with formation of 2 3-D solid from gaseous ions through
ionic bonding.

Covalent bonding: a type of primary bond typically observed between atoms with small
differences in their electronegativities and mostly between nonmetals,
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Shared pair (bonding pair): the pair of electrons in the formed covalent bond.

Bond order: the number of shared pairs (covalent bonds) formed between two atoms.

Bond energy: the energy required to overcome the attraction force between the nuclei and the
shared pair of electrons 1n a covalent bond.

Bond length: the distance between the nuclei of two bonded atoms at the point of minimum
energy in a covalent bond.

Hybrid orbitals: when two or more atomic orbitals mix to form new orbitals.

Network covalent solids: materials that are made up entirely of covalent bonds.

Metallic bonds: example of a primary bond that forms due to tight packing of atoms in metals
during solidification.

Sec. 2.6

Secondary bonds: comparatively weak bonds that form between molecules (and atoms of
noble gasses) due to electrostatic attraction electric dipoles.

Fluctuating dipole: a changing dipole created by instantaneous changes in the electron
charge clouds.

Permanent dipole: a stable dipole created due to structural asymmetnies in the molecule.

Hydrogen bond: a special case of permanent dipole interaction between polar molecules.

2.9 PROBLEMS

Answers to problems marked with an asterisk are given at the end of the book.

Knowledge and Comprehension Problems

2.1 Describe the laws of (a) multiple proportions and (b) mass conservation as related
to atoms and their chemical properties.

2.2 How did scientists find out that atoms themselves are made up of smaller particles?

2.3 How was the existence of electrons first verified? Discuss the characteristics of
electrons.

2.4 How was the existence of protons first verified? Discuss the characteristics of protons.

2.5 What are the similarities and differences among protons, neutrons, and electrons?
Compare in detail.

2.6 One mole of iron atoms has a mass of 55.85 g; without any calculations determine
the mass in amu of one iron atom.

2.7 One atom of oxygen has a mass of 16.00 amu; without any calculations determine
the mass 1n grams of one mole of oxygen atoms.

2.8 Define (g) atomic number, (b) atomic mass, (¢) atomic mass unit (amu), (d) mass
number, (e) isotopes, (f) mole, (g) relative atomic mass, (h) average relative atomic
mass, and (§) Avogadro’s number.

2.9 Explain the law of chemical periodicity.

2.10 What is the nature of visible light? How is the energy released and transmitted 1n
visible light?

2.11 (a) Rank the following emissions in increasing magnitude of wavelength:
microwave oven emissiops, radio waves, sun lamp enusstons, X-ray emissions, and
gamma ray emissions from the sun. (b) Rank the same emissions in terms of
frequency. Which emission has the highest energy?

2.12 Describe the Bohr model of the hydrogen atom. What are the shortcomings of the
Bohr model?

7
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2.13
2.14
215
2.16
217

2.18

2.19

220

221

2.22
2.23

224
2.25

2.27

Describe the uncertainty principle. How does this principle contradict Bohr's model
of the atom?

Describe the following terms (give a diagram for each): (a) electron density
diagram, (b) orbital, (c) boundary surface representation, and (d) radial probability.
Name and describe all the quantum numbers.

Explain Pauli’s exclusion principle.

Describe (@) the nucleus charge effect, and (b) the shielding effect in multi-
electron atoms.

Describe the terms (a) metallic radius, (b) covalent radius, (c¢) first ionization
energy, (d) second 1onization energy, (e) oxidation number, (f) electron affinity,
(g) metals, (k) nonmetals, (i) metalloids, and (j) electroneganvity.

Compare and contrast the three primary bonds in detail (draw a schematic for
each). Explain the driving force in the formation of such bonds or in other words
why do atoms want to bond at all?

Describe the factors that control packing efficiency (number of neighbors) in iomc
and covalent solids. Give an example of each type of solid.

Describe the five stages leading to formation of an 1onic solid. Explain which
stages require energy and which stages release energy.

Describe (a) Hess Law, (b) lattice energy, and (c) heat of formation.

Describe the terms (a) shared pair, (5) bond order, (¢) bond energy, (d) bond
length, (e) polar and non-polar covalent bonds, and (f) network covalent solid.
Explain the hybridization process in carbon. Use orbital diagrams.

Describe the properties (electrical, mechanical, etc.) of materials that are
exclusively made up of (a) ionic bonds, (b) covalent bonds, and (c) metallic bonds
Name a material for each type

What are secondary bonds? What is the driving force for formation of such bonds?
Give examples of materials in which such bonds exist.

Discuss various types of mixed bonding.

Define the following terms: (@) dipole moment, (b) fluctuating dipole, (c) permanent
dipole, (d) van der Waals bonds, and (e) hydrogen bond.

Application and Analysis Problems

*2.29

*2.30

*2.32

The diameter of a soccer ball is approximately 0.279 m (11 in.). The diameter of
the moon 15 3.476 X 10 m. Give an “esumate” of how many soccer balls it will
take to cover the surface of the moon (assume the moon is a sphere with a flat
terrain). Compare this number to Avogadro’s number. What is your conclusion?
Each quarter produced by the U.S. mint is made up of a copper and nickel alloy.
In each coin, there is 0.00740 moles of N1 and 0.0886 moles of copper. (a) What
1s the total mass of a quarter? (b) What percentage of the mass of a quarter 1s
nickel and what percentage is copper?

Sterling silver contans 92.5 wt % silver and 7.5 wt % copper. Copper is added to
silver 1o make the metal stronger and more durable. A small sterling silver spoon has
a mass of 100 g. Calculate the number of copper and silver atoms in the spoon.
There are two naturally occurring isotopes for boron with mass numbers 10 (10.0129
amu) and 11 (11.0093 amu); the percentages are 19.91 and 80.09, respectively
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*2.34

2.35

2.36

*2.37

2.39

241

*2.42

243

2.4

2.9 Problems

(a) Find the average atomic mass and (b) the relative atomic mass (or atomic weight)
of boron. Compare your value with that presented in the penodic table.

A monel alloy consists of 70 wt % Ni and 30 wt % Cu. What are the atomic
percentages of Ni and Cu in this alloy?

What is the chemical formula of an intermetallic compound that consists of
15.68 wt % Mg and 84.32 wt % Al?

In order to raise the temperature of 100 g of water from room temperature (20°C)
to boiling temperature (100°C), an energy input of 33,440.0 ] is required. If one
uses a microwave oven (A of radiation of 1.20 cm) to achieve this, how many
photons of the microwave radiation 1s required?

For Prob. 2.35, deterrne the number of photons to achieve the same increase in
temperature 1f (@) ultraviolet (A = 1.0 X 10~% m), visible (A = 5.0 X 10~7 m),
and infrared (A = 1.0 X 10™* m) hghts were used. What important conclusions
can you draw from this exercise?

In order for the human eye to detect the visible light, its optical nerves must be
exposed to a minimum energy of 2.0 X 10~!7 J. (a) Calculate the number of
photons of red light needed to achieve this (A = 700 nm). (b) Without any
additional calculations, determuine if you would need more or less photons of blue
light to excite the optical nerves?

Represent the wave length of the following rays by comparing each to the length
of a physical object (e.g., a ray with a wavelength of 1 m (100 cm) would be
approximately that of a baseball bat): (@) rays from a dental ray, (b) rays in a
microwave oven, (c) rays in a sun lamp, (d) rays in a heat lamp, and (¢) an FM
radio wave.

For the rays in Prob. 2.38, without any calculations, rank them in increasing order
of the energy of the radiation.

In a commercial x-ray generator, a stable metal such as copper (Cu) or tungsten (W) is
exposed to an intense beam of high-energy electrons. These electrons cause ionization
events in the metal atoms. When the metal atoms regain their ground state they emt x-
rays of characteristic energy and wavelength. For example, a “tungsten” atom struck
by a high-energy electron may lose one of its K shell electrons. When this happens,
another electron, probably from the tungsten L shell will “fall” into the vacant site in
the K shell. If such a 2p — 15 transition occurs 1n tungsten, a tungsten K, x-ray is
emitted. A tungsten K, x-ray has a wavelength A of 0.02138 nm. What is its energy?
What is its frequency?

A hydrogen atom exists with its electron in the n = 4 state. The electron undergoes
a transition to the n = 3 state. Calculate (@) the energy of the photon emitted, (b)
its frequency, and (c) its wavelength in nanometers (nm).

A hydrogen atom exists with 1its electron in the n = 6 state. The electron undergoes
a transition to the n = 2 state. Calculate (@) the energy of the photon emitted, (b)
its frequency, and (c) its wavelength 1n nanometers.

Using the information given in Example Problems 2.4 and 2.5 to determine the
uncertainty associated with the electron’s position if the uncertainty in determining
its velocity is 1 percent. Compare the calculated uncertainty in the position with
the estimated diameter of the atom. What is your conclusion?

Repeat Prob. 2.43 to determine the uncertainty associated with the electron’s position
if the uncertainty in determining its velocity is 2%. Compare the calculated
uncertainty in the position with that of Prob. 2.43. What is your conclusion?
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*2.45

246

2. 47

248

*2.49

2.51

2.52

253

2.54

For the principal quantum number, n, of value 4, determine all other possible
quantum numbers for £ and m,.

For each pair of n and £ given below, give the sublevel name, possible values of
m,, and the corresponding number of orbitals.

@n=1€¢=0

B)n=2£=1

(©)n=3,£=2

dn=4,£€=3

Determine if the following combinations of quantum numbers are acceptable.
@n=3¢=0m=+1

BYyn=64~€=2m = -3

Cn=3,£4=3,m=-1

@n=24€=1m = +1

In each row (a through d) there is only one piece of information that is wrong.
Highlight the information that is wrong (explain why).

i

n 4 1, Name
(a) 3 0 1 3s
) 2 1 -1 2s
(c) 3 1 +2 3d
(d) 3 3 g 4f

Determine the four quantum numbers for the third, fifteenth, and seventeenth
electrons of the Cl atom.

Determune the electron configuration and group number of the atom in the ground
state based on the given partial (valence level) orbital diagram. Identify the element.

HH O Y iy ity L

4s 3d 4p

Write the electron configurations of the following elements by using spdf notation:
(a@) yttrium, (b) hafnium, (c¢) samarium, (d) rhenium.

Write the electron configuration of the following ions using the spdf notation:

(@) CP2*, Cr, Cr%F; () *Mo®*, Mo*t, Mo®™; (¢) Se*t, Sebt, Se?™.

Rank the following atoms in (a) increasing atomic size and (b) decreasing first
ionization energy, IE1. Use only the periodic table to answer the questions. Check
your answer using Figs. 2.10 and 2.11.

® K, Ca Ga

(ii) Ca, Sr, Ba

(iii) 1, Xe, Cs

Rank the following atoms in (@) increasing atomic size and (b) decreasing first
ionization energy, IE1. Use only the periodic table to answer the questions. Check
your answer using Figs. 2.10 and 2.11.

(i) Ar,Li,FO0,CsC

(1) Sr, H, Ba, He, Mg, Cs
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2.56

2.57

2.58

2.59

2.60

*2.61

*2.62

2.63

2.64

2.65

2.9 Problems B1

The first iomzation energies of two atoms with electronic configurations (a)
1522s?2p% and (b) 15?25?2p®3s! are given to be 2080 kJ/mol and 496 kJ/mol.
Determine which IE]1 belongs to which electronic structure and justify your answer.
The first 1omzation energies of three atoms with electronic configurations (a)
[He]2s?, (b) [Nel3s!, (c) [Ar]4s!, and (d) [He]2s! are given to be 496 kJ/mol, 419
kJ/mol, 520 kJ/mol, and 899 kJ/mol. Determine which IE1 belongs to which
electronic structure and explain your answer.

Similar to Fig 2.15, use (a) orbital diagrams and (b) Lewis symbols to explain the
formation of Na* and O?" ions and the corresponding bonding What 1s the
formula of the compound?

Calculate the attractive force (#+ <® ) between a pair of Ba?* and $2~ 1ons that
just touch each other. Assume the 1onic radius of the Ba®* ion to be 0.143 nm and
that of the $2~ ion to be 0.174 nm.

Calculate the net potential energy for a Ba?*$2" ion pair by using the b constant
calculated from Prob. 2.58. Assume n = 10.5.

If the attractive force between a pair of Cs* and 1™ ions is 2.83 X 1077 N and the
ionic radius of the Cs™ ion is 0.165 nm, calculate the ionic radius of the I~ ion in
nanometers.

For the each pair of bonds presented below, determine which has the higher lattice
energy (more negative) Explain your answer. Also, which of the five ronic compounds
do you think has the highest melting temperature and why? Verify your answer.

(@) LiCl and CsCl

(b) CsCl and RbCl

(¢) LiF and MgO .

(d) MgO and CaO

Calculate the lattice energy for the formation of solid NaF if the following
information is given. What does the calculated lattice energy tell you about the
material?

109 KJ 1s required to convert solid Na to gaseous Na

243 KkJ is required to convert gaseous F, to two monatormc F atoms

496 kJ is required to remove the 3s! electron of Na (form Na* cation)

—349 kJ of energy (energy is released) to add an electron to the F (form Na™ amon)
—411 kJ of energy to form gaseous NaF (heat of formation of NaF)

Calculate the lattice energy for the formation of sol:d NaCl if the following
information is given. What does the calculated lattice energy tell you about the
material?

(i) 109 KkJ is required to convert solid Na to gaseous Na

(i) 121 kJ is required to convert gaseous CI2 to two monatomic Cl atoms

(iii) 496 kJ is required to remove the 3sl electron of Na (form Na+ cation)

(iv) —570 kJ of energy (energy 1s released) to add an electron to the Cl

(v) —610 kJ of energy to form gaseous NaCl (heat of formation of NaCl)

For each bond 1n the following series of bonds, determine the bond order, rank bond
length, and rank bond strength. Use only the penodic table. Explain your answers.
(a) S—F; S—Br; S—Cl1

() C—C; C=C; C=C

Rank the following covalently bonded atoms according to the degree of polarity-
C—N; C-C; C—H; C—-Br.



CHAPTER 2 Atomic Structure and Bonding

2.61

2.67

*2.68

List the number of atoms bonded to a C atom that exhibits sp?, sp?, and sp
hybridization. For each, give the geometrical arrangement of the atoms in the
molecule.

Is there a correlation between the electron configurations of the elements scandium
(Z = 21) through copper (Z = 29) and their melting points? (See Table 2.7.)

Compare the percentage ionic character in the semiconducting compounds CdTe
and InP.

Synthesis and Evaluation Problems
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WK, 9K, and *'K are the three isotopes of potassium, If ¥K has the lowest
abundance, which other isotope has the highest?

Most modern scanning electron microscopes (SEMs) are equipped with energy-
dispersive x-ray detectors for the purpose of chemical analysis of the specimens.
This x-ray analysis 1s a natural extension of the capability of the SEM because the
electrons that are used to form the image are also capable of creating characteristic
x-rays in the sample. When the electron beam hits the specimen, X-rays specific to
the elements in the specimen are created. These can be detected and used to
deduce the composition of the specimen from the well-known wavelengths of the
characteristic x-rays of the elements. For example:

Wavelength
Element of K, x-rays
Cr 0.2291 nm
Mn 0.2103 nm
Fe 0.1937 nm
Co 0.1790 nm
Ni 0.1659 nm
Cu 0.1542 nm
Zn 0.1436 nm

Suppose a metallic alloy 15 examined in an SEM and three different x-ray energies
are detected. If the three energies are 7492, 5426, and 6417 eV, what elements are
present in the sample? What would you call such an alloy? (Look ahead to Chap. 9
in the textbook.)

According to Sec. 2.5.1, in order to form monatomic ions from metals and nonmetals,
energy must be added. However, we know that primary bonds form because the
involved atoms want to lower their energies. Why then do ionic compounds form?

Of the noble gases Ne, Ar, Kr, and Xe, which should be the most chemically reactive?
The melt temperature of Na is (89°C) and is higher than the melt temperature of K
(63.5°C). Can you explain this in terms of the differences in electronic structure?
The melt temperature of L1 (180°C) is significantly lower than the melt
temperature of its neighbor Be (1287°C). Can you explain this in terms of the
differences in electronic structure?

The melting point of the metal potassium is 63.5°C, while that of titanium is 1660°C.
What explanation can be given for this great difference in melting temperatures?

Cartridge brass is an alloy of two metals: 70 wt % copper and 30 wt % zinc.
Discuss the nature of the bonds between copper and zinc in this alloy.
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2.9 Problems

After ionization, why is the sodium ion smaller than the sodium atom? After
ionization, why is the chloride ion larger than the chlorine atom?

Regardless of the type of primary bond, why does the tendency exist for atoms to
bond?

Pure aluminum is a ductile metal with low tensile strength and hardness. Its oxide
AlOj3 (alumina) is extremely strong, hard, and brittle. Can you explain this
difference from an atomic bonding point of view?

Graphite and diamond are both made from carbon atoms. (a) List some of the
physical characteristics of each. (b) Give one application for graphite and one for
diamond. (c¢) If both materials are made of carbon, why does such a difference in
properties exist?

Silicon is extensively used in the manufacture of integrated circuit devices such as
transistors and light-emitting diodes. It is often necessary to develop a thin oxide
layer (SiO;) on silicon wafers. () What are the differences in properties between
the silicon substrate and the oxide layer? (b) Design a process that produces the
oxide layer on a silicon wafer. (c¢) Design a process that forms the oxide layer only
in certain desired areas.

How can the high electrical and thermal conductivities of metals be explained by
the “electron gas” model of metallic bonding? Ductility?

Describe fluctuating dipole bonding among the atoms of the noble gas neon. Of a
choice between the noble gases krypton and xenon, which noble gas would be
expected to have the strongest dipole bonding and why?

Carbon tetrachloride (CCly) has a zero dipole moment. What does this tell us about
the C—CI bonding arrangement in this molecule?

Methane (CH,) has a much lower boiling temperature than does water (H,0).
Explain why this is true in terms of the bonding between molecules in each of these
two substances.

For each of the following compounds, state whether the bonding is essentially
metallic, covalent, ionic, van der Waals, or hydrogen: (a) Ni, (b) ZrO,, (c) graphite,
(d) solid Kr, (e) Si, (f) BN, (g) SiC, (h) Fe;0s, (i} MgO, (j) W, (k) H,O within
the molecules, () H,O between the molecules.

If ionic and covalent bonding are involved in the bonding of any of the compounds
listed, calculate the percentage ionic character in the compound.

In the manufacturing of a light bulb, the bulb is evacuated of air and then filled
with argon gas. What is the purpose of this?

Stainless steel is a corrosion-resistant metal because it contains large amounts of
chromium. How does chromium protect the metal from corrosion?

Robots are used in auto industries to weld two components at specific locations.
Clearly, the end position of the arm must be determined accurately in order to
weld the components at the precise position. (a) In selecting the material for the
arm of such robots, what factors must be considered? (b) Select a proper material
for this application.

A certain application requires a material that is lightweight, an electrical insulator,
and has some flexibility. (a) Which class of materials would you search for this
selection? (b) Explain your answer from a bonding point of view.

A certain application requires a material that is electrically nonconductive
(insulator), extremely stiff, and lightweight. Which classes of materials would you
search for this selection? (b) Explain your answer from a bonding point of view.
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olids may be categorized- broadly into crystalline and amorphous solids.

Crystalline solids, due to orderly structure of their atoms, molecules, or ions, pos-
sess well-defined shapes. Metals are crystalline and are composed of well-defined
crystals or grains. The grains are small and are not clearly observable due to the
opaque nature of metals. In minerals, mostly translucent to transparent in nature, the
well-defined crystalline shapes are clearly observable. The following images show the
crystalline nature of minerals such as (a) celestite (SrSo,) with a sky blue or celes-
tial color, (b) pyrite (FeS,), also called the “fool’s gold” due to its brassy yellow color,
(c) amethyst (Si0,), a purple variety of quartz, and (d) halite (NaCl), better known
as rock salt. In contrast, amorphous solids have poor or no long-range order and do
not solidify with the symmetry and regularity of crystalline solids. M



LEARNING OBJECTIVES

By the end of this chapter, students will be able 7. Compute the densities for metals having body-

to. .. centered and face-centered cubic structures.

1. Describe what crysfalline and noncrystalline 8. Describe how to use the X-ray diffraction
(amorphous) materials are. method for material characterization.

2. Learn how atoms and ions in solids are 9. Write the designation for atom position,
arranged in space and identify the basic building direction indices, and Miller indices for
blocks of solids. cubic crystals. Specify what are the three

3. Describe the difference between atomic structure densely_packed structures for most metals.
and crystal structure for solid material. : Determine Miller-Bravais indices for

o hexagonal-closed packed structure. Be able

4. Distinguish between crystal structure and to draw directions and planes in cubic and

crystal system. hexagonal crystals.

5. Explain why plastics cannot be 100 percent
crystalline in structure.

6. Explain polyniorphism or a]lotropy in
materials.

3.1 THE SPACE LATTICE AND UNIT CELLS

The physical structure of solid materials of engineering importance depends mainly
on the arrangements of the atoms, ions, or molecules that make up the solid and
the bonding forces between them. If the atoms or ions of a solid are arranged in
a pattern that repeats itself in three dimensions, they form a solid that has long-
range order (LRO) and is referred to as a crystalline solid or crystalline material.
Examples of crystalline materials are metals, alloys, and some ceramic materials.
In contrast to crystalline materials, there are some materials whose atoms and ions
are not arranged in a long-range, periodic, and repeatable manner and possess only
short-range order (SRO). This means that order exists only in the immediate neigh-
borhood of an atom or a molecule. As an example, liquid water has short-range
order in its molecules in which one oxygen atom is covalently bonded to two
hydrogen atoms. But this order disappears, as each molecule is bonded to other
molecules through weak secondary bonds in a random manner. Materials with only
short-range order are classified as amorphous (without form) or noncrystalline. A
more detailed definition and some examples of amorphous materials are given in
Sec. 3.12.

Atomic arrangements in crystalline solids can be described by referring the
atoms to the points of intersection of a network of lines in three dimensions. Such
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Figure 3.1
(a) Space lattice of ideal crystalline solid. (b) Unit cell showing lattice
constants.

a network is called a space lattice (Fig. 3.1a), and it can be described as an infinite
three-dimensional array of points. Each point in the space lattice has identical sur-
roundings. In an ideal crystal, the grouping of lattice points about any given point
are identical with the grouping about any other lattice point in the crystal lattice.
Each space lattice can thus be described by specifying the atom positions in a
repeating unit cell, such as the one heavily outlined in Fig. 3.1a. The unit cell may
be considered the smallest subdivision of the lattice that maintains the characteris-
tics of the overall crystal. A group of atoms organized in a certain arrangement rel-
ative to each other and associated with lattice points constitues the motif or basis.
The crystal structure may then be defined as the collection of lattice and basis. It is
important to note that atoms do not necessarily coincide with lattice points. The size
and shape of the unit cell can be described by three lattice vectors a, b, and ¢, orig-
inating from one corner of the unit cell (Fig. 3.1b). The axial lengths a, b, and ¢ and
the interaxial angles a, B, and vy are the lattice constants of the unit cell.

3.2 CRYSTAL SYSTEMS AND
BRAVAIS LATTICES

By assigning specific values for axial lengths and interaxial angles, unit cells of
different types can be constructed. Crystallographers have shown that only seven dif-
ferent types of unit cells are necessary to create all space lattices. These crystal
systems are listed in Table 3.1.

Many of the seven crystal systems have variations of the basic unit cell. A.J.
Bravais! showed that 14 standard unit cells could describe all possible lattice net-
works. These Bravais lattices are illustrated in Fig. 3.2. There are four basic types
of unit cells: (1) simple, (2) body-centered, (3) face-centered, and (4) base-centered.

1August Bravais (1811-1863). French crystallographer who derived the 14 possible arrangements of points
in space.
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Table 3.1 Classification of space lattices by crystal system

_(Erynn!aystem Axial lengths and interaxial angles
Cubic Three equal axes at right angles
a=b=ca=8=y=%°

Space lattice

Simple cubic
Body-centered cubic
Face-centered cubic

Tetragonal Three axes at right angles, two equal Simple tetragonal
a=b#¥ca=pg=vy=90° Body-centered tetragonal
Orthorhombic Three unequal axes at right angles Simple orthorhombic
a¥Fb#*Fca=g=vy=90° Body-centered orthorhombic
Base-centered orthorhombic
Face-centered orthorhombic
Rhombohedral Three equal axes, equally inclined Simple rhombohedral
a=b=c,a=8=y%F%N°
Hexagonal Two equal axes at 120°, third axis Simple hexagonal
at right angles
a=b#c,a=p=090"°
y = 120°
Monoclinic Three unequal axes, one pair not Simple monoclinic
at right angles Base-centered monoclinic
aF¥Fb#tc,a=y=90"#8
Triclinic Three unequal axes, unequally Simple triclinic

inclined and none at right angles
aF¥Fb+Fc,aFBFy+9°

In the cubic system there are three types of unit cells: simple cubic, body-
centered cubic, and face-centered cubic. In the orthorhombic system all four types
are represented. In the tetragonal system there are only two: simple and body-centered.
The face-centered tetragonal unit cell appears to be missing but can be constructed
from four body-centered tetragonal unit cells. The monoclinic system has simple and
base-centered unit cells, and the rhombohedral, hexagonal, and triclinic systems have
only one simple type of unit cell.

3.3 PRINCIPAL METALLIC CRYSTAL
STRUCTURES

In this chapter, the principal crystal structures of elemental metals will be discussed
in detail. In Chap. 11, the principal ionic and covalent crystal structures that occur
in ceramic materials will be treated.

Most elemental metals (about 90 percent) crystallize upon solidification into
three densely packed crystal structures: body-centered cubic (BCC) (Fig. 3.3q),
face-centered cubic (FCC) (Fig. 3.3b), and hexagonal close-packed (HCP)
(Fig. 3.3¢). The HCP structure is a denser modification of the simple hexagonal
crystal structure shown in Fig. 3.2. Most metals crystallize in these dense-packed
structures because energy is released as the atoms come closer together and bond
more tightly with each other. Thus, the densely packed structures are in lower and
more stable energy arrangements.

MatVis
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Rhombohedral 175 ?M

Cubic

e Figure 3.2
\" The 14 Bravais conventional unit cells grouped according to crystal system. The dots
Tutorial indicate lattice points that, when located on faces or at corners, are shared by other
identical lattice unit cells.

(From W.G. Moffant, G.W. Pearsall, and J.Wulff, The Structure and Properties of Materials, vol. 1: “Structure”,
MatVis  Wiley, 1964, p. 47.)

*The unit cell is represented by solid lines.
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Figure 3.3

Principal metal crystal structure and unit cells: (a) body-centered cubic,

(b) face-centered cubic, () hexagonal close-packed crystal structure (the unit
cell is shown by solid lines).

The extremely small size of the unit cells of crystalline metals that are shown in
Fig. 3.3 should be emphasized. The cube side of the unit cell of body-centered cubic
iron, for example, at room temperature is equal to 0.287 X 107 m, or 0.287 nanome-
ter (nm).2 Therefore, if unit cells of pure iron are lined up side by side, in 1 mm there
will be

1 unit cell
0.287 nm X 10~¢ mm/nm

Let us now examine in detail the arrangement of the atoms in the three princi-
pal crystal structure unit cells. Although an approximation, we shall consider atoms
in these crystal structures to be hard spheres. The distance between the atoms (inter-
atomic distance) in crystal structures can be determined experimentally by X-ray dif-
fraction analysis.> For example, the interatomic distance between two aluminum
atoms in a piece of pure aluminum at 20°C is 0.2862 nm. The radius of the alu-
minum atom in the aluminum metal is assumed to be half the interatomic distance,
or 0.143 nm. The atomic radii of selected metals are listed in Tables 3.2 to 3.4.

= 3.48 X 10°unit cells!

1 mm X

3.3.1 Body-Centered Cubic (BCC) Crystal Structure

First, consider the atemic-site unit cell for the BCC crystal structure shown in
Fig. 3.4a. In this unit cell, the solid spheres represent the centers where atoms are
located and clearly indicate their relative positions. If we represent the atoms in this
cell as hard spheres, then the unit cell appears as shown in Fig. 3.4b. In this unit cell,
we see that the central atom is surrounded by eight nearest neighbors and is said to
have a coordination number of 8.

21 nanometer = 10~ ° meter.
3Some of the principles of X-ray diffraction analysis will be studied in Sec. 3.11.

¢
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Table 3.2 Selected metals that have the BCC crystal structure at room temperature

(20°C) and their lattice constants and atomic radii

Metal Lattice constant g (nm) Atomic radius R* (nm)
Chromium 0.289 0.125
Iron 0.287 0.124
Molybdenum 0.315 0.136
Potassium 0.533 0.231
Sodium 0.429 0.186
Tantalum 0.330 0.143
Tungsten 0316 0.137
Vanadium 0.304 0.132

*Calculated from lattice constants by using Eg. (3.1), R = V3a/4.

Table 3.3 Selected metals that have the FCC crystal structure at room temperature

{20°C) and their lattice constants and atomic radii

Metal ~ Lattice constant a (nm) Atomic radius R* (nm)
Aluminum 0.405 0.143
Copper 0.3615 0.128
Gold 0.408 0.144
Lead 0.495 0.175
Nickel 0.352 0.125
Platinum 0.393 0.139
Silver 0.409 0.144

*Calculated from lattice constants by using Eq. (3.3), R = V2a/4.

Table 3.4 Selected metals that have the HCP crystal structure at room temperature (20°C)

and their lattice constants, atomic radii, and cfa ratios

Lattice constants (nm)

Atomic

% deviation

Metal a € radius R (nm) cla ratio . . - from idealify
Cadmium 0.2973 0.5618 0.149 1.890 +15.7
Zinc 0.2665 0.4947 0.133 1.856 +13.6
Ideal HCP 1.633 0
Magnesium 0.3209 0.5209 0.160 1.623 —0.66
Cobalt 0.2507 0.4069 0.125 1.623 —0.66
Zirconium 0.3231 0.5148 0.160 1.593 —2.45
Titanium 0.2950 0.4683 0.147 1.587 —2.81
Beryllium 0.2286 0.3584 0.113 1.568 —3,98

If we isolate a single hard-sphere unit cell, we obtain the model shown in
Fig. 3.4c. Each of these cells has the equivalent of two atoms per unit cell. One com-
plete atom is located at the center of the unit cell, and an eighth of a sphere is located -
at each corner of the cell, making the equivalent of another atom. Thus, there is a
total of 1 (at the center) + 8 X é (at the corners) = 2 atoms per unit cell. The atoms
in the BCC unit cell contact each other across the cube diagonal, as indicated in
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BCC unit cells: (a) atomic-site unit cell, (b) hard-sphere unit cell, and BGC unit cell showing
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Fig. 3.5, so that the relationship between the length of the cube side g and the atomic
radius R is
4R

V3a =4R or a=-7 3.1

Tron at 20°C is BCC with atoms of atomic radius 0.124 nm. Calculate the lattice con-
stant a for the cube edge of the iron unit cell.

B Solution
From Fig. 3.5 it is seen that the atoms in the BCC unit cell touch across the cube diago-
nals. Thus, if a is the length of the cube edge, then -

V3a =4R (3.1)
where R is the radius of thé iron atom. Therefore

4R _ 40.124 nm)

i~ V3 = (.2864 nm 4

a

EXAMPLE
PROBLEM 3.1

If the atoms in the BCC unit cell are considered to be spherical, an atomic packing
factor (APF) can be calculated by using the equation
_ volume of atoms in unit cell
volume of unit cell

APF 3.2)
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Using this equation, the APF for the BCC unit cell (Fig. 3.4c) is calculated to
be 68 percent (see Example Problem 3.2). That is, 68 percent of the volume of the
BCC unit cell is occupied by atoms and the remaining 32 percent is empty space.
The BCC crystal structure is not a close-packed structure since the atoms could be
packed closer together. Many metals such as iron, chromium, tungsten, molybde-
num, and vanadium have the BCC crystal structure at room temperature. Table 3.2
lists the lattice constants and atomic radii of selected BCC metals.

EXAMPLE
PROBLEM 3.2

s

R

Tutonal

Calculate the atomic packing factor (APF) for the BCC unit cell, assuming the atoms to
be hard spheres.

N Solution
APF = volume of atoms in BCC unit cell
volume of BCC unit cell

(3.2)
Since there are two atoms per BCC unit cell, the volume of atoms in the unit cell of
radius R is
Vaoms = (2)37R%) = 8.373R%
The volume of the BCC unit cell is
Vot cel = @

where a is the lattice constant. The relationship between g and R is obtained from
Fig. 3.5, which shows that the atoms in the BCC unit cell touch each other across the
cubic diagonal. Thus

4R
V3a=4R or a—-vg_ (3.1)

Thus,
Venitcett = @ = 12.32R%
The atomic packing factor for the BCC unit cell is, therefore,

Vatoms /unit cell _ 8.373R%

= = 0.68 <
Vit cell 12.32R°

APF =

3.3.2 Face-Centered Cubic (FCC) Crystal Structure

Consider next the FCC lattice-point unit cell of Fig. 3.6a. In this unit cell, there is one
lattice point at each corner of the cube and one at the center of each cube face. The
hard-sphere model of Fig. 3.6b indicates that the atoms in the FCC crystal structure
are packed as close together as possible. The APF for this close-packed structure is
0.74 as compared to 0.68 for the BCC structure, which is not close-packed.

The FCC umit cell as shown in Fig. 3.6¢ has the equivalent of four atoms per
unit cell. The eight corner octants account for one atom (8 X § = 1), and the six
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half-atoms on the cube faces contribute another three atoms, making a total of four
atoms per unit cell. The atoms in the FCC unit cell contact each other across the
cubic face diagonal, as indicated in Fig. 3.7, so that the relationship between the
length of the cube side a and the atomic radius R is
4R
V2a=4R or a 3 3.3)
The APF for the FCC crystal structure is 0.74, which is greater than the 0.68 factor
for the BCC structure. The APF of 0.74 is for the closest packing possible of “spherical
atoms.” Many metals such as aluminum, copper, lead, nickel, and iron at elevated tem-
peratures (912°C to 1394°C crystallize with the FCC crystal structure. Table 3.3 lists
the lattice constants and atomic radii for some selected FCC metals.

3.3.3 Hexagonal Close-Packed (HCP) Crystal Structure

The third common metallic crystal structure is the HCP structure shown in Fig. 3.8a
and b. Metals do not crystallize into the simple hexagonal crystal structure shown in
Fig. 3.2 because the APF is too low. The atoms can attain a lower energy and a more
stable condition by forming the HCP structure of Fig. 3.8b. The APF of the HCP
crystal structure is 0.74, the same as that for the FCC crystal structure since in both
structures the atoms are packed as tightly as possible. In both the HCP and FCC
crystal structures, each atom is surrounded by 12 other atoms, and thus both
structures have a coordination number of 12. The differences in the atomic packing
in FCC and HCP crystal structures will be discussed in Sec. 3.8.

The isolated HCP unit cell, also called the primitive cell, is shown in Fig. 3.8c.
The atoms at locations marked “1” on Fig. 3.8¢ contribute ¢ of an atom to the unit
cell. The atoms at locations marked “2” contribute {5 of an atom to the unit cell.
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S Figure 3.8
\3 HCP crystal structure: (a) schematic of the crystal structure, (b) hard-sphere
model, and (c) isolated unit cell schematic.
Tutorial (From EM. Miller, Chemistry: Structure and Dynamics, McGraw-Hill, 1984, p. 296.
MatVis Reproduced with permission of The McGraw-Hill Companies.)

Thus, the atoms at the eight corners of the unit cell collectively contribute one atom
4) + 4(5) = 1). The atom at location “3” is centered inside the unit cell but
extends slightly beyond the boundary of the cell. The total number of atoms inside
an HCP unit cell is therefore 2 (1 at corners and 1 at center). In some text books
the HCP unit cell is represented by Fig. 3.8a and is called the “larger cell.” In such
a case one finds 6 atoms per unit cell. This is mostly for convenience and the true
unit cell is presented in Fig. 3.8¢ by the solid lines. When presenting the topics of
crystal directions and planes we will also use the larger cell for convenience, in addi-
tion to the primitive cell.

The ratio of the height ¢ of the hexagonal prism of the HCP crystal structure
to its basal side a is called the c/a ratio (Fig. 3.8a). The c/a ratio for an ideal
HCP crystal structure consisting of uniform spheres packed as tightly together as
possible is 1.633. Table 3.4 lists some important HCP metals and their c/a ratios.
Of the metals listed, cadmium and zinc have c/a ratios higher than ideality, which
indicates that the atoms in these structures are slightly elongated along the ¢ axis
of the HCP unit cell. The metals magnesium, cobalt, zirconium, titanium, and
beryllium have c/a ratios less than the ideal ratio. Therefore, in these metals the
atoms are slightly compressed in the direction along the ¢ axis. Thus, for the HCP
metals listed in Table 3.4, there is a certain amount of deviation from the ideal
hard-sphere model.

EXAMPLE a. Calculate the volume of the zinc crystal structure unit cell by using the following
PROBLEM 3.3 data: pure zinc has the HCP crystal structure with lattice constants g = 0.2665 nm
~ and ¢ = 0.4947 nm.
b. Find the volume of the larger cell.

H Solution
The volume of the zinc HCP unit cell can be obtained by determining the area of the base
of the unit cell and then multiplying this by its height (Fig. EP3.3).
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a. The area of the base of the unit cell is area ABDC of Fig. EP3.3a and b. This
total area consists of the areas of six equilateral triangles of area ABC of Fig.
EP3.3b. From Fig. EP3.3c,

Area of triangle ABC = }(base)(height)
= }(a)(a sin 60°) = 142 sin 60°
From Fig. EP3.3b,
Total area of HCP base, area ABDC = (2)(3a?sin 60°)
= a?sin 60°
From Fig. EP3.3a,
Volume of zinc HCP unit cell = (a? sin 60°)(c)
= (0.2665 nm)?(0.8660)(0.4947 nm)
= 0.0304 nm® <«

I \/
LFICEDGD

A—a—uB Af—a—B
(@ ®)

Figure EP3.3
Diagrams for calculating the volume of an HCP unit cell. (a) HCP unit cell.
(b) Base of HCP unit cell. (c) Triangle ABC removed from base of unit cell.

b. From Fig. EP3.3a,

- Volume of the “large” zinc HCP cell = 3(volume of the unit cell or primitive cell)
= 3(0.0304) = 0.0913 nm®

3.4 ATOM POSITIONS IN CUBIC UNIT CELLS

To locate atom positions in cubic unit cells, we use rectangular x, y, and z axes. In
crystallography, the positive x axis is usually the directin coming out of the paper, the
positive y axis is the direction to the right of the paper, and the positive z axis is the
direction to the top (Fig. 3.9). Negative directions are opposite to those just described.

Atom positions in unit cells are located by using unit distances along the x, y,
and z axes, as indicated in Fig. 3.9a. For example, the position coordinates for the
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(a) Rectangular x, y, and z axes for locating atom positions in cubic
unit cells. (b) Atom positions in a BCC unit cell.

atoms in the BCC unit cell are shown in Fig. 3.95. The atomn positions for the eight
comer atoms of the BCC unit cell are

0,00 (1,0,0 (0,1,0 (0,0, 1)
a,1,1n) (1,1,0 0,0, © 1,1

The center atom in the BCC unit cell has the position coordinates (3, 3, 3). For sim-
plicity sometimes onl?i two atom positions in the BCC unit cell are specified which
are (0, 0, 0) and @, 3,3). The remaining atom positions of the BCC unit cell are
assumed to be understood. In the same way, the atom positions in the FCC unit cell
can be located.

3.5 DIRECTIONS IN CUBIC UNIT CELLS

Often it is necessary to refer to specific directions in crystal lattices. This is espe-
cially important for metals and alloys with properties that vary with crystallographic
orientation. For cubic crystals the crystallographic direction indices are the vector
components of the direction resolved along each of the coordinate axes and reduced
to the smallest integers.

To diagrammatically indicate a direction in a cubic unit cell, we draw a direction
vector from an origin, which is usually a comer of the cubic cell, until it emerges
from the cube surface (Fig. 3.10). The position coordinates of the unit cell where the
direction vector emerges from the cube surface after being converted to integers are
the direction indices. The direction indices are enclosed by square brackets with no
separating commas. _

For example, the position coordinates of the direction vector OR in Fig. 3.10a
where it emerges from the cube surface are (1, 0, 0), and so the direction indices
for the direction vector OR are [100]. The position coordinates of the direction vector
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(a) &) ©

Figure 3.10
Some directions in cubic unit cells.

OS (Fig. 3.10a) are (1, 1, 0), and so the direction indices for OS are [110]. The posi-
tion coordinates for the direction vector OT (Fig. 3.10b) are (1, 1, 1), and so the
direction indices of OT are [111].

The position coordinates of the direction vector OM (Fig. 3.10¢) are (1,1, 0),
and since the direction vectors must be integers, these position coordinates must be
multiplied by 2 to obtain integers. Thus, the direction indices of OM become
2(1, % 0) = [210]. The position coordinates of the vector ON (Fig. 3.10d) are (—1,
—1, 0). A negative direction index is written with a bar over the index. Thus, the
direction indices for the vector ON are [110]. Note that to draw the direction ON
inside the cube, the origin of the direction vector had to be moved to the front lower-
right corner of the unit cube (Fig. 3.104). Further examples of cubic direction vec-
tors are given in Example Problem 3.4.

The letters u, v, w are used in a general sense for the direction indices in the x,
¥, and z directions, respectively, and are written as [uvw]. It is also important to note
that all parallel direction vectors have the same direction indices.

Directions are said to be crystallographically equivalent if the atom spacing
along each direction is the same. For example, the following cubic edge directions
are crystallographic equivalent directions:

[100}, [010], [001], [010), [001], [100] = (100)
Equivalent directions are called indices of a family or form. The notation (100) is

used to indicate cubic edge directions collectively. Other directions of a form are the
cubic body diagonals (111) and the cubic face diagonals (110).

X
Note new

origin
(d)

Tutorial

Draw the following direction vectors in cubic unit cells:

a. [100] and [110]
b [112)
c. [110]
d. [321]

EXAMPLE
PROBLEM 3.4



98 CHAPTER 3 Crystal and Amorphous Structure in Materials

H Solution

a. The position coordinates for the [100] direction are (1, 0, 0) (Fig. EP3.4a). The
position coordinates for the [110] direction are (1, 1, 0) (Fig. EP3.4q).

b. The position coordinates for the [112] direction are obtained by dividing the
direction indices by 2 so that they will lie within the unit cube. Thus, they are
&4, 1) (Fig. EP3.4D). _

c. The position coordinates for the [110] direction are (—1, 1, 0) (Fig. EP3.4c). Note
that the origin for the direction vector must be moved to the lower-left front corner
of the cube.

d. The position coordinates for the [321] direction are obtained by first dividing all the
indices by 3, the largest index. This gives —1, %, —4 for the position coordinates of
the exit point of the direction [321], which are shown in Fig. 3.4d.

Z Z L
P
Origin—-__ |0 0 8
T /Y| L /A
_ : - 1
x/ [100] [110} : X/
Z-
(@ LB

o)

_ y
x O‘Nmnéwoﬁgin x
_ © o [e))
& Figure EP3.4
Tutorial Direction vectors in cubic unit cells.
EXAMPLE Determine the direction indices of the cubic direction shown in Fig. EP3.5a.
PROBLEM 3.5 '

m Solution
Pamlleldtmcﬂmshwerhesamea&wcmmdwm and 50 we move the direction vector in a
parallel manner until its tail reaches the nearest comer of the cube, still keeping the vector
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within the cube. Thus, in this case, the upper-left front comer becomes the new origin for the
direction vector (Fig. EP3.5b). We can now determine the position coordinates where the
direction vector leaves the unit cube. These are x = —1,y = +1, and z = ~3. The position
coordinates of the direction where it leaves the unit cube are thus (=1, +1, —3). The direc-
tion indices for this direction are, after clearing the fraction 6x, (—1, +1, —3), or [661].

z New z
origin

(0.0,0)

- -

e

I

L
L
P
W ’... _.H
b M= e

Ll

(@) &)
Figure EP3.5

.

TJutorial

Determine the direction indices of the cubic direction between the position coordinates
@.0.H and ¢, 3. b.

® Solution
First we locate the origin and termination points of the direction vector in a unit cube, as
shown in Fig. EP3.6. The fraction vector components for this direction are

x=-(G-hH=-
y=@3-0=14
z=03-H=1%

Thus, the vector direction has fractional vector components of —3, 4, 4. The direction indices
will be in the same ratio as their fractional components. By multiplying the fraction vec-
tor components by 4, we obtain [221] for the direction indices of this vector direction.

z

/“'
\ y

~
Origin for position
coordinates

(%- o, ~f)"“'--.//

Figure EP3.6

EXAMPLE
PROBLEM 3.6
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3.6 MILLER INDICES FOR
CRYSTALLOGRAPHIC PLANES
IN CUBIC UNIT CELLS

Sometimes it is necessary to refer to specific lattice planes of atoms within a crys-
tal structure, or it may be of interest to know the crystallographic orientation of a
plane or group of planes in a crystal lattice. To identify crystal planes in cubic crys-
tal structures, the Miller notation system® is used. The Miller indices of a crystal
plane are defined as the reciprocals of the fractional intercepts (with fractions
cleared) that the plane makes with the crystallographic x, y, and z axes of the three
noi el edges of the cubic unit cell. The cube edges of the unit cell represent
unit lengths, and the intercepts of the lattice planes are measured in terms of these
unit lengths.

The procedure for determining the Miller indices for a cubic crystal plane is as
follows:

1. Choose a plane that does not pass through the origin at (0, 0, 0).

2. Determine the intercepts of the plane in terms of the crystallographic x, y, and
z axes for a unit cube. These intercepts may be fractions.

3. Form the reciprocals of these intercepts.

4. Clear fractions and determine the smallest set of whole numbers that are in
the same ratio as the intercepts. These whole numbers are the Miller indices of the
crystallographic plane and are enclosed in parentheses without the use of commas.
The notation (hkl) is used to indicate Miller indices in a general sense, where #,
k, and [ are the Miller indices of a cubic crystal plane for the x, y, and z axes,
respectively.

Figure 3.11 shows three of the most important crystallographic planes of cubic
crystal structures. Let us first consider the shaded crystal plane in Fig. 3.11a, which
has the intercepts 1, oo, co for the x, y, and z axes, respectively. We take the recip-
rocals of these intercepts to obtain the Miller indices, which are therefore 1, 0, 0.
Since these numbers do not involve fractions, the Miller indices for this plane are
(100), which is read as the one-zero-zero plane. Next let us consider the second plane
shown in Fig. 3.11b. The intercepts of this plane are 1, 1, co. Since the reciprocals
of these numbers are 1, 1, 0, which do not involve fractions, the Miller indices of
this plane are (110). Finally, the third plane (Fig. 3.11c) has the intercepts 1, 1, 1,
which give the Miller indices (111) for this plane.

Consider now the cubic crystal plane shown in Fig. 3.12 that has the
intercepts 1,3, 1. The reciprocals of these intercepts are 3,3, 1. Since fractional
intercepts are not allowed, these fractional intercepts must be multiplied by 2 to
clear the % fraction. Thus, the reciprocal intercepts become 6, 3, 2 and the Miller

*William Hallowes Miller (1801-1880). English crystallographer who published a “Treatise on
Crystallography” in 1839, using crystallographic reference axes that were parallel to the crystal edges
and using reciprocal indices.
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F4 z Z
o - 10) B(____,(m)
(100) | _ 8
y y y
X, X X,
(@) ® ©
Figure 3.11 a7
Miller indices of some important cubic crystal planes: (a) (100), (b) (110), and (c) (111). ‘/
Tutorial
MatVis

S - y
2
x 3__?7
Figure 3.12

Cubic crystal plane (632), which
has fractional intercepts.

indices are (632). Further examples of cubic crystal planes are shown in Example
Problem 3.7.

If the crystal plane being considered passes through the origin so that one
or more intercepts are zero, the plane must be moved to an equivalent position
in the same unit cell and the plane must remain parallel to the original plane.
This is possible because all equispaced parallel planes are indicated by the same
Miller indices.

If sets of equivalent lattice planes are related by the symmetry of the crystal
system, they are called planes of a family or form, and the indices of one plane
of the family are enclosed in braces as {hkl} to represent the indices of a family
of symmetrical planes. For example, the Miller indices of the cubic surface planes
(100), (010), and (001) are designated collectively as a family or form by the
notation {100}.
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EXAMPLE
PROBLEM 3.7

MatVis

Draw the following crystallographic planes in cubic unit cells:

aon b (1100 (22D

d. Draw a (110) plane in a BCC atomic-site unit cell, and list the position coordinates

of the atoms whose centers are intersected by this plane.

u Solutions

z z
Note new
(101) [ 1 (1 10}..]_\\“‘ ;ngm
o o
y y
x X
(@) &)
z z

L=
(221) (110) ¢
0 o

_’_, . y :7”7

© )

Figure EP3.7
Various important cubic crystal planes.

v

First determine the reciprocals of the Miller indices of the (101) plane. These are
1, oo, 1. The (101) plane must pass through a unit cube at intercepts x = 1 and z =
and be parallel to the y axis (Fig. EP3.7a).

First determine the reciprocals of the Miller indices of the (110) plane. These are
1, —1, co. The (110) plane must pass through a unit cube at intercepts x = 1 and

" y = —1 and be parallel to the z axis. Note that the origin of axes must be moved

to the lower-right back side of the cube (Fig. EP3.7b).

First determine the reciprocals of the Miller indices of the (221) plane. These are

1,11 The (221) plane must pass through a unit cube at intercepts x = 4, y = 4, and
= 1 (Fig. EP3.7¢).

Atom positions whose centers are intersected by the (110) plane are (1, 0, 0),

©0,1,0), (1,0, 1), (0, 1, 1), and G, 3, 1). These positions are indicated by the solid

circles (Fig. EP3.7d).
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(110} plane 1

(110) plane 2

A (110) plane 3

dyg a

dyyp

Figure 3.13
Top view of cubic unit cell showing the distance
between (110) crystal planes, djqo.

An important relationship for the cubic system, and only the cubic system, is
that the direction indices of a direction perpendicular to a crystal plane are the same
as the Miller indices of that plane. For example, the [100] direction is perpendicu-
lar to the (100) crystal plane.

In cubic crystal structures the interplanar spacing between two closest parallel
planes with the same Miller indices is designated djy, where b, k, and I are the Miller
indices of the planes. This spacing represents the distance from a selected origin con-
taining one plane and another parallel plane with the same indices that is closest
to it. For example, the distance between (110) planes 1 and 2, dyo, in Fig. 3.13 is
AB. Also, the distance between (110) planes 2 and 3 is d;y and is length BC in
Fig. 3.13. From simple geometry, it can be shown that for cubic crystal structures

a
d = — .
R/ RN

where d,,, = interplanar spacing between parallel closest planes -with
Miller indices hk, k, and [
a = lattice constant (edge of unit cube)
h, k, | = Miller indices of cubic planes being considered

3.4

Determine the Miller indices of the cubic crystallographic plane shown in Fig. EP3.8a.

® Solution '
First, transpose the plane parallel to the z axis § unit to the right along the y axis as shown
in Fig. EP3.8b so that the plane intersects the x axis at a unit distance from the new origin

EXAMPLE
PROBLEM 3.8
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T g B-i-H
New
origin

y ¥y

x 3 x

Y
(a) ®)
Figure EP3.8

located at the lower-right back comer of the cube. The new intercepts of the transposed

plane with the coordinate axes are now (+1, f; oc). Next, we take the reciprocals of

these intercepts to give (1, —3%, 0). Finally, we clear the % fraction to obtain (5120) for
the Miller indices of this plane.

EXAMPLE
PROBLEM 3.9

Determpine the Miller mdxces of the cubic crystal plane that intersects the position coor-
dinates (1,4, 0), (1, 1,§), G, 1. 1), and all coordinate axes.

H Solution

First, we locate the three position coordinates as indicated in Fig. EP3.9 at A, B, and C.
Next, we join A and B, extend AB to D, and then join A and C. Finally, we join A to C
to complete plane ACD. The origin for this ‘plane in the cube can be chosen at E, which
gives axial intercepts for plane ACD at x = —i,y = “3 andz—i The reciprocals of
these axial intercepts are —2, —%, ahd 2. Mulnplmgthescmtemcptsby3c}eersﬂ1eﬁmn
tion, giving Miller indices for the plane of (646).

Origin for i)
g A i
posm(_m--...__ ! /gr‘ [%! 1.9 4)

y
D (3. 1.0
<\ E (crigin for plane)

(L}.0

Figure EP3.9




3.7 Crystallographic Planes and Directions in Hexagonal Crystal Structure

Copper has an FCC crystal structure and a unit cell with a lattice constant of 0.361 nm.
What is its interplanar spacing dagg?

m Solution

a 036lnm =
drir = = = (.128 nm
MEVRFEE V)2 (@) +(0)?

EXAMPLE
PROBLEM 3.10

3.7 CRYSTALLOGRAPHIC PLANES AND
DIRECTIONS IN HEXAGONAL CRYSTAL
STRUCTURE

3.7.1 Indices for Crystal Planes in HCP Unit Cells

Crystal planes in HCP unit cells are commonly identified by using four indices
instead of three. The HCP crystal plane indices, called Miller-Bravais indices, are
denoted by the letters A, k, i, and [ and are enclosed in parentheses as (hkil). These
four-digit hexagonal indices are based on a coordinate system with four axes, as
shown in Fig. 3.14 in an HCP unit cell. There are three basal axes, a,, a,, and a;,
which make 120° with each other. The fourth axis or ¢ axis is the vertical axis located
at the center of the unit cell. The a unit of measurement along the a,, a,, and a; axes
is the distance between the atoms along these axes and is indicated in Fig. 3.14. In
the discussion of HCP planes and directions, we will use both the “unit cell” and
the “larger cell” for the presentation of concepts. The unit of measurement along the
c axis is the height of the unit cell. The reciprocals of the intercepts that a crystal
plane makes with the a,, a,, and a, axes give the h, k, and i indices, while the recip-
rocal of the intercept with the c axis gives the [ index.

LS
et

N
! o 0
—a—
Figure 3.14

The four coordinate axes (a, &, 43,
and c¢) of the HCP crystal structure.




3

MatVis

CHAPTER 3 Crystal and Amorphous Structure in Materials
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Figure 3.15

Miller-Bravais indices of hexagonal crystal planes: (&) basal planes and (b) prism
planes.

Basal Planes The basal planes of the HCP unit cell are very important planes for
this unit cell and are indicated in Fig. 3.15a. Since the basal plane on the top of the
HCP unit cell in Fig. 3.15q is parallel to the a,, a,, and a; axes, the intercepts of this
plane with these axes will all be infinite, Thus, a; = o0, @, = 00, and a; = co. The
¢ axis, however, is unity since the top basal plane intersects the ¢ axis at unit dis-
tance. Taking the reciprocals of these intercepts gives the Miller-Bravais indices for
the HCP basal plane. Thus h = 0,k = 0,i = 0, and / = 1. The HCP basal plane is,
therefore, a zero-zero-zero-one or (0001) plane.

Prism Planes Using the same method, the intercepts of the front prism plane
(ABCD) of Fig. 3.15b are a; = +1,a, = c0,a; = —1, and ¢ = oo. Taking the
reciprocals of these intercepts gives A = 1,k = 0,i = —1,and = 0, or the (1010)
plane. Similarly, the ABEF prism plane of Fig. 3.15b has the indices (1100) and the
DCGH plane the indices (0110). All HCP prism planes can be identified collec-
tively as the {1010} family of planes.

Sometimes HCP planes are identified only by three indices (hkl) since h + k =
—i. However, the (hkil) indices are used more commonly because they reveal the
hexagonal symmetry of the HCP unit cell.

3.7.2 Direction Indices in HCP Unit Cells®

Directions in HCP unit cells are also usually indicated by four indices u, v, ¢, and
w enclosed by square brackets as [uviw]. The u, v, and ¢ indices are lattice vectors

3The topic of direction indices for hexagonal unit cells is not normally presented in an introductory course
in materials but is included here for advanced students.
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Figure 3.16

Miller-Bravais hexagonal crystal structure direction indices for principal directions: (a) +a, axis direction
on basal plane, (b) +a, axis direction on basal plane, (¢) +a; direction axis on basal plane, and (d) +a;
direction axis incorporating ¢ axis. (e) Positive and negative Miller-Bravais directions are indicated in
simple hexagonal crystal structure on upper basal plane.

in the a,, a,, and a, directions, respectively (Fig. 3.16), and the w index is a lattice
vector in the ¢ direction. To maintain uniformity for both HCP indices for planes
and directions, it has been agreed that ¥ + v = —t for directions.

Let us now determine the Miller-Bravais hexagonal indices for the directions
a,, a,, and a;, which are the positive basal axes of the hexagonal unit cell. The a,
direction indices are given in Fig. 3.16a, the a, direction indices in Fig. 3.16b,
and the a, direction indices in Fig. 3.16¢. If we need to indicate a ¢ direction also
for the a; direction, this is shown in Fig. 3.16d. Figure 3.16e summarizes the posi-
tive and negative directions on the upper basal plane of the simple hexagonal crys-
tal structure. :
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3.8 COMPARISON OF FCC, HCP, AND BCC
CRYSTAL STRUCTURES

3.8.1 FCC and HCP Crystal Structures

As previously pointed out, both the HCP and FCC crystal structures are close-packed
structures. That is, their atoms, which are considered approximate “spheres,” are
packed together as closely as possible so that an atomic packing factor of 0.74 is
attained.® The (111) planes of the FCC crystal structure shown in Fig. 3.17a have
the identical packing arrangement as the (0001) planes of the HCP crystal structure
shown in Fig. 3.17b. However, the three-dimensional FCC and HCP crystal struc-
tures are not identical because there is a difference in the stacking arrangement of
their atomic planes, which can best be described by considering the stacking of hard
spheres representing atoms. As a useful analogy, one can imagine the stacking of
planes of equal-sized marbles on top of each other, minimizing the space between
the marbles.

Consider first a plane of close-packed atoms designated the A plane, as shown
in Fig. 3.18. Note that there are two different types of empty spaces or voids between

As pointed out in Sec. 3.3, the atoms in the HCP structure deviate to varying degrees from ideality. In
some HCP metals, the atoms are elongated along the ¢ axis, and in other cases, they are compressed along
the ¢ axis (see Table 3.4).

a1

Figure 3.17

Comparison of the (&g) FCC crystal structure showing a
close-packed (111) plane and (b) a HCP crystal structure
showing the close-packed (0001) plane.

(From W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and
Properties of Materials, vol. 1: “Structure”, Wiley, 1964, p. 51.)
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A plane —,. ! A plane
a void s 5
b void P 3 i

(a)

(e) (d)
Figure 3.18 .
Formation of the HCP and FCC crystal structures by the stacking ‘/
of atomic planes. (a) A plane showing the a and b voids. (b) B plane Animation

placed in a voids of plane A. (¢) Third plane placed in b voids of
B plane, making another A plane and forming the HCP crystal
structure. (d) Third plane placed in the a voids of B plane, making
a new C plane and forming the FCC crystal structure.

(Ander, P; S A.JL, Principles of Chemistry, Ist ed., © 1965, Reprinted by
permission of Pearson Education, Inc., Upper Saddle River, NI.)

the atoms. The voids pointing to the top of the page are designated a voids and those
pointing to the bottom of the page, b voids. A second plane of atoms can be placed
over the a or b voids, and the same three-dimensional structure will be produced.
Let us place plane B over the a voids, as shown in Fig. 3.18b. Now if a third plane
of atoms is placed over plane B to form a closest-packed structure, it is possible to
form two different close-packed structures. One possibility is to place the atoms of
the third plane in the b voids of the B plane. Then the atoms of this third plane will
lie directly over those of the A plane and thus can be designated another A plane
(Fig. 3.18¢). If subsequent planes of atoms are placed in this same alternating stack-
ing arrangement, then the stacking sequence of the three-dimensional structure pro-
duced can be denoted by ABABAB. . . . Such a stacking sequence leads to the HCP
crystal structure (Fig. 3.17b).

The second possibility for forming a simple close-packed structure is to
place the third plane in the a voids of plane B (Fig. 3.184). This third plane is
designated the C plane since its atoms do not lie directly above those of the
B plane or the A plane. The stacking sequence in this close-packed structure
is thus designated ABCABCABC. . . and leads to the FCC structure shown in
Fig. 3.17a.
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Figure 3.19

BCC crystal structure showing (a) the (100) plane and (b) a section of the (110)
plane. Note that this is not a close-packed structure but that the diagonals have
close-packed directions.

(From W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, vol. I:
“Structure”, Wiley, 1964, p. 51.)

3.8.2 BCC Crystal Structure

The BCC structure is not a close-packed structure and hence does not have close-
packed planes like the {111} planes in the FCC structure and the {0001} planes in
the HCP structure. The most densely packed planes in the BCC structure are the
{110} family of planes of which the (110) plane is shown in Fig. 3.19b. However,
the atoms in the BCC structure do have close-packed directions along the cube diag-
onals, which are the (111} directions.

3.9 VOLUME, PLANAR, AND LINEAR DENSITY
UNIT-CELL CALCULATIONS

3.9.1 Volume Density

Using the hard-sphere atomic model for the crystal structure unit cell of a metal
and a value for the atomic radius of the metal obtained from X-ray diffraction
analysis, a value for the volume density of a metal can be obtained by using the
equation

mass/unit cell
volume/unit cell
In Example Problem 3.11 a value of 8.98 Mg/m® (8.98 g/cm’) is obtained for the
density of copper. The handbook experimental value for the density of copper is

8.96 Mg/m® (8.96 g/cm®). The slightly lower density of the experimental value could
be attributed to the absence of atoms at some atomic sites (vacancies), line defects,

Volume density of metal = p, = 3.5)
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and mismatch where grains meet (grain boundaries). These crystalline defects are
discussed in Chap. 4. Another cause of the discrepancy could also be due to the
atoms not being perfect spheres.

111

Copper has an FCC crystal structure and an atomic radius of 0.1278 nm. Assuming the
atoms to be hard spheres that touch each other along the face diagonals of the FCC unit
cell as shown in Fig. 3.7, calculate a theoretical value for the density of copper in mega-
grams per cubic meter. The atomic mass of copper is 63.54 g/mol.

H Solution ~
For the FCC unit cell, 1 2a = 4R, where g is the lattice constant of the unit cell and R
is the atomic radius of the copper atom. Thus,

4R _ (4)(0.1278 nm)

_ = 0.361
a - 5 nm
mass/unit cell
Volume density of = Pv = Volume/unit cell -
olume density oI copper = p, volume/unit cell 69

- In the FCC unit cell, there are four atoms/unit cell. Each copper atom has a mass of
(63.54 g/mol)/(6.02 X 102 atoms/mol). Thus, the mass m of Cu atoms in the FCC unit
cell is

(4 atoms)(63.54 g/mol) ( 10~5Mg
m —
6.02 % 102 atoms/mol g

The volume V of the Cu unit cell is

) =422 x 1078 Mg

107 %m

3
V=a®= (0.361 nm X ) =470 X 10" ¥ m?

Thus, the density of copper is

m 422 X 1072 Mg
R b 308 Me/m® (898 %) <
V= 0% 10 P 28 Mym™ (898 glemr)

I

Py

EXAMPLE
PROBLEM 3.11

3.9.2 Planar Atomic Density

Sometimes it is important .to determine the atomic densities on various crystal
planes. To do this a quantity called the planar atomic density is calculated by using
the relationship

equiv. no. of atoms whose centers
are intersected by selected area
1 1 -_ —1 3.
Planar atomic density = p, ~ lected area 3.6)
For convenience the area of a plane that intersects a unit cell is usually used in these
calculations, as shown, for example, in Fig. 3.20 for the (110) plane in a BCC unit
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(@) (b

Figure 3.20
(a) A BCC atomic-site unit cell showing a shaded (110) plane.
(b) Areas of atoms in BCC unit cell cut by the (110) plane.

cell. In order for an atom area to be counted in this calculation, the plane of inter-
est must intersect the center of an atom. In Example Problem 3.12 the (110) plane
intersects the centers of five atoms, but the equivalent of only two atoms is counted
since only one-quarter of each of the four corner atoms is included in the area inside
the unit cell.

EXAMPLE
PROBLEM 3.12

Calculate the planar atomic density p, on the (110) plane of the a iron BCC lattice in
atoms per square millimeter. The lattice constant of « iron is 0.287 nm.

B Solution
__equiv. no. of atoms whose centers are intersected by selected area 3.6)
Pp= selected area ' ’
The equivalent number of atoms intersected by the (110)plane in terms of the surface area
inside the BCC unit cell is shown in Fig. 3.22 and is

1 atom at center + 4 X } atoms at four corners of plane = 2 atoms
The area intersected by the (110) plane inside the unit cell (selected area) is
(VZa)a) = Vaa?
Thus, the planar atomic density is '
_ 2 atoms _ 17.2 atoms
V/2(0.287 nm)? nm?
17.2 atoms _ 10'2 pm?

X
nmz mmz

1.72 x 10" atoms/mm? «

Pp




3.9 Volume, Planar, and Linear Density Unit-Cell Calculations

3.9.3 Linear Atomic Density

Sometimes it is important to determine the atomic densities in various directions in
crystal structures. To do this a quantity called the linear atomic density is calcu-
lated by using the relationship

no. of atomic diam. intersected by selected
length of line in direction of interest
selected length of line

Linear atomic density = p; =
3.7)

Example Problem 3.13 shows how the linear atomic density can be calculated in the
[110] direction in a pure copper crystal lattice.
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Calculate the linear atomic density p; in the [110] direction in the copper crystal lattice in
atoms per millimeter. Copper is FCC and has a lattice constant of 0.361 nm.

M Solution

The atoms whose centers the [110] direction intersects are shown in Fig. EP3.13. We shall
select the length of the line to be the length of the face diagonal of the FCC unit cell,
which is V2a. The number of atomic diameters intersected by this length of line are
3+ 1 + ; = 2 atoms. Thus using Eq. 3.7, the linear atomic density is

_ 2atoms _  2atoms  _ 3.92 atoms
Pr= s T V2(036lnm)  om
_ 392atoms 10° nm
nm mm

= 3.92 X 10° atoms/mm <«

-.—h-'—i{

Y [110]

Figure EP3.13

Diagram for calculating the .
atomic linear density in the
[110] direction in an FCC
unit_cell. :

EXAMPLE
PROBLEM 3.13
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3.10 POLYMORPHISM OR ALLOTROPY

Many elements and compounds exist in more than one crystalline form under dif-
ferent conditions of temperature and pressure. This phenomenon is termed poly-
morphism, or allotropy. Many industrially important metals such as iron, titanium,
and cobalt undergo allotropic transformations at elevated temperatures at atmospheric
pressure. Table 3.5 lists some selected metals that show allotropic transformations
and the structure changes that occur.

Iron exists in both BCC and FCC crystal structures over the temperature range
from room temperature to its melting point at 1539°C as shown in Fig. 3.21. Alpha
() iron exists from —273°C to 912°C and has the BCC crystal structure. Gamma (y)

Table 3.5 Allotropic crystalline forms of some metals

Crystal structure At other
Metal at room temperature temperatures .
Ca FCC BCC (> 447°C)
Co HCP FCC (> 427°C)
Hf HCP BCC (> 1742°C)
Fe BCC FCC (912-1394°C)
BCC (> 1394°C)
Li BCC HCP (< —193°C)
Na BCC HCP (< -—233°C)
Tl HCP BCC (> 234°C)
Ti HCP BCC (> 883°C)
Y HCP BCC (> 1481°C)
Zr HCP i BCC (> 872°C)
C Liquid iron
1539 + .
1304 ¢ 8 (delta) iron (BCC)
¥ (gamma) iron (FCC)
912 4
E » o (alpha) iron (BCC)
—273 ——J
Figure 3.21

Allotropic crystalline forms of
iron over temperature ranges
at atmospheric pressure
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iron exists from 912°C to 1394°C and has the FCC crystal structure. Delta (8) iron
exists from 1394°C to 1539°C which is the melting point of iron. The crystal struc-
ture of & iron is also BCC but with a larger lattice constant than e« iron.
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Calculate the theoretical volume change accompanying a polymorphic transformation in a
pure metal from the FCC to BCC crystal structure. Assume the hard-sphere atomic model
and that there is no change in atomic volume before and after the transformation.

B Solution
In the FCC crystal structure unit cell, the atoms are in contact along the face diagonal of
the unit cell, as shown in Fig. 3.7. Hence,

AR
V2

In the BCC crystal structure unit cell, the atoms are in contact along the body diag-
onal of the unit cell as shown in Fig. 3.5. Hence,

VZa=4R or a= 3.3)

\\I/§a=4R or.a=% @1

The volume per atom for the FCC crystal lattice, since it has four atoms per unit

cell, is
3 3
a 4R 1
=—={(—= )7 )= 5668
wee =5 - (1) ()
The volume per atom for the BCC crystal lattice, since it has two atoms per unit
cell, is _
3 3
- a 4R 1
=—=—2]|=)=6.16R
Yoee = 3 (\/i) (2) ¢

The chahg_c in volume associated with the transformation from the FCC to BCC crystal
structure, assuming no chagge in atomic radius, is'

AV _ Veee — Vree
Vrco Vrcc
_ (6.16R3 — 5.66R°

100% = +8.8% <
5.66R° )

EXAMPLE
PROBLEM 3.14

3.11 CRYSTAL STRUCTURE ANALYSIS

Our present knowledge of crystal structures has been obtained mainly by X-ray
diffraction techniques that use X-rays whose wavelength are the same as the dis-
tance between crystal lattice planes. However, before discussing the manner in
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Figure 3.22

Copper X-rays  Vacuum  filament Glass

Beryllium window *  X.rays

CHAPTER 3 Crystal and Amorphous Structure in Materials

Tungsten

Metal focusing cup

Schematic diagram of the cross section of a sealed-off filament X-ray tube.
(From B. D. Cullity, Elements of X-Ray Diffraction 2nd ed., Addison-Wesley, 1978, p. 23. Reprinted by permission of
Elizabeth M. Cullity.)

which X-rays are diffracted in crystals, let us consider how X-rays are produced
for experimental purposes.

3.11.1 X-Ray Sources

X-rays used for diffraction are electromagnetic waves with wavelengths in the range
0.05 to 0.25 nm (0.5 to 2.5 A). By comparison, the wavelength of visible light is of
the order of 600 nm (6000 A). In order to produce X-rays for diffraction purposes,
a voltage of about 35 kV is necessary and is applied between a cathode and an anode
target metal, both of which are contained in a vacuum, as shown in Fig. 3.22. When
the tungsten filament of the cathode is heated, electrons are released by thermionic
emission and accelerated through the vacuum by the large voltage difference
between the cathode and anode, thereby gaining kinetic energy. When the electrons
strike the target metal (e.g., molybdenum), X-rays are given off. However, most of
the kinetic energy (about 98 percent) is converted into heat, so the target metal must
be cooled externally.

The X-ray spectrum emitted at 35 kV using a molybdenum target is shown in
Fig. 3.23. The spectrum shows continuous X-ray radiation in the wavelength range
from about 0.2 to 1.4 A (0.02 to 0.14 nm) and two spikes of characteristic radia-
tion that are designated the K, and K, lines. The wavelengths of the K, and Ky
lines are characteristic for an element. For molybdenum, the K, line occurs at a
wavelength of about 0.7 A (0.07 nm). The origin of the characteristic radiation is
explained as follows. First, K electrons (electrons in the n = 1 shell) are knocked
out of the atom by highly energetic electrons bombarding the target, leaving
excited atoms. Next, some electrons in higher shells (that is, n = 2 or 3) drop
down to lower energy levels to replace the lost K electrons, emitting energy of a
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b
16 - To 37.2
- MoK,
%‘ 12k Mo Kg
4 . Ionization
g - Characteristic
2 radiation N n=4
5 l
& M n=
| L,
4+ * 4 L n=12
i s
K.
0 | -
0.2 .
Wavelength A (A) | - K n=1
Figure 3.23 Figure 3.24
X-ray emission spectrum produced when Energy levels of electrons in
molybdenum metal is used as the target metal molybdenum showing the origin of K,

in an X-ray tube operating at 35 kV. and Kjg radiation,

characteristic wavelength. The transition of electrons from the L (n = 2) shell to
the K (n = 1) shell creates energy of the wavelength of the K, line, as indicated
in Fig. 3.24,

3.11.2 X-Ray Diffraction

Since the wavelengths of some X-rays are about equal to the distance between
planes of atoms in crystalline solids, reinforced diffraction peaks of radiation of
varying intensities can be produced when a beam of X-rays strikes a crystalline
solid. However, before considering the application of X-ray diffraction techniques
to crystal structure analysis, let us examine the geometric conditions necessary to
produce diffracted or reinforced beams of reflected X-rays.

Consider a monochromatic (single-wavelength) beam of X-rays to be incident
on a crystal, as shown in Fig. 3.25. For simplification, let us allow the crystal planes
of atomic scattering centers to be replaced by crystal planes that act as mirrors in
reflecting the incident X-ray beam. In Fig. 3.25, the horizontal lines represent a set
of parallel crystal planes with Miller indices (kkI). When an incident beam of mono-
chromatic X-rays of wavelength A strikes this set of planes at an angle such that the
wave patterns of the beam leaving the various planes are not in phase, no reinforced
beam will be produced (Fig. 3.25a). Thus, destructive interference occurs. If the
reflected wave patterns of the beam leaving the various planes are in phase, then
reinforcement of the beam or constructive interference occurs (Fig. 3.25b).

117
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Incident No reflected
X-rays A X-rays
N &7 s

[« /PSS
5968~

(hkl) planes

Incident A Reflected

Figure 3.25

The refiection of an X-ray beam by the (hk/) planes
of a crystal. (a) No reflected beam is produced at an
arbitrary angle of incidence. (b) At the Bragg angle
8, the reflected rays are in phase and reinforce one
another. (c) Similar to (b) except that the wave
representation has been omitted.

(From p. 201 in A.G. Guy and J.J. Hren, Elements of
Physical Metallurgy 3rd ed., Addison-Wesley, 1974.)

Let us now consider incident X-rays 1 and 2 as indicated in Fig. 3.25¢. For these
rays to be in phase, the extra distance of travel of ray 2 is equal to MP + PN, which
must be an integral number of wavelengths A. Thus,

nA = MP + PN 3.8)
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where n = 1,2, 3,... and is called the order of the diffraction. Since both MP and
PN equal dysin 6, where dy,, is the interplanar spacing of the crystal planes of
indices (hkl), the condition for constructive interference (i.e., the production of a
diffraction peak of intense radiation) must be

nA = 2d,y,sin 8 3.9)

This equation, known as Bragg’s law,” gives the relationship among the angular posi-
tions of the reinforced diffracted beams in terms of the wavelength A of the incom-
ing X-ray radiation and of the interplanar spacings dy,, of the crystal planes. In most
cases, the first order of diffraction where » = 1 is used, and so for this case, Bragg’s
law takes the form

A = 2d,ysin 6 (3.10)

A sample of BCC iron was placed in an X-ray diffractometer using incoming X-rays
with a wavelength A = 0.1541 nm. Diffraction from the {110} planes was obtained at
26 = 44.704°, Calculate a value for the lattice constant @ of BCC iron. (Assume first-order
diffraction with n = 1.)

o Solution
20 = 44.704° @ = 22.35°
A= 2dy,sinf (3.10)
o = )t _ 0._1541 nm
2sinf  2(sin 22.35°)
0.1541 nm
= _—2(0.3803) = 0.2026 nm

Rearranging Eq. 3.4 gives
a=dyVh+ i+ 12
Thus,

a(Fe) = dy;gV 12 + 12 + 02

= (0.2026 nm)(1.414) = 0.287 nm <

EXAMPLE
PROBLEM 3.15

3.11.3 X-Ray Diffraction Analysis of Crystal Structures

The Powder Method of X-Ray Diffraction Analysis The most commonly used
X-ray diffraction technique is the powder method. In this technique, a powdered
specimen is utilized so that there will be a random orientation of many crystals to ensure
that some of the particles will be oriented in the X-ray beam to satisfy the diffraction

"William Henry Bragg (1862-1942). English physicist who worked on X-ray crystallography.
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Figure 3.26
An X-ray diffractometer (with X-radiation shields removed).
{Courtesy of Rigaku.)

conditions of Bragg’s law. Modemn X-ray crystal analysis uses an X-ray diffractometer
that has a radiation counter to detect the angle and intensity of the diffracted beam
(Fig. 3.26). A recorder automatically plots the intensity of the diffracted beam as the
counter moves on a goniometer® circle (Fig. 3.27) that is in synchronization with the
specimen over a range of 26 values. Figure 3.28 shows an X-ray diffraction recorder
chart for the intensity of the diffracted beam versus the diffraction angles 26 for a
powdered pure-metal specimen. In this way, both the angles of the diffracted beams
and their intensities can be recorded at one time. Sometimes a powder camera with
an enclosed filmstrip is used instead of the diffractometer, but this method is much
slower and in most cases less convenient.

Diffraction Conditions for Cubic Unit Cells X-ray diffraction techniques enable
the structures of crystalline solids to be determined. The interpretation of X-ray

8A goniometer is an instrument for measuring angles.
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Radiation detector (moving
on goniometer circle)

,ol101% 90 80 49

Diffracted beam 2
10
- °
Incident beam
Radiation
generator Top view of specimen Radiation
. " (hkl) planes
fixed in goniometer generator in crystal

Figure 3.27

Schematic illustration of the diffractometer method of crystal analysis and of the conditions
necessary for diffraction. ’
(From A.G. Guy, Essentials of Materials Science, McGraw-Hill, 1976.)
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Figure 3.28

Record of the diffraction angles for a tungsten sample obtained by the
use of a diffractometer with copper radiation.

(From p. 208 in A.G. Guy and J.J. Hren, Elements of Physical Metallurgy 3rd ed.,
Addison-Wesley, 1974.)

diffraction data for most crystalline substances is complex and beyond the scope of
this book, and so only the simple case of diffraction in pure cubic metals will be
considered. The analysis of X-ray diffraction data for cubic unit cells can be sim-
plified by combining Eq. 3.4,

a

d _——
R/
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with the Bragg equation A = 2d sin 6, giving

2a sin 8
A= — .
Yoy G4
This equation can be used along with X-ray diffraction data to determine if a cubic
crystal structure is body-centered or face-centered cubic. The rest of this subsection
will describe how this is done.

To use Eq. 3.11 for diffraction analysis, we must know which crystal planes
are the diffracting planes for each type of crystal structure. For the simple cubic lat-
tice, reflections from all (hkl) planes are possible. However, for the BCC structure,
diffraction occurs only on planes whose Miller indices when added together
(h + k + 1) total to an even number (Table 3.6). Thus, for the BCC crystal struc-
ture, the principal diffracting planes are {110}, {200}, {211}, etc., which are listed
in Table 3.7. In the case of the FCC crystal structure, the principal diffracting planes
are those whose Miller indices are either all even or all odd (zero is considered even).
Thus, for the FCC crystal structure, the diffracting planes are {111}, {200}, {220},
etc., which are listed in Table 3.7.

Interpreting Experimental X-Ray Diffraction Data for Metals with Cubic Crystal
Structures We can use X-ray diffractometer data to determine crystal structures. A
simple case to illustrate how this analysis can be used is to distinguish between the

Table 3.6 Rules for determining the diffracting {hk/} planes in cubic crystals

Bravais lattice Reflections present : Reflections absent
BCC (h+ k+1)=even (h+k+1)=odd
FCC (h, k, 1) all odd or all even (h, k, 1) not all odd or all even

Table 3.7 Miller indices of the diffracting planes for BCC and FCC lattices

Cubie
Sl:l;l; RN : ke cooot e S e o plames {hRT}
{hil} B+E+P © BB+ Py o FCC 0 BCC
{100} 12 + 0% + 0? 1
{110} 12+ 12 + 02 2 110
{111} 1 +12+ 12 3 111
{200} 22+ 0%+ 0? 4 200 200
{210} 22+ 12+ 02 5
{211} 2+12+12 6 211
. 7
{220} 22 422 4 02 8 220 220
{221} 2+22+12 9
{310} 32+ 12402 10 310
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BCC and FCC crystal structures of a cubic metal. Let us assume that we have a
metal with either a BCC or an FCC crystal structure and that we can identify the
principal diffracting planes and their corresponding 26 values, as indicated for the
metal tungsten in Fig. 3.3.

By squaring both sides of Eq. 3.11 and solving for sin?@, we obtain

MR+ K+ P)
T aE
From X-ray diffraction data, we can obtain experimental values of 28 for a series of
principal diffracting {hkl} planes. Since the wavelength of the incoming radiation

and the lattice constant a are both constants, we can eliminate these quantities by
forming the ratio of two sin?# values as

sin6, ki + k3 + 23
sin0y  h} + ki + 1}

sin®@ (3.12)

(3.13)

where 8, and 05 are two diffracting angles associated with the principal diffracting
planes {h,k,l,} and {hzkgls}, respectively.

Using Eq. 3.13 and the Miller indices of the first two sets of principal diffract-
ing planes listed in Table 3.7 for BCC and FCC crystal structures, we can determine
values for the sin?@ ratios for both BCC and FCC structures.

For the BCC crystal structure, the first two sets of principal diffracting planes
are the {110} and {200} planes (Table 3.7). Substitution of the Miller {hk!} indices
of these planes into Eq. 3.13 gives

sin?@, 12+ 12+ 0@

sint6, 2 +0+0
Thus, if the crystal structure of the unknown cubic metal is BCC, the ratio of the
sin? @ values that correspond to the first two principal diffracting planes will be 0.5.

For the FCC crystal structure the first two sets of principal diffracting planes are
the {111} and {200} planes (Table 3.7). Substitution of the Miller {hkl} indices of
these planes into Eq. 3.13 gives

sinf, 17+ 12+ 1°

sinf@; 22+ 0% + 02
Thus, if the crystal structure of the unknown cubic metal is FCC, the ratio of
the sin® @ values that correspond to the first two principal diffracting planes will
be 0.75.

Example Problem 3.16 uses Eq. 3.13 and experimental X-ray diffraction data
for the 20 values for the principal diffracting planes to determine whether an
unknown cubic metal is BCC or FCC. X-ray diffraction analysis is usually much
more complicated than Example Problem 3.16, but the principles used are the same.
Both experimental and theoretical X-ray diffraction analysis has been and continues
to be used for the determination of the crystal structure of materials.

0.5 (3.19)

=0.75 (3.15)
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EXAMPLE
PROBLEM 3.16

An X-ray diffractometer recorder chart for an element that has either the BCC or the FCC
crystal structure shows diffraction peaks at the following 29 angles: 40, 58, 73, 86.8, 100.4,
and 114.7. The wavelength of the incoming X-ray used was 0.154 nm.

a. Determine the cubic structure of the element.
b. Determine the lattice constant of the element.
c. Identify the element.

m Solution
a. Determination of the crystal structure of the element. First, the sin® @ values are
calculgted from the 28 diffraction angles.

26(deg) O(deg) sin 6 sin? @
40 20 0.3420 0.1170
58 29 0.4848 0.2350
73 36.5 0.5948 0.3538
86.8 434 0.6871 0.4721
100.4 50.2 0.7683 0.5903

114.7 57.35 0.8420 0.7090

Next, the ratio of the sin® @ values of the first and second angles is calculated:

2
in“g 0.117
n?0 =035 0.498 = (.5 .

The crystal structure is BCC since this ratio is = 0.5. If the ratio had been = 0.75,
the structure would have been FCC.
b. Determination of the lattice constant, Rearranging Eq. 3.12 and solving for a® gives

23+ +2
p-REYELE
4 sin“ @

A [+ R+ P
TN e ¢

Substituting into Eq- 3.17 k = 1,k = 1,and / = 0 for the k, k, ! Miiller indices of

the first sét of principal diffracting planes for the BOC crystal structure, which are
the {110} planes, the corresponding value for sin?6, which is 0.117, and 0.154 nm
for A,-the incoming radiation, gives

_0154nm [+ 1 +07
2 0.117

(3.16)

= (0.318 nm «

c. Identification of the element. The element is tungsten since this element has a lartice
constant of 0.316 nm and is BCC.
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3.12 AMORPHOUS MATERIALS

As discussed previously, some materials are called amorphous or noncrystalline
because they lack long-range order in their atomic structure. It should be noted that
in general materials have a tendency to achieve a crystalline state because that is the
most stable state and corresponds to the lowest energy level. However, atoms in amor-
phous materials are bonded in a disordered manner because of factors that inhibit the
formation of a periodic arrangement. Atoms in amorphous materials, therefore,
occupy random spatial positions as opposed to specific positions in crystalline solids.
For clarity, various degrees of order (or disorder) are shown in Fig. 3.29.

Most polymers, glasses, and some metals are members of the amorphous class
of materials. In polymers, the secondary bonds among molecules do not allow for
the formation of parallel and tightly packed chains during solidification. As a result,
polymers such as polyvinylchloride consist of long, twisted molecular chains that
are entangled to form a solid with amorphous structure, similar to Fig. 3.32¢. In
some polymers such as polyethylene, the molecules are more efficiently and tightly
packed in some regions of the material and produce a higher degree of regional long-
range order. As a result, these polymers are often classified as semicrystalline. A
more detailed discussion of semicrystalline polymers will be given in Chap. 10.

Inorganic glass based on glass-forming oxide, silica (Si0,), is generally charac-
terized as a ceramic material (ceramic glass) and is another example of a material with
an amorphous structure. In this type of glass, the fundamental subunit in the molecules
is the SiO}~ tetrahedron. The ideal crystalline structure of this glass is shown in Fig.
3.29a. The schematic shows the Si-O tetrahedrons joined comer to corner to form
long-range order. In its viscous liquid state, the molecules have limited mobility, and,
in general, crystallization occurs slowly. Therefore, a modest cooling rate suppresses
the formation of the crystal structure and instead the tetrahedra join comer to comer
to form a network lacking in long-range order (Fig. 3.295).

In addition to polymers and glasses, some metals also have the ability to form
amorphous structures (metallic glass) under strict and often difficult to achieve condi-
tions. Unlike glasses, metals have very small and mobile building blocks under molten

Figure 3.29

A schematic showing various degrees of order in materials: (a) long-range
order in crystalline silica, (b) silica glass without long-range order, and

(c) amorphous structure in polymers.
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conditions. As a result, it is difficult to prevent metals from crystallizing. However,
alloys such as 78%Fe-9%Si—13%B that contain a high percentage of semimetals, Si
and B, may form metallic glasses through rapid solidification at cooling rates in excess
of 10 °C/s. At such high cooling rates, the atoms simply do not have enough time to
form a crystalline structure and instead form a metal with an amorphous structure, that
is, they are highly disordered. In theory, any crystalline material can form a noncrys-
talline structure if solidified rapidly enough from a molten state.

Amorphous materials, because of their structure, possess properties that are
superior. For instance, metallic glasses possess higher strength, better corrosion
characteristics, and magnetic properties when compared to their crystalline coun-
terparts. Finally, it is important to note that amorphous materials do not show sharp
diffraction patterns when analyzed using X-ray diffraction techniques. This is due
to a lack of order and periodicity in the atomic structure. In future chapters, the
role of structure of the material on its properties will be explained in detail.

31I3SUMMARY

Atomic arrangements in crystalline solids can be described by a network of lines called a
space lattice. Each space lattice can be described by specifying the atom positions in a repeat-
ing unit cell. The crystal structure consists of space lattice and motif or basis. Crystalline
materials possess long-range atomic order such as most metals. But some materials such as
many polymers and glasses possess only short-range order. Such materials are called semi-
crystalline or amorphous. There are seven crystal systems based on the geometry of the axial
lengths and interaxial angles of the unit cells. These seven systems have a total of 14 sub-
lattices (unit cells) based on the internal arrangements of atomic sites within the unit cells.

In metals, the most common crystal structure unit cells are: body-centered cubic
(BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) (which is a dense
variation of the simple hexagonal structure).

Crystal directions in cubic crystals are the vector components of the directions
resolved along each of the component axes and reduced to smallest integers. They are indi-
cated as [uvw]. Families of directions are indexed by the direction indices enclosed by
pointed brackets as (wvw). Crystal planes in cubic crystals are indexed by the reciprocals
of the axial intercepts of the plane (followed by the elimination of fractions) as (hkf). Cubic
crystal planes of a form (family) are indexed with braces as {hkl}. Crystal planes in hexag-
onal crystals are commonly indexed by four indices A, k, i, and I enclosed in parentheses
as (hkil). These indices are the reciprocals of the intercepts of the plane on the a,, a,, a;,
and ¢ axes of the hexagonal crystal structure unit cell. Crystal directions in hexagonal crys-
tals are the vector components of the direction resolved along each of the four coordinate
axes and reduced to smallest integers as [uviw].

Using the hard-sphere model for atoms, calculations can be made for the volume, pla-
nar, and linear density of atoms in unit cells. Planes in which atoms are packed as tightly
as possible are called close-packed planes, and directions in which atoms are in closest
contact are called close-packed directions. Atomic packing factors for different crystal
structures can also be determined by assuming the hard-sphere atomic model. Some met-
als have different crystal structures at different ranges of temperature and pressure, a phe-
nomenon called polymorphism.



3.14 Definitions

Crystal structures of crystalline solids can be determined by using X-ray diffraction
analysis techniques. X-rays are diffracted in crystals when the Bragg’s law (nA = 2d sin )
conditions are satisfied. By using the X-ray diffractometer and the powder method, the
crystal structure of many crystalline solids can be determined.

3.14 DEFINITIONS

Sec. 3.1

Amorphous: lacking in long range atomic order.

Crystal: a solid composed of atoms, ions, or molecules arranged in a pattern that is repeated in
three dimensions.

Crystal structure: a regular three-dimensional pattern of atoms or ions in space.

Space lattice: a three-dimensional array of points each of which has identical surroundings.

Lattice point: one point in an array in which all the points have identical surroundings.

Unit cell: a convenient repeating unit of a space lattice. The axial lengths and axial angles are
the lattice constants of the unit cell.

Motif: a group of atoms that or (basis) are organized relative to each other and are associated
with corresponding lattice points.

Sec. 3.3

Body-centered cubic (BCC) unit cell: a unit cell with an atomic packing arrangement in
which one atom is in contact with eight identical atoms located at the corners of an
imaginary cube. o

Face-centered cubic (FCC) unit cell: a unit cell with an atomic packing arrangement in which
12 atoms surround a central atom. The stacking sequence of layers of close-packed planes
in the FCC crystal structure is ABCABC. . . .

Hexagonal close-packed (HCP) unit cell: a unit cell with an atomic packing arrangement in
which 12 atoms surround a central identical atom. The stacking sequence of layers of
close-packed planes in the HCP crystal structure is ABABAB. . . .

Atomic packing factor (APF): the volume of atoms in a selected unit cell divided by the
volume of the unit cell.

Sec. 3.5 :

Indices of direction in a cubic crystal: a direction in a cubic unit cell is indicated by a
vector drawn from the origin at one point in a unit cell through the surface of the unit
cell; the position coordinates (x, y, and z) of the vector where it leaves the surface of the
unit cell (with fractions cleared) are the indices of direction. These indices, designated u,
v, and w are enclosed in brackets as [uvw]. Negative indices are indicated by a bar over
the index.

Sec. 3.6

Indices for cubic crystal planes (Miller indices): the reciprocals of the intercepts (with
fractions cleared) of a crystal plane with the x, y, and z axes of a unit cube are called the
Miller indices of that plane. They are designated h, k, and I for the x, y, and z axes,
respectively, and are enclosed in parentheses as (hkl). Note that the selected crystal plane
must not pass through the origin of the x, y, and z axes.

Sec. 3.9

Volume density p,: mass per unit volume; this quantity is usually expressed in Mg/m’

or g/lcm?®.
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Planar density p,: the equivalent number of atoms whose centers are intersected by a selected
area divided by the selected area.

Linear density p,: the number of atoms whose centers lie on a specific direction on a specific
length of line in a unit cube.

Sec. 3.10

Polymorphism (as pertains to metals): the ability of a metal to exist in two or more crystal
structures. For example, iron can have a BCC or an FCC crystal structure, depending on
the temperature.

Sec. 3.12

Semicrystalline: materials with regions of crystalline structure dispersed in the surrounding,
amorphous region, for instance, some polymers,

Metallic glass: metals with an amorphous atomic structure.

3.15 PROBLEMS

Answers to problems marked with an asterisk are given at the end of the book.

Knowledge and Comprehension Problems

3.1 Define the following terms: (@) crystalline solid, (b) long-range order, (c) short-
range order, and (d) amorphous.

3.2 Define the following terms: (a) crystal structure, (b) space lattice, (c) lattice point,
(d) unit cell, (¢) motif, and (f) lattice constants.

3.3 What are the 14 Bravais unit cells?

3.4 What are the three most common metal crystal structures? List five metals that
have each of these crystal structures.

3.5 For a BCC unit cell, (a¢) how many atoms are there inside the unit cell, (b) what is
the coordination number for the atoms, (¢) what is the relationship between the
length of the side a of the BCC unit cell and the radius of its atoms, and (d) what
is the atomic packing factor?

3.6 For an FCC unit cell, (a) how many atoms are there inside the unit cell, (b) what
is the coordination number for the atoms, () what is the relationship between the
length of the side a of the FCC unit cell and the radius of its atoms, and (d) what
is the atomic packing factor?

3.7 For an HCP unit cell (consider the primitive cell), (@) how many atoms are there
inside the unit cell, (b) what is the coordination number for the atoms, (¢) what is
the atomic packing factor, (d) what is the ideal ¢/a ratio for HCP metals, and (e)
repeat a through c considering the “larger” cell.

3.8 How are atomic positions located in cubic unit cells?

*3.9 List the atom positions for the eight corner and six face-centered atoms of the FCC
unit cell.

3.10 How are the indices for a crystallographic direction in a cubic unit cell
determined?

3.11 What are the crystallographic directions of a family or form? What generalized
notation is used to indicate them?
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3.14
3.15
3.16

317

318

3.19
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322
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How are the Miller indices for a crystallographic plane in a cubic unit cell

determined? What generalized notation is used to indicate them?

What is the notation used to indicate a family or form of cubic crystallographic planes?

How are crystallographic planes indicated in HCP unit cells?

What notation is used to describe HCP crystal planes?

What is the difference in the stacking arrangement of close-packed planes in (a)

the HCP crystal structure and (b) the FCC crystal structure?

What are the closest-packed directions in (a) the BCC structure, (b) the FCC

structure, and (c) the HCP structure?

Identify the close-packed planes in (a) the BCC structure, (b) the FCC structure,

and (c) the HCP structure?

What is polymorphism with respect to metals?

What are X-rays, and how are they produced?

Draw a schematic diagram of an X-ray tube used for X-ray diffraction, and

indicate on it the path of the electrons and X-rays.

What is the characteristic X-ray radiation? What is its origin? o
Distinguish between destructive interference and constructive interference of ‘/

reflected X-ray beams through crystals.
Tutorial

Application and Analysis Problems

3.24

325

3.26

3.27

3.28

*3.29

3.30

331

3.32

3.33

Molybdenum at 20°C is BCC and has an atomic radius of 0.140 nm. Calculate a
value for its lattice constant g in nanometers.

Lithium at 20°C is BCC and has a lattice constant of 0.35092 nm. Calculate a
value for the atomic radius of a lithium atom in nanometers.

Gold is FCC and has a lattice constant of 0.40788 nm. Calculate a value for the
atomic radius of a gold atom in nanometers.

Palladium is FCC and has an atomic radius of 0.137 nm. Calculate a value for its
lattice constant @ in nanometers.

Verify that the atomic packing factor for the FCC structure is 0.74.

Calculate the volume in cubic nanometers of the titanium crystal structure unit
cell (use the larger cell). Titanium is HCP at 20°C with a = 0.29504 nm and
¢ = 0.46833 nm.

Consider a 0.05-mm thick, 500 mm? (about three times the area of a dime) piece
of aluminum foil. How many units cells exist in the foil? If the density of
aluminum is 2.7 g/cm?, what is the mass of each cell?

Draw the following directions in a BCC unit cell, and list the position coordinates
of the atoms whose centers are intersected by the direction vector:

(@ [100] (b) [110]1 (o) [111]

Draw direction vectors in un_it _oells for t!_lE following cubic directions:

@ [111] @ [110] (© [i21] (@ [113]

Draw direction vectors in unit cells for l{le following cubic directions:

@ (112] (0 [331] (9 [212) () [l01] @ [321] () [122)

(®) [123] @) [021] (N [233] (m (121] () (103] (7)[223]
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*3.35

3.36

*3.37
3.38
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3.40
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346
347

*3.48

(@) )]

What are the indices of the directions shown in the unit cubes of Fig. P3.34?

A direction vector passes through a unit cube from the (3,0, }) to the (3, 1, 0)
positions. What are its direction indices?

A direction vector passes through a unit cube from the (1, 0,3) to the (},1,3)
positions. What are its direction indices?

What are the directions of the (103) family or form for a unit cube?

What are the directions of the {111) family or form for a unit cube?

What (110) type directions lie on the (111) plane of a cubic unit cell?

What {111) type directions lie on the (110) plane of a cubic unit cell?

Draw in unit cubes the crystal planes that have the following Miller indices:

@ (1) @ 121) @ @E2) @) ©232) ® G2

® (102) @ (13) (302 ;) (12) () (I33) @) (330)

What are the Miller indices of the cubic cyrsyallographic planes shown in Fig. P3.42?
What are the {100} family of planes of the cubic system?

Draw the following crystallographic planes in a BCC unit cell, and list the position
of the atoms whose centers are intersected by each of the planes:

(@) (100) (&) (110) (o) (111)

Draw the following crystallographic planes in an FCC unit cell, and list the position
coordinates of the atoms whose centers are intersected by each of the planes:

(@) (100) (b) (110) () (111)

A cubic plane has the following axial intercepts: a = Lb=-%c= 1. What are
the Miller indices of this plane?

A cubic plane has the following axial intercepts: @ = —3, b = —3, ¢ = 3. What are
the Miller indices of this plane?

A cubic plane has the following axial intercepts:a = 1, b = 3,¢ = —}. What are
the Miller indices of this plane?
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3.49 Determine the Miller indices of t.he cublc crystal plane that intersects the following
position coordinates: (1,0, 0);(1,1; 1):&. 4, 0).

3.50 Determine the Miller indices of the cubic crystal plane that intersects the following
position coordinates: (3, 0, 3);(0, 0, 1)i(1, 1, 1).

3.51 Determine the Miller mdwes of the cubic crystal plane that intersects the following
position coordinates: (1,3, 1);(3, 0, 3);(1, 0, 3).

3.52 Determine the Miller indices of the cubic crystal plane that intersects the following
position coordinates: (0, 0, 3):(1, 0, 0);(3, . 0). .

3.53 Rodium is FCC and has a lattice constant a of 0.38044 nm. Calculate the
following interplanar spacings:
(@) diyy ®) dzoo (c) dzzo

*3.54 Tungsten is BCC and has a lattice constant g of 0.31648 nm. Calculate the

following interplanar spacings:
@dyy (Bdy () dy

3.55 The d;,, interplanar spacing in a BCC element is 0.1587 nm. (@) What is its lattice
constant a? (b) What is the atomic radius of the element? (¢) What could this
element be?

*3.56 The d,, interplanar spacing in an FCC metal is 0.083397 nm. (@) What is its
lattice constant a? (b) What is the atomic radius of the metal? (c¢) What could this
metal be?

3.57 Draw the hexagonal crystal planes whose Miller-Bravais indices are:
(@) (1011) (@) (1212) (g) (1212) () (1100)
() (0111) (&) (2111) (h) (2200) (k) (2111)
(0 (1210) (H (1101) () (1012) () (1012)
*3.58 Determine the Miller-Bravais indices of the hexagonal crystal planes in Fig. P3.58.
3.59 Determine the Miller-Bravais direction indices of the —a, —a, and —a, directions.
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3.60
3.61
*3.62
3.63

3.64

3.65
*3.66

3.67

*3.69

3.70

Determine the Miller-Bravais direction indices of the vectors originating at the
center of the lower basal plane and ending at the endpoints of the upper basal
plane as indicated in Fig. 3.16d.

Determine the’ Miller-Bravais direction indices of the basal plane of the vectors
originating at the center of the lower basal plane and exiting at the midpoints
between the principal planar axes.

Determine the Miller-Bravais direction indices of the directions indicated in Fig. P3.62.
The lattice constant for BCC tantalum at 20°C is 0.33026 nm and its density is
16.6 g/cm3. Calculate a value for its relative atomic mass.

Calculate a value for the density of FCC platinum in grams per cubic centimeter
from its lattice constant a of 0.39239 nm and its atomic mass of 195.09 g/mol.
Calculate the planar atomic density in atoms per square millimeter for the
following crystal planes in BCC chromium, which has a lattice constant of 0.28846
nm: (@) (100), (b) (110), (¢) (111).

Calculate the planar atomic density in atoms per square millimeter for the
following crystal planes in FCC gold, which has a lattice constant of 0.40788 nm:
(@) (100), (B) (110), (c) (111).

Calculate the planar atomic density in atoms per square millimeter for the (0001)
plane in HCP beryllium, which has a ldttice constant ¢ = 0.22856 nm and a ¢
constant of 0.35832 nm.

Calculate the linear atomic density in atoms per millimeter for the following
directions in BCC vanadium, which has a lattice constant of 0.3039 nm: (a) [100],
(®) [110], (o) [111].

Calculate the linear atomic density in atoms per millimeter for the following
directions in FCC iridium, which has a lattice constant of 0.38389 nm: (a) {100],
(b) [110], (o) [111]. .
Titanium goes through a polymorphic change from BCC to HCP crystal structure
upon cooling through 332°C. Calculate the percentage change in volume when the
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crystal structure changes from BCC to HCP. The lattice constant a of the BCC unit
cell at 882°C is 0.332 nm, and the HCP unit cell has 2 = 02950 nm and ¢ =
0.4683 nm. .

Pure iron goes through a polymorphic change from BCC to FCC upon heating
through 912°C. Calculate the volume change associated with the change in crystal
structure from BCC to FCC if at 912°C the BCC unit cell has a lattice constant a
= 0.293 nm and the FCC unit cell 2 = 0.363 nm. )

Derive Bragg’s law by using the simple case of incident X-ray beams being
diffracted by parallel planes in a crystal. '

A sample of BCC metal was placed in an X-ray diffractometer using X-rays with a
wavelength of A = 0.1541 nm. Diffraction from the {221} planes was obtained at
26 = 88.838°. Calculate a value for the lattice constant a for this BCC elemental
metal. (Assume first-order diffraction, n = 1.)

X-rays of an unknown wavelength are diffracted by a gold sample. The 28 angle
was 64.582° for the {220} planes. What is the wavelength of the X-rays used?
(The lattice constant of gold = 0.40788 nm; assume first-order diffraction, n = 1.)
An X-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 26 angles:
41.069°, 47.782°, 69.879°, and 84.396°. The wavelength of the incoming radiation
was 0.15405 nm. (X-ray diffraction data courtesy of the International Centre for
Diffraction Data.) '
(@) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) Identify the element. .

An X-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 26 angles:
38.60°, 55.71°, 69.70°, 82.55°, 95.00°, and 107.67°. Wavelength A of the incoming
radiation was 0.15405 nm.

(a) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) ldentify the element.

] / i1 ;
. W ay o : g
- ﬂz ﬂl - 02 a 1
(a) ()]

Figure P3.62
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377

378

An X-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 26 angles:
36.191°, 51.974°, 64.982°, and 76.663°. The wavelength of the incoming radiation
was 0.15405 nm.

(a) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) Identify the element.

An X-ray diffractometer recorder chart for an element that has either the BCC or
the FCC crystal structure showed diffraction peaks at the following 26 angles:
40.663°, 47.314°, 69.144°, and 83.448°. Wavelength A of the incoming radiation
was 0.15405 nm.

(a) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) Identify the element.

Synthesis and Evaluation Problems

3.79

3.80

381

*3.82

3.83

*3.84

3.85

3.86

3.87

Do you expect iron and silver to have the same (@) atomic packing factor, (b) volume
of unit cell, (¢) number of atoms per unit cell, and (d) coordination number?

Do you expect gold and silver to have the same (@) atomic packing factor, (b) volume
of unit cell, (¢) number of atoms per unit cell, and (d) coordination number? Verify
your answers.

Do you expect titanium and silver to have the same (a) atomic packing factor,

(b) volume of unit cell, (¢) number of atoms per unit cell, and (d) coordination
number? Verify your answers.

Show using geometry that the ideal c/a ration of the hexagonal close-packed unit
cell (when atoms are perfect spheres) is 1.633. Hint: draw the center atom in the
top basal plane in contact with the three atoms in the center of the HCP cell;
connect the centers of the three atoms inside the HCP cell to each other and to the
atom at the center of one of the basal planes.

Assuming that the volume of a HCP metal cell (larger cell) is 0.09130 nm?® and the
c/a ratio is 1.856, determine (@) the values for ¢ and g, and (b) the radius, R, of
the atom. (¢) If you were told that the metal is titanium, would you be surprised?
How do you explain the discrepancy?

Assuming that the volume of a HCP metal cell (larger cell) is 0.01060 nm? and the
c/a ratio is 1.587, determine (a) the values for ¢ and a, and (b) the radius, R, of
the atom. (¢) If you were told that the metal is titanium, would you be surprised?
How do you explain the discrepancy?

The structure of NaCl (an ionic material) is given in Fig. 2.18b. Determine (a) its
lattice constant 4, and (b) its density. Hint: since NaCl is ionic use the ion radius
data and note the atomic radii.

The unit cell structure of the ionic solid, Csl, is similar to that in Fig. 2.18a.
Determine (a) its packing factor, and (b) compare this packing factor with that of
BCC metals. Explain the difference, if any.

Iron (below 912°C) and tungsten are both BCC with significantly different atomic
radii. However, they have the same atomic packing factor of 0.68. How do you
explain this?
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3.15 Problems

Verify that there are eight atoms inside a diamond cubic structure (see Fig. 2.23 b
and c). Draw a 3D schematic of the atoms inside the cell.

The lattice constant for the diamond cubic structure of diamond is 0.357 nm.
Diamond is metastable, meaning that it will transform to graphite at elevated
temperatures. If this transformation occurs, what % volume change will occur?
(Density of graphite is 2.25 gr/cm?)

Calculate the center-to-center distance between adjacent atoms of gold along the
following directions: (a) [100], (b) [101], (¢) [111], and (d) [102]. Speculate as to
why such information may be important in understandmg t.he behavior of the
material.

Calculate the center-to-center distance between adjacent atoms of tungsten along the
following directions: (@) [100], (&) [101], (¢) [111], and (d) [102}: Speculate as to why
such information may be important in understanding the behawon;ﬂ' the material.

A plane in a cubic crystal intersects the x axis at 0.25, the y axis at 2, and is
parallel to the z axis. What: are the miller indices for this plane? Draw this plane in
a single cube and show all key dimensions.

A plane in a cubic crystal intersects the x axis at 3, thcy axis at 1, and the z axis
at 1. What are the miller indices for this plane? Draw dm plane in a single cube
and show all key dimensions.
Aplanemahexagonalcrysmlmterscctsatthea,ansat —1 thea_-,a:usai 1 and
the ¢ axis at infinity? What are the Miller indices for this p[ane" Draw this plane
in a hexagonal unit cell and show all key dimensions.

A plane in a hexagonal crystal intersects at the a, axis at 1, thé a, axis at 1 and
the ¢ axis at 0.57 What are the Miller indices for this plane? Draw this plane in a
hexagonal unit cell and show all key dimensions.

Without drawing any of the hexagonal planes given below, determine which of the
planes is, in fact, not a plane. (@) (1010), (b) (1010), and (c) (1110).

Name as many carbon allotropes as you can, and discuss ‘their crystal structure.

A thin layer of aluminum nitride is sometimes deposited on Silicon wafers at high
temperatures (1000°C). The coefficient of thermal expansion:and the lattice
constant of the silicon crystal is different than that of aluminum nitride. Will this
cause a problem? Explain.

An unknown material is being analyzed using X-ray diffraction techniques.
However, the diffraction patterns are extremely broad (no clear peaks are visible).
(a) What does this tell you about the material? (b) What are some of the tests that
you can perform to help identify the material or narrow the possibilities?

Explain, in general terms, why many polymers and some ceramic glasses have an
amorphous or semicrystalline structure.

Explain how ultra-rapid cooling of some metal alloys produces metallic glass.
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Solidification and
Crystalline Imperfections

{Photo courtesy of Stan David and Lynn Boatner, Oak Ridge
National Library.)

% A ¥ hen molten alloys are cast, solidification starts at the walls of the mold as it is

‘W ‘being cooled. The solidification of the alloy takes place not at a specific tem-
perature but over a range of temperatures. While the alloy is in this range, it has a pasty
form that consists of solid, tree-like structures called dendrites (meaning tree-like) and
liquid metal. The size and shape of the dendrite depends on the cooling rate. The liquid
metal existing among these three-dimensional dendritic structures eventually solidifies
to form a completely solid structure that we refer to as the grain structure. The study
of dendrites is important because they influence compositional variations, porosity, and
segregation and therefore the properties of the cast metal. The figure shows the three-
dimensional structure of dendrites. The figure shows a “forest” of dendrites formed dur-
ing the solidification of a nickel-based superalloy.! &

'http://mgnews.msfc.nasa.gov/IDGE/IDGE html
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LEARNING OBJECTIVES

By the end of this chapter, students will be able
to...

1. Describe the process of the solidification of
metals, distinguishing between homogeneous
and heterogeneous nucleation.

2. Describe the two energies involved in the
solidification process of a pure metal, and write
the equation for the total free-energy change
associated with the transformation of the liquid
state to solid nucleus.

3. Distinguish between equiaxed and columnar
grains and the advantage of the former over the
latter.

4. Distinguish between single crystal and
polycrystalline materials, and explain why
single crystal and polycrystalline forms of the
material have different mechanical properties.

5. Describe various forms of metallic solid
solutions and explain the differences

4.1 SOLIDIFICATION OF METALS

between solid solution and mixture
alloys.

. Classify various types of crystalline

imperfections, and explain the role of defects
on the mechanical and electrical properties of
crystalline materials.

. Determine the ASTM grain size number and

average grain size diameter, and describe the

imiportance of grain size and grain boundary
density on the behavior of crystalline materials,

. Learn how and why optical microscopy, SEM,

TEM, HRTEM, AFM, and STM techniques are
used to understand more about the internal and
surface structures of materials at various
magnifications.

. Explain, in general terms, why alloys are

preferred materials over pure metals for
structural applications.

The solidification of metals and alloys is an important industrial process since most
metals are melted and then cast into a semifinished or finished shape. Figure 4.1
shows a large, semicontinuously? cast aluminum ingot that will be further fabricated
into aluminum alloy flat products. It illustrates the large scale on which the casting

process (solidification) of metals is sometimes carried out.

In general, the solidification of a metal or alloy can be divided into the follow-

ing steps:

1. The formation of stable nuclei in the melt (nucleation) (Fig. 4.2a)
2. The growth of nuclei into crystals (Fig. 4.2b) and the formation of a grain

structure (Fig. 4.2¢)

2A semicontinuously cast ingot is produced by solidifying molten metal (e.g., aluminum or copper alloys) in
a mold that has a movable bottom block (see Fig. 4.8) that is slowly lowered as the metal is solidified. The
prefix semi- is used since the maximum length of the ingot produced is determined by the depth of the pit

into which the bottom block is lowered.
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Ny Figure 4.1
\‘ Large, semicontinuously cast aluminum alloy ingot
Animation being removed from casting pit. Ingots of this type are

subsequently hot- and cold-rolled into plate or sheet.
(Courtesy of Reynolds Metals Co.)

Crystals that Grain
Liquid Liquid will form grains boundaries  Grains

Nuclei <
(a) by (c)
g Figure 4.2
"‘ Schematic illustration showing the several stages in the solidification of
Virtual Lab metals: (a) formation of nuclei, (b) growth of nuclei into crystals, and

(¢) joining together of crystals to form grains and associated grain
boundaries. Note that the grains are randomly oriented.
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Figure 4.3

A grain grouping parted from an arc-cast titanium alloy
ingot under the blows of a hammer. The grouping has
preserved the true bonding facets of the indjvidual grains
of the original cast structure. (Magnification §%-)

(After W. Rostoker and J.R. Dvorak, “Interp ion of Metallographi
Structures,” Academic, 1965, p. 7.)

The shapes of some real grains formed by the solidification of a titanium alloy
are shown in Fig. 4.3. The shape that each grain acquires after solidification of the
metal depends on many factors, of which thermal gradients are important. The grains
shown in Fig. 4.3 are equiaxed since their growth is about equal in all directions.

4.1.1 The Formation of Stable Nuclei in Liquid Metals

The two main mechanisms by which the nucleation of solid particles in liquid metal
occurs are homogeneous nucleation and heterogeneous nucleation.

Homogeneous Nucleation Homogeneous nucleation is considered first since it is
the simplest case of nucleation. Homogeneous nucleation in a liquid melt occurs
when the metal itself provides the atoms needed to form a nuclei. Let us consider
the case of a pure metal solidifying. When a pure liquid metal is cooled below its
equilibrium freezing temperature to a sufficient degree, many homogeneous nuclei
are created by slow-moving atoms bonding together. Homogeneous nucleation
usually requires a considerable amount of undercooling, which may be as much as
several hundred degrees Celsius for some metals (see Table 4.1). For a nucleus to
be stable so that it can grow into a crystal, it must reach a critical size. A cluster of
atoms bonded together that is less than the critical size is called an embryo, and one
that is larger than the critical size is called a nucleus. Because of their instability,
embryos are continuously being formed and redissolved in the molten metal due to
the agitation of the atoms.

Energies Involved in Homogeneous Nucleation In the homogeneous nucleation
of a solidifying pure metal, two kinds of energy changes must be considered: (1) the
volume (or bulk) free energy released by the liquid-to-solid transformation and (2) the
surface energy required to form the new solid surfaces of the solidified particles.



140

CHAPTER 4 Solidification and Crystalline Imperfections

Table 4.1 Values for the freezing temperature, heat of fusion, surface energy, and
maximum undercooling for selected metals

- g T
Freezing ; Maximum
temp undercooling,

e A *+ Heat of :] Surface observed

Metal °C K * fusion'(J/cm) “‘energy (J/em?) (AT[°C))
Pb 327 * 600 280 333 x 1077 80
Al 60 - 933 1066 93 x 1077 130
Ag 962 1235 1097 126 x 1077 227
Cu 1083 1356 1826 177 x 1077 236
Ni 1453 1726 2660 255 x 1077 319
Fe 1535 1808 2098 204 x 1077 295
Pt 1772 2045 2160 240 x 1077 332

Source: B. Chalmers, “Solidification of Metals,” Wiley, 1964,

Retarding energy
+ AG; = surfzace free-energy change
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Figure 4.4

Free-energy change AG versus radius of embryo or nucleus
created by the solidifying of a pure metal. If the radius of the
particle is greater than r*, a stable nucleus will continue to grow.

When a pure liquid metal such as lead is cooled below its equilibrium freezing
temperature, the driving energy for the liquid-to-solid transformation is the difference
in the volume (bulk) free energy AG, of the liquid and that of the solid. If AG, is
the change in free energy between the liquid and solid per unit volume of metal,
then the free-energy change for a spherical nucleus of radius r is 37 AG, since the
volume of a sphere is %m-3. The change in volume free energy versus radius of an
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embryo or nucleus is shown schematically in Fig. 4.4 as the lower curve and is a
negative quantity since energy is released by the liquid-to-solid transformation.

However, there is an opposing energy to the formation of embryos and nuclei,
the energy required to form the surface of these particles. The energy needed to
create a surface for these spherical particles, AG,, is equal to the specific surface
free cnergy of the particle, vy, times the area of the surface of the sphere, or 4mr?y,
where 47rr? is the surface area of a sphere. This retarding energy AG, for the for-
mation of the solid particles is shown graphically in Fig. 4.4 by an upward curve in
the positive upper half of the figure. The total free energy associated with the for-
mation of an embryo or nucleus, which is the sum of the volume free-energy and
surface free-energy changes, is shown in Fig. 4.4 as the middle curve. In equation
form, the total free-energy change for the formation of a spherical embryo or nucleus
of radius r formed in a freezing pure metal is

AGy = $mrr® AG, + 4mry @.1)

where AGy = total free-energy change
r = radius of embryo or nucleus
AG, = volume free energy
v = specific surface free energy

Il

In nature, a system can change spontaneously from a higher- to a lower-energy
state. In the case of the freezing of a pure metal, if the solid particles formed upon
freezing have radii less than the critical radius r*, the energy of the system will be
lowered if they redissolve. These small embryos can, therefore, redissolve in the lig-
uid metal. However, if the solid particles have radii greater than r*, the energy of
the system will be lowered when these particles (nuclei) grow into larger particles
or crystals (Fig. 4.2b). When r reaches the critical radius r*, AGy has its maximum
value of AG* (Fig. 4.4).

A relationship among the size of the critical nucleus, surface fmc energy, and
volume free energy for the solidification of a pure metal can be obtained by differ-
entiating Eq. 4.1. The differential of the total free energy AGr with respect to r is
zero when r = r* since the total free energy versus radius of the embryo or nucleus
plot is then at a maximum and the slope d(AG;)/dr = 0. Thus,

d(AGT} d (4 3 2 )
i St A L +
e ar 311':' AG, + 4mry
E r*2 AG, + 8mr*y =0
37 v 4 (4.1a)
2y
* = =7
r AG,

Critical Radius versus Undercooling The greater the degree of undercooling AT
below the equilibrium melting temperature of the metal, the greater the change in
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Nuclei are stable
in this region

Embryos form in this
region and may redissolve

0 | 1 R el
5% 1077 10°¢ 1.5 % 1076
Critical radius of particle, #* (cm)
Figure 4.5

Critical radius of copper nuclei versus degree of
undercooling AT.
(From B. Chalmers, Principles of Solidification, Wiley, 1964.)

volume free energy AGy. However, the change in free energy due to the surface
energy AG, does not change much with temperature. Thus, the critical nucleus size is
determined mainly by AG,. Near the freezing temperature, the critical nucleus size
must be infinite since AT approaches zero. As the amount of undercooling increases,
the critical nucleus size decreases. Figure 4.5 shows the variation in critical nucleus
size for copper as a function of undercooling. The maximum amount of undercool-
ing for homogeneous nucleation in the pure metals listed in Table 4.1 is from 327°C
to 1772°C. The critical-sized nucleus is related to the amount of undercooling by
the relation
. 2T,
AHAT @4.2)
where r* = critical radius of nucleus
¥ = surface free energy
AH; = latent heat of fusion
AT = amount of undercooling at which nucleus is formed

Example Problem 4.1 shows how a value for the number of atoms in a critical
nucleus can be calculated from experimental data.

EXAMPLE a. Calculate the critical radius (in centimeters) of a homogeneous nucleus that forms
PROBLEM 4.1 when pure liquid copper solidifies. Assume AT (undercooling) = 0.27,,. Use data
from Table 4.1.

b. Calculaté the number of atoms in the critical-sized nucleus at this undercooling.
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B Solution :
a. Calculation of critical radius of nucleus:
29Ty
r‘ = —
AHAT “2)

AT = 0.27,, = 0.2(1083°C + 273) = (0.2 X 1356 K) = 271 K
y =177 X 1077 Jlem®* AH; = 1826 Jem® T, = 1083°C = 1356 K
_ 2(177 X 1077 Jem?)(1356 K)

= =970 X 10 8 cm «
(1826 J/cm®)(271 K) o

b. Calculation of number of atoms in critical-sized nucleus:

Vol. of critical-sized nucleus = $7r*> = $r(9.70 X 1078 cm)?

=382 x 102 cm?

Vol. of unit cell of Cu (@ = 0.361 nm) = @ = (3.61 X 1078 cm)*
=4.70 X 1072 cm?
Since there are four atoms per FCC unit cell,

470 X 1072 cm?
Volume/atom = —E—T—ﬁ'i = 1.175 X 1072 cm®
Thus, the number of atoms per homogeneous critical nucleus is
Volume of nucleus  3.82 X 102! cm®
= = 325 atoms

Volume/atom  1.175 X 1072 cm?
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Heterogeneous Nucleation Heterogeneous nucleation is nucleation that occurs in
a liquid on the surfaces of its container, insoluble impurities, and other structural
material that lower the critical free energy required to form a stable nucleus. Since
large amounts of undercooling do not occur during industrial casting operations and
usually range between 0.1°C and 10°C, the nucleation must be heterogeneous and
not homogeneous.

For heterogeneous nucleation to take place, the solid nucleating agent (impurity
solid or container) must be wetted by the liquid metal. Also the liquid should solid-
ify easily on the nucleating agent. Figure 4.6 shows a nucleating agent (substrate)
that is wetted by the solidifying liquid, creating a low contact angle 8 between the
solid metal and the nucleating agent. Heterogeneous nucleation takes place on the
nucleating agent because the surface energy to form a stable nucleus is lower on this
material than in the pure liquid itself (homogeneous nucleation). Since the surface
energy is lower for heterogeneous nucleation, the total free-energy change for the
formation of a stable nucleus will be lower and the critical size of the nucleus will
be smaller. Thus, a much smaller amount of undercooling is required to form a stable
nucleus produced by heterogeneous nucleation.
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f = contact angle

Liquid E— _—

Nuctig ut ]

Figure 4.6

Heterogeneous nucleation of a solid on a nucleating agent. na =
nucleating agent, SL = solid-liquid, S = solid, L = liquid; 8 =

contact angle.

(From J.H. Brophy, R.M. Rose and J. Wulff, The Structure and Properties of Materials,
vol. lI: “Thermodynamics of Structure,” Wiley, 1964, p. 105.)

4.1.2 Growth of Crystals in Liquid Metal and
Formation of a Grain Structure

After stable nuclei have been formed in a solidifying metal, these nuclei grow into
crystals, as shown in Fig. 4.2b. In each solidifying crystal, the atoms are arranged
in an essentially regular pattern, but the orientation of each crystal varies (Fig. 4.2b).
When solidification of the metal is finally completed, the crystals join together in
different orientations and form crystal boundaries at which changes in orientation
take place over a distance of a few atoms (Fig. 4.2¢). Solidified metal containing
many crystals is said to be polycrystalline. The crystals in the solidified metal are
called grains, and the surfaces between them, grain boundaries.

The number of nucleation sites available to the freezing metal will affect the grain
structure of the solid metal produced. If relatively few nucleation sites are available
during solidification, a coarse, or large-grain, structure will be produced. If many nucle-
ation sites are available during solidification, a fine-grain structure will result. Almost
all engineering metals and alloys are cast with a fine-grain structure since this is the
most desirable type for strength and uniformity of finished metal products.

When a relatively pure metal is cast into a stationary mold without the use of
grain refiners,? two major types of grain structures are usually produced:

1. Equiaxed grains
2. Columnar grains

If the nucleation and growth conditions in the liquid metal during solidification are
such that the crystals can grow about equally in all directions, equiaxed grains will
be produced. Equiaxed grains are commonly found adjacent to a cold mold wall, as
shown in Fig. 4.7. Large amounts of undercooling near the wall create a relatively
high concentration of nuclei during solidification, a condition necessary to produce
the equiaxed gain structure.

3A grain refiner is a material added to a molten metal to attain finer grains in the final grain structure.
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Figure 4.7

(a) Schematic drawing of a solidified metal grain structure
produced by using a cold mold. (b) Transverse section through
an ingot of aluminum alloy 1100 (99.0% Al) cast by the Properzi
method (a wheel and belt method). Note the consistency with
which columnar grains have grown perpendicular to each

mold face.

(After “Metals Handbook,” vol. 8, 8th ed., American Society for Metals,

1973, p. 164.)

Columnar grains are long, thin, coarse grains created when a metal solidifies
rather slowly in the presence of a steep temperature gradient. Relatively few nuclei
are available when columnar grains are produced. Equiaxed and columnar grains are
shown in Fig. 4.7a. Note that in Fig. 4.7b the columnar grains have grown perpendi-
cular to the mold faces since large thermal gradients were present in those directions.

4.1.3 Grain Structure of Industrial Castings

In industry, metals and alloys are cast into various shapes. If the metal is to be fur-
ther fabricated after casting, large castings of simple shapes are produced first and
then fabricated further into semifinished products. For example, in the aluminum
industry, common shapes for further fabrication are sheet ingots (Fig. 4.1), which
have rectangular cross sections, and extrusion* ingots, which have circular cross sec-
tions. For some applications, the molten metal is cast into essentially its final shape
as, for example, an automobile piston (see Fig. 6.3). '

The large aluminum alloy sheet ingot in Fig. 4.1 was cast by a direct-chill semi-
continuous casting process. In this casting method, the molten metal is cast into a
mold with a movable bottom block that is slowly lowered after the mold is filled

“Extrusion is the process of converting a metal ingot into lengths of uniform cross section by forcing solid
plastic metal through a die or orifice of the desired cross-sectional outline.
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Figure 4.8
Schematic of an aluminum alloy ingot being cast in a direct-chill
semicontinuous casting unit.

(Fig. 4.8). The mold is water-cooled by a water box, and water is also sprayed down
the sides of the solidified surface of the ingot. In this way, large ingots about 15 ft
long can be cast continuously, as shown in Fig. 4.1. In the steel industry, about 60 per-
cent of the metal is cast into stationary molds, with the remaining 40 percent being
continuously cast, as shown in Fig. 4.9.

To produce cast ingots with a fine grain size, grain refiners are usually added to
the liquid metal before casting. For aluminum alloys, small amounts of grain refin-
ing elements such as titanium, boron, or zirconium are included in the liquid metal
Jjust before the casting operation so that a fine dispersion of heterogeneous nuclei
will be available during solidification. Figure 4.10 shows the effect of using a grain
refiner while casting 6-in.-diameter aluminum extrusion ingots. The ingot section
cast without the grain refiner has large columnar grains (Fig. 4.10a), and the section
cast with the grain refiner has a fine, equiaxed grain structure (Fig. 4.10b).

4.2 SOLIDIFICATION OF SINGLE CRYSTALS

Almost all engineering crystalline materials are composed of many crystals and
are therefore polycrystalline. However, there are a few that consist of only one
crystal and are therefore single crystals. For example, high-temperature creep-
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Figure 4.9
Continuous casting of steel ingots. (a) General setup and (b) close-up of the mold
arrangement.

(From Making, Shaping and Treating of Steel, 10th ed., Association of Iron and Steel Engineers, 1985.)

resistant gas turbine blades are sometimes made of single crystals, as shown in
Fig. 4.11c¢. Single-crystal turbine blades are more creep resistant at high tempera-
tures than the same blades made with an equiaxed grain structure (Fig. 4.11a) or
a columnar grain structure (Fig. 4.11b) because at high temperatures above about
half the absolute melting temperature of a metal the grain boundaries become
weaker than the grain bodies.

In growing single crystals, solidification must take place around a single nucleus
so that no other crystals are nucleated and grow. To accomplish this, the interface
temperature between the solid and liquid must be slightly lower than the melting point
of the solid, and the liquid temperature must increase beyond the interface. To achieve
this temperature gradient, the latent heat of solidification’ must be conducted through

5The latent heat of solidification is the thermal energy released when a metal solidifies.
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Figure 4.10 '

Parts .of transverse sections through two 6-in.-diameter ingots of alloy 6063
(Al-0.7% Mg-0.4% Si) that were direct-chill semicontinuous cast. (a) Ingot section
was cast without the addition of a grain refiner; note columnar grains and
colonies of featherlike crystals near the center of the section. (b) Ingot section
was cast with the addition of a grain refiner and shows a fine, equiaxed grain
structure. (Tucker's reagent; actual size.)

(After “Metals Handbook,” vol. 8, 8th ed., American Society for Metals, 1973, p. 164.)

the solidifying solid crystal. The growth rate of the crystal must be slow so that the
temperature at the liquid-solid interface is slightly below the melting point of the
solidifying solid. Figure 4.12a illustrates how single-crystal turbine blades can be cast,
and Fig. 4.12b and ¢ show how competitive grain growth is reduced to a single grain
by using a “pigtail” selector.

Another example of an industrial use of single crystals is the silicon single
crystals that are sliced into wafers for solid-state electronic integrated circuit chips
(see Fig. 14.1). Single crystals are necessary for this application since grain
boundaries would disrupt the flow of electrons in devices made from semicon-
ductor silicon. In industry, single crystals of silicon 8 to 12 in. (20 to 25 cm) in
diameter .haye been grown for semiconducting device applications. One of the
commonly used techniques to produce high-quality (minimization of defects)
silicon single crystals is the Czochralski method. In this process, high-purity poly-
crystalline silicon is first melted in a nonreactive crucible and held at a tempera-
ture just above the melting point. A high-quality seed crystal of silicon of the
desired orientation is lowered into the melt while it is rotated. Part of the surface
of the seed crystal is melted in the liquid to remove the outer strained region and
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Figure 4.11

Different grain structures of gas turbine airfoil blades: (a) Polycrystal equiaxed,
(b) polycrystal columnar, and (c) single crystal.

(Courtesy of Pratt and Whitney Co.)
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Figure 4.12

(a) A process schematic for producing a single-crystal gas turbine airfoil.
(b) Starter section of casting for producing a single-crystal airfoil showing
competitive growth during solidification below the single-crystal selector
(“pigtail”). (c) Same as (b) but showing the survival of only one grain during
solidification through the single-crystal selector.

(After Pratt and Whitney Co.)
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Figure 4.13
Formation of single crystal of silicon by the
Czochralski process.

to produce a surface for the liquid to solidify on. The seed crystal continues to
rotate and is slowly raised from the melt. As it is raised from the melt, silicon
from the liquid in the crucible adheres and grows on the seed crystal, producing
a much larger diameter single crystal of silicon (Fig. 4.13). With this process large
single-crystal silicon ingots up to about 12 in. (=30 c¢m) in diameter can and have
been made.

4.3 METALLIC SOLID SOLUTIONS

Although very few metals are used in the pure or nearly pure state, a few are
used in the nearly pure form. For example, high-purity copper of 99.99 percent
purity is used for electronic wires because of its very high electrical conductivity.
High-purity aluminum (99.99% Al) (called superpure aluminum) is used for dec-
orative purposes because it can be finished with a very bright metallic surface.
However, most engineering metals are combined with other metals or nonmetals to
provide increased strength, higher corrosion resistance, or other desired properties.

A metal alloy, or simply an alloy, is a mixture of two or more metals or a
metal (metals) and a nonmetal (nonmetals). Alloys can have structures that are rel-
atively simple, such as that of cartridge brass, which is essentially a binary alloy
(two metals) of 70 wt% Cu and 30 wt% Zn. On the other hand, alloys can be
extremely complex, such as the nickel-base superalloy Inconel 718 used for jet
engine parts, which has about 10 elements in its nominal composition.

The simplest type of alloy is that of the solid solution. A solid solution is a solid
that consists of two or more elements atomically dispersed in a single-phase struc-
ture. In general there are two types of solid solutions: substitutional and interstitial.
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Figure 4.14
Substitutional solid
solution. The dark circles
represent one type of
atom and the light
another. The plane of
atoms is a (111) plane
in an FCC crystal lattice.

4.3.1 Substitutional Solid Solutions

In substitutional solid solutions formed by two elements, solute atoms can substi-
tute for parent solvent atoms in a crystal lattice. Figure 4.14 shows a (111) plane in
an FCC crystal lattice in which some solute atoms of one element have substituted
for solvent atoms of the parent element. The crystal structure of the parent element
or solvent is unchanged, but the lattice may be distorted by the presence of the solute
atoms, particularly if there is a significant difference in atomic diameters of the solute
and solvent atoms.

The fraction of atoms of one element that can dissolve in another can vary from
a fraction of an atomic percent to 100 percent. The following conditions, known as
Hume-Rothery rules, are favorable for extensive solid solubility of one element in
another:

1. The diameters of the atoms of the elements must not differ by more than
about 15 percent.

2. The crystal structures of the two elements must be the same.

3. There should be no appreciable difference in the electronegativities of the two
elements so that compounds will not form.

4, The two elements should have the same valence.

If the atomic diameters of the two elements that form a solid solution differ,
there will be a distortion of the crystal lattice. Since the atomic lattice can only
sustain a limited amount of contraction or expansion, there is a limit in the dif-
ference in atomic diameters that atoms can have and still maintain a solid solu-
tion with the same kind of crystal structure. When the atomic diameters differ by
more than about 15 percent, the “size factor” becomes unfavorable for extensive
solid solubility.
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EXAMPLE
PROBLEM 4.2

Using the data in the following table, predict the relative degree of atomic solid solubil-
ity of the following elements in copper:

a. Zinc d. Nickel
b. Lead e. Aluminum
c. Silicon f. Beryllium

Use the scale very high, 70%-100%; high, 30%-70%; moderate, 10%-30%; low,
19%-10%; and very low, <1%.

Atom Crystal Electro-
Element _ radius (nm) structure negativity Valence
Copper 0.128 FCC 1.8 +2
Zinc 0.133 HCP 1.7 +2
Lead 0.175 FCC 1.6 +2, +4
Silicon 0.117 Diamond cubic 1.8 +4
Nickel 0.125 FCC 1.8 +2
Aluminum 0.143 FCC 1.5 +3
Beryllium 0.114 HCP 1.5 +2
m Soluiion
A sample calculation for the atomic radius difference for the Cu—Zn system is
final radius — initial radius
Atomi i i = : 1
omic radius difference nitial radine (100%)
RZ.rl = Rey
= ——(100%
Re ( ) , @3)
0.133 — 0.128
= ———(100%) = +3.9%
0.128 ( )
Predicted Observed
Atomie relative maximum
radius degree solid
difference Electronegativity of solid solubility
System (%) difference solubility (at %)
Cu-Zn +3.9 0.1 ) High 383
Cu—Pb +36.7 0.2 Very low 0.1
Cu-Si —8.6 0 Moderate 11.2
Cu—Ni -2.3 0 Very high 100
Cu-Al +11.7 0.3 Moderate 19.6
Cu—Be —-10.9 0.3 Moderate 16.4

The predictions can be made principally on the atomic radius difference. In the case of
the Cu-Si system, the difference in the crystal structures is important. There is very little
electronegativity difference for all these systems. The valences are all the same except for
Al and Si. In the final analysis, the experimental data must be referred to.
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If the solute and solvent atoms have the same crystal structure, then extensive
solid solubility is favorable. If the two elements are to show complete solid solubility
in all proportions, then both elements must have the same crystal structure. Also,
there cannot be too great a difference in the electronegativities of the two elements
forming solid solutions, or else the highly electropositive element will lose electrons,
the highly electronegative element will acquire electrons, and compound formation
will result. Finally, if the two solid elements have the same valence, 'solid solubility
will be favored. If there is a shortage of electrons between the atoms, the binding
between them will be upset, resulting in conditions unfavorable for solid solubility.

4.3.2 Interstitial Solid Solutions

In interstitial solutions the solute atoms fit into the spaces between the solvent or parent
atoms. These spaces or voids are called interstices. Interstitial solid solutions can form
when one atom is much larger than another. Examples of atoms that can form interstitial
solid solutions due to their small size are hydrogen, carbon, nitrogen, and oxygen.

An important example of an interstitial solid solution is that formed by carbon
in FCC vy iron that is stable between 912°C and 1394°C. The atomic radius of v iron
is 0.129 nm and that of carbon is 0.075 nm, and so there is an atomic radius differ-
ence of 42 percent. However, in spite of this difference, a maximum of 2.08 percent
of the carbon can dissolve interstitially in iron at 1148°C. Figure 4.15 illustrates this
schematically by showing distortion around the carbon atoms in the vy iron lattice.

The radius of the largest interstitial hole in FCC +yiron is 0.053 nm (see Example
Problem 4.3), and since the atomic radius of the carbon atom is 0.075 nm, it is not sur-
prising that the maximum solid solubility of carbon in <yiron is only 2.08 percent. The
radius of the largest interstitial void in BCC airon is only 0.036 nm, and as a result,
just below 723°C, only 0.025 percent of the carbon can be dissolved interstitially.

-a—]
P R & .‘ Carbon
vt woilt il r = 0.075 nm
3 . # 3 Iron
o r=0.129 nm

Figure 4.15

Schematic illustration of an interstitial solid
solution of carbon in FCC v iron just above
912°C showing a (100) plane. Note the
distortion of the iron atoms (0.129 nm radius)
around the carbon atoms (0.075 nm radius),
fitting into voids of 0.053 nm radius.

(From p. 113 in L. H. Van Vlack, Elements of Materials
Science and Engineering, 4th ed.)
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EXAMPLE Calculate the radius of the largest interstitial void in the FCC v iron lattice. The atomic
PROBLEM 4.3 radius of the iron atom is 0.129 nm in the’ FCC ‘1attice, and the largest interstitial voids
occur at the (3, 0, 0), (0, 3, 0), (0, 0, 3), etc., -type positions.
Figure EP4.3 shows a (100) FCC lattice plane on the yz plane. Let the radius of an
iron atom: be R and that of the interstitial void at the position (0, 3, 0) be = Then, from -

Fig. EP43, o
2R+2r=a T (44)
Also from Fig. 4.155, LT
o (@R = (4a + (aP = 14 @S
Solvmg for a-gives | | '
2R = ;1/-—51 or a=2V2R L (4.6)

Combiriing Eqs. 4.4 and 4.6 gives
2R + 2r =2V2R
r=(VZ-1)R=0414R
= (0.414)(0.129 nm) = 0.053 nm <

Flﬂl-l“' EP4.3 : Ve, L, .
(100) piane of the: FCC: lattice containing an
interstitial atom at the {0, 3; 0) position coordinate.
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4.4 CRYSTALLINE IMPERFECTIONS

In reality, crystals are never perfect and contain various types of imperfections and
defects that affect many of their physical and mechanical properties, which in turn
affect many important engineering properties of materials such as the cold forma-
bility of alloys, the electronic conductivity of semiconductors, the rate of migration
of atoms in alloys, and the corrosion of metals.

Crystal lattice imperfections are classified according to their geometry and shape.
The three main divisions are (1) zero-dimensional or point defects, (2) one-dimensional
or line defects (dislocations), and (3) two-dimensional defects, that include external

surfaces, grain boundaries, twins, low-angle boundaries, high-angle boundaries,

twists, stacking faults, voids, and precipitates. Three-dimensional macroscopic or
bulk defects could also be included. Examples of these defects are pores, cracks, and
foreign inclusions.

4.4.1 Point Defects

The simplest point defect is the vacancy, an atom site from which an atom is
missing (Fig. 4.16a). Vacancies may be produced during solidification as a result
of local disturbances during the growth of crystals, or they may be created
by atomic rearrangements in an existing crystal due to atomic mobility. In met-
als the equilibrium concentration of vacancies rarely exceeds about 1 in 10,000
atoms. Vacancies are equilibrium defects in metals, and their energy of formation
is about 1 eV.

Additional vacancies in metals can be introduced by plastic deformation, rapid
cooling from higher temperatures to lower ones to entrap the vacancies, and by bom-
bardment with energetic particles such as neutrons. Nonequilibrium vacancies have
a tendency to cluster, causing divacancies or trivacancies to form. Vacancies can
move by exchanging positions with their neighbors. This process is important in the

Interstitialcy

(@ &)

Figure 4.16

(a) Vacancy point defect. (b) Self-interstitial, or
interstitialcy, point defect in a close-packed solid-metal
lattice.
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Figure 4.17

Two-dimensional representation of an ionic
crystal illustrating a Schottky defect and a
Frenkel defect.

(From Wulff et al., Structure and Properties of Materials,
Vol. I: “Structure,” Wiley, 1964, p. 78.)

migration or diffusion of atoms in the solid state, particularly at elevated tempera-
tures where atomic mobility is greater.

Sometimes an atom in a crystal can occupy an interstitial site between sur-
rounding atoms in normal atom sites (Fig. 4.165). This type of point defect is called
a self-interstitial, or interstitialcy. These defects do not generally occur naturally
because of the structural distortion they cause, but they can be introduced into a
structure by irradiation.

In ionic crystals point defects are more complex due to the necessity to main-
tain electrical neutrality. When two oppositely charged ions are missing from an ionic
crystal, a cation-anion divacancy is created that is known as a Schottky imperfection
(Fig. 4.17). If a positive cation moves into an interstitial site in an ionic crystal, a
cation vacancy is created in the normal ion site. This vacancy-interstitialcy pair is
called a Frenkel® imperfection (Fig. 4.17). The presence of these defects in ionic
crystals increases their electrical conductivity.

Impurity atoms of the substitutional or interstitial type are also point defects and
may be present in metallic or covalently bonded crystals. For example, very small
amounts of substitutional impurity atoms in pure silicon can greatly affect its elec-
trical conductivity for use in electronic devices. Impurity ions are also point defects
in ionic crystals.

4.4.2 Line Defects (Dislocations)

Line imperfections, or dislecations, in crystalline solids are defects that cause
lattice distortion centered around a line. Dislocations are created during the solid-

SYakov Ilyich Frenkel (1894—-1954). Russian physicist who studied defects in crystals. His name is associated
with the vacancy-interstitialcy defect found in some ionic crystals.
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(a) Positive edge dislocation in a crystalline lattice. A linear defect occurs in the ‘/

region just above the inverted “tee” L, where an extra half plane of atoms has been Animation

wedged in.

(After A.G. Guy, “Essentials of Materials Science,” McGraw-Hill, 1976, p. 153.)

(b) Edge dislocation that indicates the orientation of its Burgers or slip vector b.

(Eis dt, M., Introduction to Mechanical Properties of Materials: An Ecological Approach, st ed., © 1971.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.)

ification of crystalline solids. They are also formed by the permanent or plastic
deformation of crystalline solids, vacancy condensation, and atomic mismatch in
solid solutions.

The two main types of dislocations are the edge and screw types. A combina-
tion of the two gives mixed dislocations, which have edge and screw components.
An edge dislocation is created in a crystal by the insertion of an extra half plane of
atoms, as shown in Fig. 4.18a just above the symbol L. The inverted “tee,” 1, indi-
cates a positive edge dislocation, whereas the upright “tee,” T, indicates a negative
edge dislocation.

The displacement distance of the atoms around the dislocation is called the slip
or Burgers vector b and is perpendicular to the edge-dislocation line (Fig. 4.18b).
Dislocations are nonequilibrium defects, and they store energy in the distorted region
of the crystal lattice around the dislocation. The edge dislocation has a region of
compressive strain at the extra half plane and a region of tensile strain below the
extra half plane of atoms (Fig. 4.19a).

The screw dislocation can be formed in a perfect crystal by applying upward
and downward shear stresses to regions of a perfect crystal that have been sepa-
rated by a cutting plane, as shown in Fig. 4.20a. These shear stresses introduce
a region of distorted crystal lattice in the form of a spiral ramp of distorted atoms
or screw dislocation (Fig. 4.20b). The region of distorted crystal is not well
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Figure 4.19

Strain fields surrounding (a) an edge
dislocation and (b) a screw dislocation.

(From Wulff et al., Structure and Properties of Materials,
Vol. 1ll, HW. Hayden, L.G. Moffatt, and J. Wulff,
“Mechanical Behavior,” Wiley, 1965, p. 69.)
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Figure 4.20

Formation of a screw dislocation. (a) A perfect crystal is sliced
by a cutting plane, and up and down shear stresses are applied
parallel to the cutting plane to form the screw dislocation in (b).
{(b) A screw dislocation is shown with its slip or Burgers vector b
parallel to the dislocation line.

(Eisenstadt, M., Introduction to Mechanical Properties of Materials: An
Ecological Approach, Ist ed., © 1971. Reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ.)
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Figure 4.21

Mixed dislocation in a crystal. Dislocation line AB is pure

screw type where it enters the crystal on left and pure

adge type where it leaves the crystal on right.

(From Wulff et al., Structure and Properties of Materials, Vol. III,

H.W. Hayden, L.G. Moffatt, and J. Wulff, “Mechanical Properties”,

Wiley, 1965, p. 65.)

defined and is at least several atoms in diameter. A region of shear strain is created
around the screw dislocation in which energy is stored (Fig. 4.195). The slip or
Burgers vector of the screw dislocation is parallel to the dislocation line, as shown
in Fig. 4.20b.

Most dislocations in crystals are of the mixed type, having edge and screw com-
ponents. In the curved dislocation line AB in Fig. 4.21, the dislocation is of the pure
screw type at the left where it enters the crystal and of the pure edge type on the
right where it leaves the crystal. Within the crystal, the dislocation is of the mixed
type, with edge and screw components.

4.4.3 Planar Defects

Planar defects include external surfaces, grain boundaries, twins, low-angle
boundaries, high-angle boundaries, twists, and stacking faults. The free or exter-
nal surface of any material is the most common type of planar defect. External sur-
faces are considered defects because the atoms on the surface are bonded to other
atoms only on one side. Therefore, the surface atoms have a lower number of neigh-
bors. As a result, these atoms have a higher state of energy when compared to the
atoms positioned inside the crystal with an optimal number of neighbors. The higher
energy associated with the atoms on the surface of a material makes the surface sus-
ceptible to erosion and reaction with elements in the environment. This point further
illustrates the importance of defects in the behavior of materials.
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Microstructure on top surface.
Each grain shaded distinctively
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Figure 4.22

Sketch showing the relation gf the two-dimensional
microstructure of a crystalline material to the
underlying three-dimensional network. Only
portions of the total volume and total face of any
one grain are shown.

(After A.G. Guy, “Essentials of Materials Science,”
McGraw-Hill, 1976.)

Grain boundaries are surface imperfections in polycrystalline materials that
separate grains (crystals) of different orientations. In metals, grain boundaries are
created during solidification when crystals formed from different nuclei grow
simultaneously and meet each other (Fig. 4.2). The shape of the grain boundaries
is determined by the restrictions imposed by the growth of neighboring grains.
Grain-boundary surfaces of an approximately equiaxed grain structure are shown
schematically in Fig. 4.22 and of real grains in Fig. 4.3.

The grain boundary itself is a narrow region between two grains of about two
to five atomic diameters in width and is a region of atomic mismatch between adja-
cent grains. The atomic packing in grain boundaries is lower than within the grains
because of the atomic mismatch. Grain boundaries also have some atoms in strained
positions that raise the energy of the grain-boundary region.

The higher energy of the grain boundaries and their more open structure make
them a more favorable region for the nucleation and growth of precipitates (see
Sec. 9.5). The lower atomic packing of the grain boundaries also allows for more
rapid diffusion of atoms in the grain boundary region. At ordinary temperatures,
grain boundaries also restrict plastic flow by making it difficult for the movement
of dislocations in the grain boundary region.
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Figure 4.23
Twin boundaries in the grain structure of brass.
(Figure from A.G. Guy, Essentials of Materials Science, McGraw-Hill, 1976.)

Twins or twin boundaries are another example of a two-dimensional defect. A
twin is defined as a region in which a mirror image of the structure exists across a
plane or a boundary. Twin boundaries form when a material is permanently or plas-
tically deformed (deformation twin). They can also appear during the recrystallization
process in which atoms reposition themselves in a deformed crystal (annealing twin),
but this happens only in some FCC alloys. A number of annealing twins formed in
the microstructure of brass are shown in Fig. 4.23. As the name indicates, twin bound-
aries form in pairs. Similar to dislocations, twin boundaries tend to strengthen a mate-
rial. A more detailed explanation of twin boundaries is given in Sec. 6.5.

When an array of edge dislocations are oriented in a crystal in a manner that
seems to misorient or tilt two regions of a crystal (Fig. 4.24a), a two-dimensional
defect called a small-angle tilt boundary is formed. A similar phenomenon can
occur when a network of screw dislocations create a small-angle twist boundary
(Fig 4.24b). The misorientation angle 6 for a small-angle boundary is generally
less than 10 degrees. As the density of dislocations in small-angle boundaries
(tilt or twist) increases, the misorientation angle 8 becomes larger. If 8 exceeds
20 degrees, the boundary is no longer characterized as a small-angle boundary but

Virtual Lab
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Figure 4.24
(a) Edge dislocations in an array forming a small-angle tilt boundary. (b) Schematic
of a small-angle twist boundary.

is considered a general grain boundary. Similar to dislocations and twins, small-
angle boundaries are regions of high energy due to local lattice distortions and
tend to strengthen a metal.

In Sec. 3.8, we discussed formation of FCC and HCP crystal structures by the
stacking of atomic planes. It was noted that the stacking sequence ABABAB . . . leads
to the formation of an HCP crystal structure while the sequence ABCABCABC . . .
leads to the FCC structure. Sometimes during the growth of a crystalline material,
collapse of a vacancy cluster, or interaction of dislocations, one or more of the stack-
ing planes may be missing, giving rise to another two-dimensional defect called a
stacking fault or a piling-up fault. Stacking faults ABCABAACBABC and ABAABBAB
are typical in FCC and HCP crystals, respectively. The bold-faced planes indicate
the faults. Stacking faults also tend to strengthen the material.

It is important to note that, generally speaking, of the two-dimensional defects
discussed here, grain boundaries are most effective in strengthening a metal; how-
ever stacking faults, twin boundaries, and small-angle boundaries often also serve a
similar purpose. The reason why these defects tend to strengthen a metal will be
discussed in more detail in Chap. 6.

4.4.4 Volume Defects

Volume or three-dimensional defects form when a cluster of point defects join to
form a three-dimensional void or a pore. Conversely, a cluster of impurity atoms
may join to form a three-dimensional precipitate. The size of a volume defect may
range from a few nanometers to centimeters or sometimes larger. Such defects have
a tremendous effect or influence on the behavior and performance of the material.
Finally, the concept of a three-dimensional or volume defect may be extended to
an amorphous region within a polycrystalline material. Such materials were briefly
discussed in Chap. 3 and will be more extensively discussed in future chapters.



4.5 Experimental Techniques for Identification of Microstructure and Defects

4.5 EXPERIMENTAL TECHNIQUES FOR
IDENTIFICATION OF MICROSTRUCTURE
AND DEFECTS

Material scientists and engineers use various instruments to study and understand the
behavior of materials based on their microstructures, existing defects, microcon-
stituents, and other features and characteristics specific to the internal structure. The
instruments reveal information about the internal makeup and structure of the mate-
rial at various length scales extending from the micro- to nanorange. In this range,
the structure of grains, ‘grain boundaries, various microphases, line defects, surface
defects and their effect on material behavior may be studied by various instruments.
In the following sections, we will discuss the use of optical metallography, scanning
electron microscopy, transmission electron microscopy, high-resolution transmission
electron microscopy, and scanning probe microscopy techniques to learn about the
internal and surface features of materials.

4.5.1 Optical Metallography, ASTM Grain Size,
and Grain Diameter Determination

Optical metallography techniques are used to study the features and internal
makeup of materials at the micrometer level (magnification level of around 2000X).
Qualitative and quantitative information pertaining to ,grains size, grain boundary,
existence of various phases, internal damage, and some defects may be extracted
using optical metallography techniques. In this technique, the surface of a small
sample of a material such as a metal or a ceramic is first prepared through a detailed
and rather lengthy procedure. The preparation process includes numerous surface
grinding stages (usually four) that remove large scratches and thin plastically
deformed layers from the surface of the specimen. The grinding stage is followed
with a number of polishing stages (usually four) that remove fine scratches formed
during the grinding stage. The quality of the surface is extremely important in the
outcome of the process, and generally speaking, a smooth, mirror-like surface with-
out scratches must be produced at the end of the polishing stage. These steps are
necessary to minimize topographic contrast. The polished surface is then exposed
to chemical etchants. The choice of the etchant and the etching time (the time
interval in which the sample will remain in contact with the etchant) are two crit-
ical factors that depend on the specific material under study. The atoms at the
grain boundary will be attacked at a much more rapid rate by the etchant than
those atoms inside the grain. This is because the atoms at the grain boundary pos-
sess a higher state of energy because of the less efficient packing. As a result, the
etchant produces tiny grooves along the boundaries of the grains. The prepared
sample is then examined using a metallurgical microscope (inverted microscope)
based on visible incident light. A schematic representation of the metallurgical
microscope is given in Fig. 4.25. When exposed to incident light in an optical
microscope, these grooves do not reflect the light as intensely as the remainder of
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Figure 4.25

Schematic diagram illustrating how light is reflected
from the surface of a polished and etched metal. The
irregular surface of the etched-out grain boundary does
not reflect light.

(After M. Ei. dt, “Mechanical Properties of Materials,”
Macmillan, 1971, p. 126.)

the grain material (Fig. 4.26). Because of the reduced light reflection, the tiny
grooves appear as dark lines to the observer, thus revealing the grain boundaries
(Fig. 4.27). Additionally, impurities, other existing phases, and internal defects
also react differently to the etchant and reveal themselves in photomicrographs
taken from the sample surface. Overall, this technique provides a great deal of
qualitative information about the material.

In addition to the qualitative information that is extracted from the photomicro-
graphs, some limited quantitative information may also be extracted. Grain size and
average grain diameter of the material may be determined using the photomicro-
graphs obtained by this technique.

The grain size of polycrystalline metals is important since the amount of grain
boundary surface has a significant effect on many properties of metals, especially
strength. At lower temperatures (less than about one-half of their melting tempera-
ture), grain boundaries strengthen metals by restricting dislocation movement under
stress. At elevated temperatures, grain boundary sliding may occur, and grain bound-
aries can become regions of weakness in polycrystalline metals.
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Figure 4.26
The effect of etching a polished surface of a steel metal sample on the microstructure observed in the &/

optical microscope. (&) In the as-polished condition, no microstructural features are observed. (b) After  Virtual L
etching a very low-carbon steel, only grain boundaries are chemically attacked severely, and so they

appear as dark lines in the optical microstructure. (c) After etching a medium-carbon steel polished

sample, dark (pearlite)} and light (ferrite) regions are observed in the microstructure. The darker pearlite

regions have been more severely attacked by the etchant and thus do not reflect much light.

(Eisenstadt, M., Introduction to Mechanical Properties of Materials: An Ecological Approach, Ist ed., © 1971. Reprinted by

permission of Pearson Education, Inc., Upper Saddle River, NJ.)

Figure 4.27

Grain boundaries on the surface of polished and etched samples as revealed in
the optical microscope. (a) Low-carbon steel (magnification 100x).

(After “Metals Handbook,” vol. 7, 8th ed., American Society for Metals, 1972, p. 4.)

(b) Magnesium oxide (magnification 225X).

(After R.E. Gardner and G.W. Robinson, J. Am. Ceram. Soc., 45:46 (1962).)
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One method of measuring grain size is the American Society for Testing and
Materials (ASTM) method, in which the grain-size number rn is defined by

N=2""! @.7)

where N is the number of grains per square inch on a polished and etched material
surface at a magnification of 100X and r is an integer referred to as the ASTM grain-
size number. Grain-size numbers with the nominal number of grains per square inch
at 100X and grains per square millimeter at 1X are listed in Table 4.2. Figure 4.28
shows some examples of nominal grain sizes for low-carbon sheet steel samples. Gen-

Table 4.2 ASTM grain sizes

Nominal number of grains
Grain- ~ Per sq mm ' Per sq in.
size no. ' at 1x at 100X
1 15.5 1.0
2 31.0 2.0
3 62.0 4.0
4 124 8.0
5 248 16.0
6 496 320
7 992 _ 64.0
8 1980 128
9 3970 256
10 7940 512

Source: “Metals Handbook,” vol. 7, 8th ed., American Society for Metals, 1972, p. 4.
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Figure 4.28

Several nominal ASTM grain sizes of low-carbon sheet steels: (a) no. 7, (b) no. 8, and
(¢) no. 9. (Etch: nital; magnification 100x.)

{After “Metals Handbook,” vol. 7, 8th ed., American Society for Metals, 1972, p. 4.)



4.5 Experimental Techniques for Identification of Microstructure and Defects

erally speaking, a material may be classified as coarse-grained when n < 3; medium-
grained, 4 < n < 6; fine-grained, 7 < n < 9, and ultrafine-grained, n > 10.

A more direct approach of assessing the grain size of a material would be to
determine the actual average grain diameter. This offers clear advantages to the
ASTM grain-size number that in reality does not offer any direct information about
the actual size of the grain. In this approach, once a photomicrograph is prepared at
a specific magnification, a random line of known length is drawn on the photomi-
crograph. The number of grains intersected by this line is then determined, and the
ratio of the number of grains to the actual length of the line is determined, n;. The
average grain diameter d is determined using the equation,

d = C/(n, M) 4.8

where C is a constant (C = 1.5 for typical microstructures) and M is the magnifi-
cation at which the photomicrograph is taken.

167

An ASTM grain size determination is being made from a photomicrograph of a metal at
a magnification of 100X. What is the ASTM grain-size number of the metal if there are
64 grains per square inch?

EXAMPLE
PROBLEM 4.4

8 Solution 93
N=2""1 L 4
Tutorial
where N = no. of grains per square inch at 100X
n = ASTM grain-size number
Thus,
64 grains/in® = 21
log 64 = (n — 1)(log 2)
1.806 = (n — 1)(0.301)
n=7+d
EXAMPLE

If there are 60 grains per square inch on a photomicrograph of a metal at 200X, what is
the ASTM grain-size number of the metal?

N Solution
If there are 60 grains per square inch at 200X, then at 100X we will have

200'\? o, .
=(= = 240 = 2"
N (1 )(GOgrmnsfm]

log 240 = (n — 1)(log 2)
2.380 = (n — 1)(0.301)
n =891«

. Note that the ratio of the magnification change must be squared since we are concerned
with the number of grains per square inch.

PROBLEM 4.5
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Figure 4.29
Schematic diagram of the basic design of a scanning electron
microscope.

(After VA. Phillips, “Modern Metallographic Techniques and Their
Applications,” Wiley, 1971, p. 425.)

4.5.2 Scanning Electron Microscopy (SEM)

Scanning electron microscope is an important tool in materials science and engi-
neering; it is used for microscopic feature measurement, fracture characterization,
microstructure studies, thin coating evaluations, surface contamination examination,
and failure analysis of materials. As opposed to optical microscopy where the
sample’s surface is exposed to incident visible light, the SEM impinges a beam of
electrons in a pinpointed spot on the surface of a target specimen and collects and
displays the electronic signals given off by the target material. Figure 4.29 is a
schematic illustration of the principles of operation of an SEM. Basically, an electron
gun produces an electron beam in an evacuated column that is focused and directed
so that it impinges on a small spot on the target. Scanning coils allow the beam to
scan a small area of the surface of the sample. Low-angle backscattered electrons
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Figure 4.30

Scanning electron fractograph' of
intergranular corrosion fracture near
a circumferential weld in a thick-wall
tube made of type 304 stainless
steel. (Magnification 180x.}

(After “Metals Handbook," vol. 9:

“Fractography and Atlas of Fractographs,” 8th Figure 4.31
ed., American Society for Metals, 1974, p. 77. Man looking into an electron microscope.
ASM International.) (© Gerty Images/RF)

interact with the protuberances of the surface and generate secondary’ backscattered
electrons to produce an electronic signal, which in turn produces an image having a
depth of field of up to about 300 times that of the optical microscope (about 10 um
at 10,000 diameters magnification). The resolution of many SEM instruments is about
5 nm, with a wide range of magnification (about 15 to 100,000X).

The SEM is particularly useful in materials analysis for the examination of frac-
tured surfaces of metals. Figure 4.30 shows an SEM fractograph of an intergranular
corrosion fracture. Notice how clearly the metal grain surfaces are delineated and
the depth of perception. SEM fractographs are used to determine whether a fractured
surface is intergranular (along the grain boundary) transgranular (across the grain),
or a mixture of both. The samples to be analyzed using standard SEM are often
coated with gold or other heavy metals to achieve better resolution and signal qual-
ity. This is especially important if the sample is made of a nonconducting material.
Qualitative and quantitative information relating to the makeup of the sample may
also be obtained when the SEM is equipped with an x-ray spectrometer.

4.5.3 Transmission Electron Microscopy (TEM)

Transmission electron microscopy (Fig. 4.31) is an important technique for studying
defects and precipitates (secondary phases) in materials. Much of what is known

"Secondary electrons are electrons that are ejected from the target metal atoms after being struck by primary
electrons from the electron beam.
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about defects would be speculative theory and would have never been verified
without the use of TEM, which resolves features in the nanometer range.

Defects such as dislocations can be observed on the image screen of a TEM.
Unlike optical microscopy and SEM techniques where sample preparation is rather
basic and easy to achieve, sample preparation for TEM analysis is complex and
requires highly specialized instruments. Specimens to be analyzed using a TEM must
have a thickness of several hundred nanometers or less depending on the operating
voltage of the instrument. A properly prepared specimen is not only thin but also has
flat parallel surfaces. To achieve this, a thin section (3 to 0.5 mm) is cut out of the
bulk material using techniques such as electric-discharge machining (used for con-
ducting samples) and a rotating wire saw, among others. The specimen is then reduced
to 50 pm thickness while keeping the faces parallel using machine milling or lap-
ping processes with fine abrasives. Other more advanced techniques such as elec-
tropolishing and ion-beam thinning are used to thin a sample to its final thickness,

In the TEM, an electron beam is produced by a heated tungsten filament at the
top of an evacuated column and is accelerated down the column by high voltage
(usually from 100 to 300 kV). Electromagnetic coils are used to condense the elec-
tron beam, which is then passed through the thin specimen placed on the specimen
stage. As the electrons pass through the specimen, some are absorbed and some are
scattered so that they change direction. It is now clear that the sample thickness is
critical: A thick sample will not allow the passage of electrons due to excessive
absorption and diffraction. Differences in crystal atomic arrangements will cause
electron scattering. After the electron beam has passed through the specimen, it is
focused with the objective coil (magnetic lens) and then enlarged and projected on
a fluorescent screen (Fig. 4.32). An image can be formed either by collecting the
direct electrons or the scattered electrons. The choice is made by inserting an aper-
ture into the back focal plane of the objective lens. The aperture is maneuvered so
that either the direct electrons or scattered electrons pass through it. If the direct
beam is selected, the resultant image is called a bright-field image, and if the scat-
tered electrons are selected, a dark-field image is produced.

In a bright-field mode, a region in a metal specimen that tends to scatter elec-
trons to a higher degree will appear dark on the viewing screen. Thus, dislocations
that have an irregular linear atomic arrangement will appear as dark lines on the
electron microscope screen. A TEM image of the dislocation structure in a thin foil
of iron deformed 14 percent at —195°C is shown in Fig 4.33.

4.5.4 High-Resolution Transmission Electron
Microscopy (HRTEM)

Another important tool in the analysis of defects and crystal structure is the high-
resolution transmission electron microscopy. The instrument has a resolution of about
0.1 nm, which allows viewing of the crystal structure and defects at the atomic level.
To grasp what this degree of resolution may reveal about a structure, consider that the
lattice constant of the silicon unit cell at approximately 0.543 nm is five times larger
than the resolution offered by HRTEM. The basic concepts behind this technique are



