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alloys. This result indicates that the spins in the most concentrated alloy are not as
“susceptible” as free spins in their response to external magnetic fields. Instead, their
coupling to and interaction with each other limits their ability to respond to external
fields and hence lowers their susceptibility %. The type of interaction responsible for this
behavior in AuMn alloys is an indirect interaction mediated by the conduction electrons.

W9.5 Spin Glasses and the RKKY Interaction

Clear evidence for the existence of the RKKY interaction has been found from studies
of the magnetic properties of dilute alloys (e.g., Mn in Au, Ag, Cu, and Zn). When the
spins of magnetic Mn2C ions are coupled to each other via the conduction electrons, the
average energy of the spin–spin interaction hURKKYi is given by nV0, where n is the
concentration of Mn2C ions per unit volume. This energy of interaction between spins
competes with the energy of thermal disorder kBT, with the result that the free-spin
Curie law %�T
 D C/T is modified and becomes instead

%�T
 D C

TC ) . �W9.1


Here C is again the Curie constant as defined in Eq. (9.26) and ) ³ nV0/kB > 0
is the Curie–Weiss temperature.† Equation (W9.1) is known as the Curie–
Weiss law for the magnetic susceptibility and is valid for T× ) (i.e., for kBT×
nV0).

Note that %�T
 D C/�TC )
 with ) > 0 is smaller than the free-spin susceptibility
%�T
 D C/T for all T, indicating again that spin–spin interactions reduce the ability
of the interacting spins to respond to external magnetic fields. This behavior has
already been illustrated in Fig. W9.2, where, as stated previously, % for the highest-
concentration AuMn alloy at low T falls below the straight line that represents the
Curie law behavior observed at higher T .

As T! 1 the Curie and Curie–Weiss laws become essentially identical since
thermal fluctuations will always overcome magnetic interactions in this limit. The most
significant difference is found for T− ), where %�T
 D C/�TC )
 reaches a finite
value while %�T
 D C/T for free spins diverges as T! 0. The dependence of % on
T expressed by the Curie–Weiss law in Eq. (W9.1) is also observed in ferromagnetic
and antiferromagnetic materials in their paramagnetic states above their respective critical
temperatures Tc. For ferromagnets it is found that ) < 0, whereas for antiferromagnets
) > 0.

W9.6 Kondo Effect and s–d Interaction

One more interesting effect involving localized spins and the conduction electrons
in metals can be mentioned. At sufficiently low temperatures the s–d or exchange
interaction given in Eq. (9.32) can lead to a complicated many-body ground state
of the system of the spin S and the conduction electrons of the metal. As already
mentioned, the scattering of an electron from a magnetic ion can cause the spin of
the scattered electron to flip (i.e., to change its direction), with a compensating change

† A. I. Larkin and D. E. Khmel’nitskii, Sov. Phys. JETP, 31, 958 (1970).
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TABLE W9.2 Competing Effects for Localized
Spins in Metals: Thermal, RKKY, and Kondo
Effects

nV0 × kBTK: spin–spin interactions are dominant.
kBT × nV0 Free spins
kBT − nV0 Frozen spins (spin glass behavior)

kBTK × nV0: single-spin effects are dominant.
T× TK Free spins
T− TK Compensated spins

occurring in the direction of the localized spin. The onset of this new ground state is
typically signaled by the appearance of a minimum in the resistance of the metal as the
temperature is lowered. It has been predicted that below a characteristic temperature
TK the spin S of the magnetic ion will be effectively canceled or compensated by
the oppositely directed spins of the conduction electrons that interact with S. This
behavior is known as the Kondo effect, and the magnitude of the Kondo temperature
TK increases as the strength of the s–d interaction increases.

The s–d interaction, if sufficiently strong, can lead to complete mixing of the
conduction electrons and the localized d electrons of the magnetic ion and therefore to
the disappearance of the localized spin S. An example of this behavior is provided by
Mn2C ions, which do not retain well-defined magnetic moments in certain dilute alloys
such as Mn in Al. In this case the characteristic temperature TK for the s–d interaction
is apparently very high, ³ 1000 K, since for T < TK, the spin will be compensated
and hence effectively absent.

The three competing effects that ultimately determine the behavior and possibly
even the existence of localized spins in metals are thermal effects, effects due to the
spin–spin RKKY interaction, and the single-spin Kondo effect.† The characteristic
energies that determine the strengths of these three effects are kBT, nV0, and kBTK,
respectively. The possible regimes of behavior are defined in terms of the relative
magnitudes of these three energies in Table W9.2. It can be seen that free-spin behavior
should in principle always be observed in solids at sufficiently high T. The term spin
glass used in the table is defined in the discussion of magnetism in disordered materials
in Section W9.11.

W9.7 c.T/ for Ni

A test of the Curie–Weiss law %�T
 D C/�T� TC
 for the ferromagnet Ni is shown
in Fig. W9.3, where %�1

. is plotted as a function of T. It can be seen that signifi-
cant deviations from Curie–Weiss behavior occur just above TC D 627 K. It is found
experimentally for Fe that % is proportional to �T� TC
�/ as T! TC from above.
Here / is measured to be 1.33 instead of the value 1 predicted by the Curie–Weiss
law. The molecular field theory fails near TC since it does not include the effects of
fluctuations of the local magnetization.

† An alternative approach to the question of the existence of localized spins in metals has been developed
by Anderson (P. W. Anderson, Phys. Rev., 124, 41 (1961) and by Wolff (P. A. Wolff, Phys. Rev., 124,
1030 (1961).) For a useful discussion of this approach, see White and Geballe (1979).
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Figure W9.3. Test of the Curie–Weiss law %�T
 D C/�T� TC
 for the ferromagnet Ni in the
form of a plot of %�1

. as a function of T . Deviations from Curie–Weiss behavior are observed just
above TC D 627 K. The straight line is the extrapolation of the results obtained for T > 700 K
and is given by %�T
 D C/�T� )
 where ) D 650 K. [Data From J. S. Kouvel et al., Phys.
Rev., 136, A1626 (1964).]

W9.8 Hubbard Model

An approach that attempts to include both itinerant and localized effects and also
electron correlations within the same model is based on a proposal by Hubbard.† In
the Hubbard model the oversimplified view is taken that the electrons in the partially
filled shell of the free ion enter a single localized orbital in the solid. There are
two important energies in the Hubbard model. The Coulomb repulsion energy U > 0
represents the effects of electron correlations between pairs of opposite-spin electrons
occupying the same orbital on a given ion, and the hopping or tunneling energy is t.
The parameter t is effectively the matrix element between states on neighboring ions
which differ by one electron of a given spin direction and is therefore related to the
energy required for an electron to hop from one site (i.e., one ion) to one of its NNs
without changing its spin direction. In a one-state Hubbard model there is one orbital
per atom and each orbital can be occupied by electrons in four different ways: (1) the
orbital is empty: (�,�), (2) and (3) the orbital is occupied by either a spin-up or a
spin-down electron: (#,�) or (�,"), or (4) the orbital is doubly occupied: (#,").

In the limit U × t and when there are just as many electrons as ions, there will be
a strong preference for occupation of each orbital by a single electron (i.e., case 2 or 3
above). This limit corresponds to an antiferromagnetic insulator in which the effective
exchange integral is J D �4t2/U, with adjacent orbitals occupied by opposite spin
electrons. In the opposite limit of U − t, the electrons are not localized but instead,
form a band of itinerant electrons. Thus the Hubbard model is capable of describing
a wide range of magnetic behavior in solids, depending on the relative values of the
two parameters U and t. In addition, the Hubbard model has the advantage that it can
be formulated so that the condition for local magnetic moment formation is not the
same as that for the occurrence of long-range order in the spin system. The negative-U
limit of the Hubbard model has been applied to charged defects in semiconducting
and insulating solids. The defect is negatively charged when the orbital in question is

† J. Hubbard, Proc. R. Soc. A, 276, 238 (1963); 277, 237 (1964); 281, 401 (1964).



82 MAGNETIC PROPERTIES OF MATERIALS

doubly occupied, or positively charged when the orbital is unoccupied. The energy U
can be effectively negative when lattice relaxations occur that favor negatively charged
defects.

The Hubbard model goes beyond the one-electron tight-binding approximation
presented in Chapter 7, in that it includes electron–electron interactions when two
electrons reside on the same site. The application of the Hubbard model to high-Tc
oxide-based superconductors is described briefly Chapter W16.

W9.9 Microscopic Origins of Magnetocrystalline Anisotropy

The microscopic origins of magnetocrystalline anisotropy can be viewed as arising from
anisotropic interactions between pairs of spins when these interactions are significant
and also from the interaction of a single spin with its local atomic environment (i.e.,
the crystal field). The pair model of Van Vleck, developed in 1937, attempts to explain
the change of the energy of interaction of pairs of spins according to their directions
relative to their separation r. This type of interaction is called anisotropic exchange, in
contrast to the isotropic Heisenberg exchange interaction of Eq. (9.30). The spin–orbit
interaction is believed to be an important source of the magnetic anisotropy. In the
pair model the first-order anisotropy coefficient K1 is predicted to be proportional to a
high power of the spontaneous magnetization Ms in the ferromagnet. This result can
explain the observed rapid decrease of K1 with increasing temperature, with Ms and
K1 both falling to zero at TC.

The direction of the spin of a magnetic ion in a material can also depend on the
nature of the crystal field acting on the ion. In this way the local atomic environment
can influence the direction of the magnetization M, hence giving rise to anisotropy. In
fact, the electronic energy levels of the ion are often modified by the interaction with
the crystal field, as discussed in Section 9.3.

W9.10 c|| and c⊥ for Antiferromagnetic Materials

The predicted differences between %jj and %? discussed in the textbook are clear
evidence that the magnetic properties of antiferromagnetic materials can be expected
to be anisotropic below TN. For example, in MnO the preferred directions for the
sublattice magnetizations MsA and MsB, and hence the directions corresponding to %jj,
can be seen from Fig. 9.17 to be the [101] and [101] directions in the f111g planes.
Also, if an antiferromagnet were perfectly isotropic below TN, it would follow that
%jj D %?. Since %? > %jj for T < TN, it can be energetically favorable for the spins to
rotate so that the spin axis is perpendicular to the applied field. This “flopping” of the
spin axis occurs at a critical applied magnetic field which is determined by the relative
strengths of the magnetocrystalline anisotropy and the antiferromagnetic interactions.

W9.11 Magnetism in Disordered Materials

Spin glasses (i.e., dilute magnetic alloys) are the focus of this section, due to the fairly
simple, yet important ideas involved in the explanation of their magnetic behavior.
In general, nonuniform internal molecular fields Beff whose magnitudes and directions
vary from spin to spin are present in amorphous magnetic materials. The probability
distribution P�Beff
 of the magnitudes of these internal fields in spin glasses (e.g.
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Cu0.99Fe0.01) will be nonzero even at Beff D 0. Thus there will always be spins with
Beff D 0 which are effectively free to respond to thermal excitations and to external
magnetic fields. This is clearly not the case in the magnetically ordered materials
discussed in the textbook, in which every spin experiences a nonzero molecular field,
at least below the critical temperature TC or TN for magnetic ordering.

In sufficiently dilute spin glasses and at relatively high temperatures each spin can
in principle be thought of as being free or as interacting with at most one other spin
in the material. The spins typically interact via the indirect RKKY interaction through
the conduction electrons. In this case the contributions of the interacting spins to the
magnetization M, the magnetic susceptibility %, and the magnetic contribution CM to
the specific heat obey the following scaling laws involving temperature T and magnetic
field H:

M�H,T


n
D FM

(
T

n
,
H

n

)
,

%�T
 D F%
(
T

n

)
, �W9.2


CM�T


n
D FC

(
T

n

)
.

Here n is the concentration of magnetic impurities, and FM, F%, and FC are functions
only of H and T through the reduced variables H/n and T/n. These scaling laws
follow from the 1/r3 dependence of the RKKY interaction on the separation r between
spins, as presented in Eqs. (9.33) and (9.34).

Since the average separation hri between randomly distributed spins can be approx-
imated by n�1/3, it follows that the average strength hJRKKY�r
i of the interaction
between spins is proportional to hV0/r3i (i.e., to nV0), where V0 is a constant for a
given combination of magnetic impurity and host material. The value for V0 in dilute
CuMn alloys† is V0 D 7.5 ð 10�50 J Ð m3. Taking a Mn concentration of 0.1 at % D
1000 parts per million (ppm) in Cu yields n D 8.45 ð 1025 Mn spins/m3 and nV0 D
6.3 ð 10�24 J ³ 4 ð 10�5 eV. This concentration corresponds to an average distance
between Mn spins of about 2 nm. The value of Jsd for CuMn can be obtained from
Eq. (9.35) using the result given above for V0, a density of states for Cu of .�EF
 D
2.34 ð 1047 J�1m�3. The value so obtained is Jsd D 3.45 ð 10�19 J D 2.16 eV.

The scaling behavior of %�T
 predicted above has already been demonstrated in
Fig. W9.2, where % is shown plotted as a function of T/n for several AuMn alloys.
The measured magnetization M for three of these AuMn alloys at a fixed value of T/n
is shown in Fig. W9.4 plotted as M/n versus H/n. The scaling behavior predicted
is again observed. The magnetization M�H
 shown here falls well below the corre-
sponding Brillouin function M D ng&BJBJ�g&BJB/kBT
, which would apply if the
spins were free (i.e., completely noninteracting).

Experimental results for the magnetic contribution CM to the specific heat of a
series of dilute alloys of Mn in Zn are shown in Fig. W9.5, where CM/n is plotted as
a function of T/n. Scaling is observed for the more-concentrated alloys where RKKY

† F. W. Smith, Phys. Rev. B, 14, 241 (1976).
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interactions dominate, whereas evidence for single-impurity effects, possibly due to
the Kondo effect, is observed for the more dilute alloys at higher values of T/n. The
peak observed in the measured specific heat at T/n ³ 20 K/(at % Mn) corresponds to
a value of the ratio kBT/nV0 of thermal to RKKY interaction energies approximately
equal to 2. At lower T (i.e., for kBT < nV0) interactions between the spins cause them
to “freeze” in the local molecular field due to their neighboring spins. At T = 0 K the
spin glass is magnetically “frozen” and the spins are oriented along the direction of
their local molecular field. As T is lowered it is found experimentally that CM / n2,
indicating that interactions first appear between pairs of spins. The typical size of an
interacting cluster of spins increases as T decreases or n increases until the interactions
extend throughout the entire spin system.

The magnetic behavior of dilute spin glasses can thus be understood as resulting
from RKKY interactions between pairs of spins. Evidence for clusters of spins can
be found in more concentrated spin glasses, such as Cu containing more than a few
atomic percent Mn or in alloys such as CuxNi1�x and FexAl1�x. Although the magnetic
behavior is much more complicated in these concentrated alloys, the RKKY interaction
still plays an important role. The term mictomagnetism is sometimes used to describe
such materials in which the orientations of the spins are disordered and frozen at low
temperatures.
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PROBLEMS

W9.1 Using Hund’s rules, find the values of S, L, and J for the atoms in the 4d
transition element series (Y to Pd). Compare these values with the corresponding
results given in Table 9.1 for the 3d series.

W9.2 From Fig. 9.5 it can be seen that, relative to the degenerate spherically symmetric
level, the dxy , dyz, and dxz orbitals are shifted lower in energy by 2o/5 for
the octahedral case and higher in energy by 2t/5 for the tetrahedral case.
The corresponding opposite shifts for the dx2�y2 and dz2 orbitals are by the
amount 3o/5 or 3t/5 for the octahedral and tetrahedral cases, respectively.
Show that these energy shifts are such that the total energy of the 3d10 config-
uration will be the same in both the spherically symmetric and crystal-field-
split cases.

W9.3 Using the schematic energy-level diagrams shown in Fig. 9.5, calculate the
crystal field stabilization energies (CFSEs) and spins S [assuming that orbital
angular momentum L is quenched (i.e., L D 0)]:
(a) For the 3dn ions in octahedral sites. Compare your results with the values

presented in Table 9.2.
(b) For the 3dn ions in tetrahedral sites.



86 MAGNETIC PROPERTIES OF MATERIALS

(c) In a ferrite such as Fe3O4, will Fe2C ions prefer to enter octahedral or
tetrahedral sites on the basis of their crystal field stabilization energy CFSE?
What about Fe3C ions?

W9.4 Show that the induced saturation magnetizationMsat for a system of n D 1026/m3

free spins in a material makes a negligible contribution to the magnetic induc-
tion B .

W9.5 Derive the general expression for the Brillouin function BJ(x) given in Eq. (9.24).
W9.6 Consider a dilute magnetic alloy that contains n D 2 ð 1023 spins/m3. At low T

the spins can be saturated in a field H ³ 4 ð 106 A/m, withMsat measured to be
5.56 A/m. At high T the spins obey a Curie–Weiss law %�T
 D C/�TC )
 with
Curie constant C D 7.83 ð 10�6 K and Curie–Weiss temperature ) D 0.1 K.
(a) From these data determine the spin J and g factor of the spins.
(b) Are the spins free? If not, what type of spin–spin interaction would you

conclude is present in the alloy?
W9.7 Consider a spin S in a ferromagnet interacting only with its z NN spins (z D 12

for an FCC lattice).
(a) Using Eq. (9.41) show that the Curie–Weiss temperature ) is given by ) D
zS�SC 1
J�RNN
/3kB, where the exchange integral J�r
 is evaluated at the
NN distance RNN.

(b) Using the approximate values ) ³ TC D 1043 K and S ³ 1 for BCC ferro-
magnetic ˛-Fe, calculate the value of J(RNN).

W9.8 Show that at the Néel temperature TN, the predicted maximum value for the
magnetic susceptibility % according to the molecular field model is %max D
�1/5AB > 0. Explain why this prediction that %max is proportional to 1/5AB is
physically reasonable.

W9.9 Calculate the Pauli paramagnetic susceptibility %P for Na metal according to the
free-electron theory.



CHAPTER W10

Mechanical Properties of Materials

W10.1 Relationship of Hooke’s Law to the Interatomic U.r/

Since the macroscopic deformation of a solid reflects the displacements of individual
atoms from their equilibrium positions, it should not be surprising that the elastic
response of a solid is determined by the nature of the interactions between neighboring
atoms. In fact, Hooke’s law can be derived from the form of the potential energy
of interaction U�r� for a pair of atoms, as shown for a pair of hydrogen atoms in
Fig. 2.1 of the textbook.† The equilibrium separation of the two atoms corresponds to
the minimum in the U�r� curve at r D r0. Since U�r� is a continuous function, it can
be expanded in a Taylor series about r D r0, as follows:

U�r� D U�r0�C �r � r0�
(
dU

dr

)
r0

C �r � r0�2
2

(
d2U

dr2

)
r0

C Ð Ð Ð . �W10.1�

The first derivative, �dU/dr�r0 , is equal to zero at the equilibrium separation r D r0.
In addition, cubic and other higher-order terms can be neglected since �r � r0� − r0
for the (typically) small displacements from equilibrium.

It follows that the force acting between a pair of atoms can be approximated by

F�r� D �dU�r�
dr

D ��r � r0�
(
d2U

dr2

)
r0

D �k�r � r0�, �W10.2�

where k is a constant. This result has the same form as Hooke’s law since the displace-
ment �r � r0� of atoms from their equilibrium positions is proportional to the restoring
force F. This displacement is also inversely proportional to the curvature �d2U/dr2�r0
of the potential energy curve at r D r0, which for a given material is a constant in a
given direction.

It can be seen from Eqs. (10.21) and (W10.2) that Young’s modulus E is proportional
to the curvature �d2U/dr2�r0 of the potential energy. This is a reasonable result since the
macroscopic deformations that correspond to the microscopic displacements of atoms
from their equilibrium positions will be more difficult in materials where the potential
energy well is deeper and hence U�r� increases more rapidly as the atoms are displaced

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W10.1. Schematic potential energies of interactionU�r� for “deep” and “shallow” poten-
tial wells and corresponding stress–strain curves

from their equilibrium positions. This is illustrated schematically in Fig. W10.1 for
the cases of “strong” and “weak” bonding between pairs of atoms, corresponding to
“deep” and “shallow” potential wells, respectively. For the case of a material with
strong bonding and a deep potential well, the curvature �d2U/dr2�r0 is high. Such a
material will have a high stiffness E and a high slope for the initial linear portion of
its stress–strain curve, as shown in the inset of this figure. The opposite will be true
for a material having weak bonding, a shallow potential well, and a corresponding
low curvature �d2U/dr2�r0 . In this case the material will have a low stiffness E. It
should be noted that the stress–strain curve will eventually become nonlinear as the
stress increases, due to the nonparabolicity of the interatomic potential U�r� for large
displacements �r � r0�.

Estimates for the magnitude of the elastic modulus E and its dependence on mate-
rial properties can be obtained by noting that E, as a measure of the stiffness of a
material, should be proportional to the stress needed to change the equilibrium separa-
tion between atoms in a solid.† For many materials with ionic, metallic, and covalent
bonding, this stress is itself approximately proportional to the magnitude of the inter-
atomic Coulomb force F D q2/4
�d2, where q is the ionic charge, d the interatomic
separation, and � the electric permittivity of the material. This stress should also be
inversely proportional to the effective area, ³ d2, over which the interatomic force
acts. Thus the stress, and hence E, should be proportional to q2/d4.

A test of this relationship is presented in Fig. W10.2, where the bulk modulus B,
defined in Section 10.6, is shown plotted as a function of the interatomic separation d
in a logarithmic plot for three classes of materials with ionic, metallic, and covalent
bonding, respectively. For each class of materials the measured values of B fall on a
straight line with a slope close to �4, as predicted by the simple argument presented
above. It is clear from this result that high elastic stiffness is favored in materials
where the ions have large effective charges and are separated by small interatomic
separations.

The magnitude of the elastic constants can also be estimated from the expression
E ³ q2/4
�d4 by using 1/4
� ³ 9 ð 109 N Ð m2/C2, q D e D 1.6 ð 10�19 C, and d ³

† See the discussion in Gilman (1969, pp. 29–42).
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A. G. Guy, Introduction to Materials Science, McGraw-Hill, New York, 1972. Reprinted by
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0.2 nm. The result obtained, E ³ 100 GPa, is consistent with the experimental values
shown in Fig. W10.2 and listed in Table 10.2.

W10.2 Zener Model for Anelasticity

An interesting and useful model for describing anelastic processes has been proposed
by Zener. This model deals with a standard linear solid, a solid in which the stress
�, the strain ε, and their first derivatives ∂�/∂t and ∂ε/∂t are related to each other in
a linear equation. Although Zener’s model may not be sufficiently general to describe
all types of anelastic effects, it is quite useful for the purpose of illustrating important
general aspects of anelasticity.

In the Zener model the following equation is used to describe the anelastic effects
illustrated in Fig. 10.9:

� C �ε ∂�
∂t

D Er

(
εC �� ∂ε

∂t

)
. �W10.3�
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Here �ε is the time constant for the relaxation of stress under conditions of constant
strain, and �� is the time constant for relaxation of strain under conditions of constant
stress.† The quantity Er is the relaxed elastic modulus, that is, the stress/strain ratio
�/ε after all relaxation has occurred in the solid and when ∂�/∂t and ∂ε/∂t are zero.
If the changes in stress and strain in the material occur so rapidly (e.g., at sufficiently
high frequencies) that relaxation cannot proceed to completion, it can be shown that
the stress/strain ratio is given by the unrelaxed elastic modulus Eu D Er��/�ε.

The solutions of Eq. (W10.3) for the conditions shown in Fig. 10.9a (i.e., after
relaxation has occurred) are as follows:

� D �0 and ∂�/∂t D 0 : ε�t� D ε1 C �ε0 � ε1�e�t/�� .

� D 0 and ∂�/∂t D 0 : ε�t� D ε1e�t/�� .
�W10.4�

Here ε1 D �0/Er . These expressions illustrate the kinetics to be expected for simple
relaxation processes where the fraction of the relaxation completed in time t is f�t� D
1 � e�t/� . Analogous equations can be derived for the time dependence of � for the
conditions shown in Fig. 10.9b.

The mechanical response of materials to dynamic conditions of stress and strain
is of interest both for applications and for fundamental studies of anelasticity. Under
dynamic conditions, stress and strain are often periodic functions of time, that is,

��t� D �0e
�iωt and ε�t� D ε0e

�iωt, �W10.5�

where the amplitudes �0 and ε0 can be complex quantities. Upon substitution of ��t�
and ε�t�, Eq. (W10.3) becomes

�1 � iω�ε��0 D Er�1 � iω���ε0. �W10.6�

A complex elastic modulus Ec can then be defined as

Ec D Er�1 � iω���
1 � iω�ε D �0

ε0
. �W10.7�

For a stress amplitude �0 that is real, this corresponds to a complex amplitude ε0 for
the strain.

Under dynamic conditions and due to either elastic aftereffects or strain relaxation,
the strain ε will in general lag behind the stress � by a phase angle � (i.e., ε�t� D
ε0 exp[�i�ωt � ��]), whose tangent is given by

tan� D Im Ec
Re Ec

D ω��� � �ε�
1 C ω2�ε��

. �W10.8�

The quantity tan�, known as the loss coefficient, is often used as a measure of the
magnitude of the internal friction or energy loss in a material. When tan� is small,

† While the use of a single relaxation time is appropriate for some materials, other materials, such as
polymers, can have a large number of relaxation times, spanning many orders of magnitude.
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it can be shown that tan� ³ Uel/2
Uel D 1/Q, where Uel/Uel is the fraction of
elastic energy dissipated per oscillation. (Q is the quality factor of an electrical circuit,
with 1/Q being a measure of energy dissipation.)

The predicted frequency dependence of the internal friction is illustrated in
Fig. W10.3, where tan� is shown as a function of frequency, specifically ω����ε�1/2 D
ωh�i. It can be seen that tan� has a maximum value at ωh�i D 1 [i.e., at ωmax D
����ε��1/2] and falls to zero for both ω − ωmax and ω × ωmax. For low frequencies,
ω − ωmax, the solid is fully relaxed, the elastic modulus is Er , and the internal friction
is close to zero in the Zener model, since the strain has sufficient time to follow the
applied stress (i.e., the phase angle � ³ 0). At high frequencies, ω × ωmax, the solid
is unrelaxed, the elastic modulus is Eu, and the internal friction is again close to zero.

Note that Eu > Er in Fig. W10.3, which follows from �� > �ε. In this case the
strain relaxes more slowly than the stress [see the definitions given earlier for �� and
�ε in Eq. (W10.3)]. It follows that the material will be stiffer at high frequencies than
at low frequencies. The hysteresis loops for such material will actually be closed,
straight lines with slopes given by Er and Eu at very low and very high frequencies,
respectively. Thus Hooke’s law will be valid for ω × ωmax and ω − ωmax. At ω D
ωmax the hysteresis loop will have its maximum width and maximum area Uel.

Zener has pointed out that although this model for a standard linear solid has several
general features that are observed for real materials, it does not in fact correspond
in detail to the behavior observed for any real solid. Nevertheless, measurements of
internal friction as a function of frequency often show the behavior predicted by Zener’s
model, as shown in Fig. W10.4 for German silver, an alloy of Cu, Ni, and Zn.

W10.3 Typical Relaxation Times for Microscopic Processes

See Table W10.1, from which it can be seen that lattice vibrations, the motion of
elastic waves, and the dissipation of heat are “fast” processes at T ³ 300 K, while the
diffusion of interstitial atoms and the motion of grain boundaries can be considered to
be “slow” processes.
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Figure W10.3. Magnitude of the internal friction tan� as a function of ωh�i D ω����ε�1/2.
(Adapted from C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press,
Chicago, 1948).
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of frequency. (From C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press,
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TABLE W10.1 Typical Relaxation Times t for Microscopic Processes in
Solids at T = 300 K

Time Scale for � (s) Microscopic Process

10�14 Electron collisions in metals
10�12 Vibrations of atoms (lattice vibrations)
10�10

10�8 Radiative recombination of electrons and holes
10�6

Elastic wave traverses solid (as in brittle fracture)
10�4

Dissipation of heat (thermal relaxation)
10�2

100 D 1
(Time of typical tensile test D ttest)

10C2

10C4 Diffusion of interstitial atoms
(1 week ³ 6 ð 105 s)

10C6

(1 year ³ 3 ð 107 s) Motion of grain boundaries
10C8 Creep

Flow of inorganic glasses

W10.4 Further Discussion of Work Hardening

The phenomenon of work hardening is difficult to treat theoretically, the most difficult
aspect being to predict how the density and distribution of dislocations vary with
the strain in the material. There is in fact no unique correlation between the level
of strain and the resulting distribution of dislocations. The experimental situation is
complicated by the fact that there can exist three distinct regions of work hardening
when the plastic deformation is presented in the form of a shear stress–shear strain
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Figure W10.5. Shear stress–shear strain � –ε curve for a typical single-crystal FCC metal.
Three inelastic regions are shown, with the rate of work hardening in each region characterized
by the slope d�/dε, denoted by "I, "II, and "III, respectively

curve (i.e., � versus ε). Such a curve is shown schematically in Fig. W10.5 for a typical
FCC metal in the form of a single crystal. Beyond the elastic region which extends up
to the shear yield stress �y , there can exist in some materials three inelastic regions,
I, II, and III. The rate of work hardening in each region can be characterized by the
slope d�/dε, which is denoted by "I, "II, and "III, respectively. The higher the slope,
the greater the rate at which work hardening occurs for a given increment in applied
shear stress �.

Although all may not be present in a given material, these regions have the following
characteristics:

Region I. Plastic deformation in region I begins with the onset of “easy glide” or slip
occurring on the primary slip system, as described in Section 10.14. A relatively low
rate of work hardening occurs in region I. This region corresponds to the existence of
long, straight slip lines in a single crystal. Region I is absent in polycrystals.

Region II. This is the linear work-hardening region, with "II ³ 10"I and "II ³ G/300,
where G is the shear modulus (i.e., the slope d�/dε in the elastic region). Plastic
deformation in this region results in the interaction of dislocations and occurs via the
mechanism of slip. The resulting distribution of dislocations is very inhomogeneous.
The shear stress in region II is often observed to be proportional to the square root of
the dislocation density %, that is,

�y�%� D �y0 C ˛Gbp%. �W10.9�

Here �y0 is the shear yield stress (i.e., the shear stress needed to move a disloca-
tion when no other dislocations are present), b is the Burgers vector, and ˛ (³ 0.3
to 0.6) is a constant. Note that % is given by the total length of all the disloca-
tions divided by the volume of the material and has units of m�2. It is clear from
this expression that % is an increasing function of shear stress [i.e., �y�%�� �y0].
Typical values for single-crystal or polycrystalline Cu are % ³ 1016 m�2 for �y ³
100 MPa.
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Region III. In this region the slope d�/dε decreases continuously with increasing
stress, with the dependence of � on ε usually observed to be close to parabolic, that is,

��ε� D "III

p
ε� ε0, �W10.10�

where ε0 is a constant.
Various theories can reproduce the form of Eq. (W10.9) observed in the linear

region II or the parabolic dependence of � on ε observed in region III. None of the
theories of work hardening is completely satisfactory, however, which should not be
surprising given the complexity of the problem. One of the first approaches, presented
by Taylor, considered the source of work hardening to be the interactions between edge
dislocations and the pinning that results. If l is the average distance that dislocations
move before being pinned, the resulting shear strain ε corresponding to a dislocation
density % is

ε D K%bl, �W10.11�

where K is a constant that depends on orientation.
For a material containing a uniform distribution of edge dislocations, the average

separation between the dislocations is L ³ %�1/2. The applied shear stress required
to move two dislocations past each other must overcome the effective internal stress
acting on one dislocation due to the other. This can be written as

� D kGb

L
, �W10.12�

where k is a constant. Since L ³ %�1/2, it follows that

� ³ kGb
p
%, �W10.13�

which has the form of Eq. (W10.9). When Eqs. (W10.11) and (W10.13) are combined,
the following dependence of � on ε is obtained:

��ε� ³ kG

√
bε

Kl
³ k0G

√
ε

l
, �W10.14�

where k0 is another constant. This prediction corresponds to the parabolic dependence
of � on ε observed in region III. The predictions of Taylor’s theory therefore agree
with the observed dependencies of � on % and on ε despite the simplifying assumptions
made, including the assumption of a uniform distribution of edge dislocations. Taylor’s
theory does not, however, explain the linear work hardening observed in region II.

W10.5 Strengthening Mechanisms

Dispersion Strengthening. Dispersion strengthening is a process in which small
particles of a hard phase such as alumina (Al2O3) or silica (SiO2) are distributed
uniformly in the matrix of a weaker material (e.g., a copper alloy), either by precip-
itation in situ or by sintering the materials together. This process strengthens the
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weaker host material and increases its resistance to plastic deformation. Dispersion-
strengthened materials can have high hardness at high temperatures when the dispersed
particles are of a refractory nature and very hard. This is an advantage of this strength-
ening method over precipitation hardening. The Orowan expression relating the yield
stress �y to the interparticle spacing  is described in Chapter W21 with regard to the
dispersion strengthening of steels

Precipitation Hardening. Precipitation hardening is a process in which a second
phase is precipitated from a supersaturated solid solution in a matrix via heat treat-
ment. Important examples include the precipitation of particles of Fe3C or Fe4N in
iron and of particles of the intermetallic compound CuAl2 in Al, as described in
detail in Chapter W21. Both dispersion strengthening and precipitation hardening arise
from short-range interactions between dislocations and the dispersed particles or the
precipitate. As a result, the dislocations are pinned and cannot move freely through
the material. The Orowan expression mentioned earlier is also applicable to these
short-range interactions between dislocations and precipitate particles.

Long-range interactions between precipitate particles and dislocations are also possi-
ble due to the internal stresses created by the difference in average atomic volumes of
the precipitate and the host matrix. Mott and Nabarro obtained the following estimate
for the average shear strain εav in a single crystal due to a volume fraction f of
spherical precipitate particles:

εav D 2εf. �W10.15�

Here ε D r/r0 D �r � r0�/r0 is the fractional radial misfit resulting from the insertion
of a particle of radius r in a cavity of radius r0 < r within the host matrix. The resulting
strain leads to an increase in the critical shear yield stress by the amount

�y D Gεav D 2Gεf, �W10.16�

where G is the shear modulus. According to this prediction, the critical shear yield
stress should be independent of the particle sizes and interparticle separations. In fact,
the precipitate particles will have little effect on the motion of the dislocations when
the particles are small and closely spaced and also when they are large and far apart.
Only at intermediate sizes and separations will they have a strong effect.

Solid-Solution Strengthening. An example of solid-solution strengthening is
doubling of the yield strength of Fe–C solid-solution alloys at a C/Fe atom ratio of
only 1/104. As mentioned in Section 10.12, interstitial C atoms in octahedral sites cause
tetragonal distortions of the BCC crystal structure of ˛-Fe. These lattice distortions in
turn impede the motion of dislocations, thereby strengthening the Fe. This strengthening
mechanism is described further for the case of steels in Chapter W21.

W10.6 Creep Testing

Typical creep tests at 0.5Tm < T < Tm and constant applied stress are shown in
Fig. W10.6, where three distinct stages are shown for the dependence of the nominal
strain on time. Results are shown at two applied stresses �. It can be seen that the
creep rate ∂ε/∂t is an increasing function of �, as expected, and also of temperature T.
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Figure W10.6. Typical creep test for 0.5Tm < T < Tm and constant applied stress. Three dis-
tinct stages are evident for the dependence of the nominal strain ε on time.

In stage I of primary creep the creep strain rate ∂ε/∂t actually slows down, probably
as a result of work hardening, and reaches a value that typically remains constant in
the most important stage II of secondary or quasiviscous creep. In stage III of tertiary
creep the creep rate increases, nonuniform deformation begins, and failure eventually
occurs. The creep strength of a material can be defined as the stress that will produce
a given strain in a given time at a given temperature T. For example, a typical low-
carbon nickel alloy has a creep strength of 60 MPa for 10�3% elongation per hour
at T D 534°C. The stress for fracture �f due to creep is lower the longer the time
of loading. Extrapolation of the results of creep tests to longer times is required for
predicting the performance of materials in service (e.g., predicting when failure will
occur under a given load or stress condition). This is due to the fact that creep tests
generally do not extend to the point of failure, particularly when carried out at low
stress levels and low temperatures.

Various models have been proposed to describe the dependencies of creep or the
creep rate Pε D ∂ε/∂t on time, temperature, and stress. There is no universal model, but
expressions such as

ε�t� D ε0 C εp�1 � e�mt�C Pεst, �W10.17�

∂ε

∂t
D A�n exp

(
� Qc
kBT

)
�W10.18�

have been proposed. In Eq. (W10.17), ε0 is the initial strain in the material, the second
term describes creep in stage I, and the term Pεst (which is linear in time) represents
stage II. Equation (W10.18) is proposed to be valid for the secondary creep rate in
stage II, with A and n being constants and Qc the thermal activation energy for creep.
For a number of pure metals it has been found that n D 5 and that Qc ³ Ea�diff�, the
measured thermal activation energy for self-diffusion in the metal.

A useful way of graphically illustrating the stress and temperature regions in which
various deformation mechanisms are dominant (i.e., rate controlling) is the Weertman–
Ashby map, shown in Fig. W10.7 for pure nickel. This map presents a plot of normal-
ized tensile stress �/G (where G is the shear modulus) versus T/Tm and corresponds
to a critical strain rate Pεc of 10�8 s�1. Coble creep and Nabarro creep correspond to
diffusion of vacancies within the boundaries of the grains and within the bulk of the
grains, respectively, and can be seen in Fig. W10.7 to be dominant in different regimes
of temperature and stress.
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Figure W10.7. The Weertman–Ashby map presented here for pure nickel is a semilogarithmic
plot of normalized tensile stress �/G versus T/Tm for a critical strain rate Pεc of 10�8 s�1.
(Reprinted from Acta Metallurgica, Vol. 20, M. F. Ashby, p. 887. Copyright  1972, by permis-
sion from Elsevier Science.)

W10.7 Further Discussion of Fatigue

When fatigue occurs under conditions of low true-stress amplitude �a, the response
of the material is primarily elastic and the number of cycles to failure Nf is large. In
this case the range εe over which the elastic component of the strain varies can be
described by

εe D 2�a
E

D 2� 0
f

E
�2Nf�

b, �W10.19�

where b is the fatigue strength exponent and � 0
f is the fatigue strength coefficient,

equal to the stress intercept for 2Nf D 1. The quantity � 0
f is approximately equal to

�f, the fracture stress under monotonic loading. The exponent b can be expressed in
terms of the cyclic hardening coefficient n0 by

b D � n0

1 C 5n0 . �W10.20�

Fatigue life thus increases with decreasing jbj, i.e. decreasing n0.
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When fatigue occurs under conditions of higher stress amplitude �a and the response
of the material has an inelastic or plastic component, the number of cycles to failure
Nf will be smaller. The range of variation εp of the plastic strain component can be
described by the Manson–Coffin relation,

εp D 2ε0
f�2Nf�

c, �W10.21�

where ε0
f, the ductility coefficient in fatigue, is equal to the strain intercept for 2Nf D 1,

and c is the ductility exponent in fatigue. Smaller values of c correspond to longer
fatigue life. In the limit of high strain and low number of cycles c is given by

c D � 1

1 C 5n0 . �W10.22�

As a result, fatigue life in this limit increases with increasing n0.
When a material is subjected under cyclic loading to both elastic and plastic strain,

the fatigue strength will be determined by the total strain:

εt D εe Cεp D 2� 0
f

E
�2Nf�

b C 2ε0
f�2Nf�

c. �W10.23�

The separation of a εt �Nf curve into its elastic and plastic components is illustrated
schematically in Fig. W10.8. It can be seen that εt approaches the plastic curve at
high strain levels and the elastic curve at low strain levels.

W10.8 Hardness Testing

Hardness is often measured by the indentation of a harder material, typically a diamond
indenter, into a softer material or by a scratch test. Indentation methods can be quan-
titative, while scratch testing gives essentially qualitative results. The most common
methods of indentation hardness testing include the Brinnell and Rockwell tests and
microindentation or microhardness tests such as the Knoop and Vickers tests. Hardness
values are expressed using hardness scales with the same names. A common scale for

log ∆εt

log 2Nf

Plastic strain
(slope = c)

Elastic strain
(slope = b)

Total strain

∆εe

∆εp

∆εt

Figure W10.8. Separation of a εt –Nf fatigue curve into its elastic and plastic components.
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minerals is Mohs hardness, determined by a scratch test, which extends from 1 for talc
to 10 for diamond.

The Knoop hardness test is a microindentation test that uses an indenter in the form
of an elongated pyramid while the Vickers test uses a square pyramid of diamond. The
Knoop and Vickers hardnesses are defined as the ratio of the applied force or load to
the surface area of the indentation. The Vickers hardness VHN is given by

VHN D 1.854F

d2
, �W10.24�

where F is the load in kilograms force (kgf) and d is the length of the diagonal of
the square indentation in millimeters. Some Vickers hardness values for metals and
other hard materials are given in Table 10.6. These hardness values, as with many
other mechanical properties, are sensitive to processing treatments that the material
may have received, especially those affecting the surface region.

The indentation of the Knoop indenter in the material under test is shallower than
that of the Vickers indenter, thus making the Knoop method more appropriate for
brittle materials and for thin layers. Because of the shallowness of the indentation, the
surfaces of materials to be tested for Knoop hardness must be very smooth.

W10.9 Further Discussion of Hall–Petch Relation

The Hall–Petch relation was originally justified on the basis of the assumption that
the effect of grain boundaries is to pin dislocations, but more recent interpretations
emphasize the emission of dislocations by grain boundaries. An approach by Li† takes
the onset of plastic deformation in polycrystalline materials as due to the activation of
dislocation sources, which are assumed to be grain-boundary ledges. The shear yield
stress for the motion of a dislocation relative to a distribution of other dislocations has
been given in Eq. (W10.9) by

�y�%� D �y C ˛Gbp%, �W10.25�

where % is the dislocation density and the other symbols are as defined earlier. If it is
assumed that there is a uniform distribution of dislocation sources on the surfaces of all
grain boundaries, regardless of their size, the dislocation density % will be proportional
to Sv, the grain boundary area per unit volume. If the grains are all taken to be cubes
of volume d3, Sv will be given by

Sv D 1

2

6d2

d3
D 3

d
, �W10.26�

where the initial factor of 1
2 accounts for the fact that each cube face (i.e., each grain

boundary) is shared by two grains. The Hall–Petch relation of Eq. (10.43) is obtained
when the result that % / Sv / 1/d is used in Eq. (W10.25).

† J. C. M. Li, Trans. TMS-AIME, 227, 239 (1963).
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The yield stress can also be increased by solid-solution strengthening, as discussed
in Section W10.5. The typical example is dilute alloys of C in BCC ˛-Fe, where
�y D �0 C kyN1/2

C . Here NC is the atomic fraction of C present in Fe.

W10.10 Analysis of Crack Propagation

When fracture occurs in a ductile material in which significant amounts of plastic
deformation can occur, the critical stress will be increased above the prediction of
Eq. (10.48) since the strain energy required for the generation of plastic deformation
near the crack must be included. Plastic deformation of the material surrounding the
crack tip can take the form of a dense array of dislocations and microcracks whose
presence can slow down and even stop the propagation of the crack. The effective
surface energy 3p associated with the plastic deformation is equal to the work per
unit area required to carry out the plastic deformation. When 3p is added to 3s in
Eq. (10.48), Griffith’s criterion in its general form becomes

�c D
√
�23s C 3p�E


a
. �W10.27�

For many ductile materials 3p × 3s, so that

�c D
√
3pE


a
�W10.28�

for the case of ductile fracture. The effect of the plastic deformation is to blunt the
crack tip, thus relaxing the stress concentration there by increasing the local radius of
curvature. As a result, ductile fracture requires higher stress levels than brittle fracture.

Correlations of fracture toughness K1c with density %, Young’s modulus E, and with
strength �f for several classes of engineering materials (alloys, plastics, elastomers,
composites, ceramics, glasses, etc.) have been presented by Ashby in the form of
materials property charts.† These charts and the accompanying discussions are helpful
in that they present and condense a large body of information and reveal correlations
between the properties of materials. A striking feature of the charts is the clustering
of members of a given class of materials. This clustering and the relative positions of
the various clusters on the charts can be understood in terms of the type of bonding,
the density of atoms, and so on, in the materials. Within each cluster the position of a
given material can be influenced by the synthesis and processing that it receives. The
following charts are also presented by Ashby: E versus %, �f versus %, E versus �f,
and E/% versus �f/%.

The rate of elastic strain energy release by a crack is G�el�, defined by

G�el� D � 1

2d

∂Uel

∂a
D 
�2a

E
. �W10.29�

† M. F. Ashby, Materials Property Charts, in ASM Handbook, Vol. 20, ASM International, Materials Park,
Ohio, 1997.
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At the point of fracture G�el� D Gc�el� and the critical fracture stress can therefore be
expressed in terms of Gc�el� by

�c D
√
EGc�el�


a
. �W10.30�

By comparing this result with Eqs. (W10.27) and (10.49), it can be seen that

Kc D
√
EGc�el�. �W10.31�

The quantity Gc�el� is also known as the critical crack extension force, with units
of N/m.
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PROBLEMS

W10.1 A bar of a solid material undergoes two consecutive deformations along the
x axis corresponding to nominal normal strains ε1 and ε2, as defined by
ε1 D �x1 � x0�/x0 and ε2 D �x2 � x1�/x1.
(a) Show that these two nominal strains are not additive [i.e., that εtotal D

�x2 � x0�/x0 6D ε1 C ε2].
(b) Show, however, that the corresponding true strains εtrue�1� and εtrue�2�,

as defined in Eq. (10.8), are additive.
(c) Find the difference between ε and εtrue for l D 0.1l0.

W10.2 From the expressions given for the shear modulus G and the bulk modulus B
in Table 10.4, show that Poisson’s ratio 5 for an isotropic solid must satisfy
�1 < 5 < 1

2 .
W10.3 Derive the expression for the elastic energy density uel�ε� for a cubic crystal

given in Eq. (10.32).
W10.4 Using the general definitions for strains as ε1 D ∂ux/∂x, ε5 D ∂ux/∂z C ∂uz/∂x,

and so on, show that the equation of motion, Eq. (10.35), can be written as
the wave equation given in Eq. (10.36).

W10.5 Consider the values of E, G, B, and 5 given in Table 10.2 for several poly-
crystalline cubic metals.
(a) Show that the values of E, G, and 5 are consistent with the expressions

for isotropic materials given in Table 10.4.
(b) Show that the same cannot be said for the values of B.

W10.6 If the changes in stress and strain in a material occur so rapidly (e.g., at suffi-
ciently high frequencies) that no relaxation occurs, show that the stress/strain
ratio is given by the unrelaxed elastic modulus, Eu D Er��/�ε.

W10.7 (a) For the conditions shown in Fig. 10.9a after relaxation has occurred,
derive the solutions of Eq. (W10.3) presented in Eq. (W10.4).
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(b) Also derive the analogous equations for the time dependence of � for the
conditions shown in Fig. 10.9b.

W10.8 Let �0 be real and set ε0 D ε00e�i� in Eq. (W10.5) so that the strain ε�t�
lags behind the stress ��t� by a phase angle �. Using these expressions (i.e.,
��t� D �0 exp��iωt� and ε�t� D ε00 exp[�i�ωt C ��]), in Eq. (W10.6), show
that tan� is given by Eq. (W10.8).

W10.9 The relaxation time � for a piece of cross-linked natural rubber is 30 days at
T D 300 K.
(a) If the stress applied to the rubber at T D 300 K is initially 1 MPa, how

long will it take for the stress to relax to 0.5 MPa?
(b) If the relaxation time for the rubber at T D 310 K is 20 days, what is the

activation energy Ea for the relaxation process? See Eq. (10.41) for the
definition of Ea.

W10.10 Repeat Problem 10.9 for the (0001), (1100), and (1010) planes of HCP Cd
and for the three h1120i directions in the (0001) plane.



CHAPTER W11

Semiconductors

W11.1 Details of the Calculation of n.T/ for an n-Type Semiconductor

A general expression for n as a function of both T and Nd can be obtained as follows.
After setting Na� D 0, multiplying each term of Eq. (11.34) of the textbook† by n,
replacing the np product by nipi, and rearranging the terms, the following quadratic
equation can be obtained:

n2 �Nd
Cn� nipi D 0. 	W11.1


The following substitutions are now made in this equation: from Eq. (11.27) for n,
Eq. (11.28) for nipi, and the following expression for NdC:

Nd
C	T
 D Nd �Nd

o	T
 D
1
2Nde

ˇ[Eg�Ed��	T
]
1
2e
ˇ[Eg�Ed��	T
] C 1

. 	W11.2


After setting y D n	T
/Nc	T
 D exp[ˇ	�	T
� Eg
], w D exp	�ˇEd), and z D
exp	�ˇEg
, the following equation is obtained:

Nc
2y2 �NcNd

w

	w/y
C 2
�NcNvz D 0. 	W11.3


The quantities Nc and Nv are defined in Eq. (11.27).
This expression can be rearranged to yield the following cubic equation for y	T
 D

n	T
/Nc	T
:

y3 C w

2
y2 �

(
Ndw

2Nc
C Nvz

Nc

)
y � Nvwz

2Nc
D 0. 	W11.4


The concentration of holes will then be given by

p	T
 D ni	T
pi	T


n	T

, 	W11.5


where n	T
 is obtained from Eq. (W11.4).

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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In the high-temperature limit when w × y [i.e., when ˇ	Eg � �	T
� Ed
 ³ 2 or
greater], the following quadratic equation is obtained from Eq. (W11.3):

y2 � Nd
Nc
y � Nv

Nc
z D 0. 	W11.6


The appropriate solution of this equation is

y D Nd/Nc C
√
Nd2/Nc2 � 4	�Nvz/Nc


2
. 	W11.7


In the T ! 0 K limit the terms in Eq. (W11.4) containing z D exp	�ˇEg
 can be
neglected, with the following result:

y2 C w

2
y � Ndw

2Nc
D 0. 	W11.8
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Figure W11.1. Effects of n- and p-type doping on the electrical resistivity of Si at T D 300 K,
with � plotted versus the dopant concentration on a logarithmic plot. (From J. C. Irvin, The
Bell System Technical Journal, 41, 387 (1962). Copyright  1962 AT&T. All rights reserved.
Reprinted with permission.)
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Solving this quadratic equation and also making use of the fact that w − 8Nd/Nc
yields

y	T
 D
√
Ndw

2Nc
. 	W11.9


In the intermediate temperature region, where y − w, z − y2 (i.e., Eg > 4[Eg �
�	T
] > 8Ed), and z − Ndw/2Nc, Eq. (W11.4) becomes

w

2
y2 � Ndw

2Nc
y D 0 or y	T
 D Nd

Nc
, 	W11.10


which can be written as n	T
 D Nd.

W11.2 Effects of Doping on Resistivity of Silicon

The effects of doping on the electrical resistivity of Si at T D 300 K are presented in
Fig. W11.1, where � is shown plotted versus the dopant concentration Nd or Na in a
logarithmic plot. The resistivity decreases from the intrinsic value of � ³ 3000 �Ðm
with increasing Nd or Na. Scattering from ionized dopant atoms also plays a role in
causing deviations at high values of Nd or Na from what would otherwise be straight
lines with slopes of �1 on such a plot.

W11.3 Optical Absorption Edge of Silicon

The absorption edge of Si is shown in Fig. W11.2, where the absorption coefficient
˛ determined from measurements of reflectance and transmittance at T D 300 K for a
single-crystal Si wafer is plotted as 	˛h̄ω
1/2 versus E D h̄ω. The linear nature of this
plot is in agreement with the prediction of Eq. (11.54). The onset of absorption at about
1.04 eV corresponds to h̄ω D Eg � h̄ωphonon, while the additional absorption appearing
at about 1.16 eV corresponds to h̄ω D Eg C h̄ωphonon. These two distinct absorption
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Figure W11.2. Optical absorption edge for Si at T D 300 K with the absorption coefficient ˛
plotted as 	˛h̄ω
1/2 versus the photon energy E D h̄ω. The energy gap Eg D 1.11 eV and the
energy of the phonon h̄ωphonon ³ 0.06 eV participating in this indirect optical transition can be
obtained in this way. (From Z. L. Akkerman, unpublished data.)
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onsets which are separated from Eg D 1.11 eV by h̄ωphonon D 0.06 eV ³ 485 cm�1 are
the result of the absorption and emission, respectively, of the phonon, which participates
in this indirect transition. If Si were a direct-bandgap semiconductor such as GaAs,
there would be only a single onset at h̄ω D Eg. In this way both Eg and the energy of
the participating phonon can be obtained from straightforward optical measurements.
The absorption onset associated with phonon absorption will become weaker as the
temperature decreases since fewer phonons will be available, while that associated with
phonon emission will be essentially independent of temperature.

W11.4 Thermoelectric Effects

The equilibrium thermal properties of semiconductors (i.e., the specific heat, thermal
conductivity, and thermal expansion) are dominated by the phonon or lattice contribu-
tion except when the semiconductor is heavily doped or at high enough temperatures
so that high concentrations of intrinsic electron–holes pairs are thermally excited. An
important and interesting situation occurs when temperature gradients are present in a
semiconductor, in which case nonuniform spatial distributions of charge carriers result
and thermoelectric effects appear. Semiconductors display significant bulk thermoelec-
tric effects, in contrast to metals where the effects are usually orders of magnitude
smaller. Since the equilibrium thermal properties of materials are described in Chap-
ters 5 and 7, only the thermoelectric power and other thermoelectric effects observed
in semiconductors are discussed here. Additional discussions of the thermopower and
Peltier coefficient are presented in Chapter W22.

The strong thermoelectric effects observed in semiconductors are associated with
the electric fields that are induced by temperature gradients in the semiconductor, and
vice versa. The connections between a temperature gradient rT, a voltage gradient
rV or electric field E D �rV, a current density J, and a heat flux JQ (W/m2) in a
material are given as follows:

J D �	E � SrT
 D JE C JrT,

JQ D �E � !rT.
	W11.11


Here � and ! are the electrical and thermal conductivities, respectively. The quan-
tity S is known as the Seebeck coefficient, the thermoelectric power, or simply the
thermopower, and  is the Peltier coefficient. While the electrical and thermal conduc-
tivities are positive quantities for both electrons and holes, it will be shown later that
the thermopower S and Peltier coefficient  are negative for electrons and positive for
holes (i.e., they take on the sign of the responsible charge carrier).

The Seebeck and Peltier effects are illustrated schematically in Fig. W11.3. The
thermopower S can be determined from the voltage drop V resulting from a temper-
ature difference T in a semiconductor in which no net current J is flowing and no
heat is lost through the sides. Since J D 0 as a result of the cancellation of the electrical
currents JE and JrT flowing in opposite directions due to the voltage and tempera-
ture gradients, respectively, it can be seen from Eq. (W11.11) that E D SrT D �rV.
Therefore, S is given by

S D �rV
rT D �V

T
	W11.12
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Figure W11.3. Seebeck and Peltier effects. (a) In the Seebeck effect a voltage difference V
exists in a material due to the temperature difference T. The Seebeck coefficient or ther-
mopower of the material is given by S D �V/T. (b) In the Peltier effect a flow of heat into
(or out of) a junction between two materials occurs when a current I flows through the junction.

and has units of V/K. Since V and T have the same sign for electrons and opposite
signs for holes, it follows that a measurement of the sign of S is a convenient method
for determining the sign of the dominant charge carriers. The physical significance of
S is that it is a measure of the tendency or ability of charge carriers to move from the
hot to the cold end of a semiconductor in a thermal gradient.

The Peltier coefficient 	T
 of a material is related to its thermopower S(T) by the
Kelvin relation:

	T
 D TS	T
. 	W11.13


Therefore,  has units of volts. The physical significance of the Peltier coefficient 
of a material is that the rate of transfer of heat JQab occurring at a junction between
two materials a and b when a current is flowing through the junction from a to
b is proportional to the difference ab D a �b. Note that JQab < 0 Fig. W11.3,
corresponding to the flow of heat into the junction. The Peltier effect in semiconductors
can be used for thermoelectric power generation or for cooling.

There is an additional thermoelectric effect, the Thomson effect, which corresponds
to the flow of heat into or out of a material carrying an electrical current in the presence
of a thermal gradient. The Thomson effect will not be described here since it usually
does not play an important role in the thermoelectric applications of semiconductors.

In the one-dimensional case for the Seebeck effect in a semiconductor the induced
electric field Ex is given by S dT/dx and the thermopower is given by

S D 1

qT

( h(Ee,hi
h(i � �

)
. 	W11.14


In this expression Ee,h is the kinetic energy of the charge carriers (i.e., the energy
Ee D E� Ec of an electron relative to the bottom of the conduction band or the energy
Eh D Ev � E of a hole relative to the top of the valence band). In addition, q D še is
the charge of the dominant charge carriers. Also, the chemical potential � is constant
in space in the absence of net current flow, (	E
 is the energy-dependent scattering or
momentum relaxation time for the charge carriers, and h(i and h(Ei are the averages
of these quantities over the appropriate distribution function.
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When (	E
 obeys a power law (e.g., ( / Er), the thermopower for an n-type semi-
conductor is

Sn	T
 D �kB
e

(
Ec � �

kBT
C r C 5

2

)
, 	W11.15


while for a p-type semiconductor,

Sp	T
 D kB
e

(
�� Ev

kBT
C r C 5

2

)
. 	W11.16


The exponent r is equal to � 1
2 for acoustic phonon scattering. The thermopowers of

semiconductors are typically hundreds of times larger than those measured for metals,
where, according to the free-electron model,

S D �,
2

6

kB
e

kBT

EF
³ 1 µV/K.

Physically, S is smaller in metals than in semiconductors due to the high, temperature-
independent concentrations of electrons in metals. In this case only a relatively small
thermoelectric voltage is required to produce the reverse current needed to balance the
current induced by the temperature gradient.

The Peltier effect in a semiconductor is illustrated schematically in Fig. W11.4,
where an electric field E is applied across the semiconductor by means of two metal
contacts at its ends. As a result, the energy bands and the Fermi energy EF slope down-
ward from left to right. In the n-type semiconductor in which electrons flow from left
to right, only the most energetic electrons in metal I are able to pass into the semicon-
ductor over the energy barrier Ec � � at the metal–semiconductor junction on the left.
When the electrons leave the semiconductor and pass through the metal–semiconductor
junction into metal II at the right, the reverse is true and they release an amount of heat
equal to 	Ec � �C akBT
 per electron. The term akBT represents the kinetic energy

JQ
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Ec

T(x)
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(Sn < 0)
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(Sp > 0)
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Ec

E

jE
E−e
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+e
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µ

µ

µ

I
III

II

JQ

JQ

JQ

Figure W11.4. Peltier effect in a semiconductor. An electric field E is applied across a semi-
conductor, and as a result, the energy bands and the chemical potential � slope downward from
left to right. In the n-type semiconductor, electrons flow from left to right and in the p-type
semiconductor holes flow from right to left. The resulting temperature gradient is also shown
for each case.
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transferred by the electron as it moves through the semiconductor, with a ³ 1.5 to
2, depending on the dominant scattering process. Therefore, the net heat flow due to
electrons is from left to right through the semiconductor, with the temperature gradient
in the direction shown. It follows in this case for electrons that the magnitude of the
Peltier coefficient (i.e., the net energy transported by each electron divided by the
charge e) is

n	T
 D TSn	T
 D Ec � �C akBT

e
. 	W11.17


This result is consistent with Eq. (W11.15). Note that the position of the chemical
potential � within the energy gap can be determined from a measurement of n as
T ! 0 K.

For the p-type semiconductor shown in Fig. W11.4, holes will flow from right to
left. Since the energy of a hole increases in the downward direction on this electron
energy scale, only the most energetic holes can pass into the semiconductor over the
energy barrier �� Ev at the junction on the right. In this case the net heat flow is
from right to left, with the temperature gradient in the direction shown. It follows for
holes that

p	T
 D TSp	T
 D �� Ev C akBT

e
, 	W11.18


which is consistent with Eq. (W11.16).
The contribution of phonons to the thermoelectric power originates in the phonon

drag effect, the tendency of phonons diffusing from the hot to the cold end of a
material to transfer momentum to the electrons, thereby “dragging” them along in the
same direction. This effect becomes more noticeable at lower temperatures.

Experimental results and theoretical predictions for the Peltier coefficient  for n-
and p-type Si as functions of temperature are shown in Fig. W11.5. The Si samples
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Figure W11.5. Experimental results (points) and theoretical predictions (solid lines) for the
Peltier coefficient  for n- and p-type Si are shown as functions of temperature. The Si
samples show intrinsic behavior above T ³ 600 K. (From T. H. Geballe et al., Phys. Rev., 98,
940 (1955). Copyright  1955 by the American Physical Society.)
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show intrinsic behavior above T ³ 600 K. Note that plots of e versus T yield as
intercepts at T D 0 K, the quantities �	Ec � �
 and (�� Ev) for n- and p-type semi-
conductors, respectively. This is a convenient way of determining the position of the
chemical potential � relative to the band edges in doped semiconductors.

W11.5 Dielectric Model for Bonding

In the dielectric model of Phillips and Van Vechten (PV) for tetrahedrally coordi-
nated semiconductors with diamond and zincblende crystal structures the chemical
bonding is considered to be the sum of covalent and ionic contributions. As discussed
in Section 2.6, fc is the fraction of covalent bonding in an A–B bond involving atoms
A and B, while the ionic fraction or ionicity is fi D 1 � fc. Values of fi obtained on
the basis of the PV model are presented in Table 2.6. These values are based on the
dielectric properties of these materials and differ somewhat from those proposed by
Pauling, which are based on the thermochemistry of solids.

In the PV model the average total energy gap Eg(A–B) in, for example, a binary
compound AB containing only A–B bonds is defined as the average energy separa-
tion between the bonding and antibonding energy levels associated with the orbitals
involved in the A–B bond. Thus Eg is not an observable quantity and is in some sense
an average energy gap between the valence and conduction bands. A spectroscopic
or dielectric definition for Eg is used in the PV model rather than a thermochemical
definition based on heats of formation or cohesive energies. Specifically, Eg(A-B) is
defined experimentally in terms of the measured optical dielectric function by

/	0


/o
D 1 C A1

(
h̄ωp
Eg

)2

, 	W11.19


where

ω2
p D ne2

m/o
.

Here /	0
//o D n2(0) is the real, zero-frequency limit of the complex dielectric function
/	ω, q
//o, also known as the relative permittivity /r , and ωp is the plasma frequency.
Also, n is the concentration of valence electrons, /o the permittivity of free space, and
A1 a correction factor that is close to 1 which accounts for the possible participation
of d electrons in the optical response. The bonding–antibonding energy gap Eg(A–B)
differs from and is typically much larger than the optical energy gap Eg D Ec � Ev.
Equation (W11.19) is close in form to the expression given in Eq. (8.32), which is
derived from the Lorentz oscillator model for the optical dielectric function.

When the A–B bond is of a mixed ionic–covalent type, the gap Eg(A–B) is taken
to be complex, with a real covalent or homopolar component Eh and an imaginary
ionic or heteropolar component iC, so that

Eg	A–B
 D Eh C iC,

jEgj2 D E2
h C C2.

	W11.20
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The definitions of Eh and C in terms of microscopic parameters associated with the
A–B bond and the binary AB compound are

Eh	A–B
 D A2

d2.5
,

C	A–B
 D 14.4b
(
zA
rA

� zB
rB

)
exp

(
�kTFd

2

)
.

	W11.21


where A2 D 39.74 eV, the dimensionless constant b ³ 1.5, d is the A–B interatomic
distance or bond length, and zA and zB are the valences and rA and rB the covalent
radii of atoms A and B, respectively, with d D rA C rB. Here Eh and C are given in
eV when rA and rB are in angstrom units. The exponential Thomas–Fermi screening
factor, defined in Section 7.17, describes the screening of the ion cores by the valence
electrons and is expressed in terms of the Thomas–Fermi wave vector or inverse
screening length:

kTF D
√

3ne2

2/EF
D
√
e2�	EF


/
, 	W11.22


where n is the concentration of valence electrons, EF the Fermi energy, / the permit-
tivity of the material, and �	EF
 the electron density of states per unit volume. Typical
values of kTF are ³ 5 ð 1010 m�1. It can be seen that C(A–B) is given by the difference
between the Coulomb potentials of the two atoms A and B composing the bond.

The use of known values of d(A–A) and of Eg(A–A) determined from /(0) using
Eq. (W11.19) for the covalent elemental semiconductors diamond and Si allows both
the exponent of d, �2.5, and the constant A2 D 39.74 eV to be determined in the
expression for Eh. The ionic component C(A–B) of Eg(A–B) for binary AB semi-
conductors can then be calculated using Eq. (W11.20) from empirical values of Eg
determined from Eq. (W11.19) and values of Eh(A–B) calculated from Eq. (W11.21).
It has been shown empirically that the ionic contribution C	A–B
 / XA � XB, the
difference of the electronegativities of the two atoms.

The ionicity of the A–B bond is defined in a straightforward manner by

fi D C2

Eg2 . 	W11.23


Thus fi D 0 when C D 0 and fi ! 1 for C × Eh. The ionicities presented in
Table 2.6, known as spectroscopic ionicities, have been calculated in this way using
the PV model. For group III–V compounds it has been found that C is usually smaller
than Eh so that fi < 0.5. The bonding in these compounds is therefore predominantly
covalent. The reverse is true for the group II–VI and I–VII compounds, where C is
usually greater than Eh.

Values of Eh, C, Eg	A� B
, and fi for several semiconductors with the diamond
or zincblende crystal structures are presented in Table W11.1. Note that Eh is nearly
constant for isoelectronic sequences (e.g., for Ge, GaAs, and ZnSe), where Eh ³
4.3 eV, since their NN distances d are nearly constant. The optical energy gap Eg
and the average total energy gap Eg(A–B) are neither proportional to nor simply
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TABLE W11.1 Values of Eh , C , Eg .A − B/, and fi for Several Semiconductors

Semiconductor

IV III–V II–VI Eh (eV) C (eV) Eg	A� B
 (eV) fi Eg/Eg(A–B)

C (diamond) 13.5 0 13.5 0 0.40
BN 13.1 7.71 15.2 0.256 0.39

BeO 11.5 13.9 18.0 0.602 0.52
3C–SiC (ˇ-SiC) 8.27 3.85 9.12 0.177 0.25
Si 4.77 0 4.77 0 0.23

AlP 4.72 3.14 5.67 0.307 0.43
MgS 3.71 7.10 8.01 0.786 0.55

Ge 4.31 0 4.31 0 0.16
GaAs 4.32 2.90 5.20 0.310 0.26

ZnSe 4.29 5.60 7.05 0.630 0.37
Gray Sn 3.06 0 3.06 0 0.026

InSb 3.08 2.10 3.73 0.321 0.028
CdTe 3.08 4.90 5.79 0.717 0.25

related to each other [e.g., for the group IV elements, the ratio Eg/Eg(A–B) decreases
from 0.4 for diamond to 0.026 for gray Sn].

A test of the usefulness of this definition of ionicity has been provided by correlating
fi with the crystal structures of about 70 binary group IV–IV, III–V, II–VI, and I–VII
compounds. It is found that compounds with fi < fic D 0.785 are all tetrahedrally
coordinated and semiconducting with either the diamond, zincblende, or wurtzite crystal
structures, while those with fi > 0.785 are all octahedrally coordinated and insulating
with the higher-density NaCl crystal structure. This is an impressive confirmation of
the usefulness of the definition of ionicity provided by the PV model.

A definition of electronegativity has also been formulated in the PV model for
nontransition metal elements with tetrahedral coordination. This definition differs from
that of Pauling presented in Section 2.9 by including the screening of the ion cores
by the valence electrons and is likely to be a more useful definition for this group of
elements and crystal structures.

W11.6 Nonstandard Semiconductors

In addition to the standard semiconductors discussed in our textbook, which typically
have the diamond, zincblende, wurtzite, or NaCl crystal structures, there also exist
nonstandard semiconducting materials with a variety of other structures and properties,
including disordered or amorphous semiconductors, oxide, organic, and magnetic semi-
conductors, and porous Si. Some interesting and technologically important examples
of these semiconductors are next discussed briefly.

Amorphous Semiconductors. Amorphous semiconductors that lack the long-range
order found in their crystalline counterparts often retain to a first approximation the
short-range order corresponding to the NN local bonding configurations present in
the crystal. For example, in amorphous Si (a-Si) essentially every Si atom is bonded
to four NN Si atoms in a nearly tetrahedral arrangement, with bond lengths close
to the crystalline value but with a significant spread of bond angles, ³ 7o, centered
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around the ideal value of 109.47o. As a result, a-Si and crystalline Si (c-Si) are similar
in many respects, including atomic density and the fact that both are semiconduc-
tors with similar energy gaps. They differ appreciably in other important respects,
including carrier mobility and ease of doping. The most important defects in a-Si
correspond to broken or dangling bonds that are likely to be associated with voids in
the material and that give rise to electronic levels lying deep within the energy gap.
In addition, distorted or weak Si–Si bonds can give rise to electronic states, referred
to as tail states, that are localized in space and that lie within the energy gap near the
band edges.

The electron densities of states of c-Si, a-Si, and a-Si:H in and near the energy gap
are shown schematically in Fig. W11.6. The density of states for c-Si has sharp edges
at E D Ev and at E D Ec. While the densities of states for the amorphous case are
very material dependent, there exists a strong similarity between the overall shapes of
the curves except in the gap region itself. The dangling-bond defect states in a-Si pin
the Fermi energy EF, thereby preventing its movement in the gap. These defect states
thus interfere with the doping of this material and consequently with its electronic
applications.

The optical dielectric functions of c-Si and a-Si are compared in Fig. W11.7a.
The optical response in the crystalline and amorphous phases is qualitatively the same,
especially at low energies where /1	0
 D n2	0
 is essentially the same since the atomic
density of the sample of a-Si is only slightly less than that of c-Si. At higher energies
it can be seen that the structure in /1 and /2 observed in c-Si which is related to the
existence of long-range order is absent in the amorphous material where k conservation
is no longer required. The value of the optical energy gap Eopt in amorphous semicon-
ductors such as a-Si and a-Si:H is often obtained using the Tauc law for band-to-band
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Figure W11.6. Electron densities of states in crystalline Si, a-Si, and a-Si:H in the region of
the energy gap.
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Figure W11.7. Comparison of the optical properties of crystalline and amorphous Si. (a) The
quantities /1 (dashed lines) and /2 (solid lines) of c-Si and a-Si are plotted versus photon
energy E D h̄ω. (From B. G. Bagley et al., in B. R. Appleton and G. K. Celler, eds., Laser and
Electron-Beam Interactions with Solids, Copyright 1982, with permission from Elsevier Science).
(b) The logarithm of the optical absorption coefficient ˛ is plotted as a function of photon energy
h̄ω for c-Si, a-Si, and a-Si:H. (Data from E. D. Palik, Handbook of Optical Constants of Solids,
Vol. 1, Academic Press, San Diego, Calif., 1985.)

absorption:

/2	ω
 D B	h̄ω � Eopt
2

	h̄ω
2
, 	W11.24


where B is a constant and Eopt ³ Ec � Ev. The parameter Eopt can therefore be obtained
from a plot of h̄ω

p
/2 versus h̄ω. Absorption at lower energies involving the tail states at

either the valence- or conduction-band edges is often observed to depend exponentially
on h̄ω, according to the Urbach edge expression:

˛	ω
 D ˛o exp
(
h̄ω

Eo

)
. 	W11.25


Here Eo is the Urbach edge parameter and is related to the width of the tail-state regions,
while ˛o is a constant. In high-quality a-Si:H films, Eo can be as low as 0.05 eV.

Even though the optical energy gap is larger for a-Si, ³ 1.6 eV, than for c-Si, light
is still absorbed in a-Si for energies below 1.6 eV. In fact, as shown in Fig. W11.7b,
both a-Si and a-Si:H have much higher absorption coefficients than c-Si in the region
of the visible spectrum up to 3 eV, at which point direct transitions begin in c-Si. This
is due in part to the fact that in c-Si the absorption corresponds to indirect transitions
for energies below 3 eV and also to the fact that absorption in a-Si can occur below the
optical gap due to transitions from localized to extended states, and vice versa. Thus
films of a-Si:H in photovoltaic solar cells with thicknesses ³ 1 µm are thick enough
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to absorb most of the solar spectrum, while much thicker films of c-Si are required for
the same purpose.

In a-Si and other amorphous semiconductors such as a-Ge there exist mobility edges
located at Ev and Ec, respectively, as shown in Fig. W11.6. These mobility edges for
charge carriers typically lie in the tail-state regions and divide electron states in the gap
which are spatially localized from those in the energy bands that extend throughout
the material. The corresponding charge-carrier mobilities �e and �h are essentially
zero within the gap and are finite for E < Ev and E > Ec within the bands. Thermally
activated conduction of charge can still occur within the localized states in the gap
and at low temperatures will take place via variable-range hopping, as described in
Chapter 7.

Hydrogenated amorphous Si (a-Si:H) is a particularly useful alloy in which the
incorporation of H atoms leads to the removal of localized defect states from the energy
gap of a-Si by forming Si–H bonds with most of the Si atoms which otherwise would
have dangling bonds. The tail states associated with weak Si–Si bonds in a-Si can also
be eliminated via the formation of pairs of strong Si–H bonds. The electrons occupying
the strong Si–H bonds have energy levels lying within the valence band of the material,
well below the band edge at Ev. In this way the concentration of electrically active
defects can be reduced from ³ 1026 eV�1 m�3 in a-Si (about one active defect per
103 Si atoms) to ³ 1021 eV�1 m�3 in a-Si:H (one active defect per 108 Si atoms). The
density of states in a-Si:H resulting from the incorporation of hydrogen is also shown
in Fig. W11.6. A schematic model of a segment of the continuous random network
(CRN) corresponding to the bonding in a-Si:H is shown in Fig. W11.8. Four H atoms
are shown completing the Si bonds at a Si monovacancy. This is an example of the
type of three-dimensional CRN structure discussed in Chapter 4. Films of a-Si:H are
typically formed by plasma deposition from the vapor phase onto substrates usually
held at T ³ 250°C.

The a-Si:H alloys can be successfully doped n- or p-type during deposition using
the standard dopant atoms P and B and as a result have found important applications
in photovoltaic solar cells and in the thin-film transistors (TFTs) used as switching
elements in flat panel displays. These applications are described in Sections W11.8 and

v

Si atom

Si vacancy

H atom

v

Figure W11.8. Model of a segment of the continuous random network corresponding to the
bonding in a-Si:H. Four H atoms are shown completing the Si bonds at a Si monovacancy.
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W11.10. The extended-state carrier mobilities in a-Si:H, �e ³ 10�4 to 10�3 m2/VÐs and
�h ³ 3 ð 10�7 m2/VÐs, are well below those found in crystalline Si, �e ³ 0.19 m2/VÐs,
due to the disorder and increased scattering present in the amorphous material. The
electrical conductivities attainable in a-Si:H by doping, �n ³ 1 ��1 m�1 and �p ³
10�2 ��1 m�1, are also well below those readily attainable in c-Si, � ³ 104 ��1 m�1.

In amorphous alloys based on Si, C, and H, the optical gap can be varied from
Eg ³ 1.8 eV for a-Si:H to above 3 eV for a-Si0.5C0.5:H, thus making the latter material
useful as a “window” layer in photovoltaic solar cells. The attainment of even larger
gaps at higher C contents is limited by the tendency in carbon-rich alloys for a mixture
of tetrahedral (i.e., diamond-like) and trigonal (i.e., graphite-like) bonding of the C
atoms to be present. The amorphous graphitic component of hydrogenated amorphous
carbon, a-C:H, has an energy gap Eg ³ 0.5 eV.

Amorphous semiconducting chalcogenide-based glasses such as a-Se and a-As2S3

have both covalent and van der Waals components in their chemical bonding, as
discussed in Section 2.2. These amorphous materials can contain molecular units such
as (Se)8 and therefore have networks of lower dimensionality and greater structural
flexibility than a-Si and a-Ge in which the bonding is three-dimensional. A schematic
model of the essentially two-dimensional CRN of a-As2S3 and other related mate-
rials is shown in Fig. 4.12. In these chalcogenide glasses, group V elements such as
As are threefold coordinated and group VI elements such as S and Se are twofold
coordinated, as in the crystalline counterparts. The highest-filled valence band in these
materials typically consists of electrons occupying lone-pair orbitals on the chalco-
genide atoms rather than electrons participating in chemical bonds with their NNs.
These glasses are typically formed by rapid quenching from the liquid phase. Appli-
cations of amorphous chalcogenide-based glasses include their use in xerography as
photoconductors, as described in Chapter 18.

Oxide Semiconductors. Some well-known oxide semiconductors include Cu2O
(cuprite), CuO, and CuO2. Some group III–V compounds which include oxygen as
the group V element are listed in Table 11.9. Semiconducting oxides such as SnO2,
In2O3, ITO (indium–tin oxide), Cd2SnO4, and ZnO can be prepared as transparent,
conducting coatings and have found a wide range of applications (e.g., as transparent
electrodes for photovoltaic solar cells).

Copper-based oxides such as La2CuO4 with Eg ³ 2.2 eV and with the perovskite
crystal structure have received considerable attention recently due to the discovery of
the high-Tc superconductivity that is observed when they become metallic through
doping or alloying. For example, when La2CuO4 becomes p-type through the replace-
ment of La3C by Sr2C, the resulting material La2�xSrxCuO4 is metallic for x > 0.06
and becomes superconducting at low temperatures, as described in Chapter 16.

Organic Semiconductors. Conjugated organic materials such as polymers
possessing resonant ,-electron bonding can be classified as semiconductors when the
energy gap Eg associated with the ,-electron system is in the range 1 to 3 eV. The
one-dimensional polymer polyacetylene, (CH)n, with alternating single and double
carbon–carbon bonds, can possess very high electrical conductivities, exceeding that
of copper, when suitable n-type (Na or Hg) or p-type (I) dopants are introduced. Other
polymers, such as polypyrrole and polyaniline, can also exhibit high conductivities
when suitably doped. A detailed description of the electronic structure and doping of
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polyacetylene is presented in Chapter W14. The large nonlinear optical effects found
in these materials may lead to important optoelectronic applications. Other applications
include their use as photoconductors in xerography.

Semiconducting organic molecular crystals can also exhibit strong electrolumines-
cence and photoluminescence and thus have potential applications in organic light-
emitting diodes.

Magnetic Semiconductors. Wide-bandgap ZnS and CdTe and narrow-bandgap
HgTe group II–VI semiconductors when alloyed with magnetic impurities such as
Mn (e.g., Zn1�xMnxS with 0 � x � 0.5) have potentially important applications based
in part on the “giant” Faraday rotations and negative magnetoresistances which they
can exhibit. The sp–d exchange interaction between the s and p conduction-band elec-
trons and the d electrons of the magnetic ions leads to very large Zeeman splittings at
the absorption edge and also of the free-exciton level. This sp–d interaction provides
the mechanism for the Faraday rotation observed for light propagating in the direction
of an applied magnetic field. The magnetic properties of these materials, known as
dilute magnetic semiconductors, are discussed briefly in Chapter W17.

Porous Si. An interesting form of Si that may have useful light-emitting applications
is porous Si, prepared via electrochemical etching of the surfaces of Si wafers. Porous
Si is believed to be a network composed of nanometer-sized regions of crystalline
Si surrounded by voids which can occupy between 50 to 90% of the volume of the
material. A transmission electron micrograph of porous Si in which the Si columns
are about 10 nm in diameter and the pore spaces are about 50 nm wide is shown
in Fig. W11.9. Tunable room-temperature photoluminescence in porous Si has been
achieved from the near-infrared to the blue-green region of the visible spectrum.

Proposals for the origins of the light emission from porous Si have focused on the
quantum confinement of charge carriers in Si regions with dimensions of 2 to 3 nm.
Other possible explanations are that oxidized regions with their larger bandgaps or the
effects of impurities such as hydrogen can explain the emission of light. It seems clear
in any case that oxygen and hydrogen play important roles in chemically passivating
the surfaces of the Si nanocrystals. These surfaces would otherwise provide surface
recombination sites that would quench the observed luminescence.

Figure W11.9. Transmission electron micrograph of porous Si in which the Si columns are
about 10 nm in diameter and the pore spaces are about 50 nm wide. (Reprinted with permission
of A. G. Cullis. From R. T. Collins et al., Phys. Today, Jan. 1997, p. 26.)
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W11.7 Further Discussion of Nonequilibrium Effects and Recombination

The buildup and decay of pn	t
 according to Eqs. (11.74) and (11.77), respectively,
are illustrated in Fig. W11.10. Band-to-band radiative recombination can be impor-
tant in highly perfect crystals of direct-bandgap semiconductors such as GaAs but is
very unlikely to be important in Si, Ge, and GaP. Indirect-bandgap semiconductors
have much longer recombination times (i.e., minority-carrier radiative lifetimes) than
direct-bandgap materials as a result of the requirement that a phonon participate in
the band-to-band recombination process. Some calculated values for minority-carrier
band-to-band radiative lifetimes are given in Table W11.2. These lifetimes have been
calculated using the van Roosbroeck–Shockley relation and are based on measured
optical properties (i.e., the absorption coefficient ˛ and index of refraction n), and on
the carrier concentrations of these semiconductors. The van Roosbroeck–Shockley
relation expresses a fundamental connection between the absorption and emission
spectra of a semiconductor and allows calculation of the band-to-band recombina-
tion rate in terms of an integral over photon energy involving ˛ and n. Note that
the calculated intrinsic lifetimes span the range from hours for Si to microseconds
for InAs.

Measured values of (p and (n in semiconductors such as Si and GaAs are often much
lower than the calculated values because of enhanced recombination due to defects and

pn

pn(t)

t

1

2

po

GI = 0

GI = 0GI > 0

po+GIτp(1)

Figure W11.10. Buildup and decay of the minority-carrier hole concentration pn	t
 in an n-type
semiconductor under low-level carrier injection for two different minority-carrier lifetimes, with
(p	1
 < (p	2
.

TABLE W11.2 Calculated Minority-Carrier Band-to-Band Radiative Lifetimes at
T = 300 K

Lifetime

Semiconductor ni (m�3) Intrinsica Extrinsicb

Si ³8 ð 1015 4.6 h 2.5 ms
Ge ³2 ð 1019 0.61 s 0.15 ms
InAs ³2 ð 1021 15 µs 0.24 µs

aLifetimes are calculated values obtained from R. N. Hall, Proc. Inst. Electr. Eng., 106B, Suppl. 17, 923
(1959).
bThe extrinsic lifetimes correspond to carrier concentrations of 1023 m�3.
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surfaces, to be discussed later. Typical measured minority-carrier lifetimes in extrinsic
Si are 1 to 100 µs, whereas in extrinsic GaAs they are 1 to 50 ns.

Minority-carrier recombination times can be on the order of picoseconds in amor-
phous semiconductors, due to the strong disorder and very high concentrations of
defects. Amorphous semiconductors can therefore be very “fast” materials with regard
to the speed of their response to external carrier excitation. The recombination times
(p and (n in crystalline semiconductors are typically much longer than the average
collision times h(i ³ 10�13 to 10�12 s.

Electron–hole recombination in the indirect-bandgap semiconductors Si, Ge, and
GaP is much more likely to occur via the participation of defects and surfaces. These
two extrinsic recombination mechanisms are discussed next.

Defect-Mediated Recombination. Defects such as metallic impurities and dislo-
cations disturb the periodic potential of the lattice and as a result introduce energy
levels deep within the energy gap of the semiconductor, often near midgap, as shown
in Fig. 11.22 for Si. The recombination rate will then be enhanced when electrons in
the conduction band fall first into the empty defect levels and then fall further into
empty levels in the valence band. The defect-mediated recombination rate is propor-
tional to the concentration of defects that have empty energy levels in the energy gap.
These defects with deep levels in the gap are often referred to as recombination centers
or traps. The carrier wavefunctions associated with traps are highly localized. While
band-to-band recombination can be expected to be the dominant recombination process
at high temperatures when n, p, and their product np are all large due to thermal
generation, defect-mediated recombination will often be the dominant recombination
mechanism at lower temperatures.

The case of defect levels with two charge states, neutral (unoccupied) and negative
(occupied by a single electron), has been treated in detail by Hall and by Shockley and
Read.† Only a brief outline is presented here. The key idea is that empty defect levels
near midgap will greatly increase the rate of recombination of electrons and holes due
to the fact that such transitions are enhanced when the energy involved is smaller (e.g.,
³ Eg/2) than the energy Eg for band-to-band recombination.

The possible transitions involving electrons and holes resulting from a defect level
at the energy Et in the gap are presented in Fig. W11.11. Transitions 1 and 2 corre-
spond to the capture by the defect of an electron from the conduction band and of a
hole from the valence band, respectively, with transitions 1 C 2 together resulting
in the recombination of an electron with a hole. Transitions 3 and 4 correspond
to the emission by the defect of a hole into the valence band and of an electron
into the conduction band, respectively, with transitions 3 C 4 together resulting in the
creation of an electron–hole pair. These defect levels are also effective in deactivating
donors and acceptors in semiconductors through the capture of the donor electrons and
acceptor holes.

When the rates of the individual transitions 1 to 4 are considered along with the
probabilities of occupation of the levels, the following results are obtained for the
steady-state emission probabilities of electrons and holes from the levels [for details,
see Grove (1967)].

† R. N. Hall, Phys. Rev., 87, 387 (1952); W. Shockley and W. T. Read, Phys. Rev., 87, 835 (1952).
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Figure W11.11. Possible transitions involving electrons and holes and resulting from a defect
level at the energy Et in the gap. 1, Capture of an electron; 2, capture of a hole; 3, emission of
a hole; 4, emission of an electron.

Absence of Carrier Injection (GI D 0). The total emission rates for holes and electrons,
transitions 3 and 4, respectively, will be proportional to the following rates:
Transition 3:

hole emission rate ep D vpth�pNv exp
(

� Et
kBT

)
	W11.26


Transition 4:

electron emission rate en D vnth�nNc exp
(

�Eg � Et
kBT

)
	W11.27


Here vpth D √
3kBT/mŁ

h and vnth D √
3kBT/mŁ

e are the thermal velocities, �p and �n
are the capture cross sections (³ 10�19 m2), and Nv and Nc are the effective densities
of states defined in Eq. (11.27), all for holes and electrons, respectively. The rates
of transitions 1 to 4 will also be proportional to the concentration of recombination
centers Nt and to the probabilities expressed in terms of the Fermi–Dirac distribution
function that the final state is empty.

Low-Level Carrier Injection (GI > 0). Net recombination rate due to defects (assuming
that �n D �p D �):

U D R�GT D �	vnthvpth
1/2Nt	pn� n2
i 


nC pC 2ni cosh[	2Et � Eg
/2kBT]
. 	W11.28


Here the carrier concentrations n and p depend on the injection rate GI, and Nt is the
density of defects whose energy levels lie in the gap at an energy Et. The recombination
rate U has its maximum value for a given GI when Et D Eg/2 (i.e., when the hyperbolic
cosine term in the denominator has its minimum value of unity). Thus recombination
centers or traps are most effective when their energy levels are located at midgap.
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In an n-type semiconductor the defect energy levels at Et will ordinarily be occupied
by electrons since n × p. These electrons can be thought of as originating directly
from the donor levels. As a result, the effective donor concentration will be reduced
to Nd �Nt in an n-type semiconductor containing a concentration Nt of recombina-
tion centers. This phenomenon, which can also occur in p-type semiconductors, is
known as majority-carrier removal and leads to an increase of the resistivity of the
semiconductor.

The lifetime for the minority-carrier holes in an n-type semiconductor containing
recombination centers and under low-level injection is determined by their rate of
capture by these centers. The capture lifetime can be shown to be given by

(p D 1

�pvpthNt
. 	W11.29


A similar equation for (n is valid for electrons in a p-type semiconductor but with
�p and vpth replaced by �n and vnth. As soon as a hole is captured by a recombi-
nation center in an n-type semiconductor (transition 2 in Fig. W11.11), an electron
will be captured essentially immediately by the center (transition 1) due to the high
concentration of electrons in the conduction band. Thus the rate-limiting step for elec-
tron–hole recombination in a semiconductor containing recombination centers will be
the capture by the center of minority carriers. As a result, the minority-carrier lifetime
is an important parameter in semiconductor devices.

The minority-carrier lifetimes (p or (n can be determined experimentally from the
decay of the photoconductivity associated with photogenerated carriers. This lifetime
is typically much longer than h(i, the average elastic scattering time, which determines
the mobility of the charge carriers. The minority-carrier lifetimes (p or (n can be
determined reliably only for low levels of illumination or injection.

Surface Recombination. The recombination rates of electrons and holes can be
enhanced at the surface of a semiconductor due to the presence of surface states (i.e.,
electron energy levels lying deep within the energy gap which result from distortions
near the surface of the bulk periodic lattice potential). These levels in the energy gap can
arise from broken or reconstructed chemical bonds at the surface of the semiconductor,
as described in Chapter 19. When surface recombination is important, the electron and
hole concentrations will vary spatially and both will be depressed near the surface of
the semiconductor due to the enhanced recombination occurring there.

The recombination rate per unit area of surface for holes in an n-type semicon-
ductor under low-level injection is usually taken to be proportional to (pn � p0) and
of the form

Rsurface D sp	pn � p0
, 	W11.30


where sp is the surface recombination velocity and has units of m/s. This velocity can
be shown to be given by

sp D �pvpthNts, 	W11.31


where Nts is the concentration of recombination centers per unit area at the surface.
Typical values of sp for Si surfaces are ³ 1 m/s but can be as high as 103 m/s. The value
of sp for Si can be reduced to 10�2 to 10�1 m/s when the Si surface is oxidized. The
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removal of these centers by passivation of the surface (e.g., by growing or depositing a
surface film of a-SiO2) is an important step in the fabrication of semiconductor devices
(see Chapter W21). The spatial dependence p(x) of the hole concentration near the
surface due to recombination can be obtained by solving the continuity equation (11.65)
with the incorporation of an appropriate hole diffusion term. In addition, the effect of
a space-charge region near the surface on the recombination rate can be determined.
For details of these calculations, see Grove (1967).

The total minority-carrier recombination rate in a semiconductor is given by

1

(
D 1

(r
C 1

(nr
, 	W11.32


where (r and (nr are the radiative and nonradiative lifetimes, respectively. Another
useful expression for 1/(p in an n-type semiconductor when all three types of recom-
bination are important is

1

(p
D k1n0 C �pvpthNt C �pvpthNts

ds
, 	W11.33


where Eqs. (11.72), (W11.29), and (W11.31) have been used. Here ds is the width of
the region near the surface where surface recombination is effective.

W11.8 Transistors

The relative suitability of semiconductors for given types of applications is often eval-
uated on the basis of relevant figures of merit (FOMs) which are specific functions
of the properties of the semiconductors. For example, the Johnson FOM for the
power capacity of high-frequency devices is JM D 	Ecvsat/,
2, the Keyes FOM for
the thermal dissipation capacity of high-frequency devices is KM D !

p
vsat//, and

the Baliga FOM for power-loss minimization at high frequencies is BHFM D �E2
c . In

these expressions Ec is the critical electric field for breakdown, vsat the saturated carrier
drift velocity, ! the thermal conductivity, / the permittivity, and � the carrier mobility.
Figures of merit for various semiconductors, normalized to 1 for Si, are presented in
Table W11.3.

TABLE W11.3 Figures of Merit for Various Semiconductors

Eg JM KM BHFM
Semiconductor (eV) 	Ecvsat/,
2 	!

p
vsat//
 	�E2

c


Si 1.11 1.0 1.0 1.0
InP 1.27 13 0.72 6.6
GaAs 1.42 11 0.45 16
GaP 2.24 37 0.73 38
3C-SiC (ˇ-SiC) 2.3 110 5.8 12
4H-SiC 3.27 410 5.1 34
C (diamond) 5.4 6220 32 850

Source: Data from T. P. Chow and R. Tyagi, IEEE Trans. Electron Devices, 41, 1481 (1994).
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The entries in Table W11.3 indicate that the semiconductors listed with wider
bandgaps than Si offer in many cases potential order-of-magnitude improvements
in performance in high-power, high-frequency electronic applications. This is to be
expected since Ec is observed to increase with increasing Eg.

Transistors are semiconductor electronic devices with at least three electrodes, as
shown in Fig. W11.12 for the case of an npn bipolar junction transistor. The term
bipolar refers to the fact that both electrons and holes flow within the device in
response to applied voltages. Other transistor structures in which only electrons or
holes respond to applied voltages include field-effect transistors (FETs) such as the
junction FET and the metal–oxide–semiconductor FET (MOSFET). A wide variety
of structures are employed for transistors, depending on the application (e.g., ampli-
fication or switching involving high frequency, high power, high speed, etc.). Only a
brief outline of transistor action and the most important transistor structures will be
presented here.

Bipolar Junction Transistor. A Si bipolar junction transistor consists physically of
three distinct regions of Si with different types and levels of doping and separated by
p-n junctions of opposite polarity in series with each other. These three regions can
either be embedded in a single piece of Si or can consist of layers of Si grown epitax-
ially on a Si substrate. The latter configuration is found in planar device technology,
as described in Chapter W21. The two possible types of bipolar junction transistors
are npn and pnp. The physical principles of operation are the same in each type, but
with electrons and holes switching roles, and so on. When the npn junction transistor
is connected to an external circuit as shown in Fig. W11.13, the left-hand side is the
n-type emitter, the central region is the p-type base, and the right-hand side is the
n-type collector. The built-in electric fields in the n-p and p-n junctions are in oppo-
site directions, as shown in Fig. W11.12. The electron energy bands at zero bias are
shown for the case when all three regions are nondegenerate, but with the emitter more
heavily doped (i.e., nC) than the base or the collector.

The operation of the npn transistor consists of forward biasing of the emitter–base
n-p junction and a stronger reverse biasing of the base–collector p-n junction, as shown
in Fig. W11.13. The electron energy bands are also shown for the npn transistor when
biased as described above. Electrons are injected from the emitter into the base where

Enp
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EF
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Enp Epn

np

p

(a)

(b)

n

n+ n

Figure W11.12. An npn bipolar junction transistor: (a) directions of the built-in electric fields
at the two junctions; (b) electron energy bands across the transistor at zero bias.
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Figure W11.13. Operation of an npn transistor. (a) The emitter-base n-p junction is forward
biased, while the base–collector p-n junction is given a stronger reverse bias. The directions
of the three resulting currents Ie, Ib, and Ic for the emitter, base, and collector are shown.
(b) Symbol used for an npn junction transistor in a circuit diagram. The arrow on the emitter
indicates the direction of the conventional electric current. The direction of this arrow would be
reversed for a pnp junction transistor. (c) Electron energy bands for the biased npn transistor.

they diffuse rapidly across the narrow base region whose thickness is less than the
electron diffusion length Le D p

De(n. The electrons that cross the p-type base region
without recombining with the majority-carrier holes are then swept across the reverse-
biased base–collector n-p junction by its built-in electric field into the collector. The
motions of the electrons are shown on the energy-band diagram for the junction, with
the smaller hole current from base to emitter also indicated.

The directions of the three resulting currents Ie, Ib, and Ic for the emitter, base, and
collector are shown in Fig. W11.13a. The emitter current is given by

Ie D Ib C Ic D 	1 C ˇ
Ib, 	W11.34


where ˇ D Ic/Ib is the current gain of the transistor. For alternating currents the small-
signal current gain of the transistor is dIc/dIb. The ratio of the collector current to the
emitter current is given by

Ic
Ie

D ˇ

1 C ˇ
� 1. 	W11.35


Since most of the electrons injected from the emitter are able to travel across both
the base and the base–collector junction into the collector without recombining with
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holes, it follows that Ic is almost as large as Ie and that the base current is usually
much smaller than either Ie or Ic. Therefore, the current gain defined by Eq. (W11.34)
can be ˇ ³ 100 to 1000. A very thin base with a high diffusion coefficient and a
very long lifetime for minority carriers is required for high current gains in bipolar
junction transistors. Defect-free Si with its indirect bandgap, and hence very long
minority-carrier lifetimes, is clearly an excellent choice for this type of transistor.

A simplified circuit illustrating the use of an npn transistor as an amplifier of a
small ac voltage v	t
 is shown in Fig. W11.14. The dc voltage sources Veb and Vbc
provide the biasing of the two p-n junctions and the source of the input signal v	t

is placed in the base circuit. Kirchhoff’s loop rule applied to the emitter–base circuit
can be written as

Vbc C v	t
 D Vb � Ve � IeRe. 	W11.36


Since the emitter–base junction is forward-biased, the voltage drop Vb � Ve across
the n-p junction will in general be much smaller than the other terms in this equation.
Therefore, Eq. (W11.35) can be rewritten with the help of Eq. (W11.36) as

Ic D � ˇ

1 C ˇ

Vbc C v	t


Re
³ Vbc C v	t


Re
. 	W11.37


The additional output voltage Vc	t
 appearing across the resistor Rc in the collector
circuit and due to the input voltage v	t
 is equal to [Ic	v
� Ic	v D 0
]Rc. The voltage
gain of this transistor can therefore be shown to be

G D Vc
jvj D Rc

Re
. 	W11.38


Thus a small ac voltage in the base circuit can result in a much larger voltage in the
collector circuit. Typical voltage gains of junction transistors are ³ 100. In addition to
being used as an amplifier, transistors can also function as switches. In this case, by
controlling the base current Ib using the base voltage, the much larger collector current
Ic can be switched from a very high value to a very low value.

Vbc

Vb

Ib

Ic

Ie

Re

Rc

Vc

Ve

Veb

+

−
+
−

v(t)

Figure W11.14. Simplified circuit illustrating the use of an npn transistor as an amplifier of
a small ac voltage v	t
. The dc voltage sources Vbc and Veb provide the biasing of the two
junctions and the source of the input signal v	t
 appears in the base circuit.
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The intrinsic switching speed of the npn junction transistor described here is limited
by the time it takes the minority-carrier electrons to travel across the base region of
thickness d. Since the distance traveled by a diffusing electron in time t is given by
d D p

Dt, where D is the electron’s diffusivity, the electron transit time or switching
time of the transistor is

ttr ¾D d2

D
D ed2

�ekBT
. 	W11.39


Here �e is the mobility of the minority-carrier electrons, and the Einstein relation
given for D in Eq. (11.81) has been used. To achieve high switching speeds and
operation at high frequencies (i.e., a rapid response of the transistor to changes in
applied signals), it is important to make the base region as thin as possible and also to
fabricate the transistor from a semiconductor with as high a mobility as possible. With
D ³ 5 ð 10�3 m2/s for Si and d ³ 1 µm, the value of ttr is ³ 2 ð 10�10 s, while for
GaAs, values of ttr can be as low as 4 ð 10�11 s for the same value of d due to its
much higher diffusivity D ³ 0.023 m2/s. When the transit time ttr is shorter than the
minority-carrier lifetime (, the minority carriers can travel across the base ballistically
(i.e., without being scattered). Ballistic propagation of charge carriers can occur in a
device as its dimensions shrink in size and, as a result, the usual concepts of average
scattering time h(i and mobility � D eh(i/mŁ

c play much less important roles in limiting
the drift velocities of the carriers and operation of the device. Under these conditions
very high device speeds can be achieved.

Transistor action in a bipolar npn junction transistor thus corresponds to the injection
of minority-carrier electrons across the forward-biased emitter–base n-p junction into
the p-type base region. These electrons diffuse across the base and then drift and diffuse
in the accelerating electric field of the reverse-biased base–collector p-n junction,
where they then appear as collector current. The base current Ib, which limits the
current gain ˇ D Ic/Ib, corresponds to the back injection of holes from the base to
the emitter across the emitter–base n-p junction. The analysis of the operation of
a transistor must take into account the exact spatial distributions of dopants in the
emitter, base, and collector regions and must include the possible effects of high-level
injection.

A type of bipolar transistor that provides better gain and higher-frequency operation
than the bipolar junction transistor just discussed is the heterojunction bipolar transistor
(HBT). In an npn HBT the emitter is an n-type semiconductor with a wider bandgap
than the base and collector semiconductors. The electron energy-band diagram for an
HBT shown in Fig. W11.15 indicates that a potential barrier exists in the valence band
which hinders the back injection of holes from the p-type base into the emitter, thereby
limiting the current Ib flowing in the base circuit and increasing the current gain ˇ D
Ic/Ib. Due to the very fast, ballistic transport across the base, in contrast to the slower
diffusive transport that is ordinarily observed in bipolar junction transistors, HBTs
have been developed into the fastest devices of this kind and are used in microwave
applications and wireless communication devices.

In one successful HBT structure composed of group III–V semiconductors, InP
with Eg D 1.27 eV is grown epitaxially on a lattice-matched In0.53Ga0.47As alloy
with Eg ³ 0.8 eV. Electrons from the InP emitter reach the heavily doped pC-type
In0.53Ga0.47As base region with excess kinetic energy and travel essentially ballisti-
cally to the collector. The high cutoff frequency of 165 GHz and average electron
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Figure W11.15. Electron energy-band diagram for a heterojunction bipolar transistor (HBT).
In the npn HBT shown here the emitter has a wider bandgap than the base and collector
semiconductors. A potential barrier exists in the valence band that hinders the back injection of
holes from the p-type base into the emitter. (From A. F. J. Levi et al., Phys. Today, Feb. 1990,
p. 61. Copyright  1990 by the American Institute of Physics.)

velocity of 4 ð 105 m/s measured at T D 300 K in the active region correspond to a
total delay of less than 1 ps in the active region between the emitter and the bulk
of the collector. The extreme process control ideally required for the fabrication of
such HBT devices is indicated by the need to maintain an atomically flat interface
between the InP emitter and the base and to restrict the width of the emitter–base
doping profile to about 5 nm. Molecular beam epitaxy, described in Chapter W21, is
capable of achieving the control needed in the deposition process. Nevertheless, due
to the extreme deposition control needed and due to the lack of a reliable native oxide,
these group III–V-based devices are unlikely to replace Si technology, despite their
outstanding characteristics.

Another material demonstrating impressive performance and high speed in HBT
structures is alloys of SiGe grown heteroepitaxially on Si substrates. The lower-bandgap
p-type SiGe base region in Si–SiGe HBTs allows carriers to travel much faster across
the base and thus operation at higher frequencies.

A class of transistors whose operation involves only majority carriers is known as
field-effect transistors (FETs). These devices are simpler than bipolar junction tran-
sistors and correspond in practice to a resistor whose resistance is controlled by an
applied voltage and the resulting electric field in the semiconductor. They therefore
operate on a completely different physical mechanism than the bipolar junction tran-
sistors. Instead of having an emitter, collector, and base, FETs consist of a source and
a drain for electrons and a gate that is used either to control or create a conducting
channel in the semiconductor. FETs can be viewed as electronic switches that are in
either an “on” or an “off” state. As a result, an FET corresponds in a real sense to
a single bit (i.e., a binary unit of information). The junction field-effect transistor is
discussed briefly next. The metal–oxide–semiconductor FET (MOSFET) is described
in Chapter 11.
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Junction Field-Effect Transistor. The configuration of a junction FET in a rect-
angular bar of n-type Si is shown schematically in Fig. W11.16. The two metallic
electrodes at the ends of the bar are the source and drain and the conducting channel
in the n-type Si between them is controlled by the two pC-type gates at the center
of the bar. The bar of Si acts as a resistor whose resistance R is controlled by the
reverse-bias gate voltage Vg. As Vg is increased, the depletion regions at the two
reverse-biased pC-n junctions widen and effectively restrict the cross-sectional area
of the path or conducting channel of the majority-carrier electrons as they flow from
source to drain. The conductance G D 1/R of the Si bar is therefore controlled by the
gate voltage Vg. The junction FET is “on” when the channel is open and conducting
and is “off” when it is closed and nonconducting. The speed of the junction FET is
controlled by the transit time of the majority carriers through the channel and so is
inversely proportional to the gate length.

Current–voltage characteristics of a junction FET are also presented in Fig. W11.16
in the form of the source-to-drain current Id versus the source-to-drain voltage Vd for
a series of gate voltages Vg. For a given Vg, the current Id is observed to increase
linearly and then to saturate. The analysis of the current response of a junction FET is
complicated by the fact that the widths of the two depletion regions on opposite sides
of the bar are not constant along the channel. As shown in Fig. W11.16, the width
will be greater near the drain, where the voltage Vd adds its contribution to the reverse
biasing of the two pC-n junctions. The conducting channel will be “pinched” (i.e., will
decrease in cross-sectional area to a small value) when the two depletion regions are
very close to each other near the drain electrode. The current Id does not in fact go to
zero due to this “pinching” effect but instead, saturates, as observed. As the channel
shrinks in cross section, the electric field lines are squeezed into a smaller area. As a
result, the electric field in the channel increases and current continues to flow. In this
case, Ohm’s law will no longer be valid when the electric field reaches a value where
the mobility of the majority carriers starts to decrease due to inelastic scattering effects
associated with “hot” carriers, as described in the discussion of high-field effects in
Section 11.7.

The rapid increase in drain current Id that is observed to occur in Fig. W11.16 as
either Vg and/or Vd increase in magnitude is just the junction breakdown which occurs
when the pC-n junctions are strongly reverse-biased. It can be seen that both Vg and
Vd contribute to the breakdown of the junction FET.

In the junction FET the gate voltage effectively controls the resistance R or conduc-
tance G of the p-type Si region and so controls the flow of current through the device.
The transconductance of the transistor is defined by

gm D ∂Id
∂Vg

. 	W11.40


Here gm expresses the degree of amplification and control of the source-to-drain current
Id by the gate voltage Vg and is one of the most important characteristics of the
transistor.

Other Types of Transistors. An intrinsic problem in semiconductor devices is
that the doping procedure which provides the majority carriers can also lead to a
decrease in the carrier mobility at high doping levels, as illustrated in Fig. 11.15. This



SEMICONDUCTORS 129

VD (volts)

I D
 (

m
A

)

0 5 10 15 20 25 30

10

0

2

4

6

8

12

−4.0
−3.5
−3.0
−2.5
−2.0
−1.5

−1.0
−0.5

+0.5
VGS = 0V

d (x)

d (x)

depleted
region

p+

p+

S

0 L

D

n type
x

y

2a

y

xz

IG

p+

ID

VD

Is

VG

D

G

S

VS = 0

2a

VG

+ −+ −
gate

n region

L

x

source b

drain

regions (upper and
lower gates)

(a)

(b)

(c)

Figure W11.16. Properties of a junction FET. (a) Configuration of a junction FET in a rect-
angular bar of n-type Si. The two metallic electrodes at the ends of the bar are the source and
drain, and the conducting channel between them is controlled by the p-type gates at the center
of the bar. (b) Current–voltage characteristics of the 2N3278 junction FET in the form of the
source-to-drain current Id versus the source-to-drain voltage Vd for a series of gate voltages Vg.
(c) The width of the depletion regions is greater near the drain electrode, where the drain voltage
Vd adds its contribution to the reverse biasing of the two pC-n junctions. (From B. Sapoval and
C. Hermann, Physics of Semiconductors, Springer-Verlag, New York, 1993.)

decrease occurs because the ionized donor and acceptor ions act as charged scattering
centers, and this additional scattering leads to a decrease in the average scattering or
momentum relaxation time h(i. A procedure that can minimize this effect makes use
of heterostructures or superlattices and is known as modulation doping. Modulation
doping involves introduction of the dopant atoms into a wider-bandgap layer (e.g.,
AlxGa1�xAs with Eg up to 2.2 eV) and the subsequent transfer of the carriers across
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the interface to lower-lying energy levels in an adjacent layer with a narrower bandgap
(e.g., GaAs with Eg D 1.42 eV). The carriers are thereby spatially separated from the
charged scattering centers, as shown in Fig. W11.17. Much higher carrier mobilities,
up to 150 m2/VÐs in GaAs at T ³ 4.2 K, can be achieved using modulation doping than
are ordinarily attainable using normal doping procedures. Very fast electronic devices
which can be fabricated using modulation doping and in which the charge carriers
move ballistically include MODFETs (i.e., modulation-doped FETs) and HEMTs (i.e.,
high-electron-mobility transistors).

In applications related to information technology, such as displays and photocopiers,
where larger, rather than smaller, physical dimensions are needed, it is advantageous to
be able to deposit large areas of semiconducting thin films which can then be processed
into devices such as thin-film transistors (i.e., TFTs). A semiconducting material that is
useful for many of these applications is hydrogenated amorphous Si, a-Si:H, that can
be deposited over large areas onto a wide variety of substrates via plasma deposition
techniques and that can be successfully doped n- and p-type during the deposition
process, as discussed in Chapter W21.
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Figure W11.17. Modulation doping in GaAs-AlxGa1�xAs superlattices. The carriers are
spatially separated from the charged scattering centers associated with the dopant impurity ions.
(From R. Dingle et al., Appl. Phys. Lett., 33, 665 (1978). Copyright  1978 by the American
Institute of Physics.)
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Although a-Si:H is inferior to c-Si in its electronic properties (e.g., a-Si:H possesses
an electron mobility �e ³ 10�4 m2/VÐs compared to �e D 0.19 m2/VÐs for c-Si), these
properties are sufficient for applications in field-effect TFTs (or thin-film FETs), which
act as the switches which, for example, control the state of the pixels in large-area
liquid-crystal displays. A common configuration of an a-Si:H field-effect TFT is shown
in Fig. W11.18, along with its source-to-drain current Id versus gate voltage Vg transfer
characteristic, which is similar to that of a conventional MOSFET. At the transition
from the “on” to the “off” state, the source-to-drain resistance Rd increases by about
six orders of magnitude. Other large-area applications of a-Si:H films in photovoltaic
solar cells are discussed in Section W11.10. Polycrystalline Si has a higher mobility
than a-Si:H and thus can operate at higher frequencies in TFTs.

Another material with significant potential for electronic device applications is SiC.
SiC is considered to be a nearly ideal semiconductor for high-power, high-frequency
transistors because of its high breakdown field of 3.8 ð 108 V/m, high saturated elec-
tron drift velocity of 2 ð 105 m/s, and high thermal conductivity of 490 W/mÐK. Its
wide bandgaps of 3.0 and 3.2 eV in the hexagonal 6H– and 4H–SiC forms, respec-
tively, allow SiC FETs to provide high radio-frequency (RF) output power at high
temperatures. In addition, SiC has the important advantage over most group III–V and
II–VI semiconductors in that its native oxide is SiO2, the same oxide that provides
passivation for Si.

A SiC metal–semiconductor field-effect transistor (MESFET) is shown schemati-
cally in Fig. W11.19. The gate configuration in the MESFET consists of a rectifying
metal–semiconductor Schottky barrier at the surface of a doped epitaxial layer of
SiC that is grown on either a high-resistivity substrate or a lightly doped substrate of
the opposite conductivity type. When used in RF applications, an RF voltage that is
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Figure W11.18. Common configuration of an a-Si:H field-effect TFT, along with its
source-to-drain current Id versus gate voltage Vg transfer characteristic. (From R. A. Street,
Mater. Res. Soc. Bull., 17(11), 71 (1992).)
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Figure W11.19. SiC metal–semiconductor field-effect transistor (MESFET). The gate config-
uration in the MESFET consists of a rectifying metal–semiconductor Schottky barrier at the
surface of a doped, epitaxial layer of SiC. (From K. Moore et al., Mater. Res. Soc. Bull., 23(3),
51 (1997).)

superimposed on the dc gate voltage Vg modulates the source-to-drain current in the
conducting channel, thereby providing RF gain. The SiC MESFET can provide signif-
icantly higher operating frequencies and higher output power densities than either Si
RF power FETs or GaAs MESFETs.

W11.9 Quantum Hall Effect

The study of the electrical properties of the two-dimensional electron gas (2DEG)
has yielded some remarkable and unexpected results. In the experiment† that led
to the discovery of the quantum Hall effect, a high-mobility silicon MOSFET was
used to create the 2DEG, and its electrical properties were studied at low tempera-
tures, T ³ 1.5 K, and high magnetic fields, B ³ 15 T. More recent studies utilize the
GaAs–AlGaAs heterostructure to create the 2DEG. Consider the geometry shown in
Fig. W11.20, in which a magnetic induction B is imposed perpendicular to the 2DEG,
which lies in the xy plane. The longitudinal resistivity, �xx D 	VL/I
	w/L
, and Hall
resistivity, �xy D VH/I, are measured in two dimensions, where w is the width and L
is the length of the 2DEG, respectively. The electrons are in the ground quantum state
of a potential well in the z direction, perpendicular to the plane of motion. The spatial
extent of the wavefunction in the z direction is small compared with w and L.

Prior to the experiments, the a priori expectations for the behavior of these resis-
tivities as a function of B were simple. If N is the number of electrons per unit area
in the 2DEG, then, in analogy with the discussion in Section 7.3, it was expected that
�xy D B/Ne (i.e., the Hall resistivity should be proportional to the magnetic field and
inversely proportional to the number of electrons per unit area, N). The naive Drude
expectation for �xx was that it shows no magnetoresistance. However, Shubnikov and

† K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 45, 494 (1980).
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Figure W11.20. Geometry of the measurement of the quantum Hall effect for the
two-dimensional electron gas.

de Haas† had found oscillatory structure in the magnetoresistivity of three-dimensional
conductors as a function of 1/B. The period of this structure is given by a formula
derived by Onsager, 	1/B
 D 2,e/h̄AF, where AF is the area of the equatorial plane
of the Fermi sphere in k space with the magnetic field along the polar axis. The physical
origin involves Landau levels (discussed in Appendix W11A) crossing the Fermi level
as the magnetic field is varied. Similar oscillations were expected in two-dimensional
conductors. In place of a Fermi sphere there would be a Fermi circle in the 	kxky

plane.

A sketch of the experimental data for the integer quantum Hall effect (IQHE) is
presented in Fig. W11.21. A steplike structure with exceedingly flat plateaus is found
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Figure W11.21. Experimental results for the Hall resistivity �xy and magnetoresistivity �xx
for the two-dimensional electron gas. (Reprinted with permission of H. Iken. Adapted from
B. I. Halperin, The quantized Hall effect, Sci. Am., Apr., 1986, p 52.)

† W. J. de Haas, J. W. Blom, and L. W. Schubnikow, Physica 2, 907 (1935).
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for �xy as a function of B. The flatness is better than 1 part in 107. The resistivity for
the nth step is �xy D h/ne2 D 25,812.8056 �/n, where n D 1, 2, 3, . . . , and is now
used as the standard of resistance. In addition, �xx consists of a series of spikelike
features as a function of B. The location of the spikes coincides with the places where
the transitions between the plateaus occur. In between the spikes it is found that the
longitudinal resistivity vanishes.

In the absence of a magnetic field, the density of states (number of states per unit
energy per unit area) for a free-electron gas in two dimensions is predicted to be
constant (see Table 11.5). Thus, for a parabolic conduction band,

�	E
 D 1

A

∑
k,ms

υ	Ek � E
 D
∫

2d2k

	2,
2
υ

(
h̄2k2

2mŁ
e

� E

)
D mŁ

e

,h̄2	E
, 	W11.41


where mŁ
e is the effective mass of the electron and 	E
 is the unit step function. The

Fermi energy is obtained by evaluating

N D
∫
dE�	E
	EF � E
 D mŁ

eEF
,h̄2 . 	W11.42


The radius of the Fermi circle is given by kF D p
2,N.

In the presence of a magnetic field, the density of states is radically transformed.
The spectrum degenerates into a series of equally spaced discrete lines called Landau
levels. The states are labeled by three quantum numbers: a nonnegative integer n, a
continuous variable kx, and a spin-projection quantum number ms. Details are presented
in Appendix W11A. The energies of the Landau levels are given by the formula
Enkxms D 	nC 1

2 
h̄ωc C g�BBms, where ωc D eB/mŁ
e is the cyclotron frequency of the

electron in the magnetic field. Note that the energy does not depend on kx. The energy
formula includes the Zeeman splitting of the spin states. The density of states becomes
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∑
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	W11.43

A sketch of the density of states is presented in Fig. W11.22. Figure W11.22a corre-
sponds to the case where there is no magnetic field. Figure W11.22b shows the
formation of Landau levels when the magnetic field is introduced but when there is no
disorder. The degeneracy per unit area of each Landau level, D, is readily evaluated
by taking the limit ωc ! 0 and converting the right-hand sum to an integral over n.
The result may then be compared with Eq. (W11.41) to give D D mŁ

eωc/2,h̄ D eB/h.
The filling factor is defined by ? D N/D. For ? D 1 the first Landau level (with n D 0
and ms D � 1

2 ) is filled, for ? D 2 the second Landau level (with n D 0 and ms D 1
2 ) is

also filled, and so on for higher values of n. Each plateau in �xy is found to be asso-
ciated with an integer value of ? (i.e., �xy D h/?e2). The filling of the Landau levels
may be controlled by either varying B or N. The areal density N may be changed by
varying the gate voltage in a MOSFET or by applying the appropriate voltages to a
heterostructure.

The boundaries of the 2DEG in a magnetic field act as one-dimensional conductors.
In the interior of a two-dimensional conductor the electrons are believed to be localized
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Figure W11.22. Density of states for a two-dimensional electron gas: (a) in the absence of a
magnetic field; (b) in the presence of a magnetic field, but with no disorder; (c) in the presence
of a magnetic field and with disorder. The smaller Zeeman spin splitting of the Landau levels
is not shown.

by scattering from the random impurities. On the edges, however, the electrons collide
with the confining potential walls and the cyclotron orbits consist of a series of circular
arcs that circumscribe the 2DEG. Electrons in such edge states are not backscattered
and carry current. Recalling the mechanism responsible for weak localization discussed
in Section W7.5, it is observed that the edge states cannot become localized. As a result,
edge states are delocalized over the entire circumference of the 2DEG. Phase coherence
is maintained around the circumference. If one were to follow an electron once around
the 2DEG, Eq. (W11A. 5) implies that its wavefunction accumulates a phase shift of
amount

υ@ D e

h̄

∮
A·dl D e

h̄

∫
B· OndS D e

h̄
, 	W11.44


where A is the vector potential, dS an area element, and  the magnetic flux through
the sample. Uniqueness of the wavefunction requires that υ@ D 2,NF, where NF is
an integer. Thus  D NF0, where 0 D h/e D 4.1357 ð 10�15 Wb is the quantum
of flux. Each Landau level contributes an edge state that circumscribes the 2DEG.
Eventually, as the Hall electric field builds up due to charge accumulation on the
edges, the cyclotron orbits of the edge states will straighten out into linear trajectories
parallel to the edges.

States with noninteger ? are compressible. If N/D is not an integer, one may imagine
compressing the electrons into a smaller area A0 so that N0 will be the new electron
density in that area. Because of the high degeneracy of the Landau level, this may
be done without a cost in energy until N0/D reaches the next-larger integer value. To
compress the electron gas further requires populating the next-higher Landau level,
which involves elevating the electronic energies. Therefore, states with integer ? are
incompressible.

The zero longitudinal resistivity of the 2DEG for integer ? may be a consequence
of the incompressibility of the filled Landau levels. If all the electrons flow as an
incompressible fluid across the 2DEG sheet, there is considerable inertia associated
with this flow. Furthermore, the fluid interacts simultaneously with many scattering
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centers, some attractive and some repulsive. Consequently, as the fluid moves along,
there is no net change in the potential energy of the system and no net scattering.

It is worth examining the condition ? D N/D in light of the condition for quantized
flux. Suppose that ? is an integer. Let there be a total of Ne conduction electrons in
the 2DEG. Then

? D N

D
D Neh

e
D Ne
NF

. 	W11.45)

Thus associated with each flux quantum are ? electrons.
For an electron to be able to pass through the sheet without being deflected by the

magnetic field, the magnetic force must be equal in magnitude, but opposite in direction,
to the Hall electric force (i.e., evB D eEH). The Hall electric field 	EH D VH/w
 is
due to charge that accumulates along the edges of the sample. Thus

VH D wvB D v

L
 D v

L
NF0 D NFvh

eL
. 	W11.46


The current carried by the 2DEG is given by

I D Nvew D Neve

L
. 	W11.47


The Hall resistivity is therefore given by

�xy D VH
I

D NFh

Nee2
D h

?e2
. 	W11.48


It is believed that the plateaus in the Hall resistivity coincide with regions where the
Fermi level resides in localized states between the Landau levels. The localized states
are a consequence of disorder. When there is disorder present, the density of states
no longer consists of a series of uniformly spaced delta functions. Rather, each delta
function is spread out into a broadened peak due to the local potential fluctuations set
up by the scattering centers. The states associated with the region near the centers of
the peaks are extended throughout the 2DEG, while those in the wings of the peak
are localized. This is illustrated in Fig. W11.22c, where the shaded regions correspond
to localized states and the unshaded regions correspond to extended states. The area
under each peak is D. As the magnetic field is varied and ωc changes, the Landau
levels move relative to the fixed Fermi level. When the Fermi level resides in the
localized states these states do not contribute to the conductivity. As long as no new
extended states are added while the localized states sweep past the Fermi level, �xy
remains constant. When B increases and EF enters a band of extended states, a charge
transfer occurs across the 2DEG which causes �xy to increase. Laughlin† has presented
a general argument based on gauge transformations showing how this happens.

The conductivity tensor is the inverse of the resistivity tensor. Thus, in the plateau
regions the Hall conductivity is �xy D ��xy/	�xx�yy � �xy�yx
 ! 1/�yx, since �xx D 0.
Thus j�xyj D ?e2/h. This is expected from the Landauer theory of conduction. The

† R. B. Laughlin, Phys. Rev. B, 23, 5632 (1981).
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current is carried by the edge states, with each Landau level contributing an edge state.
Note that both edges of the 2DEG can conduct through each edge state.

Further investigations of the quantum Hall effect at higher magnetic fields for
the lowest Landau level† have revealed additional plateaus in the Hall resistivity at
fractional values of ?. The phenomenon is called the fractional quantum Hall effect
(FQHE). If ? is expressed as the rational fraction ? D p/q, only odd values of q are
found. For the case p D 1, this is equivalent to saying that each electron is associated
with an odd number, q, of flux quanta.

The system of electrons that exhibits the FQHE is highly correlated, meaning that
the size of the electron–electron interaction is larger than the kinetic energy of the
electron. Instead of describing the physics in terms of bare electrons, one introduces
quasiparticles. One such description involves the use of what are called composite
fermions.‡ In this picture each electron is described as a charged particle attached
to a flux quantum. It may further become attached to an additional even number
of flux quanta. In such a description the composite fermion may be shown to obey
Fermi–Dirac statistics. The FQHE is then obtained as an IQHE for the composite
fermions.

In another description of the quasiparticles§ it is useful to think of the fractioniza-
tion of charge. For example, in the case where ? D 1

3 , the quasiparticles are regarded
as having charge eŁ D e/3. This does not mean that the actual physical charge of
the electron has been subdivided but that the wavefunction of a physical electron is
such that the electron is as likely to be found in three different positions. These posi-
tions may, however, independently undergo dynamical evolution and may even change
abruptly due to tunneling. Experiments on quantum shot noise¶ have, in fact, shown that
the current in the FQHE is carried by fractional charges e/3. More recent shot-noise
experiments have shown that the ? D 1

5 FQHE involves carriers with charge e/5.

W11.10 Photovoltaic Solar Cells

The photovoltaic effect in a semiconductor can occur when light with energy h̄ω > Eg
is incident in or near the depletion region of a p-n junction. The electron–hole pairs
that are generated within a diffusion length of the depletion region can be separated
spatially and accelerated by the electric field in the depletion region. They can thus
contribute to the drift current through the junction. This additional photo-induced drift
current (i.e., photocurrent) of electrons and holes upsets the balance between the drift
and diffusion currents that exists for Vext D 0 when the junction is in the dark. The
photocurrent flows from the n- to the p-type side of the junction (i.e., it has the same
direction as the net current that flows through the junction under reverse-bias conditions
when Vext < 0
. The total current density that flows through an illuminated junction
when a photo-induced voltage (i.e., a photovoltage) V is present is given by

J	V,GI
 D J	GI
� J	V
 D J	GI
� Js[exp	eV/kBT
� 1], 	W11.49


† D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett., 48, 1559 (1982).
‡ J. K. Jain, Phys. Rev. Lett., 63, 199 (1989).
§ R. B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983).
¶ R. de Picciotto et al., Nature, 389, 162 (1997).
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Figure W11.23. Predicted current–voltage characteristics for a photovoltaic solar cell in the
form of a p-n junction, both in the dark (GI D 0) and illuminated (GI > 0), shown schematically
when the solar cell is connected to an external circuit. The generation rate of photo-excited
electron–hole pairs is given by GI. Also shown are the processes giving rise to the photo-induced
current.

where GI is the rate of generation or injection of carriers due to the incident light and
J	V
 is the voltage-dependent junction current given by Eq. (11.103).

Current–voltage characteristics predicted by Eq. (W11.49) are shown schematically
in Fig. W11.23 for a p-n junction connected to an external circuit, both in the dark
(GI D 0) and when illuminated (GI > 0). Also shown are the equivalent circuit of
the solar cell comprised of the p-n junction with series and shunt resistances and, in
addition, the processes giving rise to the photo-induced current. The useful current that
can be derived from the photovoltaic effect and which can deliver electrical power to
an external circuit corresponds to the branch of the J-V curve in the fourth quadrant
where V > 0 and J < 0. The voltage Voc is the open-circuit voltage that appears across
the p-n junction when J	GI,V
 D 0 (i.e., when no current flows). This voltage can be
obtained from Eq. (W11.49) and is given by

Voc D kBT

e
ln
[
J	GI


Js
C 1
]
. 	W11.50


The short-circuit current density at V D 0 is Jsc D J	GI
. Note that Voc corresponds to
a forward-bias voltage and has a maximum value for a given semiconductor equal to the
built-in voltage VB of the p-n junction, as defined in Eq. (11.94). The magnitude of the
short-circuit current density Jsc will be proportional to the integrated flux of absorbed
photons and to the effective quantum efficiency Ceff of the device (i.e., the fraction
of absorbed photons that generate electron–holes pairs, which are then collected and
contribute to the photocurrent). Note that Voc and Jsc change in opposite ways as the
energy gap of the semiconductor is varied. The voltage Voc increases with increasing
Eg, while Jsc, being proportional to number of carriers excited across the bandgap,
decreases with increasing Eg.

The optimal operating point of the p-n junction solar cell is in the fourth quadrant,
as shown. At this point the product JV has its maximum value 	JV
max (i.e., the



SEMICONDUCTORS 139

FF = 0.58

0 0.2 0.4 0.6 0.8 1.0

Volts

0

2

4

6

8

10

J 
(m

A
/c

m
2 )

Jsc = 7.8 mA/cm2

Figure W11.24. Typical J–V curve for an a-Si:H Schottky-barrier solar cell under illumination
of 650 W/m2. (From M. H. Brodsky, ed., Amorphous Semiconductors, 2nd ed., Springer-Verlag,
New York, 1985.)

inscribed rectangle has the maximum possible area). The fill factor (FF) of the solar cell
is defined to be FF D 	JV
max/JscVoc, and a value as close to 1 as possible is the goal.
For a typical crystalline Si solar cell it is found that Voc ³ 0.58V, Jsc ³ 350 A/m2,
and FF ³ 0.8. A typical J-V curve for an a-Si:H Schottky barrier solar cell under
illumination of 650 W/m2 is shown in Fig. W11.24.

The efficiency of a photovoltaic solar cell in converting the incident spectrum of solar
radiation at Earth’s surface to useful electrical energy depends on a variety of factors,
one of the most important of which is the energy gap Eg of the semiconductor. There
are, however, two conflicting requirements with regard to the choice of Eg. To absorb as
much of the incident light as possible, Eg should be small. In this case essentially all of
the solar spectrum with h̄ω > Eg could be absorbed, depending on the reflectance R of
the front surface of the cell, and so on. Most of the photo-generated electrons and holes
would, however, be excited deep within their respective energy bands with considerable
kinetic energies (i.e., their energies relative to the appropriate band edge would be a
significant fraction of h̄ω). As a result, these charge carriers would lose most of their
kinetic energy nonradiatively via the process of phonon emission as they relax to the
nearest band edge. Only the relatively small fraction Eg/h̄ω of each photon’s energy
would be available to provide useful electrical energy to an external circuit.

An alternative solution would involve the use of a semiconductor with a high energy
gap so that a greater fraction of the energy of each absorbed photon could be converted
to useful electrical energy. Although this is true, the obvious drawback is that many
fewer photons would be absorbed and thus available to contribute to the photo-induced
current. From a consideration of both effects, it has been calculated that the optimum
energy gap for collecting energy at Earth’s surface in a single-color solar cell (i.e.,
a solar cell fabricated from a single semiconductor) would be Eg ³ 1.4 eV, which is
close to the energy gap of GaAs. In this case the maximum possible efficiency of the
solar cell would be ³ 26%.

For crystalline Si with Eg D 1.11 eV, the maximum possible efficiency is ³ 20%.
It has been possible so far to fabricate Si solar cells with efficiencies of ³ 15%. An
alternative to crystalline Si is a-Si:H since a-Si:H films with thicknesses of 1 µm are
sufficient to absorb most of the solar spectrum. Even though its energy gap Eg ³ 1.8 eV
is relatively high, a-Si:H is a direct-bandgap semiconductor due to the breakdown of
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selection rules involving conservation of wave vector k for optical absorption. As a
result, a-Si:H has higher optical absorption than c-Si (see Fig. W11.7b). In addition,
a-Si:H is much less expensive to produce than c-Si and so has found applications
in the solar cells that provide power for electronic calculators and other electronic
equipment. Other materials that are candidates for use in terrestrial solar cells include
the chalcopyrite semiconductor CuIn1�xGaxSe2 with Eg D 1.17 eV from which cells
with ³ 17% efficiency have been fabricated.

A possible solution to the problem associated with the choice of energy gap is to
fabricate two-color or multi color solar cells, also known as tandem solar cells. In
a two-color cell two p-n junctions fabricated from semiconductors with energy gaps
Eg1 and Eg2 > Eg1 are placed in the same structure, with the semiconductor with
the higher gap Eg2 in front. In this way more of the energy of the incident photons
with h̄ω > Eg2 would be collected by the front cell, while the back cell would collect
energy from the photons with Eg2 > h̄ω > Eg1 which had passed through the front cell.
Although higher conversion efficiencies can be achieved in this way, the higher costs
of fabricating such cells must also be taken into account. The cost per watt of output
power of a photovoltaic solar cell will ultimately determine its economic feasibility.

W11.11 Thermoelectric Devices

The most common devices based on thermoelectric effects are thermocouples, which
are used for measuring temperature differences. These are typically fabricated from
metals rather than semiconductors. Thermoelectric effects in semiconductors have
important applications in power generation and in refrigeration, due to the observed
magnitude of the thermoelectric power S in semiconductors, ³ 1 mV/K, which is 100
to 1000 times greater than the thermoelectric powers typically observed in metals. Ther-
moelectric energy conversion and cooling are achieved via the Peltier effect described
in Section W11.4. An important advantage of these thermoelectric power sources and
refrigerators fabricated from semiconductors is that they have no moving parts and so
can have very long operating lifetimes.

Schematic diagrams of a thermoelectric power source or generator and a thermo-
electric refrigerator are shown in Fig. W11.25. In the thermoelectric generator two
semiconductors, one n-type and the other p-type, each carry a heat flux from a heat
source at a temperature Th to a heat sink at a temperature Tc; see Fig. W11.4 for a
schematic presentation of the processes involved. In practice, many such pairs of semi-
conductors are used in parallel in each stage of the device. When a complete electrical
circuit is formed, a net current density J D I/A of majority carriers travels from the
hot to the cold end of each semiconductor.

The net heat input into the semiconductors from the heat source is given by

dQ

dt
D ITh	Sp � Sn
CKT� I2R

2
, 	W11.51


where the combined thermal conductance K and electrical resistance R of the pair of
semiconductors are defined, respectively, by

K D
[(
!A

L

)
n

C
(
!A

L

)
p

]
,
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R D
[(
�L

A

)
n

C
(
�L

A

)
p

]
. 	W11.52


Here ! is the thermal conductivity, � the electrical resistivity, and A and L the cross
section and length of each semiconductor, respectively.† The semiconductors are ther-
mally insulated and therefore lose no heat through their sides to the surroundings. The
three terms on the right-hand side of Eq. (W11.51) represent the rates of heat flow
either out of or into the heat source via the following mechanisms:

1. ITh	Sp � Sn
 D I	p �n
. This term represents the rate at which heat is
removed from the heat source at temperature Th via the Peltier effect at the junc-
tions between each semiconductor and the metallic contact. The thermopower Sm
of the metallic contacts cancels out of this term, and in any case, Sm is typically
much smaller than either Sp or Sn. Note that both components of the Peltier heat
are positive since “hot” electrons and “hot” holes enter the n- and p-type semi-
conductors, respectively, from the metallic contacts in order to replace the “hot”
carriers that have diffused down the thermal gradients in the semiconductors.

2. KT D K 	Th � Tc
. This term represents the rate at which heat is conducted
away from the heat source by charge carriers and phonons in the semiconductors.

3. I2R/2. This rate corresponds to the Joule heat that is generated in the semicon-
ductors, one half of which is assumed to flow into the heat source.

The electrical power P made available to an external load resistance RL can be
shown to be given by the product of the current I and the terminal voltage Vt:

P D IVt D I[	Sp � Sn
T� IR], 	W11.53


where 	Sp � Sn
T is the total thermoelectric voltage due to the Seebeck effect. The
efficiency of this thermoelectric generator in converting heat energy into electrical
energy is given by C D P/ PQ. It can be shown that C is maximized when the combined
material parameter Z given by

Z D 	Sp � Sn
2

	
p
�n!n C p

�p!p
2
	W11.54


is maximized. When Sp and Sn have the same magnitude but are of opposite signs, and
when the two semiconductors have the same thermal conductivities ! and electrical
resistivities �, Z takes on the following simpler form:

Z D S2

�!
. 	W11.55


† It is assumed here for simplicity that the thermopowers S, thermal conductivities !, and electrical resis-
tivities � of the two semiconductors are independent of temperature. In this case the Thomson heat is zero
and need not be included in the analysis.
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High values of S are needed to increase the magnitudes of the Peltier effect and
the thermoelectric voltage, low values of � are needed to minimize I2R losses, and
low values of ! are needed to allow higher temperature gradients and hence higher
values of Th. The dimensionless product ZT is known as the thermoelectric figure
of merit. Despite extensive investigations of a wide range of semiconductors, alloys,
and semimetals, the maximum currently attainable value of ZT is only about 1. When
maximum power transfer is desired, independent of the efficiency of the transfer, the
parameter to be maximized is then Z0 D S2/�.

Typical efficiencies for thermoelectric devices are in the range 10 to 12%. Ther-
moelectric power sources that obtain their heat input from the decay of radioactive
isotopes are used on deep-space probes because of their reliability and convenience
and because solar energy is too weak to be a useful source of electrical energy in deep
space far from the sun.

Thermoelectric refrigeration employs the same configuration of semiconductors
as used in thermoelectric generation, but with the load resistance RL replaced by
a voltage source V, as also shown in Fig. W11.25. In this case, as the current I
flows around the circuit, heat is absorbed at the cooled end or heat “source” and is
rejected at the other end, thereby providing refrigeration. As an example of thermo-
electric refrigeration, when n- and p-type alloys of Si0.78Ge0.22 are used, the value
S D Sp � Sn D 0.646 mV/K is obtained. With Th D 270 K and I D 10 A, each n-p
semiconductor pair can provide a cooling power of P D ITh S D 1.74 W. While the
use of thermoelectric refrigeration is not widespread due to its low efficiency compared
to compressor-based refrigerators, it is a convenient source of cooling for electronics
applications such as computers and infrared detectors.

Since different semiconductors possess superior thermoelectric performance in
specific temperature ranges, it is common to employ cascaded thermoelements in
thermoelectric generators and refrigerators, as shown in the multistage cooling device

Heat
source
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Heat
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Cooling

dQ
dT

dQ
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Figure W11.25. Schematic diagrams of (a) a thermoelectric power generator and (b) a ther-
moelectric refrigerator. In the thermoelectric generator or thermopile two semiconductors, one
n-type and the other p-type, each carry a heat flux from a heat source to a heat sink. In the
thermoelectric refrigerator the same configuration of semiconductors is employed, but with the
load resistance RL replaced by a voltage source V. In this case, as the current I flows around
the circuit, heat is absorbed at the cooled end or heat “source” and is rejected at the other end,
thereby providing refrigeration.
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Figure W11.26. Cascaded thermoelements are employed in thermoelectric generators and
refrigerators, as shown in the cooling module pictured here. (From G. Mahan et al., Phys.
Today, Mar. 1997, p. 42. Copyright  1997 by the American Institute of Physics.)

pictured in Fig. W11.26. In this way each stage can operate in its most efficient
temperature range, thereby improving the overall efficiency and performance of
the device. Temperatures as low as T D 160 K can be reached with multistage
thermoelectric refrigerators.

The semiconductor material properties involved in the dimensionless figure of merit
ZT for both power generation and for refrigeration are usually not independent of
each other. For example, when the energy gap Eg or the doping level Nd or Na of
a semiconductor are changed, the electronic contributions to all three parameters, S,
�, and !, will change. It is reasonable, however, to assume that the lattice or phonon
contribution !l to ! D !e C !l is essentially independent of the changes in the electronic
properties. To illustrate these effects, the values of S, �, and ! and their changes with
carrier concentration are shown at room temperature in Fig. W11.27 for an idealized
semiconductor. It can be seen that the quantity Z D S2/�! has a maximum value in this
idealized case near the middle of the range at the relatively high carrier concentration
of ³ 1025 m�3. As a result, the dominant thermoelectric materials in use today are
highly doped semiconductors.

The parameter Z has relatively low values in both insulators and metals. At the lower
carrier concentrations found in insulators, Z is low due to the resulting increase in the
electrical resistivity � and also at the higher carrier concentrations found in metals due
both to the resulting increase in the electronic contribution to the thermal conductivity
! and to the decrease of S. The decrease in S with increasing carrier concentration
occurs because a smaller thermovoltage is then needed to provide the reverse current
required to balance the current induced by the temperature gradient. These decreases
in S with increasing n or p can also be understood on the basis of Eqs. (W11.17) and
(W11.18), which indicate that Sn / 	Ec � �
 while Sp / 	�� Ev
. Either 	Ec � �

or 	�� Ev
 decrease as the chemical potential � approaches a band edge as a result of
doping. It is important that thermal excitation of electrons and holes not lead to large
increases in carrier concentrations at the highest temperature of operation, Tmax, since
this would lead to a decrease in S. It is necessary, therefore, that the energy gap Eg of
the semiconductor be at least 10 times kBTmax.

A useful method for increasing the efficiency C of thermoelectric devices is to
increase the temperature Th of the hot reservoir, thereby increasing both the Peltier
heat  D TS and the figure of merit ZT. In this way the Carnot efficiency limit
	Th � Tc
/Th will also be increased. The temperature Th can be increased by reducing
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the phonon mean free path, thereby decreasing !l through a disturbance of the periodic
lattice potential. This is typically accomplished by alloying or by introducing lattice
defects such as impurities. Another method of decreasing !l is to choose a semicon-
ductor with a high atomic mass M since the speed of the lattice waves is proportional
to M�1/2.

Current research into the development of new or improved thermoelectric materials
involves studies of a wide range of materials, including the semiconductors PbTe,
Si:Ge alloys, Bi2Te3, and Bi:Sb:Te alloys, which are in current use. It can be shown in
these “conventional” semiconductors that maximizing ZT is equivalent to maximizing
N	mŁ
3/2�/!l, where N is the number of equivalent parabolic energy bands for the
carriers, and mŁ and � are the electron or hole effective mass and mobility, respectively.
Other novel materials under investigation include crystals with complicated crystal
structures, such as the “filled” skudderite antimonides with 34 atoms per unit cell and
with the general formula RM4Sb14. Here M is Fe, Ru, or Os, and R is a rare earth
such as La or Ce. These crystals can have very good thermoelectric properties, with
ZT ³ 1. This is apparently related to the lowering of !l due to the motions of the rare
earth atoms inside the cages which they occupy within the skudderite structure.

Appendix W11A: Landau Levels

In this appendix an electron in the presence of a uniform magnetic field is considered.
The Hamiltonian is

H D 1

2mŁ
e

	p C eA
2, 	W11A.1


where A is the vector potential. The magnetic induction is given by B D r × A,
which automatically satisfies the condition r · B D 0. A uniform magnetic field in
the z direction may be described by the vector potential A D �ByOi. The Schrödinger
equation H D E for motion in the xy plane becomes

1

2mŁ
e

	px � eBy
2 C p2
y

2mŁ
e

 D E . 	W11A.2


This may be separated by choosing  	x, y
 D u	y
 exp	ikxx
, so

[
p2
y

2mŁ
e

C mŁ
eω

2
c

2

(
y � h̄kx

eB

)2

� E

]
u	y
 D 0, 	W11A.3


where ωc D eB/mŁ
e is the cyclotron frequency. This may be brought into the form

of the Schrödinger equation for the simple harmonic oscillator in one dimension by
making the coordinate transformation y0 D y � h̄kx/eB. The energy eigenvalues are
E D 	nC 1/2
h̄ωc, where n D 0, 1, 2, . . . . The effect of electron spin may be included
by adding the Zeeman interaction with the spin magnetic moment. Thus

E D
(
nC 1

2

)
h̄ωc C g�BBms, 	W11A.4
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where �B is the Bohr magneton, g ³ 2, and ms D š 1
2 . The energy is independent of

the quantum number kx.
From Eq. (W11A.1) it is seen that the solution to the Schrödinger equation in a

region of space where the vector potential is varying as a function of position is

 	r
 D exp
(
ik · r � i

e

h̄

∫ r

A	r0
 · dr0
)
. 	W11A.5
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PROBLEMS

W11.1 Prove that holes behave as positively charged particles (i.e., that qh D �qe D
Ce) by equating the current Je D 	�e
	�ve
 D Ceve carried by the “extra”
electron II in the valence band in Fig. 11.6 with the current Jh carried by the
hole.

W11.2 Derive the expressions for the intrinsic carrier concentration ni	T
 and pi	T
,
given in Eq. (11.29), and for the temperature dependence of the chemical
potential �	T
, given in Eq. (11.30), from Eq. (11.27) by setting ni	T
 D
pi	T
.

W11.3 Consider the high-temperature limit in an n-type semiconductor with a
concentration Nd of donors and with no acceptors. Show that the approximate
concentrations of electrons and holes are given, respectively, by n	T
 ³
ni	T
CNd/2 and p	T
 ³ pi	T
�Nd/2). [Hint: Use Eq. (11.35).]

W11.4 Calculate the average scattering time h(i for defect or phonon scattering at
which the broadening of the two lowest energy levels for electrons confined in
a two-dimensional quantum well of width Lx D 10 nm causes them to overlap
in energy. Take mŁ

c D m.

W11.5 Derive the expression RH D 	p�2
h � n�2

e
/e	n�e C p�h
2 for the Hall coef-
ficient for a partially compensated semiconductor from the general expression
for RH for two types of charge carriers given in Eq. (11.48).

W11.6 If V is the voltage drop that exists as a result of a temperature difference
T in a semiconductor in which no current is flowing, show that V and
T have the same sign for electrons and opposite signs for holes and that the
correct expression for calculating the thermoelectric power is S D �V/T.
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W11.7 (a) Using Vegard’s law given in Eq. (11.62) and the data presented in
Table 11.9, find the composition parameter x for which Al1�xBxAs alloys
(assuming they exist) would have the same lattice parameter as Si.

(b) What value of Eg would Vegard’s law predict for an alloy of this compo-
sition? [Hint: See Eq. (11.64).]

W11.8 Using the data presented in Table 2.12 for rcov	Ga
 and rcov	As
 and assuming
that d	Ga � As
 D rcov	Ga
C rcov	As
, calculate the parameters Eh, C, Eg,
and fi for GaAs based on the dielectric model of Phillips and Van Vechten.
Note: Estimate kTF using the definition given in Section 7.17.

W11.9 Plot on a logarithmic graph the carrier concentrations n and p and their
product np at T D 300 K as a function of the concentration of injected carriers
n D p from 1020 up to 1026 m�3 for the n-type Si sample with a donor
concentration Nd D 2 ð 1024 m�3 described in the textbook in Section 11.12.
Identify on the graph the regions corresponding to low- and high-level carrier
injection.

W11.10 By integrating Eq. (11.71), show that the buildup of the hole concentration
p	t
 from its initial value p0 is given by Eq. (11.74). Also, by integrating
Eq. (11.76), show that the decay of the hole concentration p	t
 to its equilib-
rium value p0 is given by Eq. (11.77).

W11.11 Using the fact that the additional output voltage Vc in the collector
circuit of the npn transistor amplifier described in Section W11.8 is equal
to [Ic	v
� Ic	v D 0
]Rc, show that the voltage gain G is given by Rc/Re.



CHAPTER W12

Metals and Alloys

A variety of theoretical tools is available for the study of metallic solids. Electronic
band-structure methods include the augmented plane wave (APW) method, the orthogo-
nalized plane wave (OPW) method, the Green function [Korringer, Kohn, and Rostoker
(KKR)] method, the pseudopotential method, and the cellular (Wigner–Seitz) method.
These approaches are discussed in solid-state physics textbooks (e.g., Fletcher or
Ashcroft and Mermin). These methods all rely on the perfect periodicity of the solid
and utilize Bloch’s theorem to limit the focus of attention to a unit cell. They are not
directly applicable to disordered alloys or solids with impurities or defects.

Quantum-chemistry calculations can be done for clusters of finite size, but the
computational time grows rapidly as the size of the cluster is increased, making such
calculations impractical for the study of large collections of atoms with present-day
computers.

The next three sections introduce methods that have found some utility in describing
realistic solids: the density-functional method, the embedded-atom method, and the
tight-binding approximation. Although lacking the accuracy of the band-structure or
quantum-chemistry computations, they are nevertheless useful in studying large-scale
systems, are relatively simple to implement on the computer, and are, for many
purposes, adequate.

W12.1 Density-Functional Theory

Density-functional theory is a method currently being used to obtain a theoretical under-
standing of metals, metallic alloys, surfaces of metals, and imperfections in metals. The
method is a natural outgrowth of the Thomas–Fermi method introduced in Chapter 7
of the textbook.† It is based on the observation by Hohenberg and Kohn that all the
ground-state properties of a many-body quantum-mechanical system of electrons may
be obtained from a knowledge of the electron density, n�r�. They proved that n�r�
determines the potential V�r� that the electrons move in, up to an insignificant additive
constant. Furthermore, an energy functional E[n] may be constructed and it may be
shown to attain its minimum value when the correct n�r� is employed.

The uniqueness proof is based on the minimum principle from quantum mechanics.
Begin by noting that if the potential energy function V�r� were known, one could solve

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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the Schrödinger equation and obtain the electron density n�r�. If there were two different
potentials V�r� and V0�r� leading to the same n�r�, the Schrödinger equation could be
solved for each potential and the respective ground-state wavefunctions  and  0 would
be determined. By the minimum principle, the ground-state energy obeys the inequality

E D h j�TC V�j i < h 0j�TC V�j 0i D h 0j�TC V0�j 0i C h 0j�V� V0�j 0i

D E0 C h 0j�V� V0�j 0i D E0 C
∫
n�r�[V�r�� V0�r�] dr. �W12.1�

Repeating the argument with the primed and unprimed variables interchanged leads to
E0 < EC ∫ n�r�[V0�r�� V�r�] dr. Adding the two inequalities leads to the contradic-
tion EC E0 < E0 C E. Q.E.D.

The energy of the system is written in the form

E[n] D
∫
n�r�

[
3

5
EF�r�

]
dr C

∫
n�r�V�r� dr C Eii

C 1

2

e2

4��0

∫
dr
∫
dr0n�r�n�r

0�
jr � r0j C Exc[n]. �W12.2�

Here EF D h̄2k2
F/2m, where kF�r� D [3�2n�r�]1/3 is a local Fermi wave vector, and

V�r� is the potential due to the ions. The first four terms are the kinetic energy, the
energy of interaction of the electrons with the ions, the ion–ion interaction, and the
Coulomb repulsion energy of the electrons. The quantity Exc is the energy arising
from exchange and correlation effects. The variational problem may be reduced to
the solution of a set of partial-differential equations called the Kohn–Sham equations.
These are of the form

[
� h̄2

2m
r2 C veff�r�� Ej

]
 j�r� D 0, �W12.3�

where Exc[n] D ∫
n�xc dr and

veff�r� D V�r�C e2

4��0

∫
n�r0�

jr � r0jdr0 C vxc�r�, �W12.4�

vxc�r� D υExc[n�r�]
υn�r�

. �W12.5�

The electron density is constructed from the Kohn–Sham wavefunctions as

n�r� D
N∑
jD1

j j�r�j2. �W12.6�

In the local-density approximation (LDA) it is assumed that Exc depends only on n
and not on its derivatives, and one writes

vxc ³ d

dn
�n�xc�. �W12.7�
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Figure W12.1. Surface-charge density for Ni. Distance is measured in atomic units (a.u.).
[Adapted from D. R. Hamann, Phys. Rev. Lett., 46, 1227 (1981). Copyright 1981 by the American
Physical Society.]

Various research groups have presented useful functional forms for �xc�n�. The results
of the calculations of n�r� generally compare favorably with experiment or with
quantum-chemistry calculations for finite systems. Density-functional theory has also
been extended to include corrections involving rn terms. An example of calculational
results for the surface-charge density of Ni is given in Fig. W12.1.

W12.2 Embedded-Atom Method

The embedded-atom method attempts to calculate the energy of realistic metals by
making simplifying assumptions about how atoms interact with each other and with
the common sea of electrons. The energy is written as a sum of two terms

E D Erep C Eembed. �W12.8�

The first term is the interatomic-repulsive energy associated with the nuclei and their
core electrons. The repulsive energy is given by the sum of pairwise potentials:

Erep D 1

2

∑
i,j
i 6Dj

Uij�Rij�. �W12.9�

The second term is the interaction of the atoms with the electron gas in which the
atoms find themselves embedded. The embedding energy is approximated as the sum
of the energies of interaction of each atom with a uniform electron gas. The electron
density at site i is computed by superimposing the local electronic densities from all
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other atoms. Thus

Eembed D
∑
i

Fi


∑

j

0nj�Ri � Rj�


 . �W12.10�

The embedding energy, Fi�n0�, is computed using density-functional theory. A point
charge ze is placed at the origin. The jellium model is used for the electron gas. The
charge density is given by ��r� D e[n0 C zυ�r�� n�r�]. Detailed calculations were
carried out for a number of elements.† Typical results are presented in Fig. W12.2.
Values for the densities at which the minimum occurs and the corresponding well
depths are presented in Table W12.1.

Often Fi�n0� is approximated by a function of the form

Fi�n0� D Ain0 � Bi
p
n0. �W12.11�

The first term corresponds to the effect of the filled shells of the ion. For example, in
the inert gases, where all the shells are filled, the embedding energy is observed to grow
approximately linearly with the electron density, with a slope given by Ai. The second
term arises from the bonding of the valence electrons of the atom with the ambient
electrons. If the volume of the embedded atom is �, the number of electrons that the
atom overlaps with is N D n0�. In a tight-binding description, in which each ambient
electron is assigned to a neighboring site, one would could construct a wavefunction as
a superposition of the form j i D �j1i C Ð Ð Ð C jNi�/pN, where each term represents
a state localized on a given site. The tunneling-matrix element linking the atom to the
ith neighbor would be of the form t D h 0jVjii/pN. A band whose width is given by
2Nt would form. If the state at the bottom of that band is occupied, this would result
in a reduction of energy Ei D �h 0jVjiipN 
 �Bipn0. It is interesting to note that
the metallic bond is unsaturated (i.e., only part of the band is occupied). If the full
band were occupied, the band energy would not be reduced and Bi would be zero.
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Figure W12.2. Embedding energy as a function of electron density for several elements. Here
a1 is the Bohr radius. [Adapted from M. J. Puska, R. M. Nieminen, and M. Manninen, Phys.
Rev. B, 24, 3037 (1981). Copyright 1981 by the American Physical Society.]

† M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B, 24, 3037 (1981).
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TABLE W12.1 Position and Depth of
the Minimum of the Embedding Energy

n0 F�n0�
Atom �a�3

1 �a (eV)

H 0.0026 �1.8
He 0 —
C 0.0035 �1.8
N 0.0045 �1.4
O 0.0037 �4.1
F 0.0010 �5.1
Ne 0 —
Na <0.0005 <�0.6
Al 0.0005 �0.2
Cl 0.0005 �4.0

Source: Data from M. J. Puska, R. M. Niemi-
nen, and M. Manninen, Phys. Rev. B, 24, 3037
(1981).
aa1 D Bohr radius D 0.0529 nm.

The embedded-atom method allows rapid computation of the ground-state energy
of a configuration of many atoms. By varying the atomic positions it is possible to
search for the minimum energy. Such quantities as the lattice constants, cohesive
energy, elastic constants, and surface energies could be obtained, as well as information
concerning the effects of impurities and defects.

W12.3 Peierls Instability

As an example of the utility of the tight-binding method, this section is devoted to a
special phenomenon that occurs when a one-dimensional metal is constructed. With
the trend toward miniaturization proceeding at the pace that it is, such a situation
is not out of the realm of the possible. When the Fermi surface of an electron gas
approaches certain special points in the Brillouin zone, structural instabilities may
result. The special points could lie at boundaries of the Brillouin zones or could lie
within the zone. Peierls showed that in a one-dimensional solid, a half-filled band results
in an instability that converts the metal into an insulator. The instability produces a
dimerization of adjacent atoms and doubles the size of the unit cell.

The model is depicted in Fig. W12.3, where the lattice is shown before and after
dimerization. The lattice will be idealized by a tight-binding model in which the atoms
are connected by springs of spring constant ks. Prior to dimerization the electronic

a
a−d a−d a−da+d a+d a+d

a a a a a

Figure W12.3. One-dimensional solid, before and after dimerization due to the Peierls insta-
bility.
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energies are given by [see Eq. (7.81)]

E�k� D E0 � 2t cos ka, �W12.12�

where E0 is the site energy and t is the tunneling-matrix element. After dimerization
two bands appear, with the respective energies

Eš D E0 š
√

2�t2 C2�C 2�t2 �2� cos 2ka �W12.13�

where the tunneling-matrix elements for the springs of length aš d have been written
as t Ý. It is assumed that for small d the shift in  is proportional to d (i.e.,
 D ˛d�. The lower band is occupied and the upper band is empty, so the solid
becomes an insulator.

The total energy per unit length consists of the sum of the electronic energy and
the elastic energy. Its change is given by

υU

L
D
∑
s

∫ �/2a

��/2a

dk

2�

[
2t cos ka�

√
2�t2 C2�C 2�t2 �2� cos 2ka

]
C ksd2

2a
.

�W12.14�
The integral is expressible in terms of E[m], the complete elliptic integral of the second
kind,

υU

L
³ �22

�at

(
ln

4t


� 1

2

)
C ks2

2a˛2
. �W12.15�

For small  the result may be written as

υU

L
D 4t

�a

[
1 � E

(
1 � 2

t2

)]
C ks2

2a˛2
. �W12.16�

For small-enough  this will be negative, predicting that the instability will always
occur. Minimizing υU with respect to  leads to

 D 4t exp
[
�
(

1 C �ks˛2t

4

)]
, �W12.17�

with
υU

L
D �16t

�a
exp

[
�2
(
�ks˛2t

4
C 1
)]
. �W12.18�

Peierls instabilities are believed to play a role in solids constructed from linear
organic molecules such as polyacetylene.

W12.4 Corrosion and Oxidation

Corrosion occurs because metals in contact with ionic solutions often function as
electrodes of batteries. To see how this comes about, consider the energy needed to
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extract an atom, A, from a metal in contact with a solution, and to ionize it, resulting
in the ion, AzC, of charge state z, and z electrons

A ���! AzC C ze�. �W12.19�

First the cohesive energy of the atom, Ecoh, must be provided to remove the atom
from the solid into the vacuum. Then the free-space ionization energy, IE, must be
added to create the ion AzC in vacuum. Upon placing the charges back into solution,
the solvation energy of the ion, Ui�A

zC�, is regained, as well as the solvation energy
of the z electrons, zUe. Dividing this by the electronic charge, �e, gives a possible
expression for the standard potential for the electrode half-reaction:

V�A ���! AzC C ze�� D �Ecoh C IE �Ui�A
zC�� zUe

e
. �W12.20�

In practice only a relative scale for the standard potential is defined. The standard
potential is determined experimentally relative to a standard reaction, usually taken as
that for H2 ! 2HC C 2e�. The standard potential V is arbitrarily defined to be zero
for this reaction.

As an example of a battery, consider the Daniell cell (Fig. W12.4). Two metals, Zn
and Cu, are in contact with electrolytic solutions of ZnSO4 and CuSO4, respectively.
These metals are connected to each other electrically through some external conduction
path. The electrolytes are separated from each other by a saturated salt bridge, which
selectively permits passage of the SO4

2� ions but blocks the passage of Cu2C and Zn2C
ions. At the anode, Zn undergoes the oxidation reaction Zn ! Zn2C C 2e�, with Zn2C
ions going into solution and electrons going into the external circuit. The reduction
reaction Cu2C C 2e� ! Cu occurs at the cathode, where Cu2C ions are deposited on
the electrode as they recombine with circuit electrons. The net result is that the Zn
corrodes and the Cu gets plated. The potential difference of this cell is computed from
the difference of the standard potentials, determined by the half-reactions taking place
at the electrodes:

Zn ���! Zn2C C 2e��C0.76 V�, Cu2C C 2e� ���! Cu ��0.34 V� �W12.21�

and is 1.1 V. The larger this voltage, the larger the ionic current will be (according to
Ohm’s law), and the faster the corrosion of the Zn will be. For materials with smaller
standard potential differences, the corrosion would be slower. If the sign difference

CuZn

Zn++

ZnSO4 CuSO4

Cu++

SO4

−

− −

+

Figure W12.4. Daniell cell.
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were negative instead of positive, no battery action, and consequently no corrosion,
would occur. For example, if Zn were replaced by Ag, the oxidation half-reaction
would be

2Ag ���! 2AgC C 2e���1.6 V� �W12.22�

and the standard difference would be �1.26 V, so no battery action would occur.
It is important to relate the electrode processes to the thermodynamic energies

involved. The reaction Cu ! Cu2C C 2e� (aqueous) involves a change of Gibbs
free energyG D �15.66 kcal/mol D �0.680 eV, and the reaction Zn2C C 2e� ! Zn
(aqueous) has G0 D �35.14 kcal/mol D �1.525 eV (at T D 25°C). The net Gibbs
free energy change for the reaction is the sum of these and is �2.205 eV. Since two
electrons are transferred per reaction, z D 2, so the open-circuit electromotive force
(EMF) is E 0 D G/��ze� D 1.10 V. In a battery the electrical energy is supplied
from the change in Gibbs free energy of the constituents.

The overall reaction for the Daniell cell may be written as Zn C Cu2C ⇀↽ Zn2C C
Cu. For standard conditions (T D 25°C, P D 1 atm) the EMF is determined by G0.
However, conditions are usually not standard and the appropriate Gibbs free energy
change is

G D G0 CNkBT ln
aZn2CaCu

aCu2CaZn
, �W12.23�

where N is the number of atoms transferred and ai refers to the activity of species i.
The EMF becomes

E D E 0 � kBT

ze
ln
aZn2C

aCu2C
D E 0 � kBT

ze
ln
aZnSO4

aCuSO4

, �W12.24�

since aCu D aZn D 1 (by definition). Since the activities are approximately proportional
to the concentrations, as the concentration of Cu2C drops, so does the EMF of the cell.

It should be noted that there are similarities between electrolytic solutions and
semiconductors. In the electrolyte charge is carried by the ions, whereas in the semi-
conductor the carriers are electrons and holes. The standard potentials of electrolytes
replace the bandgap potentials of semiconductors.

Next consider a piece of iron with a drop of water on it. The outer surface of the
drop is assumed to be in contact with air. Oxygen is absorbed into the water, and
a concentration gradient is established with the part of the water in contact with the
iron relatively deficient in oxygen. Some of the iron is oxidized and goes into solution
according to the reaction

Fe ���! Fe2C C 2e��C0.44 V� �W12.25�

with the electrons entering the metal across the electrolyte–metal interface. Near the
outer boundary of the water–iron interface, the oxygen is reduced by accepting the
two electrons from the metal and combining with solvated protons (hydronium ions,
often denoted by H3OC) in solution, according to either of the two reactions

1
2 O2 C 2H3OC C 2e� ���! 3H2O �C0.615 V�,

2H3OC C 2e� ���! 2H2O C H2 �C1.23 V�. �W12.26�
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In the first case the standard potential difference is 0.175 V and in the second case it
is 0.79 V. In both cases the difference is positive, so the reaction can proceed. The
net result is that iron is corroded from the metal. In solution the iron ions combine
with oxygen to precipitate as rust. The rust (hydrated Fe2O3) is deposited on the metal
surface as a porous material, so additional water can come in contact with the iron.

The pH of an aqueous solution is a measure of the concentration of hydronium ions
and is defined by pH D � log10 nH3OC , with n given in units of moles per liter (mol/L).
Nernst noted that the half-potentials are dependent on the pH of the water, and shift
downward with increasing pH. Thus the acidity or basicity of the electrolyte can have
a strong effect on the corrosion process.

Two strategies for eliminating corrosion present themselves. One is to coat the metal
with a protective overlayer and thus block ionic flow. The second is to try to alloy the
metal to make its oxidation potential more negative. It is noteworthy that gold, with its
standard potential for the reaction Au ! Au3C C 3e� at �1.50 V, is the most negative
of the elements and is therefore the most “noble” of them all. This may be understood
in terms of Eq. (W12.20), because the ionization energy of Au is high (9.22 eV) and
the ionic radius is large (0.137 nm), which implies that the solvation energy Ui will
be small.

The extent of damage caused by corrosion is more dependent on the morphology
of the oxide than on the metals themselves. It is worth contrasting the oxidation of
Fe discussed above with the oxidation of Al. In the latter case the Al2O3 layer that
is produced forms a crystal on the surface of the Al and remains in registry with
the substrate. For additional oxygen atoms to come in contact with the Al, they must
first diffuse through the oxide layer. Although this is possible, especially at elevated
temperatures, it becomes more and more difficult as the oxide layer builds up. Thus the
oxidation process becomes self-arresting. For this reason, Al2O3 is called a passivation
layer in electronics application. The process of depositing such a layer, called anodiza-
tion, is discussed further in Section 19.11. In the iron case the porous nature of the rust
permits the corrosion to continue until all the iron is consumed. Chromium is added
to steel to form stainless steel. A passivation layer of Cr2O3 is formed. It should be
noted that the standard potential for the electrode reaction Cr3C C Fe D Fe3C C Cr is
�0.93 V, which is quite negative and implies that Cr2O3 is more likely to be produced
than Fe2O3.

Differences in potential may exist even for a grain of single crystal between different
faces, or between the surface and the interior, and these may act as the driving force
for battery action and corrosion. Stress differentials across a material may also produce
potential differences. This makes metals with microcracks vulnerable to corrosion.

W12.5 Coatings

The surface of a metal or alloy is often modified by applying a coating or by building the
coating directly into the surface. There are numerous reasons why this is done, including
enhancement of corrosion resistance (CR), wear resistance (WR), fatigue resistance
(FR), oxidation resistance (OR), and thermal resistance (TR), reducing the coefficient
of friction, or enabling an electric contact to be made. For example, integrated circuits
based on Si have TiN and Ti deposited on them as diffusion-barrier metal films. One
may also want to increase adhesion, use the surface as a catalyst, or endow the surface
with special optical properties.
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Traditional methods for applying coatings included such techniques as electroplating
and chemical reactions. Modern materials for these coatings include SiC, TiC, TiN,
TiB2, WC, W2C, AlN, CrN, and Si3N4. Coating techniques include sputtering, chem-
ical vapor-deposition (CVD) at high temperatures (800 to 1000°C), physical vapor
deposition (PVD) at lower temperatures (250 to 500°C), energetic ion implantation,
and thermal reactions.

Thin coatings (³ 10 µm) of SiC, TiC, TiN, Cr7C3, CrN, ZrC, or ZrN are applied to
tools to improve their WR and ability to cut, and where high levels of microhardness
are needed. Even diamond films, the hardest substance available, and the best thermal
conductor at room temperature, can be CVD-coated onto tools. The hardest coatings
are made of Si3N4, SiC, and TiB2.

Coatings are used in ultrahigh-vacuum systems because of their low sticking coef-
ficients for adsorbing gases, their low yield of secondary electrons (which are ejected
from a metal following the impact of a primary electron or ion), and the absence of
long-lived electronic excitations, which could result in photodesorption processes. In
addition, they prevent ultraclean metal parts from fusing together via the formation of
diffusion bonds, in which atoms from one metal migrate over to intermediate positions
between the two metals to form bridging bonds.

The coefficient of friction is often reduced substantially by applying a coating.
The metals Ag, Au, or Pb may be applied to steel as a lubricant. When there is
frictional heating, the coating melts and acts as a lubricant. A layer of Ti applied
to steel lowers the coefficient of sliding friction. Lowering friction proves to be of
considerable importance in the fabrication of semiconductors, where there are moving
parts that insert, position, and remove the wafers from the vacuum system. As these
parts move, there is friction. Associated with the friction is wear, and as particles are
broken off, the semiconductor can become contaminated. Since liquid lubricants are
of no use in a vacuum system, coatings are used instead.

There can also be improved resistance to corrosion. Typically, 50-µm layers are used.
Protection is afforded by such coatings as alumina, NiCr, SiC, and CoCr. Chromium,
Ni, Ta, and Ti are applied to steel and Pd or Pt are applied to Ti for this purpose.
A combination of Co, Cr, Al, and Y is applied to Ni alloys. The CR is due, in part,
to the dense granular structure, which tends to be equiaxed (hexagonally tiled). This
presents to the surrounding electrolytic medium a material of uniform electronegativity.
It also serves as an obstacle for diffusion of oxygen into grain boundary channels in
the underlying metal. Yttrium coated on steel or Cr on Cu inhibits oxidation, and ZrO2

improves the OR of Ni alloys.
Ion implantation produces a high density of interstitials, dislocations, and other

defects near the surface which can act as traps for other dislocations and therefore
harden the material and improve the WR. The compounds BN, CrN, SiC, Si3N4, TiC,
TiN, ZrC, and ZrN are used to harden steels.

Electrical contacts may be deposited on Si using Ag, Al, Pt, or Au coatings. For
GaAs, Al coatings may be employed, and for alumina, Cu coatings are used. The
formation of silicides of Pt, Pd, and Ti on Si creates Schottky barriers, which serve as
rectifiers with small forward-biased impedance.

An alloy of Co, Ni, Cr, Al, and Y acts to provide a high degree of OR for use in
such applications as jet turbines. Thermal-insulation layers are often used in conjunc-
tion with these, in which case they are called thermal-barrier coatings. The goal is
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to achieve low thermal diffusivity �*/�cp�. Materials for TR include MgO, Y2O3,
and ZrO2, which have low thermal conductivities and moderate heat capacities and
densities.

W12.6 Shape-Memory Alloys

It is possible to start with a hot metallic object of a particular shape, cool it, distort
it, and remove the external stress, to produce what will appear to be a plastically
deformed object. At a later time, however, the object may be reheated and it will
return to its original shape. The ability to revert to the original shape provides the
name for this class of metals — shape-memory alloys (SMA). Underlying this “talent”
lies some interesting physics. Typical SMA materials include the alloys FePt, FeNiC,
NiFeAlB, AuCd, NiAl, NiTi, and CuZnAl. There are also SMA materials composed
of ceramic materials (e.g., PbLaZrTiO).

The SM alloys are ordered and exist in two crystalline phases. The low-temperature
phase is called martensite (M) and the high-temperature phase is called austenite (A).
These names stem from the nomenclature used in steel metallurgy. More generally, the
high-T phase may be called the parent phase and the low-T phase the daughter phase,
although here the symbols A and M are used. Phase A has a higher degree of symmetry
than phase M. There is a phase transition governing the A $ M transformation (from
A to M, and vice versa). This is illustrated in Fig. W12.5, where the volume is plotted
against temperature. Plots of other physical quantities, such as electrical resistance,
are similar in structure and show hysterisis. Suppose that one starts in the M phase
and heats the sample. At a temperature TAs , one begins to form some austenite. The
amount of A formed depends on T� TAs . At temperature TAf , one will have reached
100% A. Above that temperature the A material is simply heated. If one then cools the
sample, at a temperature TMs , one begins creating the M phase. At temperature TMf ,
this conversion is complete, and below TMf there is 100% M. Note the presence of
a small hysteresis loop. Typical values of these temperatures for some SMA materials
are given in Table W12.2.

Figure W12.6 shows the A and M phase unit cells for the NiAl intermetallic
compound. The A phase has the higher-symmetry CsCl structure, while the M phase
has the lower-symmetry tetragonal structure (four atoms per unit cell). The phase

TMf
TMs

TAs
TAf

A

T

M

V

Figure W12.5. Variation of volume with temperature for a shape-memory alloy. Various critical
temperatures described in the text are indicated.
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TABLE W12.2 Start and Finish Temperatures for the
Austenite (A) and Martensite (M) Phases of Some
Shape-Memory Alloys

Temperature (°C)

Shape-Memory Alloy TAs TAf TMs TMf

Au49.5Cd50.5 40 42 37 35
Zn25.75Al4.01Cu70.24 20 45 30 �5
Zn25.60Al3.90Cu70.50 78 90 83 62
Al23.9Ni4.2Cu71.9 35 80 71 26
Ni58.9Fe13.98Al26.95B0.17 93 172 127 56
Ti50Pd22Ni28 201 252 200 107

A M

Figure W12.6. Example of the austenite and martensite unit cells in NiAl alloys.

A A A A

M1 M2 M3 M4

Figure W12.7. Four possible distortions of a square (phase A) to a rhombus (phase M).

transformation is reversible and is first order. No atomic-scale diffusion is taking
place and no slippage of atomic planes is occurring. Everything about the transition
is predictable, with randomness playing little role other than accelerating thermally
assisted transitions. The material is said to be thermoelastic. In reality, the unit cell for
the SMA materials is much larger, as may be seen by looking at the stoichiometry of
the materials (see Table W12.2). It is useful to think of the unit cell as being composed
of subunit cells with vacancies that may appear on different faces.

When the martensitic transition occurs, upon cooling there are a number of different
states the subunits can assume in the low-symmetry phase. This is illustrated in
Fig. W12.7, where the A phase is represented by a square and the M phase is
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(a) (f)

(c) (d)

(e)

Figure W12.8. Stages in the shape-memory process.

represented by a rhombus (which has lower symmetry). The four orientations are
labeled by a set of arrows. These structures self-accommodate (i.e., when the A-to-
M transition occurs, there is no change in the macroscopic size of the object). The
material consists of the various types of rhombi intermeshed with each other. This
is illustrated in Fig. W12.8, where several such rhombi are drawn. In Fig. W12.8a
one starts with an austenite crystal at a temperature above TAf , represented by a rect-
angle. The crystal is then cooled to the martensite phase. Figure W12.8b shows that
the large-scale shape is still rectangular but now has rhombus “domains” that accom-
modate each other. A stress is then applied to the crystal to change its shape to a
parallelogram. Figure W12.8c shows that one type of domain grows at the expense of
the others, and eventually, in Fig. W12.8d the desired shape is obtained. If the stress
is removed, the parallelogram shape is retained.

When a rhombus is forced to have a different orientation than its state of minimum
free energy would allow, stress is built into it. The system adjusts in such a manner
as to relieve this stress. This determines which rhombus will be the next to alter its
shape. Modification of the structure takes place in a sequential manner. In this way the
system has a memory, which consists of the sequence of stress-relaxing deformations
that take place. In some ways the process is similar to magnetizing a ferromagnet,
with a self-consistent strain replacing the role played by the self-consistent magnetic
field. Unlike the magnetic case, however, there is only one return path that the alloy
can follow when it is heated, and that is determined by the original orientations of the
rhombi.

Now the sample is heated. The domains retrace their evolution (see Fig. W12.8e
and f) until, when TAf is passed, the crystal has reverted to its original shape. If
the temperature is lowered again, the parallelogram shape is not regained unless it is
reshaped by external forces.

SMA materials exhibit a high degree of strain recovery, meaning that they revert
to their original size and shape when the stress causing the strain is relaxed. For
example, a NiAl alloy can have a strain recovery of 7%. The stress–strain curve exhibits
superelasticity. What appears to be plastic deformation in the M phase disappears when
the sample is heated to the A phase. In addition, it is possible to induce the martensitic
transformation by applying an external stress field. A more complete description of the
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material involves a three-dimensional phase diagram with stress plotted as a function
of both strain and temperature.

Applications of SMA materials benefit from their ability to store a large amount
of mechanical strain or elastic energy in a small volume. They may be used for
such diverse applications as circuit breakers, switches, automatic window openers,
steam-release valves, hydraulic controls for aircraft, rock cracking, sealing rings, and
actuators. They can even be used to unfurl antennas on satellites, where a bulky motor
assembly may be replaced by a simple SMA. A limitation on their use, however, is
their slow response time, being limited by thermal conduction.

W12.7 Metallic Glasses

If a liquid metal alloy were to be rapidly quenched (i.e., its temperature lowered
sufficiently rapidly) it is possible to solidify it without forming a crystalline state. Such
a material is called a metallic glass. Since the thermal conductivity of metals is high
and since the crystalline state is generally the state of lower free-energy, metals have
a strong tendency to crystallize quickly. However, if a small droplet of liquid alloy is
projected onto a cold surface, the resulting “splat” can cool very rapidly (with rates on
the order of �106 K/s) and become a metallic glass. Alternatively, one could inject a
fine stream of the molten alloy into a high-conductivity cold liquid to form the glass,
or vapor-deposit onto a cryogenic substrate. In many ways the formation of a metallic
glass is similar to that of window glass, but the thermal relaxation times are orders
of magnitude faster. The metallic glasses are essentially solids, with diffusion rates
often less than 10�22 m2/s, orders of magnitude smaller than in crystals. The random
close-packing model for metallic glasses is discussed in Chapter 4. Rapid quenching
is described further in Chapter W21.

These materials are amorphous and hence do not have dislocations, but rather, a
high degree of disorder on the atomic scale. They are strong, stiff, and ductile. In
addition, they are corrosion resistant. Furthermore, being largely homogeneous, they
allow sound to propagate without appreciable attenuation due to scattering. This is
because, for most acoustic applications, the wavelength of sound is long compared with
the scale size of the inhomogeneities, and the sound propagates through an effectively
isotropic medium. Things are different, however, when short-wavelength phonons are
involved, such as in the thermal-conduction process. Due to the lack of a crystal lattice
the metallic glasses are generally poor thermal and electrical conductors, with very
short phonon and electron collisional mean free paths.

Examples of metallic glasses include AuSi near the eutectic composition of 19 at %
Si, Pd80Si20, Pd78Si16Cu6, and Ni36Fe32Cr14P12B6. They include transition metals (Co,
Fe, La, Mn, Ni, Pd, Pt, Zr) alloyed with (B, C, N, P, Si) near the eutectic composition.
Some are ferromagnetic (e.g., Pd68Co12Si20 or Fe83P10C7) and some are antiferromag-
netic (e.g., Mn75P15C10). The ferromagnets are readily magnetized or demagnetized,
since there are no large-scale defects that pin the domain walls. The magnets are soft in
the amorphous state because the domain wall thickness is much larger than the domain
size. This is likely to be due to the absence of well-defined magnetic anisotropy in
the magnetic metallic glass as a result of the lack of crystalline order. As discussed in
Section 17.2 strong magnetic anisotropy favors magnetic domains with narrow domain
walls. The metallic glass Fe80B11Si9 is commonly used in power magnetic applications
such as power distribution due to its high Curie temperature, TC D 665 K, and hence
its good thermal stability.
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It is found that the more elements present in the alloy, the more complex the unit
cell of a crystal is, and hence the longer it would take to crystallize. An example is the
alloy Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 which forms a metallic glass at cooling rates of only
10 K/s. The high resistance to crystallization is believed to be due to the low melting
point of the corresponding crystalline alloy and the fact that the alloy is composed of
atoms of quite different sizes. Since one wants the glass to form rather than the crystal,
it is preferable to work with materials with long crystallization times. This accounts
for the high integers in the stoichiometry.

A further aid in the formation of the metallic glass is to have a composition corre-
sponding to the eutectic point, as in the case of AuSi, whose binary phase diagram
is sketched in Fig. W12.9. Since the eutectic temperature is low, diffusion will be
sluggish when the solid is formed, and the formation of crystals will be slow. If the
temperature drop is sufficiently fast, the eutectic metal will become a glass.

The metallic glass is only slightly less dense than the corresponding crystal. It
tends to form a random close-packed structure (see Chapter 4) of a binary system
with two sphere sizes (Fig. W12.10). The bonding is primarily metallic. There is some
evidence of short-range order [i.e., there are different polyhedral arrangements (e.g.,
tetrahedra, octahedra, trigonal prisms and cubic biprisms)], which appear in definite
proportions but are not spatially ordered. The bulk modulus of a metallic glass is
found to be comparable to its crystalline counterpart. The shear modulus, however,
is typically reduced by 25%. They have fairly low values of yield stress and can
undergo large plastic deformations of up to about 50%. If a crack were to form and
stress were concentrated in the neighborhood of its tip, the tip region would yield,
the sharpness of the tip would be reduced, and the stress would be relieved. This
healing mechanism curtails crack propagation and makes the material tough (i.e., able
to withstand large stresses without fracturing). Repetitive cycling of the stress on and
off does not work-harden the material, since no dislocations are present.

As the temperature is raised from room temperature to about half the melting temper-
ature, activated hopping of atoms becomes important. The atoms can search for the
lowest free-energy state and the solid can begin to crystallize. This prevents the metallic
glasses from being employed in high-temperature applications.
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Figure W12.9. AuSi tends to form a metallic glass near the eutectic composition, indicated
by the dashed line on the binary phase diagram. [Adapted from J. J. Gilman, Metallic glasses,
Phys. Today, May 1975, p. 46. See also H. Okamoto et al., Bull. Alloy Phase Diagrams, 4, 190
(1983).]
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(a) (b)

Figure W12.10. Arrangement of a binary-alloy metallic glass (a) compared with the crystalline
state (b).

Possible applications for metallic glasses include transformers, tape-recording heads,
filaments to reinforce rubber tires, transmission belts, and tubing. Their hardness makes
them suitable for cutting instruments. Their low acoustic-attenuation feature makes
them appropriate for use where sound vibrations are likely to be prevalent, such as in
loudspeakers.

In crystalline metals, different crystallographic faces have different work functions
and hence there is a contact potential difference between them. In an ionic solution it is
possible for corrosion to take place as ionic currents between the faces are established.
Due to the amorphous nature of the metallic glass, there is overall isotropy, and these
contact potential differences do not exist. This tends to make the metallic glasses
corrosion resistant.

W12.8 Metal Hydrides

The ability of hydrogen to adsorb on metals, dissociate, diffuse into the bulk, and then
form chemical compounds provides a way to store hydrogen in metals. The density of
hydrogen in metals can even exceed that of liquid hydrogen. This is attractive since the
process can often be reversed and the hydrogen may be released simply by warming
the metal. Hydrogen is a fuel with a high energy content and produces only water
vapor when it is burned. This makes it an attractive chemical-energy source for a
future technology.

Some metals can store only a fraction of a hydrogen atom per metal atom (e.g.,
TaH0.5), whereas others can store more (e.g., Th4H15 or CeH3). The metal Ta has a
BCC crystal structure, whereas Th and Ce have FCC crystal structures. The hydrogen
atom, being small, generally occupies interstitial sites, as is illustrated in Fig. W12.11.
In the left diagram there is an FCC metal with a hydrogen at one of the eight tetrahedral
interstitial sites per unit cell. In the right diagram the hydrogen is at one of the four
octahedral interstitial sites. In some cases all the FCC interstitial sites are occupied,
such as in Th4H15 and CeH3. For an FCC cell there are eight tetrahedral interstitial sites,
four octahedral interstitial sites, and four atoms per unit cell. For CeH3 it may happen
that all the interstitial sites are occupied. In Th4H15 there could be more than one
hydrogen per site. The hydrogen atoms generally have a high diffusivity through the
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(a) (b)

H
M

Figure W12.11. (a) Hydrogen at a tetrahedral interstitial site in an FCC unit cell; (b) hydrogen
at the octahedral interstitial site in the same cell.

metal and readily hop from site to site. Some of this hopping ability is due to thermal
activation, but there is also an appreciable part due to quantum-mechanical tunneling.
This is similar to what occurs in the free NH3 molecule, where the tetrahedron formed
by the atoms periodically inverts as the N atom tunnels through the barrier presented
by the three H atoms. (In the actual motion there is a concerted motion in which
all atoms participate.) The hopping rates may be as large as a terahertz. At high-
enough concentrations the absorbed hydrogen can induce structural phase transitions
in the metal. This provides the means for monitoring the hydrogen content. It is also
responsible for hydrogen embrittlement, in which a metal may be weakened by the
presence of H. Imperfections, such as vacancies in the metal, can act as centers for
concentrating H, and as a result, recrystallization may take place. This causes a large
stress concentration and the imperfection may propagate because of it.

The presence of H may also cause drastic changes in the electrical and magnetic
properties of the metal. Hydrogen generally tends to suppress magnetism. This might
be expected because the origin of magnetism stems from the spin-dependent exchange
interaction between neighboring metal atoms, and this, in turn, depends on the wave-
function overlap. As new bonds are formed to create the hydride, less of the wave-
function is left to participate in magnetism.

In some instances the H causes the metal to become a semiconductor. Electrons
are extracted from the conduction band of the metal and are tied up in chemical
bonds to form the hydride. It is also found that the metals may become supercon-
ductors with transition temperatures considerably higher than the bare metals, perhaps
due to the enhanced electron–phonon coupling (see Chapter 16). Examples include
Th4H15 and PdH. Some of the anomalies observed for the hydrides are similar to those
observed in the high-temperature cuprates (e.g., an absence of an isotope effect for the
superconducting transition temperature).

W12.9 Solder Joints and Their Failure

Solder joints play a crucial role in the operation of electronic-circuit boards since they
provide both the mechanical and, more important, the electrical connections for the
various components and chips. Two modes of failure of these joints may be identi-
fied. The first is aging. In the normal course of operation the joints are subject to
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thermal cycling. Due to the mismatch of coefficients of thermal expansion, heating
leads to stresses. These stresses cause the motion of dislocations, which may pile up to
form microscopic cracks or void spaces. The resulting embrittlement makes the joint
susceptible to fracture. A second source of failure results from intermetallic compound
(IMC) formation. Compound particles nucleate and grow within the joints and produce
mechanical stresses due to lattice-constant mismatch, and these can also cause embrit-
tlement. Since a typical circuit board may contain many hundreds of joints, even a
small probability for failure in a joint may compound to a severe lifetime limitation
for the board. The processes responsible for failure are identified by examining the
joints under high-power optical microscopes.

Examples of IMC formation that results from use of the common eutectic Pb–Sn
solder (see Fig. 6.8) on copper are Sn C 3Cu ! Cu3Sn or 6Cu C 5Sn ! Cu6Sn5.
Similarly, Ni can form a highly brittle compound when reacting with solder. The
growth of the layer thickness of an IMC, z, is governed by an empirical equation of
the form

dz

dt
D A0

e�Ea/kBT

zn
, �W12.27�

where A0 is a constant, Ea an activation energy, and n an empirical exponent ranging
from 1

2 to 1. It is found that the thicker the IMC layer, the more susceptible it is to
brittle fracture.

Ideally, solder joints should be designed to eliminate, or at least minimize, these
problems. One might try using spring-shaped elastic-component leads to relieve the
thermal stresses that develop. This conflicts with the desire for a higher concentration
of components on the board. It is better to match the coefficients of thermal expansion
to eliminate the thermal stresses altogether. However, this often leads to a degradation
of the electrical properties of the leads. It was found that decreasing the solder-joint
thickness results in a reduced tendency for fractures to occur. This may be because
of the ability of the joint to anneal its defects to the surface. One may also try to
make the material more homogeneous so that dislocations are less likely to be present.
Alternatively, one may try to alloy the material and insert dopants that would trap the
dislocations and prevent them from propagating to form cracks.

To date there is no preferred method. Each has its benefits and its drawbacks. The
design of joints is still in the “arts” stage.

W12.10 Porous Metals

Porous metals define a class of materials that find application in such diverse areas as
filters, heat exchangers, mufflers and other noise-abatement devices, fuel cells, elec-
trolytic cells, hydrogen-storage media, and thermal insulators. They may be fabricated
using several techniques, including sintering and slip-casting. The sintering method
involves mixing powders of the metal, M, with powders of another material, A, with a
higher melting point. When the metal M melts, it flows around the particles of A and
forms a solid metallic cage as it is cooled. If the pores are interconnected, material
A can then be removed by chemical means, so the porous metal M remains. In the
slip-casting method a solid foam is created from a nonmetallic material, and a disper-
sion of fine metal powder is absorbed by this sponge. When heated, the metal particles
fuse together and the nonmetallic powder is burned away. Again the metallic foam
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Figure W12.12. Binary phase diagram for a metal–hydrogen alloy. (Adapted from
V. Shapovalov, Porous metals, Mater. Res. Soc. Bull., Apr. 1994, p. 24.)

is produced. Chemical vapor-deposition techniques may be employed to build up a
thickness of metal on a porous substrate and then to remove the substrate by chemical
or thermal means, leaving behind a metal film.

The materials are characterized by a filling factor, which tells what fractional volume
of space is occupied by the metal, a distribution of pore sizes and shapes, and a topology
describing the interconnection between the pores. They are found to be poor electrical
conductors, both because of the low filling factors and the high degree of boundary
scattering along the thin conducting paths.

The term gasar has been coined to describe a foam produced by a gas–metal
eutectic transition. Due to the small size of the hydrogen atom (especially when
it is ionized to a proton), it has little difficulty being adsorbed in many metals, as
discussed in Section W12.8. The resulting hydrogen–metal alloy phase diagram often
has a eutectic transition. Such a diagram is illustrated in Fig. W12.12. The compound
is of the form M1�xHx. Hydrogen is bubbled into the liquid metal to increase x to
the eutectic composition xe. The material is then cooled below the eutectic tempera-
ture Te. This produces a eutectic composition consisting of a mixture of the ˛ phase
of the metallic hydride and H2 gas. The gas is able to desorb from the hydride,
leaving behind a porous structure. Gasars have proven to be the strongest of the
porous–metal structures. This is probably due to a homogeneous pore size distribu-
tion, which permits loading stresses to be distributed uniformly. If residual hydrogen
is trapped in the metal, the gasar is found to be a good thermal conductor, since
hydrogen is light and mobile and therefore is able to convect the heat through the
pore structure. The material is also able to damp acoustic waves efficiently, since the
trapped gas makes inelastic collisions with the surrounding cage as the cage vibrates
back and forth.
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CHAPTER W13

Ceramics

W13.1 Ternary Phase Diagrams

As the number of components of a system increases, the number of possible subsys-
tems increases rapidly and the complexity grows exponentially. For example, a two-
component system has only two possible unary subsystems and one binary subsystem
for a total of three different types of subsystems. A three-component system has three
unary subsystems, three binary subsystems, and a ternary subsystem, for a total of seven
different types of subsystems. In the general case a C-component system will have
C!/[C0!�C � C0�!] subsystems with C0 components, and will have a total of 2C � 1
possible subsystems. Often, it is desirable to optimize a particular physical property of
the system, so the composition and temperature must be chosen carefully to achieve
this optimization. Obviously, the process becomes more challenging as the number
of components is increased. Phase diagrams provide a type of road map upon which
it is possible to chart the composition of the material and indicate the various phase
boundaries.

Often, materials with interesting physical properties are constructed out of just
three components, which will be labeled by A, B, and C. These may be elements
or compounds. For example, the electro ceramic PbxZryTizO3 (PZT) is constructed
from the compounds A D PbO, B D TiO2, and C D ZrO2, and the composition is
�PbO�x Ð �ZrO2�y Ð �TiO2�z. Here x, y, and z are constrained by the valence balance
condition 2x C 4y C 4z D 6, so that only two of the variables may be varied indepen-
dently. The high-temperature superconductor YBa2Cu3O7�x is but one of many phases
constructed from Y2O3, BaO, and Cu2O. Glasses are often made from ternary mixtures,
such as soda-lime, made from SiO2, CaO, and Na2O.

According to the Gibbs phase rule (see Section W6.4), Eq. (W6.9), the number of
degrees of freedom, F, is related to the number of components, C, and the number
of phases, P, by F D C � P C 2. For constant temperature and pressure, two of the
degrees of freedom are removed, leaving F0 D C � P degrees of freedom. For a three-
component system, such as PZT, C D 3. Since there must be at least one phase present,
p ½ 1 and F0 � 2. The two degrees of freedom are conveniently displayed using the
Gibbs triangle, as illustrated in Fig. W13.1.

Imagine that there is a totality of one unit of components, so the chemical formula
is AaBbCc, with a C b C c D 1 and (a, b, c), each lying in the range 0 to 1. The
composition may be represented graphically as a point inside an equilateral triangle.
The height of this triangle is taken to be 1. In Fig. W13.1 point O represents AaBbCc.
The perpendicular distances to the sides of the triangle are a, b, and c, and the frac-
tions of components A, B, and C present are also a, b, and c. The corners of the
triangle represent pure-component (unary) compounds. If the point O were at A, then
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A

B C

a

bc
O

Figure W13.1. Point O represents the composition AaBbCc, where a C b C c D 1.

b D c D 0 and a D 1. The composition would be 100% A. The edges of the triangle
represent binary compounds. For example, a point on the base of the triangle will have
composition BbCc, with b C c D 1. If the point O is at the center of the triangle, then
a D b D c D 1

3 and 33.3% of each component is present.
It is a simple matter to prove that a C b C c D 1. Note that the area of equilateral

triangle ABC (with side L D 2/
p

3) is half the base times the height: � 1
2 ��L��1� D

1/
p

3. On the other hand, the area of ABC may be written as the sums of the areas
of the three triangles AOB, BOC, and COA, which gives 1/

p
3 D � 1

2 �L�a C b C c�, so
a C b C c D 1. Thus any point within the triangle ABC will always correspond to a
total of one unit of components.

An alternative method for determining the composition is to make the construction
shown in Fig. W13.2. Lines are passed through point O parallel to the three sides. The
intersections of these lines with the sides are labeled by the points D, E, F, G, H, and I.
It can be shown that the relative amounts of A, B, and C present are proportional to
the lengths of segments of the sides, that is,

c

AI
D b

IH
D a

HC
,

a

FG
D b

GC
D c

BF
,

c

DE
D a

EB
D b

AD
. �W13.1�

This construction may be generalized to the case of a scalene triangle. In Fig. W13.3,
point O represents 1 mol of material with composition AaBbCc, where a C b C c D 1.
Through point O, construct-lines FOI, HOE, and DOG are drawn parallel to sides CB,
AC, and BA, respectively. Each side is divided into three segments by these lines. It
may be shown that the following identity holds for the lengths of the segments:

DE:EC:BD D CF:FG:GA D IB:AH:HI D a: b: c. �W13.2�

The ternary diagram is used to depict the various phases of the material at thermal
equilibrium. At times one is interested only in the phase boundaries at a given temper-
ature and pressure. The diagram is then called an isothermal-ternary diagram. Alter-
natively, the temperature field could be represented by drawing isothermal contours on
the diagram. Since this proves to be more useful, this representation will be used here.

Refer to Fig. W13.4, where a three-dimensional temperature–composition diagram
is drawn. Viewed from the top, one has a ternary phase diagram. This diagram will be
used to follow a process in which a liquid solidifies. At sufficiently high temperatures
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Figure W13.2. Material AaBbCc is represented by point O. The segments AI:IH:HC are in the
same proportion as c: b: a.
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Figure W13.3. Composition triangle ABC together with various construction lines.
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Figure W13.4. Three sheets of the liquidus surface on a plot of temperature versus composition.
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the material is assumed to be liquid. As the temperature is slowly lowered, the material
begins to crystallize. The degree of crystallization, and the fractions and compositions
of solid and liquid formed, are determined by the liquidus surfaces. Of course, the
mean composition taken over all the phases always remains the same. In Fig. W13.4
the liquidus surface is presented for the simple case in which solid solutions are not
formed. The liquidus surface consists of three separate sheets, corresponding to the
three primary compositions A, B, and C. Various eutectic points are depicted by the
letter E with subscripts. Thus EAB denotes the eutectic point for the composition AaBb

for the special case where a C b D 1 and c D 0. EABC is the ternary eutectic point
and is the lowest point for which some liquid remain. There is a horizontal eutectic
plane (not shown) in the phase diagram passing through the point EABC below which
only completely solid material exists. The melting points for the pure components are
denoted by TmA, TmB, and TmC.

Shown on Fig. W13.4 is a cooling path for a liquid with composition (a, b, c). As the
temperature is lowered, point 1 is encountered and solid phase A begins to nucleate.
Further reduction of the temperature causes an increased growth of phase A and a
modification of the composition of the liquid. The liquid composition is determined by
the curve 1–2–3–4–5. Along 1–2–3, only solid phase A and a liquid are present. At
point 3, phase C begins to nucleate. Along path 3–4–5 (which is the valley between
sheets A and C), phases A and C and a liquid of varying composition are present. At
point 5 the liquid reaches the ternary eutectic composition. At a lower temperature,
only solid phases A, B, and C exist, with the original composition (a, b, c).

Figure W13.5 depicts the same scenario as in Fig. W13.4 but viewed from above.
The isothermal contours are not shown but are there implicitly. Note that A–1–2–3 is
a straight line. Along line 1–2–3 the composition may be determined by applying the
lever rule. Thus at a temperature corresponding to T1, the liquid will have composition
(a1, b1, c1). The amounts of liquid and phase ˛ at T D T2 are in the ratio of the
distances dA1/d12. At temperature T3 the liquid has composition (a3, b3, c3) and the
liquid to phase ˛ ratio is dA1/d13. At points 4 and 5 the compositions are such that
the center of gravity of points A, C, 4, or 5 lies at the original point 1.

There are numerous other possibilities for drawing the phase diagrams but they
will not be covered exhaustively here. The principles of analysis are similar. Several
points are worth mentioning, however. Stoichiometric binary compounds (e.g., AmBn,
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Figure W13.5. Path toward solidification on the ternary phase diagram.
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with m and n integers) are represented by points on the appropriate edge (AB in this
case). Stoichiometric ternary compounds (e.g., AmBnCj, with m, n, and j integers)
appear as points in the interior of the triangle. These points are usually surrounded
by a domain of influence bounded by a phase boundary. An example of this will
be encountered in Section 13.7 of the textbook† when the ternary phase diagram for
the glass-forming region of Na2O Ð CaO Ð SiO2 is discussed (see Fig. 13.15). The net
result is that the ternary phase diagram often has the appearance of a mosaic with
numerous phases indicated. Often, there is a definite crystalline order associated with
a stoichiometric phase. Points with nearby compositions may be thought of as crystals
possessing defects. The farther one goes from the stoichiometric point, the larger the
number of defects. When a sufficient number of defects occur, a phase transition to
another crystal structure may result.

As mentioned earlier, it is possible to have as many as three distinct phases present
at once (i.e., P D 3). In that case, the effective number of degrees of freedom for a
ternary system is F D C � P D 0. Consider the Gibbs triangle depicted in Fig. W13.6,
which shows three phases (˛, ˇ, �) to be present. Since F D 0, the composition of the
material at point O is uniquely determined: the fractions of the various phases present
are (f˛, fˇ, f� ), where f˛ C fˇ C f� D 1. For the point O, the composition (a, b,
c) will be determined by solving the matrix equation

[ a
b
c

]
D
[ a˛ aˇ a�
b˛ bˇ b�
c˛ cˇ c�

][f˛

fˇ

f�

]
. �W13.3�

In Fig. W13.7 a sequence of four isothermal sections is illustrated, corresponding
to the temperatures T1 > T2 > T3 > T4 for an idealized ternary system. Temperature
T1 is above the liquidus surface, so any point in the phase diagram corresponds to a
homogeneous liquid. At temperature T2 it is assumed that part of the liquidus surface
is above the isothermal plane and part below. It is assumed that there are compositional
ranges for which the phases ˛, ˇ, and � coexist with the liquid phase, as illustrated in

β
α

γ

O

C

A B

Figure W13.6. Gibbs triangle with a three-phase field. There is a unique admixture of the three
phases at point O.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Fredrick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W13.7. Sequence of four isothermal phase diagrams, illustrating the presence of various
phases.

the figure. At T3 the temperature is slightly above the three-phase eutectic temperature.
One now finds the coexisting binary solid phases ˛ C ˇ, ˇ C � , and ˛ C � . There are
also regions corresponding to the coexistence of the unary phases with the liquid,
˛ C L, ˇ C L, and � C L, as well as regions consisting of the coexistence of the two
phases with the liquid, ˛ C ˇ C L, ˇ C � C L, and ˛ C � C L. At T4, below the eutectic
temperature, only solid phases are present: the unary phases ˛, ˇ, or �; the two-phase
regions ˛ C ˇ, ˇ C � , or ˛ C �; and the three-phase region ˛ C ˇ C � .

It is important to stress that the phase diagram applies only for thermal equilibrium.
Nevertheless, for rapid cooling, the diagram may be used as an intuitive guide to
understanding solidification. The composition of the microstructure that will form may
be estimated in much the same way as in the study of metals (see Section 6.5 and
Figs. 6.9 and 6.10). The faster the material passes through a given phase domain as
the sample is cooled, the less time there is available for nucleation and growth of that
equilibrium phase to occur.

W13.2 Silicates

Silicon and oxygen are the two most abundant elements in Earth’s crust. There is a
broad class of minerals based on combinations of Si and O and other elements called



CERAMICS 175

Visible
Hidden
Top layer
Bottom layer

Si

O

(Si6O18)12−(Si4O10)
n
4n−(Si4O11)

n
6n−

(SiO4)4− (Si2O7)6− (Si2O6)
n
4n−

(SiO2)

Figure W13.8. Schematic representation of the seven classes of silicate ions. There are O2�

ions residing at the corners of the tetrahedra and Si4C ions at their centers. (Adapted from
H. W. Jaffe, Crystal Chemistry and Refractivity, Dover, Mineola, N.Y., 1996.)

silicates. An appreciation of the various ions formed from Si and O permit one to
understand more complex structures in which other cations, such as Al, substitute for
the Si ions.

The valence of Si is C4 and that of O is �2. A basic ion formed is the (SiO4)4� ion.
The Si4C resides at the center of a tetrahedron, and the O2� ions are at the vertices.
The bond is about equally covalent and ionic and is very strong. The tetrahedra may be
connected in a variety of ways to form complex ions. Figure W13.8 depicts the basic
structures. There are seven principal classes of silicates. Orthosilicates (also known as
nesosilicates or island silicates), such as forsterite (Mg2SiO4), olivine (MgxFe2�xSiO4),
and zircon (ZrSiO4), are based on independent (SiO4)4� tetrahedra linked by divalent
cations. In place of the (SiO4)4� ion, there could be substituted the (AlO4)5� ion. An
example of this is the synthetic crystal YAG [yttrium aluminum garnet, Y3Al2(AlO4)3],
used as a laser crystal. In the sorosilicates there are two tetrahedra joined vertex to
vertex, sharing a common oxygen to form the (Si2O7)6� ion. An example is the mineral
thortveitite [Sc2(Si2O7)]. The structure with a triad of tetrahedra corner-sharing one
oxygen ion to form the (Si3O9)6� ion does not seem to be found in nature. In the
cyclosilicates, such as the gemstone beryl (Be3Al2Si6O18), the tetrahedra are arranged
in hexagonal rings corner-sharing six oxygens to create (Si6O18)12� ions. In the inosil-
icates, such as the mineral jadeite [NaAl(Si2O6)], tetrahedra form a linear chain with
corner-shared oxygens to produce an ion of the form (SiO3)2n�

n . In the phyllosili-
cates, such as mica or talc [Mg3(Si2O5)2(OH)2], the basic ionic unit is the (Si2O5)2�
ion. In the amphiboles (or double-chain silicates) two parallel inosilicate chains link
together so that every second tetrahedron has a corner-shared oxygen, producing the
ion (Si4O11)6n�

n . An example is the mineral tremolite [Ca2Mg5(Si4O11)2(OH)2]. The
final class of silicate is the tektosilicate, based on the neutral SiO2 subunit. An example
of this is quartz itself, with the composition SiO2, or anorthite [CaOAl2O3(SiO2)2].
The results are summarized in Table W13.1.

An oxygen shared by two tetrahedra is called a bridging oxygen. One that is
not shared is called a nonbridging oxygen (NBO). One may classify the structures
according to the number of nonbridging oxygens that the tetrahedra possess, as shown
in Table W13.1. Tektosilicates have no NBOs, or equivalently, four shared corners.
The structural unit is neutral and is based on SiO2. Disilicates have only one NBO
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TABLE W13.1 Seven Principal Classes of Silicates

Class Ion Shared Corners Nonbridging Oxygens

Nesosilicate �SiO4�4� 0 4
Sorosilicate �Si2O7�6� 1 3
Cyclosilicate �Si6O18�12� 2 2
Inosilicate �SiO3�2n�

n 2 2
Amphibole �Si4O11�6n�

n 2, 3 2, 1
Phyllosilicate �Si2O5�2� 3 1
Tektosilicate �SiO2� 4 0

Source: Data from H. W. Jaffe, Crystal Chemistry and Refractivity, Dover, Mineola, N.Y., 1996.
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Figure W13.9. Ranges of Raman shifts for various silicates. [Adapted from P. F. McMillan,
Am. Mineral., 69, 622 (1984).]

or, equivalently, three shared corners, and the ion is (Si2O5)2�. Metasilicates have two
NBOs (i.e., two shared corners) and the ion is (SiO3)2�. Pyrosilicates have three NBOs
(i.e., one shared corner) and the ion is (Si2O7)6�. Orthosilicates have four NBOs, hence
no shared corners, and are based on the (SiO4)4� ion.

Raman scattering may be used to identify the various ions. In Fig. W13.9 the ranges
of the Raman bands for the various ions in silicate glasses are depicted by the shaded
areas. In silicates there are cations present in addition to the silicate ions, so that
one may regard the materials as part silica and part foreign cations. The ordinate of
Fig. W13.9 gives the percentage of the material that is SiO2. Silica, of course, is 100%
SiO2. The 400-cm�1 peak is associated with a rocking motion in which the Si–O–Si
angle remains fixed but the oxygen rocks back and forth perpendicular to the initial
Si–O–Si plane. The 800-cm�1 peak corresponds to a bending motion of the Si–O–Si
bond angle. The peak at 1100 to 1200 cm�1 is due to a stretching motion of the Si–O
bond. In the orthosilicates, the bending motion of the Si–O–Si bond is responsible
for the 800-cm�1 peak. In the pyrosilicates two tetrahedra are joined together. The
bending motions could be either in phase or out of phase. As a result, the 800-cm�1
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peak is split into two peaks, one at a higher frequency and the other at a lower one. A
normal-mode analysis of the silicate ions leads to a more detailed description of the
correlation of peak location with ion type.

W13.3 Clay

Shards of pottery excavated in scattered archeological sites around the world testify
to the role that clay has played since antiquity as a primary technological material.
Clays are layered aluminosilicates, being composed primarily of Al, Si, O, and H
with varying degrees of alkali, alkaline earths, or Fe. Some common clays found in
nature include kaolinite, pyrophyllite, and talc. They are members of a mineral family
called phyllosilicates that include micas, such as muscovite, as well as serpentines and
chlorites. Clays are crystalline materials that have a small particle size. When combined
with water they become hydroplastic (i.e., they are readily moldable). When heated, the
particles fuse together while the overall macroscopic shape is retained. Upon cooling,
the molded shape becomes the desired object.

There are two types of primary layers in the clay structure. One is a 0.22-nm
layer composed of SiO4 tetrahedra joined by their corners in a hexagonal array
(Fig. W13.10a). The bases are coplanar and the tips of the tetrahedra all point in
the same direction. At the vertices are either O atoms or OH radicals. The second
primary layer is a 0.22-nm sheet of octahedra containing Al at the center which are
sixfold coordinated with O atoms or OH radicals at the vertices (Fig. W13.10b). [In
the case where there are only hydroxyl radicals, it is the mineral gibbsite, Al2(OH)6].
The various types of clay differ from each other in the number of these sheets, the

(a)
(b)

(c)

Figure W13.10. (a) Silica layer; (b) gibbsite layer; (c) kaolinite layer.
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replacement of some Al or Si by other elements, or by the presence of sheets of water
between the layers.

Kaolinite [Al2Si2O5(OH)4] has a 1:1 structure (i.e., the bilayer consists of one silica
layer and one gibbsite layer). The overall thickness is 0.716 nm (0.22 nm for the
tetrahedra C 0.22 nm for the octahedra C 0.276-nm spacing). The silica tetrahedra
(SiO4) point toward the gibbsite sheet, with the oxygens on the basal plane of the
silica forming one outer surface and the hydroxyls of the gibbsite forming the second
outer surface. The Al ions lie on a hexagonal lattice with two-thirds of the possible
sites filled. Successive bilayers have the same orientation and are bound to each other
by hydrogen bonding. A schematic of this arrangement (with the two sheets separated
from each other for illustration purposes) is drawn in Fig. W13.10c. The atomic posi-
tions in the successive layers are sketched in Fig. W13.11. Figure W13.11a shows the
basal O2� plane with Si4C atop the midpoint of the triangles formed by the oxygens;
Fig. W13.11b shows O2� ions above the Si4C ions, completing the tetrahedral layer
(T layer); Fig. W13.11c shows the positions of the Al3C ions and OH� ions in the
same layer as the aforementioned O2� ions. The OH� layers lie above the voids in the
basal layer. Finally, Fig. W13.11d shows a top layer with OH� ions. Each Al3C ion is
surrounded by six negative ions. Below each Al3C is a triangle with two O2� ions and
one OH� ion. Above each Al3C is a triangle of three OH� ions. The orientation of
the upper triangle is opposite to that of the lower triangle. The net result is that each
Al3C ion sits at the center of an octahedron. The layer is referred to as the O layer.
The protons of the top OH� layer are directed away from preceding O layer, ready
to hydrogen-bond with the next T layer. Thus the stacking sequence in kaolinite may
be denoted by TO–TO–TO– Ð Ð Ð . The actual crystal structure is not orthorhombic,
as in the sketch, but is slightly triclinic, with parallelipiped unit cell dimensions
�a, b, c� D �0.51, 0.89, 0.72� nm and angles (˛, ˇ, �� D �91.8°, 104.5°, 90°).

The lattice spacings in isolated gibbsite do not precisely match the lattice spacings
in silica. When the two layers are brought into registry, one layer is compressed and the

(b)

O2−

Si4+

Al3+
OH−

(a)

(c) (d)

Figure W13.11. Layer-by-layer assembly of a kaolinite sheet. (Adapted from H. W. Jaffe,
Crystal Chemistry and Refractivity, Dover, Mineola, N.Y., 1996.)
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other is stretched. The resulting strain energy grows as the area of the layer increases.
Eventually, the layers crack to relieve the strain energy. This limits the extent of the
clay particles to a small size.

Pyrophyllite [Al2(Si2O5)2(OH)2] differs from kaolinite in that it contains two silica
sheets instead of one (i.e., it has a 2:1 composition). The tetrahedra in the silica layers
point inward toward the gibbsite core layer, so the outer surface of the trilayer structure
consists of oxygen planes. Additional trilayers bond to this by weak van der Waals
bonds. The unit cell is monoclinic with dimensions �a, b, c� D �0.52, 0.89, 1.86� nm
and angles ˛ D ˇ D 90° and � D 99.9°.

Talc [Mg3(Si2O5)2(OH)2] has the same 2:1 structure as pyrophyllite, with the excep-
tion that the two Al3C ions are replaced by three Mg2C ions to maintain the valence
requirements. Thus all the sites of the hexagonal lattice are now filled with Mg atoms,
as opposed to the two-thirds occupancy for Al. Talc may be thought of as being based
on the mineral brucite [Mg3(OH)6] rather than on gibbsite, as before. It forms a mono-
clinic crystal with unit cell dimensions (0.53, 0.91, 1.89) nm and ˇ D 100°. Closely
related is the clay montmorillonite, in which only some of the Al3C are replaced by
Mg2C ions. Because of the valence mismatch, additional ions, such as NaC, must
also be incorporated, giving the composition Al2�xMgxNax(Si2O5)2(OH)2. In the clay
illite, some of the Si4C ions are replaced by Al3C ions. The valence mismatch is now
compensated by adding KC ions to the hexagonal voids of the O layers. The structure is
thus Al2(Si2�xAlxKxO5)2(OH)2. In the special case where x D 0.5, the mica muscovite
[KAl3Si3O10(OH)2] is obtained. The KC ion serves to ionically bind adjacent trilayers
tightly, thereby giving considerable rigidity to the structure.

W13.4 Cement

If limestone (calcite) is heated to 900°C, the reaction CaCO3 ! CaO C CO2 occurs and
CaO (quick lime) is produced. When placed in contact with water, the CaO becomes
hydrated and the product is called slaked lime. Heat is released, and the material swells
and eventually hardens (sets). Mortar is a mixture of quick lime and sand (silica), which,
when hydrated, forms a composite material that is used to bind bricks together.

Concrete, a composite material, is the primary structural material in use today. It
consists of pebbles and sand bound together by cement.

In this section the focus will be on the most common type of cement, called Port-
land cement. The composition is 60 to 66% CaO (lime), 19 to 25% SiO2 (silica),
3 to 8% Al2O3 (alumina), 1 to 5% Fe2O3 (ferrite), up to 5% MgO (magnesia) and
1 to 3% SO3. When heated, four primary compounds are formed: dicalcium silicate
(DCS) (2CaOÐSiO2), tricalcium silicate (TCS) (3CaOÐSiO2), tetracalcium aluminofer-
rite (TCAF) (4CaOÐAl2O3ÐFe2O3), and tricalcium aluminate (TCA) (3CaOÐAl2O3).
Portland cement is, on average (by wt %), 46% TCS, 28% DCS, 8% TCAF, and
11% TCA. In addition, there is 3% gypsum (CaSO4Ð2H2O), 3% magnesia, 0.5% K2O
or Na2O, and 0.5% CaO. When water is added, a hydration reaction occurs and heat is
generated. The hydrated particles conglomerate and a gel is formed. The cement sets
in the course of time.

The four compounds provide various attributes to the cement. Thus DCS hardens
slowly and improves the cement’s strength after a considerable time (a week). TCS
hardens more rapidly, gives the initial set, and provides early strength. TCA also
provides early strength and dissipates early heat. TCAF reduces the “clinkering”


