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PREFACE

As science has become more interdisciplinary and impinges ever more heavily on
technology, we have been led to the conclusion that there is a great need now for a
textbook that emphasizes the physical and chemical origins of the properties of solids
while at the same time focusing on the technologically important materials that are
being developed and used by scientists and engineers. A panel of physicists, chemists,
and materials scientists who participated in the NSF Undergraduate Curriculum Work-
shop in Materials in 1989, which addressed educational needs and opportunities in the
area of materials research and technology, issued a report that indicated clearly the
need for advanced textbooks in materials beyond the introductory level. Our textbook
is meant to address this need.

This textbook is designed to serve courses that provide engineering and science
majors with their first in-depth introduction to the properties and applications of a wide
range of materials. This ordinarily occurs at the advanced undergraduate level but can
also occur at the graduate level. The philosophy of our approach has been to define
consistently the structure and properties of solids on the basis of the local chemical
bonding and atomic order (or disorder!) present in the material. Our goal has been
to bring the science of materials closer to technology than is done in most traditional
textbooks on solid-state physics. We have stressed properties and their interpretation
and have avoided the development of formalism for its own sake. We feel that the
specialized mathematical techniques that can be applied to predict the properties of
solids are better left for more advanced, graduate-level courses.

This textbook will be appropriate for use in the advanced materials courses given in
engineering departments. Such courses are widely taught at the junior/senior level with
such titles as “Principles of Materials Science & Engineering,” “Physical Electronics,”
“Electronics of Materials,” and “Engineering Materials.” This textbook is also designed
to be appropriate for use by physics and chemistry majors. We note that a course in
materials chemistry is a relatively new one in most chemistry undergraduate curricula
but that an introductory course in solid-state physics has long been standard in physics
undergraduate curricula.

To gain the most benefit from courses based on this textbook, students should have
had at least one year each of introductory physics, chemistry, and calculus, along with
a course in modern physics or physical chemistry. For optimal use of the textbook it
would be helpful if the students have had courses in thermodynamics, electricity and
magnetism, and an introduction to quantum mechanics.

As the title indicates, the range of topics covered in this textbook is quite broad. The
21 chapters are divided into five sections. The range of topics covered is comprehensive,
but not exhaustive. For example, topics not covered in detail due to lack of space
include biomaterials, a field with a bright future, and composites, examples of which
are discussed only within specific classes of materials. Much more material is presented

xxiii



xxiv PREFACE

than can be covered in a one-semester course. Actual usage of the text in courses will
be discussed after the proposed subject matter has been outlined.

Following an introduction, which emphasizes the importance of materials in modern
science and technology, Section I, on the “Structure of Materials,” consists of four
chapters on the structure of crystals, bonding in solids, diffraction and the reciprocal
lattice, and order and disorder in solids.

Section II, on the “Physical Properties of Materials,” consists of six chapters
on phonons; thermally activated processes, phase diagrams, and phase transitions;
electrons in solids: electrical and thermal properties; optical properties; magnetic
properties; and mechanical properties.

Section III, titled “Classes of Materials,” consists of eight chapters on semicon-
ductors; metals and alloys; ceramics; polymers; dielectric and ferroelectric materials;
superconductors; magnetic materials; and optical materials. In each chapter the distinc-
tive properties of each class of materials are discussed using technologically-important
examples from each class. In addition, the structure and key properties of selected
materials are highlighted. In this way an indication of the wide spectrum of materials
in each class is presented.

Section IV, titled “Surfaces, Thin Films, Interfaces, and Multilayers,” consists of
two chapters covering these important topics. Here the effects of spatial discontinuities
in the physical and chemical structure on the properties of materials are presented,
both from the point of view of creating materials with new properties and also of
minimizing the potential materials problems associated with surfaces and interfaces.

Section V, titled “Synthesis and Processing of Materials,” consists of a single
chapter. Representative examples of how the structure and properties of materials
are determined by the techniques used to synthesize them are presented. “Atomic
engineering” is stressed. The tuning of structure and properties using postsynthesis
processing is also illustrated.

Problem sets are presented at the end of each chapter and are used to emphasize
the most important concepts introduced, as well as to present further examples of
important materials. Illustrations are employed for the purpose of presenting crystal
structures and key properties of materials. Tables are used to summarize and contrast
the properties of related groups of materials.

We have created a home page that provides a valuable supplement to the textbook
by describing additional properties of materials, along with additional examples of
current materials and their applications. Chapter W22 on our home page emphasizes
the structural and chemical characterization of materials, as well as the characterization
of their optical, electrical, and magnetic properties. As new materials and applications
are developed, the home page will be regularly updated.

Since this text will likely be used most often in a one-semester course, we recom-
mend that Chapters 1–4 on structure be covered in as much detail as needed, given
the backgrounds of the students. A selection of chapters on the properties of mate-
rials (5–10) and on the classes of materials (11–18) of particular interest can then be
covered. According to the tastes of the instructor and the needs of the students, some of
the remaining chapters (surfaces; thin films, interfaces, and multilayers; synthesis and
processing of materials) can be covered. For example, a course on engineering materials
could consist of the following: Chapters 1–4 on structure; Chapter 6 on thermally acti-
vated processes, etc.; Chapter 10 on mechanical properties; Chapter 12 on metals and
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alloys; Chapter 13 on ceramics; Chapter 14 on polymers; and Chapter 21 on synthesis
and processing.

Physics majors usually take an introductory course in solid-state physics in their
senior year. Therefore in such a course it will be necessary to start at “the beginning,”
i.e., Chapter 1 on the structure of crystals. Students in MS&E or engineering depart-
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with Chapter 5 on phonons, if desired, or Chapter 7 on electrons in solids.
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and City University who, over the years, have shared with us their
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They include R. R. Alfano, J. L. Birman, T. Boyer, F. Cadieu, H. Z. Cummins,
H. Falk, A. Genack, M. E. Green, L. L. Isaacs, M. Lax, D. M. Lindsay (deceased),
V. Petricevic, F. H. Pollak, S. R. Radel, M. P. Sarachik, D. Schmeltzer, S. Schwarz,
J. Steiner, M. Tamargo, M. Tomkiewicz, and N. Tzoar (deceased). Colleagues outside
CUNY who have shared their knowledge with us include Z. L. Akkerman, R. Dessau,
H. Efstathiadis, B. Gersten, Y. Goldstein, P. Jacoby, L. Ley, K. G. Lynn, D. Rahoi,
and Z. Yin. Our thanks also go to our students and postdocs who have challenged
us, both in our research and teaching, to refine our thinking about materials and their
behavior.

Special thanks are due to Gregory Franklin who served as our editor at John Wiley
& Sons for the bulk of the preparation of this textbook. His unflagging support of
this effort and his patience are deeply appreciated. Thanks are also due to our current
editor, George Telecki, who has helped us with sound advice to bring this project to
a successful conclusion. We acknowledge with gratitude the skill of Angioline Loredo
who supervised the production of both the textbook and supplementary Web-based
material. We have appreciated the useful comments of all the anonymous reviewers of
our textbook and also wish to thank all the authors who granted permission for us to
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INTRODUCTION

The study of materials and their properties and applications is an important part of
modern science and technology. As may be expected for such a wide-ranging subject,
the study of materials is a multidisciplinary effort, encompassing segments of physics,
chemistry, and essentially all branches of engineering, including aerospace, chemical,
civil, electrical, and mechanical. In addition, the relatively new discipline of materials
science and engineering focuses directly on the study of the properties and applications
of materials.

Materials can be classified as being either natural or artificial, the latter corre-
sponding to materials, not found in nature, that are prepared by humans. Important
natural materials have included organic materials such as wood, ivory, bone, fiber,
and rubber, along with inorganic materials such as minerals and ceramics (stone, flint,
mica, quartz, clay, and diamond) and metals such as copper and gold. Different eras
of civilization have been given names corresponding to the materials from which tools
were made: for example, the Stone Age, the Chalcolithic (Copper–Stone) Age, the
Bronze Age, and the Iron Age. Recently, the dominant technological materials have
been manufactured, such as steels as structural materials and the semiconductor Si for
electronics.

Although the use of solid materials extends to prehistory, the systematic study and
development of materials have begun much more recently, within the last 100 years.
Development of the periodic table of the elements in the nineteenth century and the
resulting grouping of elements with similar properties played a crucial role in setting
the stage for the development of materials with desired properties. The discovery that
x-rays could be used to probe the internal structure of solids early in the twentieth
century also played a key role in accelerating the study of materials.

The study of materials as presented in the textbook, The Physics and Chemistry of
Materials, begins with in-depth discussions of the structure of materials in Chapters 1
to 4 and of the fundamental principles determining the physical properties of materials
in Chapters 5 to 10. Following these discussions of structure and properties, which
apply to all materials, eight essentially distinct classes of materials are discussed in
Chapters 11 to 18, with emphasis placed on their special properties and applications.
The surfaces of materials, interfaces between materials, and materials in the form of
thin films and multilayers are then discussed in Chapters 19 and 20. A discussion of
the synthesis and processing (S&P) of materials follows in Chapter 21, with emphasis
both on general issues and also on the S&P of specific materials.

In addition to the text material, supplementary material for all the chapters is
found here, our home page at the Wiley Web site. This material includes a wide
range of additional discussions of the properties and applications of materials. Also,
experimental techniques used for the characterization of a wide range of materials
properties are discussed in Chapter W22. The following topics are reviewed briefly in

1



2 INTRODUCTION

the appendices appearing at the Web site: thermodynamics, statistical mechanics, and
quantum mechanics.

The eight classes of materials discussed in this book include semiconductors, metals
and alloys, ceramics, polymers, dielectrics and ferroelectrics, superconductors, magnetic
materials, and optical materials. Our discussions of these materials are meant to provide
an introduction and solid grounding in the specific properties and applications of each
class. Although each class of materials is often considered to be a separate specialty
and the basis for a distinct area of technology, there are, in fact, many areas of
overlap between the classes, such as magneto-optical materials, ceramic superconduc-
tors, metallic and ceramic permanent magnet materials, semiconductor lasers, dilute
magnetic semiconductors, polymeric conductors, and so on.

There have been many materials success stories over the years, including the high-
Tc superconductors, a-Si:H in photovoltaic solar cells, Teflon and other polymers,
optical fibers, laser crystals, magnetic disk materials, superalloys, composite materials,
and superlattices consisting of alternating layers of materials such as semiconductors
or metals. These materials, most of which have found successful applications, are
described throughout.

Our understanding of the structure of materials at the atomic level is well devel-
oped and, as a result, our understanding of the influence of atomic-level microstructure
on the macroscopic properties of materials continues to improve. Between the micro-
scopic and macroscopic levels, however, there exists an important additional level of
structure at an intermediate length scale, often determined by defects such as grain
boundaries, dislocations, inclusions, voids, and precipitates. Many of the critical prop-
erties of materials are determined by phenomena such as diffusion and interactions
between defects that occur on this intermediate structural level, sometimes referred to
as the mesoscopic level. Our understanding of phenomena occurring on this level in
the heterogeneous (e.g., polycrystalline, amorphous, and composite) materials that are
used in modern technology remains incomplete. Many of the properties of materials
that are critical for their applications (e.g., mechanical properties) are determined by
phenomena occurring on this level of microstructure.

Useful materials are becoming more complex. Examples include the high-Tc copper
oxide–based ceramic superconductors, rare earth–based permanent magnets, bundles
of carbon nanotubes, and even semiconductors such as Si–Ge alloys employed in
strained layers and superlattices. Recent and continuing advances in the design and
manipulation of materials atom by atom to create artificial structures are revolutionary
steps in the development of materials for specific applications. This area of nanotech-
nology is an important focus of this book.

As we enter the twenty-first century and the world population and the depletion of
resources both continue to increase, it is clear that the availability of optimum materials
will play an important role in maintaining our quality of life. It is hoped that textbooks
such as this one will serve to focus the attention of new students, as well as existing
researchers, scientists, and engineers, toward the goals of developing and perfecting
new materials and new applications for existing materials.



CHAPTER W1

Structure of Crystals

W1.1 Crystal Structures Based on Icosahedral Bonding Units

While the A–A12(cub) and A–A12(hex) bonding units appear in the FCC and HCP
crystal structures, respectively, the crystal structures that include A–A12(icos) and
A–B12(icos) icosahedral units are generally much more complicated. An example of
a crystal structure based in part on the A–B12(icos) unit, see Fig. 1.11 of the text-
book,† is the ˇ-tungsten (ˇ-W) crystal structure, an interesting example of which is
the intermetallic compound Nb3Sn. This compound is of the Frank–Kasper tetrahe-
drally close-packed type, with each Sn atom surrounded icosahedrally by 12 Nb atoms
at an interatomic distance of 0.296 nm and with each Nb atom at the center of a coor-
dination number CN 14 polyhedron surrounded by four Sn atoms at 0.296 nm, two Nb
atoms at 0.264 nm, and eight other Nb atoms at 0.324 nm. Frank–Kasper phases with
CN 15 and CN 16 coordination polyhedra also exist (e.g., Fe7W6 with CN 12, CN 14,
CN 15, and CN 16 coordination polyhedra). In general, larger atoms occupy the CN 15
and CN 16 central sites and smaller atoms occupy the CN 12 and CN 14 central sites.

Another family of close-packed structures based on both icosahedral units and poly-
hedral units with more than 12 NN is known as the Laves phases, the prototype of
which is the intermetallic compound MgCu2. In this structure each Mg atom is at the
center of a CN 16 polyhedron with 12 Cu atoms at 0.292 nm and four Mg atoms
at 0.305 nm, while each Cu atom is surrounded icosahedrally by six Mg atoms at
0.305 nm and six Cu atoms at 0.249 nm.

W1.2 Packing Fractions of BCC and CsCl Crystal Structures

The BCC crystal structure results when an identical atom is placed in the body-centered
interstitial site of the SC crystal structure. Now N�atom� D 2 and, as can be seen in
Fig. W1.2b,† three atoms are in contact along the body diagonal (of length

p
3 a) of the

unit cell in the [111] direction. The atoms along the cube edge are no longer in contact
with each other. It follows that

p
3 a D r C 2r C r D 4r, and therefore V�atom� Dp

3�a3/16. Finally,

PF(BCC) D �2��
p

3�a3/16�

a3
D
p

3�

8
D 0.68. �W1.1�

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W1.1. Directions in a lattice.
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Figure W1.2. Diagrams used in the calculations of packing fractions for the following crystal
structures: (a) simple cubic (SC), with the atoms lying in a (100) plane; (b) body-centered cubic
(BCC), with the atoms lying in a (110) plane; (c) cesium chloride (CsCl), with the atoms shown
in a (110) plane.

The CsCl crystal structure results when a smaller B atom is placed at the body-
centered interstitial site of the SC crystal structure, so that it makes contact with
the eight larger A atoms surrounding it. For the special case where rA D a/2 and
rB/rA D �

p
3� 1�, the two A atoms remain in contact along a cube edge, as shown

in Fig. W1.2c. It follows, therefore, that
p

3a D 2rA C 2rB along the cube body
diagonal. The atom volumes are given by V�atom A� D �a3/6 and V�atom B� D
�
p

3� 1�3�a3/6. With one A and one B atom per unit cell, the packing fraction is
therefore

PF D �1���a3/6�

a3
C �1��

p
3� 1�3��a3/6�

a3

D 0.52C 0.21 D 0.76. �W1.2�

This is the largest possible value for the packing fraction of two spherical atoms of
different radii in the CsCl crystal structure and is higher than the value of PF D 0.74
for the FCC and HCP crystal structures.
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W1.3 Density of CsCl

To illustrate the use of Eqs. (1.7) and (1.8) of the textbook, consider the case of CsCl
where the lattice constant is a D 0.411 nm and the atomic masses are m�Cs� D 2.207ð
10�25 kg and m�Cl� D 0.5887ð 10�25 kg. Therefore,

n�atom� D 2 atoms

�0.411ð 10�9 m�3
D 2.88ð 1028 atoms/m3, �W1.3�

� D �1��2.207ð 10�25 kg�

�0.411ð 10�9 m�3
C �1��0.5887ð 10�25 kg�

�0.411ð 10�9 m�3

D 4027 kg/m3. �W1.4�

PROBLEM

W1.1 Explain why icosahedral clusters of 13 atoms, corresponding to A–A12(icos),
are more stable (i.e., have a lower energy) than FCC or HCP clusters of 13
atoms [i.e., A–A12(cub) and A–A12(hex)]. [Hint: Count the number of “bonds”
formed in each cluster between pairs of atoms that are in contact or, in the case
of A–A12(icos), nearly in contact with each other.]



CHAPTER W2

Bonding in Solids

W2.1 Atomic, Hybrid, and Molecular Orbitals Involved in Bonding in
Solid-State Materials

When isolated atoms come together to form a solid, the atomic orbitals of the valence
electrons are often modified as bonding between the atoms occurs. In this section the
orbitals for electrons in isolated atoms (i.e., the atomic orbitals) are described first.
The hybrid orbitals resulting from combinations of atomic orbitals on the same atom
are described next, followed by a description of the molecular orbitals that result
when atomic or hybrid orbitals on different atoms combine with each other as the
atoms form bonds. It should be emphasized at the outset that the atomic, hybrid, and
molecular orbitals described here are just useful approximations to the actual solutions
of the Schrödinger equation for atoms and molecules. The derivations of mathematical
expressions for these orbitals are not given here since it is outside the scope of this
material to present in detail the physics and chemistry of atoms and molecules.

Atomic Orbitals. The atomic orbitals of the electrons in an atom correspond to
the solutions of the Schrödinger equation for the wavefunctions  which are labeled
with the three quantum numbers n, l, and ml [i.e.,  �nlml�]. (The magnetic quantum
number ms is discussed later.) The energies and spatial extents of the electrons in the
atomic orbitals are determined by the principal quantum number n, which has allowed
values n D 1, 2, 3, . . . ,1. For example, the binding energies of the  �nlml� atomic
orbitals in atomic hydrogen decrease as 1/n2 while their radii increase as n2. The
orbital angular momentum quantum number l specifies the angular momentum of the
electron and can take on the values l D 0, 1, 2, . . . , n� 1. For example, for n D 4, the
allowed values of l are 0 (for s states), 1 (for p states), 2 (for d states), and 3 (for
f states). The quantum number ml determines the orientation of the orbital in space
and can have the �2lC 1� integral values lying between �l and Cl. For d states with
l D 2 the five allowed values of ml are �2, �1, 0, C1, and C2.

The probability of finding the electron at a point in space is proportional to the
value of j �nlml�j2 at that point. The charge density associated with the electron in
this orbital is given by �ej j2. The electronic charge densities for one-electron or
hydrogenic atoms and ions are shown schematically in Fig. W2.1 for the single s,
three p (px, py , and pz), and five d (dx2�y2 , dz2 , dxy , dyz, and dxz) atomic orbitals. The
shapes of these orbitals as shown are only schematic (e.g., the orbitals do not actually
have the sharp boundaries indicated in the figure).
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Figure W2.1. Electronic charge distribution in hydrogenlike s, p, and d atomic orbitals. The
relative phases of the different lobes of the p and d orbitals are indicated with plus and
minus signs. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

It can be seen from Fig. W2.1 that the s orbital is spherically symmetric, whereas
the p and d orbitals have preferred directions in space. In particular, the px, py ,
and pz orbitals have two symmetric regions of high probability called lobes which
are directed along the x, y, and z axes, respectively. The five d orbitals are more
complicated. The dz2 orbital has a shape that is similar to the pz orbital but is much
more extended in one direction in space. The four other d orbitals are similar to each
other in shape, with four lobes as shown. It should be remembered that each orbital
can accommodate no more than two electrons, no matter how many lobes it has. It is
important to note that the phase of the wavefunction alternates between being positive
in one lobe and negative in the adjacent lobes. The significance of this will become
apparent when lobes of orbitals on different atoms overlap. Although rigorously correct
in principle only for one-electron atoms and ions, these atomic orbitals are also used
for multielectron atoms.

Some of the atomic orbitals that are important for bonding in solid-state materials
are listed in Table W2.1. The spin of the electron is s D 1

2 , and in this table the allowed
values C 1

2 and � 1
2 of the magnetic quantum number ms which correspond to spin-up

and spin-down electrons, respectively, are also given. A complete specification of the
atomic orbital is therefore given by  �nlmlms�. The maximum allowed occupancy
of an atomic orbital is given by 2�2lC 1�. A fully occupied or filled orbital or shell



BONDING IN SOLIDS 9

TABLE W2.1 Important Atomic Orbitals for Bonding in Solids

Atomic Maximum
Orbital n l ml ms Occupancy

1s 1 0 0 š 1
2 2 (1s2)

2s 2 0 0 š 1
2 2 (2s2)

2px , 2py , 2pz 2 1 0, š1 š 1
2 6 (2p6)

3s 3 0 0 š 1
2 2 (3s2)

3px , 3py , 3pz 3 1 0, š1 š 1
2 6 (3p6)

3dz2 , 3dx2�y2 , 3 2 0, š1, š2 š 1
2 10 (3d10)

3dxy , 3dyz, 3dxz

therefore contains 2�2lC 1� electrons. For example, a filled 3d10 shell corresponds to
10 electrons occupying all of the n D 3, l D 2 d orbitals of the atom. The fact that only
10 electrons can occupy an l D 2 orbital follows from the Pauli exclusion principle
(PEP), which states that in a quantum system such as an atom, molecule, or solid, each
electron must have a set of quantum numbers which is distinct from that of any other
electron in the system.

It should be noted that p and d orbitals are actually linear combinations of wave-
functions with different values of ml (except for pz or dz2 , which correspond to ml D 0).
The outer or valence electron configurations of neutral atoms in their ground states are
presented in Table W2.2.

Two important aspects of the bonding of electrons in neutral atoms are illustrated
in Fig. W2.2, where the energies of electrons are shown schematically as a function
of the atomic number Z. Starting with the energy levels of the H atom on the left, it
can be seen that:

1. Electrons are more tightly bound (i.e., their energies are more negative) as the
charge CZe of the nucleus increases.

2. Electrons in the same shell [i.e., in the n D 2 shell (2s and 2p) or the n D 3 shell
(3s, 3p, and, for high enough Z, 3d)] have similar energies which are usually
quite different from the energies of electrons in other shells.

It is also clear from Fig. W2.2 that electrons outside closed shells (e.g., the single
3s electron of the Na atom with Z D 11), are much less strongly bound than those
in filled shells. These less strongly bound electrons are the atomic valence elec-
trons, which can participate readily in the hybrid or molecular orbitals described
next.

Hybrid Orbitals. As atoms bond to each other in molecules and solids via covalent
bonding (i.e., the sharing of electrons), it is often useful to think of the valence electron
atomic orbitals having similar energies on a given atom (such as 2s and 2p or 3s,
3p, and 3d) combining with each other to form hybrid orbitals. The bonding between
the atoms can then involve the hybrid orbitals in addition to the atomic orbitals. An
example of this type of bonding in the CH4 molecule is discussed later.
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Figure W2.2. Dependence of the energies of electrons in atomic orbitals as a function of the
atomic number Z. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

+

+

s 2pz

Figure W2.3. Formation of sp hybrid orbitals from s and p atomic orbitals on the same atom.
(Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

Consider now the linear combination of s and p atomic orbitals on the same atom,
leading to the formation of two new, equivalent hybrid sp orbitals. This process is
shown schematically in Fig. W2.3, where it can be seen that the resulting sp orbitals
have the directional properties of the p orbital but are asymmetric. In addition, sp
orbitals can also be formed from two s orbitals on the same atom if one of the electrons
in an s orbital is first excited or promoted to a higher-lying p orbital. This p orbital
then combines with the remaining s orbital to form two sp hybrid orbitals. The energy
initially expended to excite the electron from the s to the p orbital can be recovered
when the sp hybrid participates in a bond with another atom. This process of the
hybridization of atomic orbitals can occur in principle because it leads to the formation
of strong bonds between atoms and a lowering of the energy of the system.

The directionality of hybridized sp orbitals is due to the interference between the
s and p orbitals. For example, the pz orbital might have a phase corresponding to
 p > 0 if z > 0 and  p < 0 if z < 0. If the phase of  s is > 0, then  s C  p will
be larger (on average) for z > 0 than for z < 0. On the other hand,  s �  p will be
larger for z < 0 than for z > 0.
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The hybrid sp2 or sp3 orbitals can be formed similarly when two s and one or
two p atomic orbitals, respectively, combine on the same atom. The resulting three
equivalent sp2 hybrid orbitals have trigonal planar symmetry, while the four equivalent
sp3 hybrid orbitals have tetrahedral symmetry, as shown in Fig. W2.4. The sp3 orbitals
can be written approximately as linear combinations of the s, px, py , and pz atomic
orbitals (Borg and Dienes, 1992, p. 209). Note that the symmetric arrangements of these
sp, sp2, and sp3 orbitals in space result from the mutual repulsion of the electrons
occupying the orbitals.

Electrons in d atomic orbitals can also participate in the formation of hybrid orbitals.
Two important examples are shown in Fig. W2.5. The four dsp2 hybrid orbitals result
from the linear combination of the dx2�y2 , s, px, and py atomic orbitals on an atom.
These dsp2 hybrids appear similar in shape and symmetry (square planar) to the
dx2�y2 orbital but can accommodate four times as many electrons. The six d2sp3

hybrid orbitals that result from the linear combination of the dx2�y2 , dz2 , s, px, py ,
and pz atomic orbitals have the symmetry of an octahedron, also shown in Fig. W2.5.
Additional hybrids involving d orbitals are the three sd2 orbitals with trigonal planar
symmetry, the four sd3 orbitals with tetrahedral symmetry, the five dsp3 orbitals with

z

x x x

yy y+ +

pypx
s

x

y120°

x x x x
z z

(a)

(b)

z

y + y + y + y

s px py pz

Figure W2.4. Formation of trigonal planar sp2 and of tetrahedral sp3 hybrid orbitals from s
and p atomic orbitals on the same atom. (Adapted from A. L. Companion, Chemical Bonding,
2nd ed., McGraw-Hill, 1979.)
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Figure W2.5. Square-planar dsp2 and octahedral d2sp3 hybrid orbitals formed from s, p, and
d atomic orbitals on the same atom. (Adapted from A. L. Companion, Chemical Bonding, 2nd
ed., McGraw-Hill, 1979.)

TABLE W2.3 Important Hybrid Orbitals Involved in
Bonding in Solids

Coordination
Number CN

Hybrid (Number
Orbital Symmetry of Bonds) Examples

sp Linear 2 Cu2O
sp2 Trigonal planar 3 C (graphite)
sp3 Tetrahedral 4 C (diamond)
dsp2 Square planar 4 CuCl, CuO
d2sp3 Octahedral 6 FeS2

sp3d3f Cubic 8

the symmetry of a trigonal bipyramid, the six d4sp orbitals with the symmetry of a
trigonal prism, and the eight sp3d3f orbitals with the symmetry of the vertices of a
cube. The sd3 orbitals are involved in the bonding of the Cr4C ion (substituting for
Si4C) in tetrahedral coordination with four oxygen ions in crystals such as Mg2SiO4,
forsterite.

Some of the hybrid orbitals that are important for bonding in solid-state mate-
rials are listed in Table W2.3. Also listed are the symmetries of the orbitals, the
coordination number CN or number of bonds that can be formed by an atom using
these orbitals and examples of crystals in which the hybrid orbitals are involved in
the bonding. The formation of these hybrid orbitals is only a transitional step in the
bonding process, since these orbitals are eigenstates of neither the isolated atom nor
the resulting molecule or solid.

Molecular Orbitals and Chemical Bonds. The electrons involved in the chemical
bonds between atoms in a molecule no longer occupy specific atomic or hybrid orbitals
but rather, occupy molecular orbitals (MOs) that are associated with two or more
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atoms. The wavefunctions of these MOs can be calculated in principle by solving the
Schrödinger equation for the molecule. This is very difficult to do in practice since
the potential experienced by the electrons due to the nuclei and the other electrons
is not known a priori. As a result, the solutions for the MOs must be obtained in a
self-consistent manner.

As an example, consider the simplest chemical bond, the bond between two H
atoms in the H2 molecule. In the formation of this molecule, the 1s atomic orbitals
of each H atom begin to overlap in space as the atoms approach each other. If the
phases of the two 1s orbitals are the same, constructive interference results and a
bonding molecular orbital (BMO) is produced. If the phases are opposite, destructive
interference occurs and an antibonding state results. In an occupied bonding orbital
there is an excess electron density between the nuclei. In an occupied antibonding state
there is a diminished electron density between the nuclei.

When the interaction is completed and the H2 molecule is formed, the two 1s orbitals
have combined into a single BMO known as a �1s MO, in which the two electrons are
bound equally to both nuclei. In this doubly occupied �2

1s MO, shown schematically
in Fig. W2.6a, the electron charge density midway between the two nuclei is larger
than the sum of the original charge densities in the two 1s atomic orbitals. When a �
MO is doubly occupied, the two electrons are required by the PEP to have their spins
pointing in opposite directions, corresponding to a singlet state.

Z Zz z

(a)

(b)

z z

Figure W2.6. Formation of sigma molecular orbitals (� MOs): (a) from two s atomic orbitals
on different atoms; (b) from two pz atomic orbitals on different atoms. (Adapted from
A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)
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Stable molecules have lower energies than the initially isolated atoms. For example,
the H2 molecule is lower in energy than the two isolated H atoms by 4.52 eV (see
Fig. 2.1 in the textbook†). This energy can be associated with the energy of the covalent
H–H � bond [i.e., E�H–H� D 4.52 eV]. The � bonds correspond to the buildup of
charge between the two atoms involved and are the strongest covalent bonds. Other �
MOs similar to the one shown in Fig. W2.6a can also be formed from any of the other
atomic (2s, 2p, 3s, 3p, 3d, . . .) or hybrid (sp, sp2, sp3, dsp2, d2sp3, . . .) orbitals.
For example, when two 2pz atomic orbitals (see Fig. W2.1) on different atoms overlap
head-on and in phase, the �2p MO shown in Fig. W2.6b is formed.

Another important type of molecular orbital is the � MO formed from p or d atomic
orbitals. For example, consider again the interaction of two 2pz orbitals on different,
identical atoms which are now aligned side by side with their phases synchronized,
as shown schematically in Fig. W2.7. Their linear combination is known as a � MO
and contains two equivalent regions of high probability, placed symmetrically with
respect to the xy plane. When occupied by two electrons, the � MO corresponds to a
covalent � bond. The � bonds are in general weaker than � bonds because their charge
distributions are more spread out.

The last type of MO to be discussed here is the υ MO formed from the head-on
overlap of two 3d orbitals on different, identical atoms. An example is shown in
Fig. W2.8, where two 3dx2�y2 orbitals overlap along the z axis. Four equivalent regions
of high probability are formed symmetrically with respect to the z axis. When the υ
MO contains its two allowed electrons, a covalent υ bond is formed. The υ bonds are
in general weaker than � or � bonds.

The methane molecule, CH4, provides a simple example of � bonding. Here four
identical � bonds are formed from the four electrons in the 1s H orbitals and the four
electrons in each of the sp3 hybrid orbitals on the C atom. The resulting tetrahedral �

(a)

(c)
(b)

Figure W2.7. Formation of a � molecular orbital (� MO) from two pz atomic orbitals on
different atoms. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W2.8. Formation of a υ molecular orbital (υ MO) from two 3dx2�y2 atomic orbitals on
different atoms. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

H
H

H

H

C

Figure W2.9. Model of the sp3 tetrahedral � bonding in the CH4 (methane) molecule. (Adapted
from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

H

H

H

N

I p

Figure W2.10. Model of the “sp3 tetrahedral” � bonding in the NH3 (ammonia) molecule.
(Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

bonding in CH4 is shown schematically in Fig. W2.9, where the angles between the �
bonds have the ideal value of 109.47°.

Examination of the bonding in the ammonia molecule, NH3, illustrates the formation
of nonbonding molecular orbitals (NBMOs). In NH3 three � bonds are formed between
the H atoms and the N atom, as shown in Fig. W2.10. Since N has a valence of 5, the
two remaining valence electrons form a nonbonding, or lone pair (lp), orbital, also
shown in the figure. The NH3 molecule does not have perfect tetrahedral symmetry
since the three � bonds and the nonbonding orbital are not equivalent. The reality
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of the nonbonding orbital can be inferred from its transformation to a � bond in the
ammonium ion, NH4

C. Here a proton HC bonds to the N atom through its attraction
to the electrons in the NBMO, thereby converting this orbital into the fourth � bond
in the tetrahedral NH4

C ion. Non-bonding orbitals can also play important roles in the
bonding of solids. NBMOs participate in hydrogen bonding (see Section 2.7), which
helps to stabilize the structures of solid H2O and DNA.

The interaction of two atomic or hybrid orbitals on different atoms can also lead to
the formation of a less stable, antibonding MO (ABMO) lying higher in energy than
the more stable BMO. In the case of the H2 molecule the spins of the two electrons
in the �1s BMO are antiparallel, corresponding to a singlet spin state, while in the �1s

ABMO the spins are parallel, corresponding to a triplet spin state. The energy of the
�1s ABMO state lies well above that of the �1s BMO in H2, as shown in Fig. 2.1.
The triplet state of this molecule is therefore unstable. Examples of stable molecules
in which ABMOs are actually occupied by electrons are O2 and NO.

W2.2 Absence of Covalent Bonding in White Sn (b-Sn) and Pb

The absence of covalent bonding and the existence instead of metallic bonding in
the group IV elements white Sn (ˇ-Sn) of row 5 and Pb of row 6 can be attributed
to the increased separation between the s and p energy levels in these atoms. This
results from the fact that the 5s and 6s electrons are relatively more strongly bound
to the nuclei. It is therefore no longer energetically favorable for the 5s2p2 and 6s2p2

atomic electrons to undergo the hybridizations to 5sp3 and 6sp3 orbitals, respectively,
which are necessary for covalent bonding to occur. Another specific indication of the
relatively stronger binding of the 6s electrons is that Pb (6s26p2) often has a valence
equal to 2 in solids (e.g., PbO and PbS), indicating that the more strongly bound 6s2

electrons do not participate in the bonding.

W2.3 Madelung Energy of Ionic Crystals

A general expression for the electrostatic energy (i.e., the Madelung energy) of an
ionic crystal is obtained by adding together all the Coulomb interaction energies of the
ions. Let zie denote the charge of the basis ion at position si. Neutrality requires that
niD1zi D 0, where n is the number of ions in a unit cell. The Madelung energy is

U D e2

4��0


N

2

n∑
i,j

zizj
jsi � sjj C

N

2

∑
R

n∑
i,j

zizj
jRC si � sjj


 , �W2.1�

where R is a Bravais lattice vector and N is the number of unit cells in the crystal
(assumed to be large). Note that R D 0 is excluded from the sum. In the first sum
the term i D j is omitted. The evaluation of this sum is carried out by summing over
“shells” of ions of given charge at a given distance from the central ion. The interactions
involving the cell at R D 0 are illustrated in Fig. W2.11.

This contribution of the electrostatic interaction to the cohesive energy of an ionic
crystal containing 2N ions is usually expressed as U D �NAe2/4��0d, where A > 0
is the Madelung constant and the energy of interaction for a NN cation–anion pair
separated by a distance d is �e2/4��0d. For the CsCl, NaCl, and cubic ZnS crystal
structures, the values of A are 1.7627, 1.7476, and 1.6381, respectively. On this basis
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si sj

R

Figure W2.11. The lines within the box correspond to the intrabasis Coulomb interactions
(within a given unit cell), while the lines joining the boxes denote the intercell interactions.

the CsCl crystal structure is expected to be slightly more stable than the NaCl crystal
structure. Other effects not included here, where ions have been treated as point charges,
such as overlap of charge clouds, make the very small calculated difference between
the CsCl and NaCl crystal structures rather meaningless. The actual ion–ion interaction
is more realistically modeled as the sum of a short-range repulsive potential and the
long-range Coulomb interaction,

V�r� D B

rm
� zczae

2

4��0r
, �W2.2�

where B and m are empirical parameters. Ionic bonding and the Madelung energy are
described in more detail in Chapter 13.

W2.4 Hydrogen Bonding in Ice (Solid H2O)

An example of a crystal in which hydrogen bonding plays an essential role is solid H2O
or ice, where the hydrogen-bonding unit can be written as O–HÐ Ð ÐO. Each oxygen atom
in ice is bonded by strong O–H � bonds with the two H atoms in the H2O molecule
and by weaker HÐ Ð ÐO hydrogen bonds to two H atoms in neighboring H2O molecules.
The arrangement of a central O atom with the four H atoms is tetrahedral (Fig. W2.12).
The O–H distance in the O–H bond is about 0.10 nm and is about 0.175 nm in the
weaker HÐ Ð ÐO hydrogen bond. Ice has several stable crystal structures which share this
tetrahedral orientation of each O atom with respect to the four H atoms surrounding
it and also with respect to its four next-NN O atoms. At any given instant, two of
the four H atoms in each of these tetrahedral O-centered units in ice are bonded to
the central O atom by strong O–H bonds. The other two H atoms are bonded to the
central O atom via the weaker HÐ Ð ÐO bonds. Neutron diffraction studies of solid D2O
have shown, however, that the four D (or H) atoms associated with each O atom are
constantly changing their positions so that each D (or H) atom spends half of its time
in strong � bonds to the central O atom and the other half in strong � bonds with a
neighboring O atom. These results are consistent with thermodynamic studies of the
high residual entropy found in ice crystals, which reflects the “disorder” present in
ice even at very low temperatures. Thus while H2O molecules retain their identity in
crystals of ice, it is not possible to say which two of the four H atoms are bonded via
strong O–H � bonds with the central O atom at any instant.
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Figure W2.12. Crystal structure of ice (solid H2O) illustrating hydrogen bonding and showing
the disorder in the positions of the protons (H atoms). (From N. H. Fletcher, The Chemical
Physics of Ice, Cambridge University Press, Cambridge, 1970. Reprinted with the permission of
Cambridge University Press.)

The strengths of the two bonds in O–HÐ Ð ÐO bonding units are quite different, with
the much stronger O–H � bond having an energy E�O–H� ³ 4.8 eV, while the much
weaker HÐ Ð ÐO hydrogen bond has an energy E�H Ð Ð ÐO� of only about 0.4 eV. Thus the
melting of ice (which involves the weakening of the HÐ Ð ÐO hydrogen bonds between
H2O molecules) and the boiling of water (which involves the breaking of the hydrogen
bonds) occur at relatively low temperatures. The processes of melting and boiling leave
the much stronger O–H � bonds within each H2O molecule intact.

W2.5 Standard Enthalpies of Formation

Cohesive energies Hc must in general be distinguished from the standard enthalpies
of formation fHo of crystals, which are the changes in enthalpy involved in the
formation of a crystal from the constituent elements in their standard states. For
example, the standard enthalpy of formation at T D 0 K of ˛-SiO2(s) (i.e., ˛-quartz),
according to the reaction

Si�s�C O2�g� ���! SiO2�s� �W2.3�

is equal to the standard enthalpy change rHo for this reaction. Thus

rH
o[SiO2�s�] D fH

o[SiO2�s�]�fH
o[Si�s�]�fH

o[O2�g�]

D �905.978� 0� 0 D �905.978 kJ/mol. �W2.4�

Solid Si(s) and molecular O2�g� in Eq. (W2.3) are in their standard states with standard
enthalpies of formation fHo, which by definition are equal to zero.† The negative

† Unless otherwise specified, the standard enthalpies of formation fHo used in this section are from the
NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11, Suppl. 2 (1982).
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value for fHo[SiO2�s�] indicates that energy is released when SiO2�s� is formed
from Si(s) and O2�g� (i.e., the reaction is exothermic).

The cohesive energy of ˛-SiO2 at T D 0 K according to the reaction

SiO2�s� ���! Si�g�C 2O�g� �W2.5�

is given by

Hc[�SiO2�s�] D fH
o[Si�g�]C 2fH

o[O�g�]�fH
o[SiO2�s�]

D 451.29C 2�246.785�� ��905.978�

D C1850.84 kJ/mol. �W2.6�

Here fHo[Si�g�] and fHo[O�g�] are the standard enthalpies of formation of gas-
phase Si and O atoms from solid Si(s) and O2�g� at T D 0 K, respectively.

W2.6 Bond Energies

The cohesive energy Hc[SiO2�s�] was shown in Eq. (W2.6) to be equal to
1850.84 kJ/mol. If this energy is assumed to be shared by the 4NA Si–O bonds per
mole of SiO2�s� (NA is Avogadro’s number), the Si–O bond energy is then

E�Si–O� D 4.80 eV. �W2.7�

The bond energies for single bonds listed in Table W2.4 have been obtained from
cohesive energies using this procedure. The crystals whose cohesive energies are used
are also listed. The close connection between bond energies and the electronegativity
scale is discussed in Section 2.8.

W2.7 Ionization Energies and Electron Affinities

It is clear from the discussions presented in Chapter 2 that the valence electrons play a
critical role in the bonding of atoms in solids. Certain important properties and param-
eters pertaining to atoms (or ions) include ionization energy, electron affinity, valence,

TABLE W2.4 Bond Energies

Bond E(X–Y)
X–Y (eV) Source

Si–Si 2.34 Si(s)
Si–C 3.21 ˇ-SiC(s, cubic)
Si–Ge 2.14 Average of Si(s) and Ge(s)
Si–N 3.45 Si3N4�s�
Si–O 4.80 ˛-SiO2�s�
C–C 3.70 C(s,diamond)
Ge–Ge 1.95 Ge(s)
Ge–O 3.66 GeO2�s�
B–N 3.32 ˇ-BN(s, cubic)
Al–N 2.90 AlN(s)
Al–O 5.33 Al2O3�s�
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and atomic or ionic radius. Of these important quantities, only the ionization energies
and electron affinities are obtained directly from experiment. The other parameters (i.e.,
valence, electronegativity, and atomic radii), can only be inferred from the measured
properties of atoms.

The first ionization energy IE(1) of an atom is the energy required to remove an elec-
tron from the neutral atom. IE(1) is also known as the ionization potential. Conversely,
the electron affinity EA of an atom is the energy released when an additional electron
is bound to a neutral atom, leading to the formation of a negative ion with charge �e.
The quantity IE(1) is thus a measure of the ease with which atoms give up electrons
(i.e., of their ability to become cations), while EA is the corresponding quantity for
the formation of anions.

The reactivity of an atom (i.e., its tendency to combine with other atoms to form a
solid), will be greater for atoms with low values of IE(1), such as Li and Na, or with
high values of EA, such as F and Cl. Conversely, atoms with high values of IE(1)
and low values of EA, such as He and Ne, will tend to be unreactive. Strongly ionic
crystals with high ionicities will be formed from pairs of atoms in which one atom has
a low IE(1) and the other atom has a high EA. The classic example is NaCl, where
the Na atom has IE�1� D 5.15 eV, the Cl atom has EA D 3.62 eV, and the resulting
ionicity (see Table 2.6) is fi D 0.94.

Values of IE(1) and IE(2) for the elements are presented in Table 2.9, with IE(1)
also shown graphically in Fig. 2.7a as a function of atomic number Z. It can be seen
that IE(1) generally increases in a given row of the periodic table from left to right as
Z, the resulting nuclear charge CZe, and the attractive electrostatic potential felt by the
electrons all increase. For example, at the beginning of the second row IE�1� D 5.39 eV
for Li with Z D 3, while at the end of the same row IE�1� D 21.56 eV for Ne with
Z D 10. Even though Z and the nuclear charge of atoms also increase down a given
group, IE(1) generally decreases in this direction because of the increase in atomic size
and the screening of the nuclear charge by electrons in filled inner shells.

The two atoms with the highest first ionization energies, He with IE�1� D 24.59 eV
and Ne with IE�1� D 21.56 eV, both have filled outer-electron shells. These two
elements, along with the other inert-gas elements in group VIII, are therefore quite
stable and unreactive. Only at low temperatures are these elements able to form close-
packed crystals in which the neutral atoms are bonded by the weak van der Waals
interaction.

Atomic excitation energies can also play a role in chemical bonding, particularly
in the formation of hybrid orbitals (see Section W2.1). For example, while IE�1� D
9.32 eV for Be is relatively high due to its 1s22s2 filled-shell electron configuration, Be
is nevertheless reactive due to the low first excitation energy of about 2.7 eV, which is
required to excite a 2s electron to a 2p atomic level. The 2s and the 2p electrons of the
excited Be atom can then form a pair of sp hybrid orbitals. Under these conditions, the
Be atom can be considered to have a valence of 2. These sp orbitals can form bonds
with other atoms, such as O in solid BeO, which has the wurtzite (i.e., hexagonal ZnS)
crystal structure.

The electron affinities EA for the elements up to Z D 87 are presented in Table 2.10
and Fig. 2.7b. It can be seen that EA is much smaller than IE(1) for a given atom.
Also, EA increases irregularly from left to right across each row of the periodic table,
reaching its maximum value for the group VII elements, which require just one addi-
tional electron to achieve a filled-shell configuration. All the elements in group II (and
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He) with filled s2 shells and in group VIII with filled s2 and p6 shells have negative
values of EA. These atoms are therefore unstable as negative ions.

W2.8 Valence

The valence z of an atom is usually defined either as the number of electrons it can
share with other atoms in covalent bonds or as the number of electrons it can gain or
lose in the formation of ionic bonds. These two definitions are often equivalent. For
example, the H atom can share its single 1s electron in a covalent bond with another
H atom or can give it up to a F atom during the formation of an ionic HF molecule.
In either case the valence of the H atom is 1.

On the basis of this definition, the most common valences for atoms are given by
the number of outer-shell s and p electrons and so can readily be predicted from their
locations in the periodic table. For example, atoms from group I (H, Li, Na, . . .) and
VII (F, Cl, Br, . . .) have valence 1, atoms from group II (Be, Mg, Ca, . . .) and VI (O,
S, Se, . . .) have valence 2, atoms from group III (B, Al, Ga, . . .) and V (N, P, As,
. . .) have valence 3, atoms from group IV (C, Si, Ge, . . .) have valence 4, while atoms
from group VIII (He, Ne, Ar, . . .) have valence 0.

As with many such simple definitions, there are a large number of instructive excep-
tions. For the transition metals and the noble metals Cu, Ag, and Au, for example,
there exist unfilled or just filled 3d, 4d, or 5d shells lying in energy just below the 4s,
5s, and 6s valence electrons. As a result, the d electrons may participate in bonding
and thereby act as valence electrons. Oxides of the 3d, 4d, and 5d transition metals
and of the noble metals illustrate this point since the valences for the metal cations
can vary from oxide to oxide, depending on the crystal structure. Some examples are
shown in Table W2.5. Note that in Fe3O4, magnetite, and Mn3O4, hausmannite, the Fe
and Mn cations are observed to have two different valence states, C2 and C3, within
the same oxide. Also included in the table are oxides of Pb, a metal with a 6s26p2

TABLE W2.5 Valence, Bonding, and Crystal Structures of Some Oxide Crystals

Chemical Valence z Local Atomic Crystal
Formula of Metal Ion Bonding Units Structure

Cu2O C1 Cu–O2, O–Cu4 Cuprite (BCC)
CuO C2 Cu–O4, O–Cu4 Tenorite (monoclinic)
MnO C2 Mn–O6, O–Mn6 NaCl
Mn2O3 C3 Mn–O6, O–Mn4 Distorted fluorite
Mn3O4 C2 (1) Mn–O4, O–Mn2CMn3C

3 Hausmannite (tetragonal)
C3 (2) Mn–O6

ˇ-MnO2 C4 ³ Mn–O6, O–Mn3 Rutile (tetragonal)
FeO C2 Fe–O6, O–Fe6 NaCl
Fe3O4 C2 (1) Fe–O6, O–Fe2CFe3C

3 Magnetite (inverse spinel)
C3 (1) Fe–O6

C3 (1) Fe–O4, O-Fe2C
2 Fe3C

2

Fe2O3 C3 ³ Fe–O6, O–Fe4 Corundum (hexagonal)
Pb2O C1 Pb–O2, O–Pb4 Cuprite (BCC)
PbO C2 Pb–O4, O–Pb4 Tetragonal
PbO2 C4 Pb–O6, O–Pb3 Rutile (tetragonal)
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electron configuration. The valence of Pb can vary due to the relatively large energy
separation between the 6s2 and 6p2 atomic energy levels.

The overall electrical neutrality of these oxide crystals requires that the total positive
charge of the metal cations be balanced by the total negative charge of the oxygen
anions. This balance is clearly reflected in the chemical formulas, assuming a valence
of oxygen equal to 2, and also in the local atomic bonding units, M–Om and O–Mn,
where m and n are the integal numbers of NNs of the metal M cations and of the O
anions, respectively. The following relationship involving the numbers of NNs and the
valences of the metal cation, z(M), and oxygen, z(O), is found to be satisfied for all
the oxides listed in the table:

mz�O� D nz�M�. �W2.8�

W2.9 Electronegativity

As an example of the use of Eq. (2.12), that is,

E�A–B� D E�A–A�C E�B–B�

2
C k�XA � XB�

2, �2.12�

consider quartz, SiO2. The single-bond energies E�Si–Si� D 2.34 eV and E�Si–O� D
4.80 eV are derived from thermochemical data (see Table W2.4). Using the single-bond
energy E�O–O� ³ 1.48 eV derived from similar data on H2O and H2O2, Eq. (2.12)
yields �XSi � XO�2 D 2.89. It follows that �XSi � XO� D �1.70 since it is known that
XSi < XO. To obtain an absolute scale for electronegativity, Pauling assigned the value
X D 4.0 to F, the most electronegative atom. In this way, the values of electroneg-
ativity presented in Table 2.11 have been obtained from Eq. (2.12). From Table 2.11
it can be seen that �XSi � XO� D 1.8� 3.5 D �1.7, as found above. These values of
electronegativity reproduce fairly well the measured single-bond energies E(A–B) in
a wide range of materials. It should be noted that electronegativities have not been
assigned to the elements in group VIII of the periodic table, since these atoms with
filled outer-electron shells do not ordinarily form bonds with other atoms.

It can be seen from Tables 2.9, 2.10, and 2.11 that the atoms with the highest
electronegativities [i.e., F (4.0), O (3.5), N (3.0), and Cl (3.0)] are also the atoms with
some of the highest first ionization energies IE(1) and highest electron affinities EA.
This observation is the basis of an alternative electronegativity scale proposed by
Mulliken† in which these strictly atomic properties have been used to define X, as
follows:

X D IE�1�C EA

5.42
. �W2.9�

Here IE(1) and EA are expressed in electron volts. When applied to Si and O using
the data presented in Tables 2.9 and 2.10, the values XSi D 1.76 and XO D 2.78 are
obtained from Eq. (W2.9), compared with Pauling’s values of 1.8 and 3.5. Mulliken’s
scale of electronegativity is thus only reasonably consistent with that of Pauling.

Since electronegativity is a parameter that is neither directly measured from exper-
iment nor precisely defined from first principles, it is not surprising that several scales

† R. S. Mulliken, J. Chem. Phys., 2, 782 (1934); 3, 573 (1935).
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of electronegativity exist in addition to those of Pauling and Mulliken. Scales based
on different assumptions and using different physical properties as input have been
proposed by Sanderson (1976) and by Phillips (1973). The Phillips electronegativity
scale for elements in tetrahedrally coordinated environments is based on dielectric
properties, in particular the optical dielectric function. The difference between the
Pauling and Phillips electronegativities is that Phillips includes the effects of screening
of ions by the valence electrons through use of the Thomas–Fermi screening factor
exp��kTFr�, defined in Chapter 7. These electronegativity scales have been found to
be particularly useful when applied to physical properties closely related to those used
in their definition.

One of the main uses of electronegativities has been in the prediction of the frac-
tion of ionic character of a given bond (i.e., the ionicity of the bond). Ionicities as
determined by Phillips have been presented in Table 2.6. With Pauling’s definition
of electronegativity given in Eq. (2.12), the ionicity of the binary compound AB is
defined by Pauling to be

fi�Pauling� D 1� exp
[
� �XA � XB�2

4

]
. �W2.10�

While the Pauling and Phillips definitions of X agree for the elements in the first row
of the periodic table, there are significant discrepancies for elements in lower rows.

A serious deficiency of Pauling’s and other electronegativity scales is that a single
value of X is typically assigned to an atom, independent of its valence in a solid.
Since, as shown in Table W2.5, the valence of an atom can vary in different crystal
structures, it should be expected that its electronegativity can also vary. Some examples
of the dependence of electronegativity on valence include XCu D 1.9 for the normal
Cu valence state of 1, [i.e., Cu(1)] but XCu D 2.0 for Cu(2), as well as XFe D 1.8 for
Fe(2), but XFe D 1.9 for Fe(3).

W2.10 Atomic Radii

For the one-electron atom H and for one-electron ions (HeC, Li2C, Be3C, . . .) with
nuclear charge CZe, the expectation value or most probable value for the radius of the
electron in its ground-state orbital is given by

hri D a1

Z
D 0.0529 nm

Z
, �W2.11�

where a1 D 4��oh̄
2/me2 is the first Bohr radius. The inverse dependence of hri on Z

reflects the increased attraction of the electron as the nuclear charge CZe increases.
A useful approximate expression for the radius of the outermost electron orbital with
principal quantum number n in a neutral atom is

hri ³ n2a1/Zeff, �W2.12�

where CZeffe is the effective nuclear charge experienced by the outermost electrons.
Note that Zeff will be less than Z as a result of the screening of the nuclear charge by
the electrons in filled inner shells.
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Some general observations concerning the radii presented in Table 2.12 can be made
(note that the only anions listed in the table are O2�, S2�, Se2�, Te2�, F�, Cl�, Br�,
and I�; the rest are cations):

1. The radii of atoms and ions increase as one moves down the periodic table, in
qualitative agreement with the dependence on the principal quantum number n
expressed in Eq. (W2.12).

2. For a given atom the radii rcov and rmet are closer in value to each other than to
the radius rion of the same atom.

3. Anions such as O2� or F� which have gained additional electrons have rion >
rcov, whereas the reverse is true for cations such as Be2C and Mg2C which have
given up electrons.

4. In the case of Si the three radii presented in Table 2.12 are quite different (i.e.,
rion D 0.040 nm, rcov D 0.118 nm, and rmet D 0.132 nm). These values apply, in
principle, to the Si4C ion in crystalline SiO2 or in the SiF4 molecule, to crystalline
Si with the diamond crystal structure, and to metal silicides such as V3Si in which
the Si atom has 12 NNs, respectively.

5. Values of rion will depend on the valence of the ion (see Table 2.4 and also the
sources listed in this table for values of rion for other valences). For example, the
values of rion presented in Table 2.12 for the group V elements are appropriate
for the cations N5C, P5C, and so on. The values of rion for the corresponding
anions N3�, P3�, As3�, and Sb3� are much larger (i.e., 0.150, 0.190, 0.200, and
0.220 nm, respectively).

As an example of the use of these radii, consider again SiO2 and the question
of its ionicity. Assuming ionic bonding, the interatomic distance d(Si–O) in SiO2

is predicted to be equal to the sum of the radii rion for Si and O (i.e., 0.040 nmC
0.140 nm D 0.180 nm). For the case of covalent bonding, the corresponding sum of the
radii rcov is 0.118 nmC 0.066 nm D 0.184 nm. The actual Si–O interatomic distance
in SiO2 has in fact been measured to be 0.161 nm (independent of the actual crystal
structure). Therefore, neither the ionic nor the covalent radii listed in Table 2.12 are
in fact completely appropriate for SiO2. The actual situation is that the bonding in
SiO2 is of the mixed ionic–covalent type, with the ionicity of the Si–O bond close
to 50%.

The van der Waals atomic radii rvdW are appropriate for neutral atoms with filled
outer shells which are effectively in contact with other atoms in solids but which are
not bonded to them. In such cases the internuclear distance d(A–B) can be set equal
to the sum of the van der Waals radii of atoms A and B. Examples include atoms
such as He and Ne in inert-gas crystals, nonbonded atoms in adjacent molecules in
molecular crystals such as solid H2, Cl2, or solid hydrocarbons, and nonbonded atoms
such as C in adjacent planes in the layered crystal graphite. Selected values of rvdW are
presented in Table 2.13. These values for rvdW were chosen by Pauling to be essentially
the same as the values of rion for the corresponding anions. This choice should not be
surprising since, for example, in the Cl2 molecule “the bonded (Cl) atom presents the
same face to the outside world in directions away from its bond as the ion, Cl�, does
in all directions” (Pauling, 1960, p. 258).
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PROBLEMS

W2.1 To see how rapidly the summation involved in the calculation of the Madelung
energyU converges, use Eq. (W2.1) to calculate the contributions to the summa-
tion from the first five shells of ions surrounding a central ion in the NaCl and
CsCl crystal structures.

W2.2 Compare the electronegativity difference jXC � XSij calculated from Eq. (2.12)
and the Si–Si, C–C, and Si–C bond energies listed in Table W2.4 with the
Pauling electronegativities for Si and C listed in Table 2.11.

W2.3 Calculate the Pauling ionicities fi for SiC, GaAs, AlN, ZnS, HgS, and NaCl.
Compare your results with the Phillips ionicities listed in Table 2.6 for the same
compounds. Are there any systematic differences between the two scales?



CHAPTER W3

Diffraction and the Reciprocal Lattice

W3.1 Voronoi Polyhedra

The concept of Wigner–Seitz cells that is used for periodic structures may be carried
over to amorphous solids except that it is given a different name, the Voronoi poly-
hedra. Select a given atom and draw lines to all other atoms. Create bisecting planes
perpendicular to each of these lines. All points that can be reached from the given
atom without crossing one of these planes lie within the Voronoi polyhedron of that
atom. The various Voronoi polyhedra all have differing sizes and shapes, but they do
collectively fill all space without overlap. In the case of a periodic solid, translational
symmetry demands that the polyhedra all have the same size and shape and they reduce
to the Wigner–Seitz cell. An example of a Voronoi polyhedron is given in Fig. W3.1.

W3.2 Molecular Geometry and Basis Structure from Diffraction Data

The location of the diffraction maxima for a crystalline sample provides information
that allows determination of the symmetry of the reciprocal lattice and measurement of
the lattice constants (i.e., the diffraction pattern specifies the Bravais lattice). In itself, it
does not provide information as to the location or identity of the basis atoms comprising
the unit cell. Such information, however, may be extracted from an analysis of the
intensity of the diffraction spots. Since scattering experiments measure the intensity
only and not the phase, the extraction of this information turns out to be a relatively
difficult problem. (If an x-ray laser could be constructed, presumably an x-ray hologram
could be produced that would contain both amplitude and phase information.) Imagine
that one could hypothetically measure the full scattering amplitude, including the phase:

F�q� D
∑

R

∑
j

fj�q�eiq·�RCsj�

D N
∑
j

fj�q�eiq·sj
∑

G

υq,G �W3.1�

and assume that the atomic form factors, fj�q�, are known from independent experi-
ments. Restricting q to lie on the reciprocal lattice gives

F�G� D N
∑
j

fj�G�eiG·sj . �W3.2�
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Figure W3.1. Voronoi polyhedron for a given atom in a disordered two-dimensional solid.

The unknowns are the set of vectors fsjg and the identity of the atoms at each sj. One
way to find them is to construct a mismatch function

�s1, . . . , sns� D
∣∣∣∣∣∣F�G��N

∑
j

fj�G�eiG·sj

∣∣∣∣∣∣
2

�W3.3�

and search for the global minimum. At this minimum, if the data are perfectly accurate,
F D 0. In principle, if one measures the complex amplitudes at 3ns points in the
reciprocal lattice, one should be able to determine the ns vectors fsjg

In a realistic case, only the intensities,

I�G� D jF�G�j2, �W3.4�

are measured and phase information is lost. Nevertheless, it is still possible to construct
a mismatch function

��s1, . . . , sns � D

∣∣∣∣∣∣∣
I�G��N2

∣∣∣∣∣∣
∑
j

fj�G�eiG·sj

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣

2

�W3.5�

and again search for a minimum by adjusting the set fsjg. The search for this minimum
can be an arduous numerical task and limits the size of the unit cell that can be analyzed.

It is useful to introduce the Patterson function,

P�r� D
∑

G

I�G�eiG·r. �W3.6�

Before simplifying this, recall some elementary properties of Fourier series. A periodic
function in one dimension may be expanded as a Fourier series [(see Eq. (3.2) in the
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textbook†]:

��x� D
1∑

nD�1
�ne

i�2�n/a�x, �W3.7�

where the Fourier coefficients are [see Eq. (3.4)]

�n D 1

a

∫ a

0
��x0�e�i�2�n/a�x

0
dx0. �W3.8�

Inserting this into formula (W3.8) yields

��x� D
∫ a

0
��x0�

1

a

1∑
nD�1

ei�2�n/a��x�x
0� dx0, �W3.9�

implying the formula

υ�x � x0� D 1

a

1∑
nD�1

ei�2�n/a��x�x
0�. �W3.10�

The three-dimensional generalization of the formulas above, involving sums over the
reciprocal lattice, leads to the result

υ�r� r0� D 1

VWS

∑
G

eiG·�r�r0�, �W3.11�

where VWS is the volume of the Wigner–Seitz cell.
The Patterson function becomes

P�r� D N2
∑
j,j0

fŁj0�G�fj�G�VWSυ�r� �sj0 � sj��. �W3.12�

This function is seen to possess sharp peaks whenever the vector r matches an
interatomic displacement vector sj0 � sj. Thus, by studying the Patterson map, one
may locate these vectors and attempt to reconstruct the geometric shape of the unit
cell.

The use of the methods described above permit one to obtain short-range structural
information about the basis of the crystal. This method is of particular value in deter-
mining the structure of crystals of biological molecules. It is also of use in studying
materials with complex unit cells, such as catalysts. It is of somewhat less use in
obtaining information concerning intermediate-range order.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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PROBLEM

W3.1 Define the normalized form factor for a basis by �j�G� D fj�G�/ifi�G� and
assume that it is positive and does not depend on G. Let the normalized scattering
amplitude be given by ˛�G� D F�G�/Nifi�G�. Use the Schwarz inequality,

∣∣∣∣∣
∑
i

uŁi vi

∣∣∣∣∣
2



∑
i

juij2
∑
j

jvjj2,

to prove the following inequalities. Show that

j˛�G�j2 
 1.

Assuming inversion symmetry of the basis, show that

j˛�G�j2 
 1
2 [1C ˛�2G�],

which is known as the Harker–Kasper inequality. Also prove that

j˛�G�š ˛�G0�j 
 [1š ˛�G�G0][1š ˛�GCG0�].

As an example of the applicability of inequalities to the determination of the
phase of the scattering amplitude, suppose it is known that j˛�G�j D 0.8 and
j˛�2G�j D 0.6. Determine whether ˛�2G� is positive or negative.



CHAPTER W4

Order and Disorder in Solids

W4.1 Further Discussion of the Random Close-Packing Model

That the random close-packing model (RCP) is a more appropriate microscopic struc-
tural model for metallic glasses than, for example, a nanocrystalline model can be
demonstrated using the results of diffraction studies of metallic glasses. To illus-
trate the differences between diffraction from amorphous and crystalline materials,
the transmission electron-diffraction patterns of thin films of amorphous and recrystal-
lized microcrystalline Fe are shown in Fig. W4.1. These two diffraction patterns can
be seen to be qualitatively different, with microcrystalline Fe showing sharp diffraction
rings and amorphous Fe showing instead only a few broad, diffuse diffraction rings.

The next-NN atomic configurations which are responsible for the second peak in
the reduced radial distribution function G�r� for the metallic glass Ni0.76P0.24, shown in
Fig. 4.11 of the textbook† are shown schematically in Fig. W4.2 for a planar, hexag-
onal array of close-packed atoms. It should be noted that in the RCP model such an
array would not actually be planar, and the corresponding distances would be some-
what less than

p
3 and 2. These distances are actually close to those expected in

icosahedra (see Fig. 1.11). The overlapping structure of this second peak is thus a
characteristic signature of metallic glasses with an RCP structure and may be consid-
ered to provide indirect evidence for the existence of icosahedral clusters of atoms in
metallic glasses.

The fact that the RCP structural model is successful in predicting that two distinct
types of atomic configurations contribute to the second peak in the radial distribution
function g�r� provides strong evidence for its validity. In contrast, nanocrystalline
models of metallic glasses are unable to explain the details of the observed g�r�.
These models, based on the existence of nanocrystallites in the metallic glass, are
able to predict the sharpness of the first peak. They predict, however, that the second
and higher peaks will be sharper than actually observed. Thus the intermediate-range
order predicted to extend beyond NN atoms by nanocrystalline models is not generally
observed in amorphous solids.

One final observation concerning the RCP model is that it can be said to represent an
“ideal” close-packed amorphous solid. This observation follows from the fact that in the
RCP model the spheres are packed as densely as possible, consistent with the nature
of amorphous solids. Achieving a higher density of packing of hard spheres would

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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(a) (b)

Figure W4.1. Transmission electron-diffraction patterns for thin films of (a) amorphous and
(b) recrystallized microcrystalline Fe. (From T. Ichikawa, Phys. Stat. Solidi a, 19, 707 (1973).
Reprinted by permission of Wiley-VCH Verlag Berlin.)

r1 = D

r3 = 2D

r2 = √3 D

Figure W4.2. NN and two types of next-NN configurations of atoms in metallic glasses. A
planar, hexagonal array of close-packed atoms is shown.

require that a form of crystallization occur locally, corresponding to the nucleation of
clusters of spheres with either the FCC or HCP crystal structures or as icosahedra. The
resulting solid would then, however, no longer be completely amorphous. A lower
density of packing could easily be achieved by removing spheres, thereby creating
vacancies and causing the resulting structure to be even more disordered than the ideal
amorphous solid represented by the RCP model.

Even though it can be argued that the RCP model is in some sense ideal, it never-
theless defines an amorphous structure only in a statistical way. This follows from the
fact that there can be an infinite number of possible amorphous solids with structures
that are consistent with the RCP structural model, whereas a crystalline solid has a
single, unique structure.

W4.2 Further Discussion of the Continuous Random Network Model

In the case of amorphous carbon, a-C, there is little doubt that a continuous random
network model (CRN) is appropriate, but there is great difficulty in knowing how to
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construct such a model. The difficulty resides in the fact that there are two common
forms of crystalline C: graphite, based on C–C3 trigonal bonding units, and diamond,
based on C–C4 tetrahedral bonding units. Both graphitelike and diamondlike types of
SRO are believed to be present in a-C.

The validity of CRN models for amorphous solids such as a-Si, a-SiO2, and a-Ge has
been verified by comparing the experimentally determined radial distribution functions
with those calculated from “ball-and-stick” CRN models constructed by hand and
“relaxed” by computer to minimize network strain. The agreement between experiment
and the predictions of the CRN models has been found to be impressive.† These
comparisons also demonstrate that nanocrystalline models for amorphous covalent (or
nearly covalent) glasses are inappropriate, as was also found to be the case for metallic
glasses.

W4.3 Illustrations of the Law of Mass Action

For Schottky defects (i.e., vacancies) the process of creating a vacancy VA without a
corresponding interstitial IA involves the movement of an A atom from a lattice site
to a surface site (i.e., SA). The defect reaction for this process is

A ��! VA C SA. �W4.1�

At the same time, an existing surface atom SA is covered. The net effect is that an
additional bulk atom is created below the surface, yielding

SA  ��! A. �W4.2�

The net defect reaction is therefore the sum of reactions (W4.1) and (W4.2); that is,

0 ��! VA. �W4.3�

The law of mass action for the creation of a Schottky defect is therefore

aL�V� D NL�V�

NL�A�
D KV�T�, �W4.4�

which yields

NL�V� D NL�A� exp
(
�Gr
kBT

)
. �W4.5�

The process of creating an interstitial without a corresponding lattice vacancy
involves the movement of a surface atom SA into an empty interstitial position VI,
thus creating an interstitial A atom IA. At the same time, a new surface atom is
uncovered. The resulting interstitial number or concentration is given by

NI�A� D NI�V� exp
(
�Gr
kBT

)
. �W4.6�

† An excellent summary of these comparisons appears in Zallen (1983, Chap. 2).
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When taken together, the processes just described for the creation of a Schottky
defect and of an interstitial atom are equivalent to the creation of a Frenkel defect (i.e.,
a vacancy–interstitial pair). It can be shown that the equilibrium constant for Frenkel
defect formation KF is equal to KVKI (i.e., to the product of the equilibrium constants
KV for vacancy formation and KI for interstitial formation).

The generation of charged defects (i.e., ionized donors and acceptors in semicon-
ductors) is described in detail in Chapter 11. The requirement of electrical neutrality
plays an important role in determining the concentrations of ionized dopant atoms and,
consequently, of charge carriers.

W4.4 Nonstoichiometry

Solids such as SiO2, NaCl, V3Si, and YBa2Cu3O7, which have a well-defined chemical
formula are stoichiometric compounds. When the composition of a solid deviates from
the standard chemical formula, the resulting solid is said to be nonstoichiometric, and
as a result, defects are present. Examples include SiO2�x, Fe3O4�x, YBa2Cu3O7�x, and
Mn1�xO. Additional examples of nonstoichiometric solids are discussed in Chapter 4,
with further examples presented in Chapters 11 to 18, where specific classes of mate-
rials are addressed.

Nonstoichiometry often results when a solid comes into equilibrium with external
phases. For example, the first three solids just listed are all oxygen-deficient, possibly
resulting from being in equilibrium with an oxygen-deficient atmosphere either during
growth or during subsequent processing at elevated temperatures. The fourth example,
Mn1�xO, is likely to have been formed in an oxygen-rich atmosphere. In all four cases,
the actual composition of the solid is determined by the oxygen activity of the ambient
(i.e., the partial pressure of O2), by the temperature, and by the chemical potentials of
the components.

Nonstoichiometry and the existence of point defects in a solid are often closely
related. Anion vacancies are the source of the nonstoichiometry in SiO2�x, Fe3O4�x,
and YBa2Cu3O7�x, and cation vacancies are present in Mn1�xO. In some cases the
vacancies within the structure are ordered. Nonstoichiometry in ionic solids usually
corresponds to at least one of the ions occurring in more than one charge state. For
example, if all the oxygen ions in Mn1�xO are O2�, then for every Mn2C vacancy
in the solid there must also be two Mn3C ions present to preserve overall electrical
neutrality.
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CHAPTER W5

Phonons

5.1 Monatomic Lattice with Random Interactions

In a disordered material the periodicity of the solid is broken, and this affects the phonon
spectrum. Various types of disorder are possible, including bond disorder, isotopic
mass disorder, or a breaking of the lattice periodicity. In this section a simple model
exhibiting bond disorder is studied: a monatomic lattice in one dimension with nearest-
neighbor (NN) interactions but with random spring constants. These are assumed to
have only two values, KA or KB, with probabilities pA and pB D 1� pA, respectively.

The squares of the mode frequencies, ω2
�, are determined by finding the eigenvalues

of the random matrix D defined by

Dn,n D Kn CKn�1

M
, Dn,nC1 D �Kn

M
, Dn,n�1 D �Kn�1

M
, �W5.1


where n D 1, 2, . . . , N labels the atoms in the monatomic lattice (with the subscript
convention 0! N and NC 1! 1). All other matrix elements are zero. Rapid numer-
ical techniques are available for diagonalizing such matrices.

The density of states (per unit frequency) per atom,

��ω
 D 1

N

∑
�

υ�ω � ω�
, �W5.2


will be compared with the corresponding function expected for the uniform lattice with
an average spring constant K D pAKA C pBKB. The density of states per atom for the
uniform lattice is obtained using the dispersion relation of the book,† Eq. (5.7). Thus

��ω
 D 1

N

∫ �/a

��/a

Ldk

2�
υ

(√
4K

M

∣∣∣∣sin
ka

2

∣∣∣∣� ω

)

D 2

�

1√
�4K/M
� ω2

, �W5.3


† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W5.1. Phonon densities of states for random and uniform lattices. The calculation was
performed with N D 125.

where ω2 � 4K/M. The results are presented in Fig. W5.1, where units are chosen so
that M D 1, KA D 1, KB D 2, and pA D pB D 0.5. An N D 125 lattice was used and
an ensemble average over different sets of random bonds was made. The frequencies
corresponding to the pure KA or pure KB lattices are ωA D 2�KA/M
1/2 and ωB D
2�KB/M
1/2 (2 and 2.828 in the figure). The differences between the random and
uniform lattice (with K D 0.5KA C 0.5KB D 1.5) are striking. At low frequencies the
density of states follows the trend expected for the infinite uniform lattice. In the
high-frequency region (ωA < ω < ωB) there is a irregular structure for the density of
states. It is found that as N increases, the high-frequency structure remains basically
unchanged, except for the appearance of finer irregular features.

W5.2 Debye–Waller Factor

In this section the derivation of the Debye–Waller factor is sketched. For the sake of
simplicity consider a monatomic lattice of atoms with mass M. Let the instantaneous
position of the atom be denoted by RC u�R, t
. The electron density is

n�r, t
 D natom�r� R� u�R, t

. �W5.4


The analysis proceeds as in Chapter 3. The scattering amplitude F�q, t
 is

F�q, t
 D fatom�q

∑

R

exp[�iq · �RC u�R, t

] D fatom�q
S�q, t
. �W5.5


When evaluated at a reciprocal lattice vector q D G, the geometric structure factor
becomes

S�G, t
 D
∑

R

exp[�iG · u�R, t
]. �W5.6


The strength of the coherent x-ray scattering is proportional to the absolute square of
S�G
. It is useful to work in the interaction representation of quantum mechanics, in
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which the operators are not time dependent. Begin by writing

jS�G
j2 D
∑
RR0

exp[iG · �u�R0
� u�R

]. �W5.7


In the absence of fluctuations, this would be N2. In the presence of fluctuations, expand
the displacements as a sum of phonon modes [see Eq. (W5A.5)]:

u�R
 D
√

1

N

∑
EQ
O�Q[uQ exp�iQ · R
C uCQ exp��iQ · R
], �W5.8


where uQ and O�Q are the amplitude and polarization of a phonon with wave vector Q
and frequency ωQ. It follows that

jS�G
j2 D
∑
RR0

∏
Q

exp
(

ip
N

G · O�QfuQ[exp�iQ · R0
� exp�iQ · R
]C h.c.g
)
,

�W5.9

where h.c. is the Hermitian conjugate of the first term. This must be averaged over
a thermal distribution of phonons. The exponential is expanded into a power series.
Note that uQ is a Gaussian random variable with the first two moments being

huQi D 0, hjuQj2i D Nh̄

2MωQ

(
nQ C 1

2

)
. �W5.10


Averages of products of Gaussian random variables are expressible in terms of the first
two moments alone,

huQ1uQ2uQ3uQ4i D huQ1uQ2ihuQ3uQ4i C huQ1uQ3ihuQ2uQ4i C huQ1uQ4ihuQ2uQ3i,
�W5.11


where the expansion includes all distinct permutations of the indices. Thus only even
powers in the power series are nonvanishing. The series may then be resummed to
give

hjS�G
j2i D
∑
RR0

∏
Q

exp
{
� 2

N
�G · O�Q


2juQj2[1� cos Q · �R� R0
]
}
. �W5.12


In a three-dimensional crystal the term [1� cos�Ð
] averages to 1
2 and one obtains

hjS�G
j2i D N2 exp

�∑
Q

�G Ð O�Q

2

(
nQ C 1

2

)
h̄

MωQ

 D N2e�2W. �W5.13


This gives the desired expression for the Debye–Waller factor, exp��2W
. In the
high-temperature limit, the Bose–Einstein distribution function may be replaced by
nQ ! kBT/h̄ωQ. It is also possible to use the Debye theory, used in Chapter 5 to
evaluate the specific heat, to evaluate the Debye–Waller factor.
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Appendix W5A: Quantization of Elastic Waves

In this appendix the classical elastic field will be quantized, that is, replaced by a
set of phonons. It is a twofold procedure. First the elastic field is replaced by a set
of independent harmonic oscillators, one for each normal mode. Then each of these
is quantized in the same way that the simple harmonic oscillator is quantized. For
the sake of simplicity, attention is restricted in this appendix to the one-dimensional
monatomic lattice.

The starting point is the classical equation of motion for the particle displacements,
given by Eq. (5.2):

MRun D K�unC1 � un
�K�un � un�1
, n D 1, 2, . . . , N. �W5A.1


The energy of the system, or Hamiltonian, is the sum of the kinetic energy and the
potential energy:

H D 1

2M

N∑
nD1

p2
n C

K

2

N∑
nD1

�unC1 � un

2. �W5A.2


Here pn represents the momentum conjugate to un. The equation of motion is obtained
from Hamilton’s equations of mechanics:

Pun D ∂H

∂pn
D pn

M
, �W5A.3


Ppn D � ∂H

∂un
D K�unC1 C un�1 � 2un
. �W5A.4


Eliminating pn from these equations gives Eq. (W5A.1).
Introduce a new set of coordinates fQjg and momenta fPjg, which we call normal-

mode coordinates and momenta, defined by

un D 1p
N

N∑
jD1

Qje
inakj , �W5A.5


pn D 1p
N

N∑
jD1

Pje
inakj , �W5A.6


where a is the lattice constant and kj is defined in Eq. (5.4). It is convenient to impose
periodicity and define QNCj D Qj and PNCj D Pj. Two powerful identities may be
proved. The first involves a sum over lattice positions:

N∑
nD1

exp[ina�kj � kl
] D Nυj,l, �W5A.7


and the second involves a sum over modes:

N∑
jD1

exp[ikja�n� m
] D Nυn,m. �W5A.8
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As Figs. W5A.1 and W5A.2 show, the sums will be zero when summed either over
lattice positions with a given wave vector or summed over modes with a given lattice
position. The one exception to both cases is when the lattice position is zero or when
the wave vector is zero. For un and pn to be real numbers, one can show from
Eqs. (W5A.5) and (W5A.6) that

QŁN�j D QŁ�j D Qj, PŁN�j D PŁ�j D Pj. �W5A.9


By making use of the identities (W5A.7) and (W5A.8), the Hamiltonian may be
rewritten in terms of the P’s and Q’s:

H D
N∑

jD1

(
PŁjPj

2M
C Mω2

j

2
QŁjQj

)
. �W5A.10


In this form, the Hamiltonian is expressed as the sum of N independent harmonic
oscillators, each representing one of the normal modes of the lattice. The Pj and Qj

e2ik1a

eik1a

e8ik1a

e3ik1a

e4ik1a

e5ik1a

e6ik1a

e7ik1a

Figure W5A.1. Representation of the sum over lattice positions given in Eq. (W5A.7). Note
that the vector sum is zero. In this diagram N D 8 and j� l D 1.

eik2a

eik1a

eik8a

eik3a

eik4a

eik5a

eik6a

eik7a

Figure W5A.2. Representation of the sum over modes given in Eq. (W5A.8). Note that the
vector sum is zero. In this diagram N D 8 and n� m D 1.
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coordinates are also expressible in terms of pn and un:

Qj D 1p
N

N∑
nD1

une
�inakj , �W5A.11


Pj D 1p
N

N∑
nD1

pne
�inakj . �W5A.12


The quantization procedure is straightforward. One regards fung and fpng as sets
of quantum-mechanical operators obeying the usual equal-time commutation relations
(see Appendix WC):

[un, um] D 0, [pn, pm] D 0, [pn, um] D �ih̄υm,n. �W5A.13


Hamilton’s equations of motion are regarded as equations governing the time evolution
of these operators. The Hamiltonian H, given above, is now an operator. Using the
commutation rules, it can be shown that

[Pj,Ql] D �ih̄υj,l, [Pj, Pl] D 0, [Qj,Ql] D 0. �W5A.14


A further simplification of the problem results from introducing specific linear
combinations of the P’s and Q’s,

aj D 1√
2Mωjh̄

�MωjQj C iPj
, aCj D
1√

2Mωjh̄
�MωjQN�j � iPN�j
.

�W5A.15

These operators are referred to as ladder operators. They obey the commutation rules

[aj, al] D 0, [aCj , a
C
l ] D 0, [aj, a

C
l ] D υj,l. �W5A.16


The P and Q operators become

Qj D
√

h̄

2Mωj
�aj C aC�j
, �W5A.17


Pj D �i
√

Mh̄ωj

2
�aj � aC�j
. �W5A.18


The Hamiltonian finally becomes

H D
N∑

jD1

h̄ωj�a
C
j aj C 1

2 
. �W5A.19


The quantity nj D aCj aj is the number operator for phonons in mode j. Its eigenvalues
are the non negative integers 0, 1, 2, . . . . Its eigenfunctions are states with a definite
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number of phonons of mode j. Thus a given phonon mode may be unoccupied, have
one phonon, two phonons, and so on. The corresponding energy is

Ej D
(
nj C 1

2

)
h̄ωj. �W5A.20


The problem has thus been reduced to a system of noninteracting harmonic oscillators,
each corresponding to a different mode, j. Note the presence of energy even in the
absence of phonons (nj D 0). This is called zero-point energy.

Appendix W5B: Dispersion Relations in the General Case

Consider a crystal structure and select any point O in the crystal to serve as an origin.
Translate it through the Bravais lattice, thereby replicating O through the set of trans-
lation vectors fRg. Denote the replicated points by fORg. The set of points in space
which are closer to O than any other OR is called the Wigner–Seitz (WS) cell and has
a polyhedral shape. (Note that this definition is slightly more general than the previous
definition of the WS cell in Chapter 3. in that point O need not be on an atom). Due
to the periodicity of the lattice, the WS cell contains exactly s atoms. Around each of
the origins fORg one may similarly construct a WS cell, thereby filling all of space.

In a phonon excitation the amplitude of vibration of atoms in a neighboring cell
fORg is simply related to the excitations of atoms in the base cell O:

u.�R
 D u. exp�ik · R
, . D 1, 2, . . . , s. �W5B.1


Rather than using the spring constants directly, note that the expression for the
elastic energy [see Eq. (5A.2)] is written as a quadratic form. This permits the intro-
duction of an alternative set of elastic coefficients and expressing the energy in a
simpler form. Let the ˛th component of the displacement of the .th atom of cell R
be denoted by u.˛�R
. Expand the elastic energy of the crystal in terms of the atomic
displacements and truncate the expansion at second order, a procedure known as the
harmonic approximation. The zeroth-order term is just a constant added to the energy
and may be neglected. The first-order term vanishes because the elastic energy has a
minimum at the equilibrium state. The second-order term is thus

U D 1

2

∑
.,.0

∑
˛,˛0

∑
R,R0

u.˛�R
L.,.0
˛,˛0 �R� R0
u.

0
˛0 �R

0
, �W5B.2


where the set of elastic coefficients is defined in terms of the second derivatives:

L.,.0
˛,˛0 �R� R0
 D ∂2U

∂u.˛�R
∂u.
0

˛0 �R0

. �W5B.3


The indices . and . 0 range over f1, 2, . . . , sg, and the indices ˛ and ˛0 over f1, 2, 3g.
Note that invariance of the crystal under Bravais lattice translations dictates that L
depends only on R� R0. One sees from the definition that L is symmetric, that is,

L.,.0
˛,˛0 �R� R0
 D L.0,.

˛0,˛ �R
0 � R
. �W5B.4
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The dynamical equations become

M. Ru.˛�R, t
 D �
∑
.0

∑
˛0

∑
R0

L.,.0
˛,˛0 �R� R0
u.

0
˛0 �R

0, t
. �W5B.5


This represents a set of 3Ns coupled second-order differential equations for the ampli-
tudes.

If the atomic displacements were all made equal [i.e., u.˛�R
 D d˛ (for all . and
R)], there would be no restoring force and both sides of the equation would be zero.
Thus

0 D �
∑
.0

∑
˛0

∑
R0

L.,.0
˛,˛0 �R� R0
d˛0 . �W5B.6


This is true for any vector d. Also note that as R0 sweeps over the Bravais lattice, so
does the vector R� R0. Thus one obtains the sum rule:

∑
.0,R0

L.,.0
˛,˛0 �R

0
 D 0. �W5B.7


Using the symmetry of the L matrix [Eq. (W5B.4)] this may also be written as

∑
.,R0

L.0,.
˛0,˛ �R

0
 D 0. �W5B.8


For a mode with frequency ω and wave vector k the dynamical equations become

M.ω
2u.˛ D

∑
.0

∑
˛0

D.,.0
˛,˛0�k
u

.0
˛0 , �W5B.9


where the dynamical matrix is defined as

D.,.0
˛,˛0�k
 D

∑
R0

L.,.0
˛,˛0 ��R0
 exp�ik · R0
. �W5B.10


Equation (W5B.9) is a set of only 3s coupled algebraic equations, so considerable
simplification has been achieved. A solution to these equations determines the phonon
frequencies as the eigenvalues and the polarizations of the phonons as the eigenvectors.
This procedure usually involves the numerical diagonalization of a matrix with 3s rows
and 3s columns.

Appendix W5C: Van Hove Singularities

In this appendix an analysis is made of the density of states in the neighborhood of
a van Hove singularity at position k0. The first-order term in the expansion of the
frequency vanishes so, to second order

ω��k
 D ω��k0
C 1

2

∑
˛,ˇ

�k � k0
˛�k � k0
ˇ
∂2ω�

∂k˛∂kˇ
C Ð Ð Ð . �W5C.1
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Introduce a new coordinate system which is both translated, so that the new origin is
k0, and rotated, so that the matrix

h˛ˇ D 1

2

∂2ω��k

∂k˛∂kˇ

�W5C.2


is diagonalized. In this new fk0g coordinate system

ω��k
 D ω��k0
C
∑
˛

h˛k
02
˛ , �W5C.3


where h˛ are the eigenvalues of h˛ˇ. Assuming that none of the h˛ vanishes, one may
further rescale the coordinates by defining

k00˛ D jh˛j1/2k0˛. �W5C.4


Note that translating or rotating a vector does not alter the size or shape of a volume
element in k space, but the scale transformation does, so dk00 D jh1h2h3j1/2dk. Let

ω��k
 D ω��k0
Cω, �W5C.5


so

��ω
 D
0∑
�

V

�2�
3jh1h2h3j1/2

∫
dk00υ

[∑
˛

k
002
˛ sgn�h˛
�ω

]
. �W5C.6


The fsgn�h˛
g numbers are š1, depending on the nature of the extremum. For
an absolute minimum the signature is fC1,C1,C1g. For an absolute maximum
it is f�1,�1,�1g. Saddle points are characterized by having mixed signs [e.g.,
fC1,C1,�1g, fC1,�1,C1g, etc.]. Thresholds occur at the van Hove singularities.
On one side of the threshold there is an added (or subtracted) density which varies as
jωj1/2. Depending on the type of extremum, it could rise, fall, lie to the left, or lie
to the right of the critical point.



CHAPTER W6

Thermally Activated Processes, Phase
Diagrams, and Phase Transitions

W6.1 Concentration Profiles Resulting from Diffusion

The following physical situations are often important in experimental measurements of
the diffusion coefficient D and also in processes in which impurities are intentionally
introduced into materials (e.g., the diffusion of dopants such as P and B into Si).
The first case involves the presence of a thin layer of material on a solid surface,
the second involves bringing two “thick” samples of different materials into intimate
contact with each other, and the third corresponds to modifying the composition profile
near the surface of a solid by maintaining a source of atoms with constant activity at the
surface. In all three cases the one-dimensional form of Fick’s second law, Eq. (6.8) in
the textbook,† is solved to obtain a prediction for the concentration profiles that result
after diffusion has been allowed to occur.

1. Consider a thin layer of A atoms of thickness d and with NA atoms per unit area,
deposited on the surface of a second material B. When the diffusion coefficient
DA of A atoms in B is assumed to be independent of concentration, and hence
of x, the concentration profile of A atoms in B for long diffusion times, such
that the diffusion length

p
DAt× d, will be given by

CA�x ½ 0, t	 D NAp

DAt

exp
(
� x2

4DAt

)
. �W6.1	

The resulting Gaussian profiles for the normalized concentration CA�x, t	/NA are
shown in Fig. W6.1 for several values of the diffusion length 2

p
DAt on both

linear and logarithmic scales. Note that the normalized surface concentration
CA�x D 0, t	/NA D 1/

p

DAt decreases with increasing time, due to the finite

source of A atoms available at the surface.
2. Consider two thick solids composed of A and B atoms that are in intimate contact

with each other. The source of A atoms diffusing into B is now essentially
unlimited, so that the concentration of A atoms at the interface, CA�0, t	, can be
assumed to be constant, CAo. Other boundary conditions are CA�1, t	 D 0 and

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W6.1. Normalized Gaussian concentration profiles originating from a thin layer of atoms
on the surface of a solid at x D 0 for several values of 2

p
DAt on both linear and logarithmic

scales. (From A. S. Grove, Physics and Technology of Semiconductor Devices, copyright 1967
by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

CA�x, 0	 D 0. After interdiffusion is allowed to occur, the concentration profile
of A atoms in B is given by

CA�x, t	 D CAo

[
1� erf

(
x

2
p
DAt

)]
D CAo erfc

(
x

2
p
DAt

)
. �W6.2	

Here the chemical diffusion coefficient DA is again assumed to be independent
of x. The function erf�x	, called the error function, is one of the most important
functions in diffusion theory and erfc�x	 D 1� erf�x	 is the complementary



THERMALLY ACTIVATED PROCESSES, PHASE DIAGRAMS, AND PHASE TRANSITIONS 47

x (µm)
1

1 2 30
0

2 30

1

10−1

10−2

10−3

10−4

10−5

CAo
 = const.

0.5 µm

0.5 µm

1.0 µm

0.1 µm
0.2

0.4

0.6

1.0

0.8

C
A
(x

,t)
C

A
o

2√Dt = 0.1 µm

2√Dt = 0.1 µm

Figure W6.2. Normalized concentration profiles originating from an essentially unlimited
source of atoms for several values of the diffusion length

p
DAt on both linear and logarithmic

scales. (From A. S. Grove, Physics and Technology of Semiconductor Devices, copyright 1967
by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

error function.† The resulting normalized concentration profiles CA�x, t	/CAo are
shown in Fig. W6.2 for several values of

p
DAt on both linear and logarithmic

scales.
3. Another important situation corresponds to modifying the concentration profile

near the surface of a solid by maintaining a constant concentration CA of A
atoms at the surface of an initially homogeneous solid of composition CAo. This
can be accomplished, for example, by exposing the solid to a source of A atoms

† erf�x	 D �2/p
	 ∫ x0 e�a2
da, with erf�0	 D 0 and erf�1	 D 1.
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Figure W6.3. Normalized concentration profiles in a solid obtained when its surface is exposed
to a source of atoms in the vapor phase with constant activity for several values of the diffusion
length 2

p
DAt using only a linear scale. Here CA is the constant concentration at the surface and

CAo is the initial concentration in the solid. Data used to generate these plots: for B diffusing
into Si at T ³ 1025°C, DA D 10�2 µm2/h, and t D 1, 4, 16 h.

in the vapor phase with constant activity. The net diffusion of A atoms either
into the solid (CA > CAo) or out of the solid (CA < CAo) is then allowed to take
place. If the solid has a thickness d× pDAt, the resulting concentration profile
of A atoms is given by

CA�x, t	� CA

CAo � CA
D erf

(
x

2
p
DAt

)
. �W6.3	

These normalized concentration profiles are shown in Fig. W6.3 for several
values of 2

p
DAt using only a linear scale but for CA > CAo and CA < CAo.

When CAo D 0 this result is identical to that given in Eq. (W6.2). Note that
CA D 0 for desorption of A atoms into a vacuum.

W6.2 Examples of Diffusion Studies

Self-Diffusion in Cu. Experimental results for the self-diffusion coefficient D�T	 of
Cu are presented in Fig. W6.4 together with data on the fractional vacancy concen-
tration nv�T	, also shown in Fig. 4.23. As discussed in Section 4.7, Schottky defects
(i.e., simple vacancies) are identified as the dominant intrinsic defect in FCC metals
such as Cu and are responsible for the self-diffusion process. As a result, the following
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Figure W6.4. Experimental results for the self-diffusion coefficient D�T	 of Cu along with data
on the vacancy concentration nv�T	. [from A. S. Berger et al., J. Phys. F: Met Phys., 9, 1023
(1979). Reprinted by permission of the Institute of Physics.]

expressions from the textbook, Eqs. (6.14), (6.18), and (6.19),

D�T	 D Do exp
(
� Ea
kBT

)
,

Do D fa2ωD
2


exp
(
Sf C Sm

kB

)
,

Ea D Hf CHm,

can be used to analyze these data, except just below Tm, where there appears to be
some upward curvature in D�T	, possibly due to a contribution from divacancies. Self-
diffusion data such as these are often obtained using the tracer method, in which the
motion of radioactive isotopes of the host crystal atoms are “traced” using radiochem-
ical analysis.
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The activation energy for self-diffusion in Cu is found from the data presented in
Fig. W6.4 to be Ea D 2.07 eV. From this result and the value of Hf D 1.28 eV
for vacancy formation in Cu presented in Section 4.7, it follows that the enthalpy of
migration of vacancies in Cu is given by

Hm D Ea �Hf D 2.07� 1.28 D 0.79 eV. �W6.4	

This value of Hm is typical for the noble metals. The prefactor Do for self-diffusion in
Cu obtained from Fig. W6.4 is 10�5 m2/s. It is difficult to obtain a more precise value
for Do due to the lengthy extrapolation involved.

An interesting correlation exists between measured values of Ea for self-diffusion
in metals and their melting temperatures Tm. The observed empirical relationship is
given, to within about š10%, by

Ea�eV	 ³ Tm�K	
700

. �W6.5	

This correlation results from the fact that both Tm and Ea are determined by the strength
of the bonding of atoms in the solid. Typical values of Do for self-diffusion in metals
are in the range 10�5 to 10�4 m2/s, and typical diffusion coefficients D�Tm	 at the
melting temperature are on the order of 10�12 m2/s.

An important diffusion-related phenomenon occurring in Si-based electronic devices
is the electromigration of Al and Cu ions in the metal lines connecting various elements
and levels within the planar structure. The diffusion of the metal ions in this case is
driven by the electrical current in the interconnect lines, the mechanism being the
transfer of momentum from the electrons to the ions. In this respect Cu has an advan-
tage over Al due to its higher atomic mass. The higher resistances and voids created
in the metal lines due to electromigration can lead to the failure of the device. Elec-
tromigration is described in more detail in Chapter 12.

Self-Diffusion and Impurity Diffusion in Si. Experimental results for self-
diffusion and for the diffusion of several substitutional and interstitial impurities in
Si are summarized in Fig. W6.5. Concentration profiles and diffusion coefficients for
dopant impurities in semiconductors are typically measured using electrical techniques
(e.g., the measurement of capacitance–voltage characteristics of p-n junctions). Self-
diffusion in Si remains an area of active research, with the question of whether the
diffusion is via vacancies or interstitials still under discussion. Recent calculations†

have indicated that only the self-interstitial diffusion mechanism can explain the
magnitude of the observed self-diffusion of Si that occurs with an activation energy
Ea in the range 4.5 to 5 eV and a prefactor Do ³ 0.01 to 0.1 m2/s. This value of Do is
much higher than the values typically observed for diffusion in metals. The dominance
of the self-interstitial, corresponding to a “dumbbell” configuration of two Si atoms
occupying a single lattice site, has been attributed to its predicted lower enthalpy of
formation, Hf D 3.3 eV, compared with a predicted value of Hf D 4.1 eV for the
vacancy.

† P. E. Bloechl et al., Phys. Rev. Lett., 70, 2435 (1993).
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Figure W6.5. Experimental results for self-diffusion and for the diffusion of several substitu-
tional and interstitial impurities in Si. (From W. Frank, Defect and Diffusion Forum 75, 121
(1991). Reprinted by permission of Scitec Publications.)

The diffusion of substitutional dopant impurities in Si is mediated by self-interstitials
and vacancies and is an essential part of the processing of Si-based devices. It can be
seen from Fig. W6.5 that the group III and V elements all diffuse faster in Si than
does Si itself, with values of Ea in the range 3.4 to 3.6 eV for acceptors and 3.9
to 4.2 eV for donors. Donors and acceptors diffuse much slower, however, than the
metal impurities shown, which have values of Ea in the range 0.4 to 0.8 eV and which
diffuse via the direct interstitial mechanism. These observations are consistent with the
group III and V elements entering the Si lattice substitutionally, thus participating in
the covalent bonding, while the metal atoms enter interstitial sites. The rapid diffusion
of unwanted metallic impurities in Si also plays an important role in their removal or
trapping near dislocations or other extended defects in the process known as gettering.

A recent study has found that in Si near T D 800°C, the acceptor ion B� diffuses via
an interstitial mechanism, while the donor ion SbC diffuses via a vacancy mechanism.†

This is consistent with a net negative charge for vacancies in Si, which therefore attract
donor ions such as SbC and repel acceptor ions such as B�. In addition, the larger
atomic size of group V donors makes them less likely to diffuse through the interstitial
sites in Si compared to smaller group III acceptors such as B�.

† H.-J. Grossman et al., Appl. Phys. Lett., 71, 3862 (1997).
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W6.3 Examples of Vaporization Studies

Typical experimental methods employed for the determination of the vaporization
flux Jvap�T	 or, equivalently, of the equilibrium vapor pressure Peq�T	 involve direct
measurement of the weight loss of the crystal and the detection of the evaporated
species via mass spectrometry.

The equilibrium vapor pressures Peq�T	 for Fe and Si presented in Fig. W6.6 are
the recommended values from a critical review† of the data for the thermodynamic
properties of Fe and Si. It can be seen that vaporization is indeed thermally activated
for Fe and Si. From these data the enthalpies and entropies of vaporization, defined in
terms of rGo by

rG
o D Hvap � TSvap, �W6.6	

can be determined. The enthalpy of vaporization Hvap D H�vapor	�H�solid	 is
simply equal to the standard enthalpy of formation fH° of the vapor [i.e., Fe(g)
or Si(g)] since the solid is in its standard state, where fH° is defined to be zero.
Values of Hvap and Svap at T D 298.15 K for Fe and Si are presented in Table W6.1
along with the melting temperature Tm and the equilibrium vapor pressure at Tm. Note
that, as expected, Hvap D 4.66 eV/atom for Si is quite close to 2E(Si–Si), where
E�Si–Si	 D 2.34 eV is the Si–Si covalent bond energy (see the discussion of bond
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Figure W6.6. Equilibrium vapor pressures Peq�T	 of Fe and Si. [Data from P. D. Desai, J.
Phys. Chem. Ref. Data, 15, 967 (1986).]

TABLE W6.1 Vaporization Results for Fe and Si

Hvap(298.15 K) Svap(298.15 K) Tm Peq�Tm	
(kJ/mol; eV/atom) (J/molÐK) (K) (atm)

Fe 415.5š 1.3; 4.31š 0.01 180.49 1811 3.58ð 10�5

Si 450š 4; 4.66š 0.04 167.98 1687 5.41ð 10�7

Source: Data from P. D. Desai, J. Phys. Chem. Ref. Data, 15, 967 (1986).

† P. D. Desai, J. Phys. Chem. Ref. Data, 15, 967 (1986).
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energies in Chapter 2). Mass spectrometry has shown that the Si2 dimer and Si3 trimer
represent about 0.4% and 0.1%, respectively, of the equilibrium vapor of Si at Tm.

When determining the vapor pressure of Si, care must be taken to ensure that the
vaporization of Si atoms occurs from a clean surface. The presence of carbon atoms on
the Si surface can retard vaporization due to the formation of the high-melting-point
compound SiC. The presence of oxygen atoms, on the other hand, can lead to greatly
enhanced vaporization rates due to the formation of the volatile molecule SiO.

W6.4 Gibbs Phase Rule

In a binary eutectic alloy such as Pb–Sn there are three separate phases whose compo-
sitions can be varied. In addition, the temperature and pressure of the alloy can be
varied. There would thus appear to be five quantities or degrees of freedom that can be
controlled independently (i.e., xl, x˛, xˇ, T, and P). In practice, however, these degrees
of freedom are not all independent, as illustrated by the Gibbs phase rule.

Consider a system of C components, labeled c D 1, 2, . . . , C, with P possible
phases, labeled p D 1, 2, . . . , P. Let &cp be the chemical potential for component c in
phase p. At thermal equilibrium the system has a common pressure and temperature,
and the chemical potential for each component is the same in every phase. Thus

&11 D &12 D Ð Ð Ð&1P

&21 D &22 D Ð Ð Ð&2P

... �W6.7	

&C1 D &C2 D Ð Ð Ð&CP,

for a total of C�P� 1	 independent equations.
Let xcp denote the mole fraction of component c in phase p. There are C times P

compositional variables, xcp, and for each phase there is the constraint that

P∑
cD1

xcp D 1, p D 1, 2, . . . , P. �W6.8	

There are thus a total of �C� 1	P independent mole fractions. Including the pressure
and temperature, the number of independent variables is �C� 1	PC 2. The number
of degrees of freedom F (sometimes called the variance) is the difference between the
number of independent variables and the number of equations relating them to each
other, that is,

F D �C� 1	PC 2�C�P� 1	 D C� PC 2, �W6.9	

which proves the Gibbs phase rule.

PROBLEMS

W6.1 Show that the total number of atoms diffusing either into or out of the surface
of a solid of area A in time t is given by NA�t	 D 2�CA � CAo	A

p
Dt/
 when
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the concentration profile CA�x, t	 in the solid is given by Eq. (W6.3). Note that∫1
0 erfc�x	 dx D 1/

p

.

W6.2 Using the fact that the average distance of diffusion of an atom in a solid
in time t is given approximately by L D

√
hX2i ³ pDt, calculate the average

time hti it takes for a Cu atom (see Fig. W6.4) to “diffuse” one NN distance
at T D 1000 K. On average, what is the order of magnitude of the number of
oscillations that a Cu atom undergoes during this time?



CHAPTER W7

Electrons in Solids: Electrical and
Thermal Properties

W7.1 Boltzmann Equation

In Section 7.2 of the textbook,† formulas were derived on the basis of Newtonian
mechanics and the assumption that all of the conduction electrons contribute to the
electrical current. In the Sommerfeld theory this is not correct. Electrons with energies
less than ³ EF � kBT have difficulty being accelerated by the electric field since the
states above them are already filled. Only those electrons in the immediate vicinity
of the Fermi surface are excitable. The question is how to rederive the conductivity
formula taking into account the Pauli exclusion principle. Here a semiclassical approach
is adopted.

One introduces a distribution function f�r, p, t
 to describe the system of electrons
in phase space. The quantity 2f�r, p, t
 drdp/h3 gives the number of electrons within
volume element dr and within a momentum bin of size dp at time t (the factor of 2 is
for spins). The distribution function evolves in time due to collisions. The Boltzmann
equation relates the total time derivative of f to the difference between f and the
equilibrium distribution function f0 D F�E, T
, where E is the energy,

df

dt
D ∂f

∂t
C dr
dt
Ð ∂f
∂r
C dp
dt
Ð ∂f
∂p
D ∂f

∂t
C v Ð rfC F Ð ∂f

∂p
D �f� f0

��p

, �W7.1


where v is the velocity and F D �eE0 is the force on the electron. This equation has
been written in what is called the relaxation-time approximation: it is assumed that
the relaxation of f to f0 occurs in a time ��p
 as a result of collisions. Interest here
is in the steady-state behavior, so ∂f/∂t D 0 and f D f�r, p
. Attention will also be
restricted to the case of an infinite medium where a spatially homogeneous solution is
sought, so f D f�p
. It will also be assumed that � depends only on E.

An approximate expression for f is developed by substituting f0 for f in the
left-hand side of Eq. (W7.1):

f D f0 � �
(

v Ð rf0 � eE0 Ð ∂f0

∂p

)
C Ð Ð Ð . �W7.2


† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Since f0 D F�E,T
, the derivatives may be reexpressed in terms of energy derivatives:

f D f0 � � ∂f0

∂E
v Ð
[

1

ˇ
r�ˇ�E� �

� eE0

]
. �W7.3


The electrical-current density is

J�r, t
 D �2e
∫

vf�r, p, t

dp
h3
, �W7.4


and the heat-current density is

JQ�r, t
 D 2
∫
�E� �
vf�r, p, t


dp
h3
. �W7.5


Note that the thermal energy transported is positive when E exceeds � and negative
when E is less than �. Upon inserting Eq. (W7.3) into Eqs. (W7.4) and (W7.5), the
need to angular-average a product of two velocities over momentum space is encoun-
tered. One uses hvv Ð Ai D v2A/3 D 2 < EA > /3m, where A is a constant vector, and
obtains

J D �16�e
p

2m

3h3

∫
E3/2��E


∂f0

∂E

(
E� �
T
rTC r�C eE0

)
dE, �W7.6


JQ D 16�
p

2m

3h3

∫
E3/2�E� �
��E
∂f0

∂E

(
E� �
T
rTCr�C eE0

)
dE. �W7.7


An expression for � is given in Eq. (7.24). Evaluation of the integrals leads to the
formulas

J D �E0 � �SrT, �W7.8


JQ D �STE0 � �rT, �W7.9


which are called the Onsager relations.

W7.2 Random Tight-Binding Approximation

In this section we study the behavior of ��E
 for a random one-dimensional solid. Two
models for randomness are studied: the first with “bond” randomness and the second
with “site” randomness. In the bond case the tunneling integral, t, varies randomly
from bond to bond, but the site energy, �, remains constant. As an example, let t
assume two values, t1 and t2, with probabilities p1 and p2, respectively. Numerical
results are displayed in Fig. W7.1, where results are shown for ��E
 for the case
where N D 125 sites, t1 D 1, t2 D 2, and p1 D p2 D 1

2 . A suitable average over many
independent configurations has been made. A comparison is made with the uniform
case involving an average tunneling integral hti D p1t1 C p2t2. It is apparent that near
the band center the densities of states are the same, while near the band edges the
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Figure W7.1. Comparison of electron densities of states for the random-bond and uniform
one-dimensional solids.
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Figure W7.2. Comparison of electron densities of states for the random-site and uniform
one-dimensional solids.

random solid exhibits an irregular behavior in contrast to the smooth but divergent
behavior of the uniform solid.

In Fig. W7.2 the result for the random-site model is presented. In this model the
site energy is allowed to have one of two values, �1 or �2, with probabilities p1 and p2,
respectively. The tunneling integral is held fixed at t D 1.5. As before, there is some
rough but reproducible behavior near the band edges. Note that in both the random-site
and random-bond cases there is a tailing off of the density of states beyond the band
edges.

W7.3 Kronig–Penney Model

An analytic solution to Bloch’s difference equation can be found when all Fourier coef-
ficients are equal (i.e., VG D U) and the problem is one-dimensional. Then Eq. (7.54)
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becomes [
h̄2

2m
�kCG
2 � E

]
uG�k
CU

∑
G0
uG�G0�k
 D 0. �W7.10


Let S D∑ uG. If S D 0, then uG D 0 and there is no nonzero solution. If S 6D 0,
dividing by the first factor and summing over all G yields

SCU
∑

G

1

�h̄2/2m
�kCG
2 � ES D 0. �W7.11


This will have a non-trivial solution when

1CU
∑

G

1

�h̄2/2m
�kCG
2 � E D 0. �W7.12


In one dimension Gn D 2�n/a, where n is an integer, and the sum converges. The
dispersion relations are given by the roots E�k
 of the equation

1C
1∑

nD�1

U

�h̄2/2m
�k C 2�n/a
2 � E D 0. �W7.13


Note some simple properties of the left-hand side of this equation: (1) it is periodic
under the replacement k! k š 2�/a; (2) it is an analytic function of k except for

simple poles at k D �2�n/aš
√

2mE/h̄2; and (3) as k!ši1 in the complex plane,
the left-hand side approaches 1. From the theory of complex variables (Carlson’s
theorem) it follows that these properties are uniquely shared by the function on the
left-hand side of the following equation:

1C Ua
2h̄

√
m

2E


cot


a

2


k �

√
2mE

h̄2




� cot


a

2


k C

√
2mE

h̄2






 D 0.

�W7.14


Letting y D a
√

2mE/h̄2, one has, after some trigonometric manipulation,

cos ka D cos y C ma
2U

4h̄2

sin y

y
. �W7.15


It is important to note that the left-hand side of this equation is bounded by š1. For
arbitrary y, the right-hand side can exceed these bounds. No real solution is possible
for such values. Thus there are certain y values, and consequently certain energies, for
which no solution exists. These are called forbidden bands or gaps. Correspondingly,
the regions of energy for which solutions exist are called allowed bands.

An example of the energy spectrum for the Kronig–Penney model is given in
Fig. W7.3. As before, the energy gaps open at the boundaries of the first Brillouin
zone. The Kronig–Penney model considered here corresponds to the case where the
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Figure W7.3. Energy spectrum for the one-dimensional Kronig-Penney model. Here
ma2U/�4h̄2
 D �10.

potential consists of a periodic array of delta-function potentials for which

V�x
 D U
[N/2]∑

nD�[N/2]

ei�2�n/a
x D UN
[N/2]∑

nD�[N/2]

υx,na, �W7.16


where N has been assumed to be odd and [N/2] stands for the integer part of N/2.
It is also possible to formulate the Kronig–Penney model for the case of a periodic
square-well potential.

W7.4 Hall Effect in Band Theory

A discussion of the Hall effect from the perspective of band theory predicts a more
complicated behavior than that of classical Drude theory. The Boltzmann equation for
the distribution function, fn, in a given band n is

vn·rfn C Fn·
∂fn
∂p
D �fn � fn0

�n�p

, �W7.17


with Fn D �e�EY vn × B
 and vn D ∂εn/∂p [see Eq. (W7.1)]. Henceforth the band
index n will be suppressed. Equation (W7.17) is rewritten as

f D f0 � �v·rfC e�E Ð ∂f
∂p
C e�v × B Ð ∂f

∂p
�W7.18


and is iterated to produce an expansion in increasing powers of the fields:

f D f0 C e�E · v
∂f0

∂ε
C e2�v × B Ð ∂

∂p

(
�E · v

∂f0

∂ε

)
C Ð Ð Ð . �W7.19


It is seen from this expression that filled bands do not contribute to the currents, since
∂f0/∂ε D 0, and no current is supported by the equilibrium distribution. The current
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density from Eq. (W7.4) is

J D �2e
∫
dp
h3
fv

D �E� 2e3

h3

∫
dp
∂f0

∂ε
�vv × B· ∂

∂p
��E · v
. �W7.20


Attention here is restricted to the case of an isotropic metal. Assume � D ��ε
 and
write p D m�ε
v, so

J D �EC ,Eð B, �W7.21


where

, D 2e3

3h3

∫
dp
∂f0

∂ε

��v
2

m�ε

. �W7.22


In a multiband case one would sum this expression over all partially occupied bands.
For a perpendicular geometry �E?B
, the Hall coefficient may be expressed as

RH D ,

�2
. �W7.23


The expression for , shows that its magnitude and sign depends on the effective
mass at the Fermi level. This mass may be either positive or negative, depending on the
curvature of the energy band. For example, in the case of aluminum, the Fermi surface
lies outside the first Brillouin zone and has contributions from the second, third, and
fourth Brillouin zones. The net contributions from these bands produces a net positive
value for the Hall coefficient, opposite to that predicted by the classical Drude theory.
The Hall effect in semiconductors is discussed in Section 11.8.

W7.5 Localization

A measure of the ease with which a carrier can move through a crystal is the mobility
� D hvi/E, where hvi is the drift velocity and E is the electric field strength. In a
metal the mobility is determined by the collision time through the formula � D e�/m.
The connection between the mobility and the conductivity differs in two and three
dimensions. In d D 3 the relation is � D ne�, whereas in d D 2 it is � D Ne�, where
n and N are the number of electrons per unit volume and per unit area, respectively.
Obviously, the units for are different in the two cases, being /�1 m�1 and /�1,
respectively. For a thin film of thickness t, n D N/t.

In this section, disordered solids, in which the electron mean free path is determined
by the amount of disorder, are studied. The mean free path is related to the collision time
by , D vF�, vF being the Fermi velocity. There is a minimum value that , can have for
the solid still to have finite conductivity. Ioffe and Regel† (1960) argued that for conduc-
tivity, the electron waves would have to be able to propagate throughout the metal. The
presence of a mean free path introduces an uncertainty in the wave vector, k ³ 1/,,
as may be inferred from Heisenberg’s uncertainty principle. However, for the wave
vector to have a meaning, k < k ³ kF. Using mvF D h̄kF, this gives �min D e/h̄k2

F as

† A. F. Ioffe and A. R. Regel, Prog. Semicond., 4, 237 (1960).
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the minimum metallic mobility. The Ioffe–Regel criterion for localization is kF, < 1.
The Fermi wave vector is given by kF D �2�N
1/2 and kF D �3�n
1/3 for d D 2 and 3,
respectively. This implies the existence of a minimum metallic conductivity given by

� > �min �




e2

2�h̄
D 1

25, 813 /
if d D 2, �W7.24a


e2kF
3�2h̄

if d D 3. �W7.24b


Note that in d D 2, �min is independent of the properties of the metal. In d D 3, �min D
1.12ð 105 /�1m�1 for Cu, compared with � D 5.88ð 107 /�1m�1at T D 295 K.

Quantum-mechanical effects modify the classical Drude expression for the conduc-
tivity. For weak disorder the rate for elastic backscattering is enhanced due to construc-
tive interference of direct and time-reversed scattering events. Thus, suppose that there
is a sequence of scattering events for the electron from ion sites labeled A, B, C, . . . ,X
that lead to the electron being backscattered. The time-reversed scattering sequence,
X, . . . ,C, B, A, also leads to backscattering of the electron. In quantum mechanics
one must add together all amplitudes for a given process to determine the total ampli-
tude. Adding the above-mentioned amplitudes before squaring leads to constructive
interference and an enhanced backscattering. If the backscattering is increased, prob-
ability conservation implies that it comes at the expense of forward scattering, and
hence the conductivity. This effect is called weak localization. One may show that the
conductivity change is approximately

�

�
³ � 3

��kF,
2
. �W7.25


Suppose that one looks at impurities in a solid with a distribution of electron site
energies fEig whose width is W. The sites are coupled by tunneling matrix elements,
which decay exponentially with distance. In the familiar tight-binding model, all the
site energies are degenerate and the bandwidth, B, is determined by the NN tunneling
matrix element. All the states are extended Bloch waves and the conductivity is infinite.

In the disordered solid, things are not as simple. For conduction to occur, an electron
must tunnel from one site to another, and this requires a mixing of the local site
wavefunctions. From perturbation theory, two conditions must be satisfied for this to
occur: There must be a sizable tunneling matrix element connecting the sites, and the
energy difference between the site levels must be very small. These conditions are not
likely to occur simultaneously for any given pair of states. The problem is to explore
this competition as the size of the system becomes large. This is usually best done by
computer experiment. The results depend on the dimensionality of the system.

As disorder is introduced, some of the states separate from the allowed band
and reside in what was previously the forbidden region (e.g., the bandgap). This
phenomenon was seen in the discussion of the one-dimensional tight-binding solid
when randomness was present and there was an irregular component to the density
of states (see Section W7.2). These states are localized in space, meaning that their
wavefunctions die off rapidly with distance away from a given point in the crystal. As
more disorder is introduced, some of the previously occupied band states are converted
to localized states. The line of demarcation between the localized and extended states is
called the mobility edge. With increasing disorder, W is increased, and a critical value
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of W/B is ultimately reached for which all states become localized. This is called the
Anderson localization transition. The solid then becomes an insulator.

An estimate of the critical value of W/B can be made as follows. For electrons
to hop from site to site, one needs degeneracy. What determines whether two states
are degenerate or not is the size of the tunneling matrix element t compared with
their energy separation E. If t is larger than E, the states will mix and one may
consider them to be effectively degenerate. Since W represents the full spread of site
energies, the probability that two states will be “degenerate” is given by p D 2t/W.
Delocalization may be interpreted as a percolation phenomenon and it is possible for
the electron to propagate a large distance by following a percolation cluster. In the
discussion of percolation in Section 7.16 it was found that the percolation transition
occurs when p D d/Z�d� 1
 [see Eq. (7.130)]. It was also found in the discussion
of the tight-binding approximation in Section 7.9 that the bandwidth is B D 2Zt [see
Eq. (7.94)]. Thus the transition occurs when

W

B
D d� 1

d
. �W7.26


For d D 3 this gives B/W D 1.5, in rough agreement with computer experiments.
For B/W < 1.5 the states are localized, while for B/W > 1.5 they are extended. For
d D 1 the critical value of B/W is infinite, meaning that unless W D 0, all states will
be localized.

It is also useful to compare this formula to the Ioffe–Regel criterion. A measure
of the size of the bandwidth B is the Fermi energy. For example, a metal with a half-
filled band would have B ³ 2EF, where the Fermi energy is measured with respect to
the bottom of the band. If the mean free path is ,, one may think of the electron as
effectively bound in a spherical box of mean size ,. The confinement energy would
then be a measure of the spread of energies brought about by the inhomogeneities, so
W ³ h̄2/2m,2 since k ³ 1/,. Combining these formulas with Eq. (W7.26) and using
EF D h̄2k2

F/2m gives the condition when localization occurs as

kF, <

√
d

2�d� 1

. �W7.27


Note that in d D 3, kF, <
p

3/4 ³ 1. For a metal such as Cu, kF ³ 5/a, where a is
the lattice constant, and so , < a/5 for localization of electrons to occur.

It must be cautioned, however, that the current theoretical picture is not completely
understood. There are theoretical arguments based on single-electron scattering from
random potentials which say that in two dimensions there is only localization. There
are also some experiments that seem to point to the existence of conductivity in two
dimensions. There are also recent experiments suggesting that the M–I transition may
be associated with the formation of a Wigner crystal (i.e., a two-dimensional crystal-
lization of the electrons). Just what possible role many-body effects play in conductivity
has yet to be clarified.

There are two factors involved in localization. One is, as has been seen, perco-
lation. The other is phase interference of electrons traveling along different paths
but connecting the same pair of points. In a random medium the phase differences
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can be quite large, resulting in destructive interference. The effects of phase interfer-
ence in lower dimensions are more extreme and may contribute to suppression of the
conductivity.

W7.6 Properties of Carbon Nanotubes

Termination of Nanotubes. The nanotube must be capped at both ends for it not to
have dangling bonds. An understanding for how this capping comes about can be had
from examining Euler’s theorem. Consider a polyhedron with Nv vertices, Nf faces,
and Ne edges. Then for a simply connected body, Ne �Nf �Nv D �2. It will be
assumed that each vertex connects to three adjoining polygons and each edge to two
adjoining polygons. LetNi denote the number of i-sided polygons in the structure. Then

Ne D 1

2

1∑
iD3

iNi, �W7.28a


Nv D 1

3

1∑
iD3

iNi, �W7.28b


Nf D
1∑
iD3

Ni. �W7.28c


Combining these equations with Euler’s theorem gives

1∑
iD3

�i� 6
Ni D �12. �W7.29


For example, using only pentagons with i D 5 to terminate the ends of the nanotube,
then N5 D 12 and Ni D 0 for i 6D 5. Thus six pentagons are needed at each end since
only half of the 12-sided polyhedron is needed. The fullerene molecule C60 has N5 D
12 and N6 D 20, so �Ne,Nv, Nf
 D �90, 60, 32
.

Conductivity of Carbon Nanotubes. Adding a single electron to the nanotube
costs electrostatic charging energy Ec D e2/8��0C, where C is the capacitance (rela-
tive to infinity) of the nanotube (³ 3ð 10�17 F). Unless the potential bias across the
tubule satisfies the condition �eVC Ec < 0, no current will flow. One refers to this
as a Coulomb blockade. Similar phenomena occur in granular metals. However, if a
quantum state of the wire overlaps the occupied states of one electrode and an empty
state of the second electrode, conduction can occur via resonant tunneling through the
quantum state. In this case there is zero-bias conductance. The conductance will be
temperature dependent, being proportional to

G /
∫
dE
∫
dE0��E
��E0 C V
f�E
[1� f�E0 C V
]υ�E�E
υ�E0 �EC V


/ sech2
[
ˇ

2
�E� �


]
, �W7.30
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where the value of the quantum energy level relative to the chemical potential can be
changed by a gate voltage E� � D eVgate/˛, ˛ being a constant determined by
capacitance ratios. Thus there is a rapid variation of conductance with gate voltage.

Appendix W7A: Evaluation of Fermi Integrals

The Fermi integral to be evaluated is

Ij�ˇ, ˇ�
 D
∫ 1

0

EjC1/2

eˇ�E��
 C 1
dE. �W7A.1


Let x D ˇ�E� �
, so

Ij�ˇ, ˇ�
 D
∫ 1
�ˇ�

dx

ˇ

�u C x/ˇ
jC1/2

ex C 1
. �W7A.2


Integrate this by parts to obtain

Ij�ˇ, ˇ�
 D 1

�jC 3
2 
ˇ

jC3/2

∫ 1
�ˇ�

�ˇ�C x
jC3/2 ex

�ex C 1
2
dx. �W7A.3


Make a power series development in x and extend the lower limit of the integral to
�1, to obtain

Ij�ˇ, ˇ�
 D 1

�jC 3
2 
ˇ

jC3/2

∫ 1
�1

(
�ˇ�
jC3/2 C 1

2

(
jC 3

2

)(
jC 1

2

)

ð �ˇ�
j�1/2x2 C Ð Ð Ð
)

ex

�ex C 1
2
dx, �W7A.4


where the term linear in x integrates to zero. The integrals required are

∫ 1
�1

ex

�ex C 1
2
dx D 1, �W7A.5


∫ 1
�1

x2ex

�ex C 1
2
dx D 2

∫ 1
0

x2e�x

�1C e�x
2dx D 2
∫ 1

0
dx x2

1∑
nD1

��
nC1ne�nx

D 4
1∑
nD1

��
nC1

n2
D �2

3
. �W7A.6


The final result is

Ij�ˇ, ˇ�
 D 1

�jC 3
2 
ˇ

jC3/2

[
�ˇ�
jC3/2 C �

2

6

(
jC 1

2

)(
jC 3

2

)
�ˇ�
j�1/2 C Ð Ð Ð

]
.

�W7A.7
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Using Eq. (W7A.7), two useful formulas may be derived. If  �E
 is a function of
the form  �E
 D∑pjEjC1/2 with j ½ 0, then

∫ 1
0
 �E
f�E, T
 dE D

∫ �

0
 �E
 dEC �

2

6
k2
BT

2 ∂ 

∂E

∣∣∣∣
ED�
C Ð Ð Ð , �W7A.8


where f�E,T
 is the Fermi–Dirac distribution. Also, letting  �E
 D ∂:�E
/∂E and
integrating by parts, one obtains

∫ 1
0
:�E


∂f�E, T


∂E
dE D �:��
� �

2

6
k2
BT

2 ∂
2:

∂E2

∣∣∣∣
ED�
C Ð Ð Ð . �W7A.9




CHAPTER W8

Optical Properties of Materials

W8.1 Index Ellipsoid and Phase Matching

In the discussions so far† the effect of the crystalline lattice has been omitted. The
description of light propagation in solids must take account of the breaking of rotational
symmetry by the solid. In this section such effects are considered.

Light propagation in an anisotropic medium is often accompanied by birefringence
(i.e., a speed of light that depends on the polarization of the light as well as its direction
of propagation). In this section it is shown how the concept of the index ellipsoid can be
utilized to determine the index of refraction. Then it is demonstrated how, by cleverly
making use of birefringence, one may achieve the phase-matching condition, which is
necessary for efficient nonlinear optical effects.

Start with Maxwell’s equations, Eqs. (W8A.1) to (W8A.4), in a nonmagnetic mate-
rial and imagine a plane electromagnetic wave, such as that drawn in Fig. 8.1 of the
textbook with frequency ω and wave vector k propagating through it. Assuming that
the fields vary as exp[i�k · r� ωt�], the equations become

k × E D ωB,
1

�0
k × B D �ωD, �W8.1�

k · D D 0, k · B D 0. �W8.2�

For a linear, anisotropic dielectric

D D 	0
$	r Ð E, �W8.3�

where $	r is the dielectric tensor. Taking the vector product of Faraday’s law with
k and combining it with the other equations leads to an algebraic form of the wave
equation:

k ×�k × E� D k�k · E�� k2E D ��0ω
2D. �W8.4�

Form the scalar product of this equation with D to obtain

D ·
1
$	R

· D D
( ω
kc

)2
D2 D

(
D

n

)2

. �W8.5�

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W8.1. Polariton branches for MgO, from Eq. (W8.16) using 	�0� D 9.8, 	�1� D 2.95,
and ωT D 7.5ð 1013 rad/s.

Here 1/$	r is the inverse of the $	r matrix. The dielectric tensor is symmetric and will
therefore be diagonal in some reference frame (called the principal axis coordinate
system). Choose that frame, defined by the mutually perpendicular unit vectors f Ouig,
and write, using dyadic notation,

$	r D n2
1 Ou1 Ou1 C n2

2 Ou2 Ou2 C n2
3 Ou3 Ou3, �W8.6�

where ni D
√$	ri . Usually, the set f Ouig will coincide with the symmetry axes of the

crystal. Thus one finally obtains the pair of equations

∑
i

(
n OD Ð Oui
ni

)2

D 1, �W8.7�

where OD D D/D is the direction of the displacement vector, and∑
i

ODi Ð Oui Oui Ð k D 0. �W8.8�

The first formula is the equation of an ellipsoid in D space whose axes are aligned
with the principal axes and centered at the origin. It is called the index ellipsoid. The
second equation is that of a plane through the origin in D space. The intersection
of the plane with the ellipsoid produces the polarization ellipse. The intersection of
this ellipse with the unit sphere determines the two pairs of possible directions for
polarization of the wave.

Suppose that the vectors D and k are projected onto the principal axes:

OD D Ou1 sin � cos C Ou2 sin � sin C Ou3 cos �, �W8.9�

k D k� Ou1 sin˛ cosˇ C Ou2 sin˛ sin ˇ C Ou3 cos˛�. �W8.10�

Then the two conditions become

cos � cos˛C sin � sin˛ cos�ˇ �  � D 0, �W8.11�
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(
sin � cos 

n1

)2

C
(

sin � sin 

n2

)2

C
(

cos �

n3

)2

D 1

n2
. �W8.12�

If one were to choose a direction of propagation perpendicular to one of the principal
axes (e.g., Ou3), then ˛ D �/2 and sin � cos� � ˇ� D 0. There are two possibilities:

sin � D 0, n D n3 � no, �W8.13a�

or

j � ˇj D �

2
,

(
sin � sin ˇ

n1

)2

C
(

sin � cosˇ

n2

)2

C
(

cos �

n3

)2

� 1

n2
e���

.

�W8.13b�
Here no is referred to as the ordinary index and ne��� as the extraordinary index.

For crystals, the number of independent indices of refraction depends on the
symmetry. For the monoclinic, triclinic, and orthorhombic crystals there are three
independent indices. For the hexagonal, tetragonal, and trigonal crystals there are
two independent indices. For the cubic class there is only one independent index.
For amorphous materials the number of independent elements depends on whether or
not there is any remnant orientational or positional order. A glass, which is random
on the scale of the wavelength of light, is isotropic and has only one independent
element. Liquid crystals may have two independent elements. Quantum-well devices
may have two or even three independent elements, depending on the symmetry of the
structure. One refers to materials with two independent components as being uniaxially
symmetric. In that case, if n1 D n2, the extraordinary index is given by

(
sin �

n1

)2

C
(

cos �

n3

)2

D 1

n2
e���

. �W8.14�

A list of indices of refraction for various optical materials is given in Table W8.1. A
list of indices of refraction for various semiconductors is given in Table 11.7.

As discussed in Section 8.9, in any nonlinear optical process there are input waves
and output waves. One constructs a net input wave by forming the product of the input
waves. A similar construct may be formed for the output waves. Associated with these
net waves are phases. For the nonlinear process to proceed efficiently, these phases
must match each other. There can then be coherent transformation of the net input
wave to the output waves over a considerable length in space. The necessity for phase
matching occurs in nonlinear optics in processes where photons interact with each other
by means of a nonlinear optical material. For example, one may have second-harmonic
generation (SHG), where two ordinary wave photons of frequency ω and wave vector
k D ωno�ω�/c combine to form an extraordinary wave photon of frequency 2ω and
wave vector 2ωne�2ω, ��/c. Conservation of momentum then determines the angle �
for which phase matching occurs, via no�ω� D ne�2ω, ��. Other possibilities exist, such
as when an ordinary and an extraordinary photon at frequency ω combine to produce
an extraordinary photon at 2ω, where ne�2ω, �� D [ne�ω, ��C no�ω�]/2, and so on.

All nonlinear optical processes make use of phase matching to increase their effi-
ciency. These include third-harmonic generation, three- and four-wave mixing, para-
metric down-conversion, and stimulated Raman and Brillouin scattering.
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TABLE W8.1 Indices of Refraction for Materials at l = 589 nm (in Vacuum) at
T = 300 K

Material Symmetry n1 n2 n3

AgCl Cubic 2.071 — —
AgBr Cubic 2.253 — —
NaCl Cubic 1.544 — —
KCl Cubic 1.490 — —
ZnSe Cubic 2.89 — —
MgO Cubic 1.736 — —
C (diamond) Cubic 2.417 — —
SrTiO3 Cubic 2.403 — —
Al2O3 (alumina) Hexagonal 1.768 1.760 —
CaCO3 (calcite) Trigonal or

hexagonal
1.658 1.486 —

MgF2 Tetragonal 1.378 1.390 —
TiO2 (rutile) Tetragonal 2.616 2.903 —
As2S3 (orpiment) Monoclinic 2.40 2.81 3.02
SiO2 (˛-quartz) Hexagonal 1.544 1.553 —
SiO2 (fused silica) Amorphous 1.458 — —
SiO2 (trydimite) Trigonal 1.469 1.470 1.471
Na3AlF6 (cryolite) Monoclinic 1.338 1.338 1.339
Cu2CO3(OH)2 (malachite) Monoclinic 1.875 1.655 1.909
KH2PO4 — 1.510 1.469 —
PMMA — 1.491 — —
Polycarbonate — 1.586 — —
Polystyrene — 1.590 — —

Source: Data from M. J. Weber, Handbook of Laser Science and Technology, Vol. III, CRC Press, Boca
Raton, Fla., 1986, and other sources.

W8.2 Polaritons

Infrared radiation propagating through crystals at frequencies close to the optical
phonon frequencies propagates as coupled photon–phonon modes, called polaritons.
Consider, for example, transverse modes. A simple description of these modes follows
from combining the optical dispersion formula ω D kc/p	r�ω� with a Lorentz oscil-
lator model for the dielectric function introduced in Eqs. (8.23), (8.25), and (8.28). It
may be rewritten as

	r�ω� D 	r�0�C [	r�1�� 	r�0�]ω2
T

ω2 � ω2
T C i�ω

�W8.15�

for the case of a single oscillator of frequency ωT. Solving the resulting quadratic
equation in the variable ω2 yields two branches:

ω2
š D

	r�0�ω2
T C k2c2 š

√
�	r�0�ω2

T C k2c2�2 � 4	r�1��kcωT�2
2	r�1� , �W8.16�
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where � ! 0. These branches are plotted in Fig. W8.1 for the case of MgO. The lower
branch has long-wavelength behavior given by ω D kc/p	r�0�, corresponding to a low-
frequency photon. The upper branch has the asymptotic behavior ω D kc/p	r�1�, as
for a high-frequency photon. The polaritons display the reststrahl gap, discussed in
Section 8.4, between the frequencies ωT and ωL D ωT

p
	r�0�/	r�1�. The fact that

there is no polariton mode between these two frequencies means that propagation of
light through the crystal is blocked there and it behaves as a good mirror in that
frequency range.

Appendix W8A: Maxwell’s Equations

The laws governing electricity and magnetism are Maxwell’s equations. They consist
of four equations, which will be presented in SI units:

1. Gauss’s law,
r · D D �, �W8A.1�

where D is the electric displacement vector and � is the charge density
2. Gauss’s law for magnetism

r · B D 0, �W8A.2�

where B is the magnetic flux density
3. Faraday’s law

r × E D �∂B
∂t
, �W8A.3�

where E is the electric field
4. Ampère’s law, as generalized by Maxwell:

r × H D JC ∂D
∂t
, �W8A.4�

where H is the magnetic field intensity and J is the current density

These equations are supplemented by the constitutive equations

D D 	0EC P, �W8A.5�

where 	0 D 107/�4�c2� ³ 8.854ð 10�12C2N�1m�2 is the permittivity of free space
and P is the electric polarization vector (the electric dipole moment per unit volume).
In addition,

B D �0�HCM�, �W8A.6�

where �0 D 4� ð 10�7 Wb A�1m�1 is the magnetic permeability of free space and M
is the magnetization vector (the magnetic dipole moment per unit volume).

For linear isotropic materials, one writes Eq. (W8A.5) as

D D 	E D 	r	0E, �W8A.7�
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where 	 is the permittivity of the material and 	r is its dielectric function or relative
permittivity. The electric susceptibility is defined as  e D 	r � 1, so P D  e	0E. Thus
	 D �1C  e�	0 and 	r D 1C  e. Also, Eq. (W8A.6) is written as

B D �H D �r�0H, �W8A.8�

where � is the permeability of the material and �r is its relative permeability. The
magnetic susceptibility is defined as  m D �r � 1.

Two useful theorems follow from Maxwell’s equations. The first is the
continuity equation, the microscopic form of the law of conservation of charge.
Equations (W8A.7) and (W8A.8) will be assumed to apply. Then

r · JC ∂�
∂t
D 0, �W8A.9�

which follows from taking the divergence of Eq. (W8A.4) and combining it with
the time derivative of Eq. (W8A.1), using the identity r Ð r × H D 0. The second is
Poynting’s theorem, the microscopic form of the law of conservation of energy:

r · SC ∂u
∂t
D �E · J, �W8A.10�

where S is the Poynting vector, whose magnitude is the power per unit area (intensity)
carried by the electromagnetic field, defined by

S D E × H, �W8A.11�

and u is the electromagnetic field energy density, given by

u D 1

2

∫
�E · DC B · H� dr. �W8A.12�

The right-hand side of Eq. (W8A.10) gives the work done by the currents on the fields.
Equation (W8A.10) follows from taking the scalar product of E with Eq. (W8A.4),
subtracting the scalar product of H with Eq. (W8A.3), and making use of the identity
r · �E × H� D H · r × E� E Ð r × H.

Appendix W8B: Nonlocal Dielectric Function

The nonlocal relation between the electric displacement vector and the electric field
vector (for linear isotropic materials) is

D�r, t� D
∫∫

	�r� r0, t � t0�E�r0, t0� dr0 dt0. �W8B.1�

Since the wavelength is much larger than the interatomic spacing, it is reasonable to
assume that the dielectric function relating the fields at two points should depend only
on the displacement between the two points. The assumption concerning its dependence
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on the time difference is valid at frequencies low compared with electronic excitation
frequencies. It is an approximation at higher frequencies.

One makes a Fourier expansion of the fields,

D�r, t� D
∫∫

D�q, ω�ei�q·r�ωt� dqdω, �W8B.2�

E�r, t� D
∫∫

E�q, ω�ei�q·r�ωt� dqdω, �W8B.3�

and inserts these expressions in Eq. (W8B.1) to obtain

D�q, ω� D 	�q, ω�E�q, ω�, �W8B.4�

where the Fourier-transformed dielectric function is given by

	�q, ω� D
∫
drdt	�r, t�e�i�q·r�ωt�. �W8B.5�

Appendix W8C: Quantum-Mechanical Derivation of the Dielectric Function

In this appendix the quantum-mechanical derivation of the dielectric function will be
given. The Hamiltonian is taken to be

H D H0 � m · E0 cos�ωt� exp�˛t� � H0 CH1. �W8C.1�

(For technical reasons one introduces a switching factor, with parameter ˛! 0C, so
that the field is turned on slowly from a value of zero at t D �1.) Let the nth electronic
eigenstates of H0 be denoted by jni, where

H0jni D 	njni. �W8C.2�

To solve the time-dependent Schrödinger equation

Hj i D ih̄ ∂
∂t
j i, �W8C.3�

one writes the wavefunction (approximately) as

j i D exp
(
� i
h̄
E0t

)
j0i C

∑
n>0

an�t� exp
(
� i
h̄
Ent

)
jni �W8C.4�

and proceeds to solve for the coefficients an�t�. Assuming that the system starts out in
state j0i at t D �1, one obtains

an�t� D � i
h̄

∫ t

�1
eiωn0t0 hnjH1j0idt0, �W8C.5�
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where ωn0 D �En � E0�/h̄. The expectation value of the scalar product of the dipole
operator with a constant vector C0 is

h jm · C0j i D � 1

2h̄

∑
n>0

⌊
h0jm · C0jnihnjm · E0j0i

ð
(

e�iωt

ω � ωn0 C i˛ �
eiωt

ω C ωn0 � i˛
)
C c. c.

⌋
, �W8C.6�

where c.c. means complex conjugate.
The notation is now modified so that the initial state (previously labeled j0i) can be

any of a set fjmig, with associated probability fm, given by a Fermi factor. Then, by
rearranging the indices, one may write

h jm · C0j iD� 1

2h̄

∑
nm

[
hnjm · C0jmihmjm · E0jni e�iωt

ω�ωmnCi˛ �fn�fm�Cc. c.
]
.

�W8C.7�
Dividing by the volume, the expression becomes

1

V
h jm · C0j i D 1

2
	0C0 Ð $ �ω� Ð E0e

�iωt C c. c., �W8C.8�

where the dynamic electric susceptibility dyadic is

$ �ω� D � 1

	0h̄V

∑
m,n
m 6Dn

hnjmjmihmjmjni fn � fm
ω � ωmn C i˛ . �W8C.9�

The dielectric function is
$	r�ω� D $I C$ �ω�, �W8C.10�

where
$
I is the unit dyadic. In the special case of a crystal, the states are labeled by

the quantum numbers fn, k, sg and the energy eigenvalues are given by 	n�k�. Instead
of having discrete energy levels, the levels are broadened into bands. The expression
for the optical dielectric function becomes

$	r�ω� D $I C 1

	0V

∑
nn0

∑
kk0

∑
s

hnkjmjn0k0ihn0k0jmjnki
	n0�k0�� 	n�k�� h̄ω � ih̄˛ [fn�k�� fn0�k0�].

�W8C.11�
From Eq. (W8C.11) one sees that the oscillator strengths are determined by the transi-
tion matrix elements (i.e., the dipole matrix elements connecting electronic states of the
system). Comparing Eqs. (W8C.11) and (8.28), one sees that the resonance frequencies
are just the energies of the quantum states divided by Planck’s constant.



CHAPTER W9

Magnetic Properties of Materials

W9.1 Jahn–Teller Effect

Another effect that should be mentioned is the distortion of the octahedral arrangement
of the six NN O2� ions by 3d4 or 3d9 cations such as Mn3C or Cu2C, respectively.
Due to the occupation of the dx2�y2 and dz2 atomic orbitals by the 3d electrons in these
ions, additional asymmetric Coulomb forces will cause shifts in the positions of the
cations and anions, thus producing additional tetragonal or octahedral distortions of
the crystal. These distortions, which are a result of the Jahn–Teller effect, can remove
the degeneracy of the lowest energy level. The Jahn–Teller effect corresponds to the
removal of the ground-state degeneracy for a magnetic ion in a site of high symmetry
by distortions of the structure which lower both the energy and the symmetry of the
system. In the context of crystal field theory, the Jahn–Teller theorem states that such
distortions are in fact expected to occur under certain specific conditions (e.g., when
the symmetric ground state is not a Kramers doublet and when the effect is strong
enough to dominate thermal effects and the effects of spin–orbit interaction).

W9.2 Examples of Weak and Strong Crystal Field Effects

The ionic complexes Fe3C(F�)6 and Fe3C(CN�)6 are examples of the weak- and strong-
field limits, respectively, for the Fe3C ion in an octahedral crystal field. In the former
case the 3d5 Fe3C ion has spin S D 5

2 , as expected from Hund’s rules for a free ion,
while in the latter case the Fe3C spin S D 1

2 , corresponding to a single unpaired d
electron. These values of the spin S are consistent with the predictions of crystal
field theory presented in Table 9.2 of the textbook.† Crystal field theory is thus able
to explain the variation in magnetic properties of the same ion in different crystal
structures. In terms of the alternative molecular orbital theory, highly covalent bonding
between the Fe3C cation and the surrounding anions is proposed to occur in the strong-
field Fe3C(CN�)6 complex, while in the weak-field Fe3C(F�)6 complex the bonding
between cation and anions is primarily ionic with only a small covalent component.

W9.3 Crystal Fields and Cr3Y in Al2O3

The effects of crystal fields on a Cr3C ion with a 3d3 electronic configuration in an
octahedral site will now be considered in greater detail. Examples include Cr3C in

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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the solid antiferromagnetic oxide Cr2O3 or as an impurity or dopant ion in ruby (i.e.,
Al2O3), where each Cr3C replaces an Al3C ion. The latter example actually corresponds
to the first solid-state material to exhibit laser action, as described in Chapter 18. In
each of these examples six O2� ions are the NNs of each Cr3C ion. The free-ion
ground state of the 3d3 Cr3C ion is 4F3/2 (S D 3

2 , L D 3, J D L � S D 3
2 ) according to

Hund’s rules (see Table 9.1). The free-ion energy levels of Cr3C and their splitting in
an octahedral crystal field are shown in Fig. W9.1.†

The splitting of the energy levels of the Cr3C ion by the crystal field is much larger
than the splitting due to the spin–orbit interaction, not shown in Fig. W9.1, between
free-ion energy levels with the same S and L but different J, (i.e., J D L � S D 3

2 , 5
2 ,

7
2 , up to J D L C S D 9

2 . The ground-state 4F3/2 configuration of the free Cr3C ion,
which is (2SC 1
�2L C 1
 D 28-fold degenerate, is split into three levels in the crystal
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Figure W9.1. Free-ion energy levels of Cr3C and their splitting in an octahedral crystal field
shown in a Tanabe–Sugano diagram. The ground state of the 3d3 Cr3C ion, 4F3/2 �S D 3

2 ,
L D 3, J D L � S D 3/2), is split into three levels in the crystal field: a lower 4A2 level and two
upper levels, 4T2 and 4T1. The value o ³ 1.8 eV for Cr3C in Al2O3 is obtained from optical
absorption spectroscopy.

† Energy-level diagrams known as Tanabe–Sugano diagrams for ions with 3dn configurations in both
octahedral and tetrahedral crystal fields are shown as functions of crystal field strength in Sugano et al.
(1970, pp. 108–111). The transitions from the high-spin state (o < U) to a state with lower spin (o > U)
are shown in these diagrams to occur at critical values of o for ions with 3d4, 3d5, 3d6, and 3d7

configurations.
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TABLE W9.1 Mulliken Symbols for Crystal Field Representationsa

Symbol
M Dimensionality Symmetry

A One Symmetric with respect to rotation by
2�/n about the principal Cn axis.

B One Antisymmetric with respect to rotation
by 2�/n about the principal Cn axis.

E Two
T Three
g (subscript) — Attached to symbols for representations

that are symmetric with respect to
inversion

e (subscript) — Attached to symbols for representations
that are antisymmetric with respect to
inversion

aFor additional details, see F. A. Cotton, Chemical Application of Group Theory, 3rd ed., Wiley-Interscience,
New York, 1990, p. 90.

field, a lower fourfold degenerate 4A2 level and two upper levels, 4T2 and 4T1, each of
which is 12-fold degenerate. These new levels in the crystal field are denoted by the
group-theoretic labels 2SC1M, where M refers to the Mulliken notation. The meanings
of the Mulliken symbols are summarized briefly in Table W9.1.

Note that L is no longer a good quantum number in the presence of the crystal field
and so can no longer be used to designate the new levels. The 4A2 level remains the
lowest energy level for all crystal field strengths, and therefore a high-spin to low-
spin transition is not observed for Cr3C in octahedral crystal fields, as expected from
Table 9.2.

The crystal field splittings o of the energy levels of the Cr3C ion are also typically
larger than splittings due to the Coulomb interaction between free-ion levels with
different L (e.g., between the 4F3/2 ground state and the 4P, 2P, 2G, 2D, 2H, and 2F
excited states shown in Fig. W9.1). As a result of crystal field splitting, the ground
state of the ion is no longer �2L C 1
 D sevenfold orbitally degenerate. Instead, orbitals
with different values of ml now have different energies in the solid. The splitting of
the ground-state level in a magnetic field therefore lifts only the degeneracy due to the
spin S. As a result, the ion acts magnetically as if J D S, with an effective magneton
number p D gpS�SC 1
. This is consistent with the p observed for Cr3C, presented
in Table 9.1.

The value of the crystal field splitting o (often referred to in the literature as 10Dq)
for Cr3C in Al2O3 has been obtained from optical spectroscopy. The optical absorption
spectrum observed for Al2O3 containing Cr3C as an impurity cannot be explained as
being due to absorption by the Al2O3 host or to transitions between energy levels in
the free Cr3C ion. Instead, the absorption is due to transitions between the new energy
levels of the Cr3C ion in the octahedral crystal field. The specific transitions involved
are from the ground-state 4A2 level to the excited-state levels shown in Fig. W9.1,
including the 2E, 2T1, 4T2, 2T2, and 4T1 levels. The value o D 1.8 eV is obtained in
this way. These energy levels for the Cr3C ion lie within the energy gap of the Al2O3

host, as is often the case for transition metal impurities in insulating materials.
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The crystal field quenches the orbital angular momentum L by splitting the originally
orbitally degenerate levels into levels separated by energies that are much greater than
mH, where m is the magnetic moment of the atom or ion. In this case the magnetic
field can split the spin-degenerate levels of the ground state only into the �2SC 1

nondegenerate levels, which are responsible for the paramagnetic susceptibility of the
ion, discussed in more detail in Section 9.4.

W9.4 Experimental Results for c in the Free-Spin Limit

Experimental results† for the contribution of Mn spins to the low-field magnetic suscep-
tibility % of a series of six dilute alloys of Mn in Au are shown in Fig. W9.2, plotted
in this case as % versus T/n on a logarithmic plot. The fact that Mn impurities at
dilute concentrations tend to act as free spins in Au is clear since the measured values
of % for the six alloys lie close to a single straight line with a slope of �1, consis-
tent with Curie law behavior. Note also that since the measured values of % D M/H
are much less than 1, it follows that M− H. This justifies the use of the approxi-
mation B D &oH. Assuming that g D 2, the value of the magnitude of the spin for
Mn in Au obtained from the Curie constant C is S D 2.25š 0.1, which is close to
the Mn2C free-ion value of S D 2.5 (see Table 9.1). This value of S is the same as
that obtained from the measured saturation magnetization for the same alloys, using
S D Msat/ng&B.

Evidence for the appearance of interactions at high n and low T can be seen in
Fig. W9.2 where % at low T for the highest-concentration AuMn alloy falls below the
straight line that represents the Curie law behavior observed for the lower-concentration
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Figure W9.2. Experimental results for the contribution of Mn spins to the low-field magnetic
susceptibility % of a series of six dilute alloys of Mn in Au are shown plotted as % versus T/n
on a logarithmic plot. The concentration n of Mn spins is given in parts per million (ppm).
[From J. C. Liu, B. W. Kasell, and F. W. Smith, Phys. Rev. B, 11, 4396 (1975). Copyright 
1975 by the American Physical Society.

† J. C. Liu, B. W. Kasell, and F. W. Smith, Phys. Rev. B, 11, 4396 (1975).


