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Figure W22.50. Ac bridge.

sample in the shape of a ring and winds N uniform turns of wire around it to fashion
an inductor. The inductance is given by

L�ω� D �0�r�ω�hN2

2�
ln
b

a
, �W22.169�

where it is assumed that the ring is in the form of an annulus of inner radius a, outer
radius b, and thickness h. The inductance is seen to be a complex quantity and may
be regarded as a pure inductor in series with a pure resistor. The reactance of the pair
is X D �iωL�ω� D R� iω Re �L�ω�� � R� iωL, where

R D ω�0�2hN2

2�
ln
b

a
. �W22.170�

The inductor is inserted into one leg of a bridge, as shown in Fig. W22.50. The other
legs of the bridge consist of a variable inductor L0 in series with a variable resistor R0,
and two capacitors, each with capacitance C. An ac voltage of frequency ω is imposed
across the bridge. The value of R0 and L0 are adjusted until a null reading for the
voltage occurs across the terminals A and B. The bridge is then balanced with L0 D L
and R0 D R. The values of �1�ω� and �2�ω� are then determined from Eqs. (W22.169)
and (W22.170).

RESONANCE TECHNIQUES

The ability of scientists to determine resonance frequencies accurately has played a
central role in the development of atomic and nuclear physics and gas-phase chemistry.
The techniques were later applied to liquid-phase chemistry and ultimately to solid-
state measurements. In the following sections several of these resonance techniques are
described. The discussion begins with nuclear magnetic resonance spectroscopy. This
is followed by a consideration of nuclear quadrupole resonance spectroscopy. Then
electron spin resonance is studied. Finally, the Mössbauer effect is described.

W22.30 Nuclear Magnetic Resonance

It is possible to obtain useful information concerning the composition of a material
and the local environment of its individual nuclei by performing nuclear magnetic
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resonance (NMR) measurements. The procedure involves placing a sample of the
material in a constant uniform magnetic field. A weak perturbing radio-frequency
magnetic field is simultaneously applied to the sample while its frequency is varied
until maximum power is delivered by the RF field to the sample. This frequency is
called the resonance frequency. For a given magnetic field it is found that each nucleus
has its own particular resonance frequency. The strength of the resonance is directly
proportional to the amount of that particular nucleus present in the sample. This is
the basis of the use of NMR as a tool for determining the chemical composition. In
addition, there are slight shifts of the resonance frequency caused by variations of the
local chemical environment of the nucleus. This is due to the nuclei coupling to the
surrounding electrons by magnetic interactions and the electrons also coupling to the
applied magnetic field. Since the electron distribution reflects the chemical environment
(e.g., which chemical bonds are present and what the NNs and next-NNs are), one may
also use NMR to obtain this kind of information as well. From a knowledge of the
NNs and next-NNs one is often able to piece together the structure of complicated
chemical compounds or solids. The utility of NMR hinges on the ability to generate
uniform magnetic fields and to perform resonance measurements with extremely high
precision. The utility is also based on having a database of NMR signals from known
sequences of atoms with which a comparison may be made in determining the structure
of a complex molecule or solid.

Some of the main features of NMR follow directly from a classical-mechanical
theory, although the correct description must be formulated within the framework of
quantum mechanics. The need for a quantum theory stems from the fact that angular
momentum is quantized. A nucleus has an angular momentum operator given by

J D Ih̄, �W22.171�

where I is a vector of spin matrices (i.e., Ix, Iy , and Iz are square matrices). The
magnitude of the angular momentum, according to quantum mechanics, is given by
h̄[I�IC 1�]1/2, where I is either a nonnegative integer or a half integer. The number
of rows in the matrices Ix, Iy , or Iz is 2IC 1. For nuclei, I is small and quantum
effects are important. For pedagogic reasons, however, the discussion begins with the
classical theory. The quantum-mechanical treatment is covered in Appendix W22A.

A nucleus has a magnetic moment directed along the spin angular momentum vector

m D gI�Nh̄I D h̄8I, �W22.172�

where �N D eh̄/2Mp D 5.050824ð 10�27 J/T is the nuclear magneton, gI is the
nuclear g factor, and 8 D gI�N. Each nucleus has its unique value of 8 , and this
is what gives NMR its chemical (and isotopic) specificity. Impose a uniform magnetic
induction B D B0 Ok on the nucleus. The nucleus will experience a magnetic torque and
this will cause the spin angular momentum to change its direction in time according to

dI
dt
D m × B

h̄
D 8B0 I × Ok D I × Z. �W22.173�

This is in the form of a precession equation for I. The precession frequency is the
magnitude of the vector

Z D 8B
h̄
. �W22.174�
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TABLE W22.3 Spin I = 1
2 Nuclei Commonly

Used in NMR Spectroscopy

Isotopic
Abundance f (B D 1 T)

Nucleus (%) (MHz)

1H 99.985 42.5764
13C 1.10 10.7081
15N 0.366 4.3172
19F 100 40.0765
29Si 4.67 8.4653
31P 100 17.2510
89Y 100 2.0949
109Ag 48.161 1.9924
119Sn 8.59 15.9656
183W 14.3 1.7956
199Hg 16.87 7.7121
205Tl 70.476 24.9742
207Pb 22.1 9.0338

Source: D. R. Lide, ed., CRC Handbook of Chemistry
and Physics, 75th ed., CRC Press, Boca Raton, Fla.,
1997.

A list of some nuclei commonly used in NMR, along with their precession frequen-
cies, f D �/2� is given in Table W22.3. Many nuclei have I D 0 and so are not
NMR-active (e.g., 12C, 16O, 28Si, 56Fe).

The effect of the electrons, which are sensitive to the chemical environment, is to
partially shield the nucleus from the magnetic field. The magnetic induction may be
written as

B D �$I �$�� · B0, �W22.175�

where $� is called the shielding tensor. It may be written as the sum of an isotropic
part, �

$
I , and an anisotropic part, $� (i.e., $� D �$I C$�). The effect of the shielding

is usually described in terms of a chemical-shift parameter, υ. The value is usually
reported relative to a standard value

υ D ���st

�st
ð 106, �W22.176�

where �st is the frequency of the standard. The frequency shifts for protons typically
range from 0 to 10 ppm. For 13C they range up to ³ 200 ppm. The standard used is
often the tetramethylsilane (TMS) molecule, (CH3)4Si.

If the precession equation is separated into components, three equations are obtained:

dIx
dt
D �Iy, dIy

dt
D ��Ix, dIz

dt
D 0. �W22.177�

It follows that Iz and I remain constant in time. The x and y components undergo a
precessional motion

Ix D I0 cos�t, Iy D �I0 sin�t, �W22.178�
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where I0 is a constant in the classical theory. The value of Iz is that appropriate to
thermal equilibrium, and is given in terms of the Brillouin function:

hIzi D IBI
(
8IB

kBT

)
, �W22.179�

which is analogous to Eqs. (9.23) and (9.24).
In a solid, the nuclei interact with the other atoms of the material through a variety

of interactions, including spin–orbit and spin–spin interactions. These interactions
have two effects. First, they cause the z component of the nuclear spin to relax to its
equilibrium value, with a characteristic relaxation time T1, that is,

dIz
dt
D �Iz � hIzi

T1
. �W22.180�

The parameter T1 is called the longitudinal or spin-lattice relaxation time. Second, they
cause the precessional motion to become phase interrupted. Introduce a phenomeno-
logical damping term to account for this spin–lattice interaction:

dIx
dt
C Ix
T2
D �I × ��x, �W22.181�

dIy
dt
C Iy
T2
D �I × ��y, �W22.182�

The parameter T2 is called the transverse relaxation time. It is assumed that there is
no difference in the phase-interruption time constant for x- or y-spin components.

It is convenient to form the combination IC D Ix C iIy and combine the two preces-
sion equations into one: (

d

dt
C i�C 1

T2

)
IC D 0. �W22.183�

This is an equation for damped oscillation of the spin.
Next, introduce the perturbing magnetic field, H0�t�, at right angles to B. It is taken

to be circularly polarized, since this leads to a simpler formula. Thus

H0x D H0 cosωt, H0y D �H0 sinωt. �W22.184�

The dynamical equation becomes

(
d

dt
C i�C 1

T2

)
IC D i�0Iz exp��iωt�, �W22.185�

where �0 D �08H0/h̄. In the limit of weak RF fields, Ix and Iy will be small, so Iz
will differ from hIzi only by terms of order �H0�2. Hence Iz will be approximated by
hIzi. A steady-state solution for IC is found by writing IC D I0 exp��iωt�, so

I0 D �0hIzi
�� ω � i/T2

. �W22.186�
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Figure W22.51. Precession of a nuclear spin around the magnetic-induction vector.

This equation demonstrates that as the frequency ω approaches the resonance frequency
�, the amplitude of IC can grow to be large, limited only by the shortness of T2. The
resonance is detected by monitoring the power transfer from the RF circuit to the spin
system. It shows up by adding extra inductance and resistance to the RF circuit. This
power, of course, is ultimately transferred to the translational motion of the other atoms
and so heats the material. A sketch of the precessing magnetic dipole is presented in
Fig. W22.51.

The resonance frequency of a nucleus depends on the local magnetic field. In addi-
tion, for spin I ½ 1, nuclei also possess electric-quadrupole moments. These interact
with electric fields and affect the NMR spectrum in important ways. The local magnetic
field is given by the sum of the applied field and the fields due to all the other elec-
tronic and nuclear magnetic moments of the material. Since these moments are likely
to be oriented in an almost random manner, each nucleus will experience a different
magnetic field and hence have a different resonance frequency. Instead of the sample
exhibiting a sharp NMR resonance line, the line will be inhomogeneously broadened.
It is important to make a distinction between the magnetic moments participating
in the resonance (such as protons interacting with other protons in an proton NMR
signal) and other moments (such as protons interacting with Fe atomic spins in iron).
In this example, the spin–spin interaction of the protons is approximately included
in the parameter T2. The other interactions contribute to the inhomogeneous broad-
ening of the NMR line. This limits the ability to resolve closely spaced resonance
lines.

There are at least two methods to overcome this limitation. One may do NMR on
a liquid instead of a solid. There is a phenomenon called motional line narrowing
which can occur in liquids and will now be explained. As the nuclei move about due
to their thermal motion, the contribution to the local magnetic field from other nuclei
is as likely to be in one direction as in the opposite direction. Its average value is
zero, although the mean-square fluctuation remains nonzero. Let the contribution to
the precession frequency of a given nucleus from the other magnetic dipoles of the
material be denoted by �00�t�. As a simple model, suppose that it may assume only
two values, C�00 and ��00, and that there is a 50% probability of switching from one
value to the other every : seconds. The mean value of the square of the accumulated
phase after a time t is then

[∫ t

0
�00�t0� dt0

]2

D t

:
�002:2, �W22.187�
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where t/: is the number of opportunities for switching that occur. If the effective
dephasing time is determined by when this is ³ 1 radian, an estimate for T2 is obtained:

T2 D 1

�002:
. �W22.188�

As the thermal motion increases, : becomes smaller and the dephasing time becomes
longer.

A second technique for reducing the inhomogeneous width is called magic-angle
spinning. It permits high-resolution NMR to be applied to solid-state samples. It may
be accomplished by either actually physically spinning the solid about an axis making
an angle � D 54.7° with the dc magnetic field and using a very weak RF field, or
holding the sample stationary but arranging that the ratio of the RF magnetic field to
the dc magnetic field be equal to H0/H0 D tan�54.7°� D 21/2. To understand how this
comes about, consider the magnetic dipole–dipole interaction between the magnetic
dipoles located at the various sites ri in the solid:

U D �0

4�

N∑
iD1

N∑
jDiC1

3�mi · Orij��mj · Orij��mi · mj

r3
ij

, �W22.189�

where rij D jri � rjj. It will be assumed that the magnetic field is strong enough so
that mi precesses rapidly around the applied magnetic induction B0. On the average,
the magnetic moment therefore points along the direction of the magnetic field. The
angular factor in the numerator may then be written as

2P2�cos �ij� D 3 cos2 �ij � 1 D 3� OB0 Ð Orij�2 � 1, �W22.190�

where P2�cos �� is the second-order Legendre polynomial. Now suppose that the solid
is spun around some axis with an angular velocity �s (Fig. W22.52). There is an
identity, called the addition theorem for spherical harmonics,

PL�cos �ij� D 4�

2L C 1

L∑
MD�L

YŁLM��, ��YLM� ij, �ij�, �W22.191�
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Figure W22.52. Orientation of the external magnetic field, B0, the displacement unit vector,
Orij, and the rotation velocity, �s.
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where the YLM are spherical harmonics and � denotes an azimuthal angle (not shown in
the figure) around vector Zs. In the course of the angular motion, the terms involving
M 6D 0 average out, so

P2�cos �ij� ���! P2�cos ij�P2�cos ��. �W22.192�

If cos2 � D 1
3 (i.e., � D 54.7°), then P2�cos �� D 0 and the spin–spin interaction is

effectively removed as a first-order perturbation in the problem. This allows the lines to
become very narrow when the solid is spun at the magic angle. It must be emphasized,
however, that magic-angle spinning is only effective in eliminating the broadening due
to “like” spins. It does not eliminate inhomogeneous broadening due to other sources.

It is possible to remove some dipole–dipole broadening effects due to the interac-
tions between unlike spins by employing a technique called dipolar decoupling. For
example, suppose that 1H is present and one is interested in studying the 13C spectrum.
Normally, the two spins would interact in such a way as to broaden the spectra. A
strong RF field is applied whose frequency resonates with the protons. The spins of
the protons are made to flip up and down rapidly and hence their magnetic moments
average to zero. Their interaction with the 13C nuclei is suppressed.

It is also possible to use a technique called cross-polarization to increase the sensi-
tivity of the NMR resonance of one of the spins of a multispin system. For example,
there may be many more 1H nuclei present than 13C nuclei. In this technique one
applies two RF frequencies which effectively lock the nuclear resonances together.
This occurs when the Hahn–Hartmann condition applies (i.e., 8CBC D 8HBH). The
Zeeman splittings of the two nuclei are made degenerate with each other, and this
facilitates the resonant exchange of energy via the spin–spin interaction. The net result
is a transfer of magnetization from the majority 1H nuclei to the minority 13C nuclei
and a strengthening of the 13C signal.

It should also be mentioned that in some solids the analysis of the NMR line shape
reveals that the interaction between “like” spins leads to non-Lorentzian resonances.
This reflects a limitation of the Bloch equations in which one attempts to parametrize
all dephasing effects in terms of a single time, T2. The measured line shape may contain
important information concerning the interatomic distances and the short-range order,
in general.

The relaxation time T1 can be very long, in the range of minutes or longer. In some
cases this long relaxation time limits the ability to carry out NMR experiments on
solids. On the other hand, it also implies that quantum coherence is being maintained for
a long period of time. This could potentially be utilized in the construction of quantum
computers, which rely on the quantum-mechanical coherence being maintained during
the course of a calculation.

NMR is a long-established technique and there are a variety of ways of employing
it. There are powerful methods using time-programmed pulses of RF magnetic fields,
but these will not be discussed here.

It is also possible to obtain information concerning the density of conduction
electrons by measuring the Knight shift. At a given frequency the nuclear magnetic
resonance of a nucleus in a metal occurs at a different value of the magnetic field than
it would in an insulator. The Knight shift is defined as �B/B. This is due to the fact
that the conduction electrons exhibit magnetism, and this modifies the local magnetic
field experienced by the nucleus. The interaction responsible for this shift (called the
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Fermi contact interaction) is a point-magnetic interaction between the electron-spin
magnetic moment and the magnetic moment of the nucleus. An expression for this
interaction may be obtained by regarding the nucleus as a small magnetized sphere of
radius b and allowing the size of the sphere to shrink to zero. The magnetic induction
inside the sphere can be shown, by elementary magnetostatic arguments, to be given
by Bin D �0gI�NI/2�b3. The interaction energy is V D ge�Bs · Bin, so

V D 2�0

3
ge�BgI�Ns · Iυ�r�, �W22.193�

ge being the electron g factor and �B the Bohr magneton. The substitution
1/�4�b3/3�! υ�r� is also made in deriving this formula. Applying first-order
perturbation theory, one finds an expression for the energy of the nuclear magnetic
moment in the magnetic field:

E D �gI�NI ·
[

B� 2�0

3
ge�Bsj �0�j2

]
, �W22.194�

where j �0�j2 is the probability density for finding the electron at the nucleus. The
Knight shift, K, is therefore

K � �B
B
D 2�0ge�Bhszi

3B
j �0�j2. �W22.195�

This may be expressed in terms of the magnetic susceptibility E and the magnetic
permeability � using the relation hszi/B D E/n�0ge�B, where n is the electron density.
Typical experimental values for the Knight shift for the alkali metals 7Li, 23Na, 39K,
and 87Rb are 0.026%, 0.112%, 0.265%, and 0.653%.

The Fermi contact interaction is also responsible for the relaxation of the z compo-
nent of the spins. Korringa derived a relation for the spin–lattice relaxation time, based
on Fermi’s golden rule, in terms of the Knight shift in metals:

T1

(
B

B

)2

D h̄g2
e�

2
B

4�kBTg2
I�

2
N

D h̄g2
eM

2
p

4�kBTg2
Im2

e

. �W22.196�

In Fig. W22.53 magic-angle spinning NMR spectra are presented for 29Si at
79.5 MHz from samples of the catalyst ZSM-5 discussed in Section 13.6. The spectra
are compared for various degrees of removal of Al from the framework. The NMR
spectra are far more sensitive to the changes in the lattice structure than are x-ray
diffraction spectra. A precise determination of the lattice geometry may be obtained
from NMR studies.

W22.31 Nuclear Quadrupole Resonance

Nuclei with spins greater than or equal to 1
2 possess magnetic moments. If the spins

are greater than 1, they also possess electrical-quadrupole moments. The quadrupole
moment is a measure of the spherical asymmetry of the charge distribution of the
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Figure W22.53. 29Si magic-angle spinning NMR spectra for the zeolite ZSM-5 for various
degrees of dealumination. The Si/Al ratios are: (a), 20; (b), 125; (c), 800. [Reprinted with
permission from C.A. Fyfe et al., J. Phys. Chem., 88, 3248 (1984). Copyright 1984 by the
American Chemical Society.]

nucleus. The quadrupole moment is defined in terms of the nuclear charge density
;�r� by

eQ D
∫
dr ;�r��3z2 � r2�, �W22.197�

where the z axis is directed along the spin angular momentum vector. The sign of Q
is an indicator of the shape of the nucleus, being positive for cigar-shaped nuclei and
negative for pancake-shaped nuclei. Nuclei do not possess electric-dipole moments,
consistent with the invariance of the strong interaction under parity reversal (and also
time reversal).

The interaction of a quadrupole moment with an inhomogeneous electric field is
obtained from a Taylor series expansion:

U D
∫
dr�r�;�r� D Ze�0�C e

6

∑
˛,ˇ

∂2

∂x˛∂xˇ
Q˛ˇ C Ð Ð Ð , �W22.198�



CHARACTERIZATION OF MATERIALS 493

where �r� is the electrostatic potential and Z is the atomic number of the nucleus.
The coefficients Q˛ˇ define what is called the quadrupole tensor:

eQ˛ˇ D
∫
dr ;�r��3x˛xˇ � r2υ˛ˇ�. �W22.199�

It is defined here so that it has the dimensions m2 and is represented by a symmetric
matrix. The only vector defined for the nucleus as a whole is the spin angular-
momentum vector. Therefore, all vectors can be expressed in terms of I, so

∫
dr ;�r�x˛xˇ D C

2
�I˛Iˇ C IˇI˛�,

∫
dr ;�r�r2 D CI2. �W22.200�

If the expectation values of these expressions are evaluated in the state in which
I2jI, Ii D I�IC 1�jI, Ii and IzjI, Ii D IjI, Ii, then C may readily be shown to be
equal to

C D eQ

I�2I� 1�
. �W22.201�

The product of the spin matrices has been written in a form that preserves the symmetry
of the quadrupole tensor. (Note that angular momenta matrices need not commute with
each other.) The Hamiltonian for the quadrupole interaction is

HQ D C

6

∑
˛ˇ

˛ˇ

[
3

2
�I˛Iˇ C IˇI˛�� υ˛ˇI2

]
, �W22.202�

using a shorthand notation for the second derivative of the potential. After some manip-
ulation and making use of r2 D 0, this reduces to

HQ D e2Qq

4I�2I� 1�

[
3I2
z � I2 C ?�I2

x � I2
y�
]
, zz � eq, xx �yy

zz
� ?,
�W22.203�

where ? is called the asymmetry parameter and eqQ is called the quadrupole-coupling
parameter. The effects of this interaction are probed in NQR experiments.

This equation shows how the nuclear spin couples to the gradient of the electric
field. This field is set up by the neighboring ions and their associated electron charge
distributions. The field depends on the types of neighboring atoms, the internuclear
distances, and the types of chemical bonds that are formed. NQR therefore provides a
useful tool for obtaining the information above.

It is not possible to create strong-enough RF laboratory electric-field gradients that
can be used as the basis for NQR resonance measurements. Instead, one uses the
RF magnetic field, usually in conjunction with a dc magnetic field, and looks at the
simultaneous NMR and NQR effects. For example, suppose that there is a dc magnetic
field directed along the z axis, and this is aligned with a symmetry axis of the crystal. In
this case, ? D 0. The Hamiltonian then consists of a Zeeman term and the quadrupole
interaction:

H D �8B0Iz C e2Qq

4I�2I� 1�
�3I2

z � I2�. �W22.204�
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The first-order splitting caused by such an interaction may be obtained for the eigen-
states jI,mi as

hI, mjHjI,mi D �h̄8B0m C e2Qq

4I�2I� 1�
[3m2 � I�IC 1�]. �W22.205�

The effect of the Zeeman term is to lift the degeneracy by spreading out the sublevels
uniformly. The effect of the quadrupole coupling is to raise (or lower) states with šm
by the same amount. The combined effect is to produce a nonuniform spreading of
the sublevels. The magnetic-dipole selection rule is m D š1. The transitions may
be tracked in a resonance experiment, and the value of eqQ may be obtained to high
precision.

For the case where there is no axial symmetry the formulas are more complicated.
For I D 1 one finds that

h1, mjHj1, mi D



�e

2

2
qQ if m D 0,

Ý8B0 C e
2qQ

4
�1š ?�, if m D š1,

�W22.206�

and for I D 3
2 one finds that

〈
3

2
, mjHj3

2
, m

〉
D



Ý8B0

2
C e

2

4
qQ
√

1C ?2/3, if m D š1

2
,

Ý38B0

2
� e

2qQ

4

√
1C ?2/3, if m D š3

2
.

�W22.207�

Typical values of Q are presented in Table W22.4, along with nuclear spins, abun-
dances, and Zeeman (precession) frequencies for magnetic-dipole transitions. Nuclear
quadrupole resonance provides information about bond hybridization and the cova-
lent nature of the chemical bond. For example, if there is sp-hybridization, only the
p-orbital contributes to the quadrupole moment. Similarly, in ionic bonding, the closed-
shell ions do not possess quadrupole moments.

TABLE W22.4 Spins, Abundances, Precession Frequencies, and Quadrupole Moments
for Some Nuclei

Isotopic
Spin Abundance f�B D 1 T� Q

Nucleus I (%) (MHz) (10�30 m2)

2H 1 0.015 42.5764 0.2860
11B 3

2 80.1 13.6626 4.059
17O 5

2 0.038 5.7741 �2.558
25Mg 5

2 10.00 2.6082 19.94
27Al 5

2 100 11.1028 14.03

Source: Data from D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca
Raton, Fla., 1997.
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W22.32 Electron-Spin Resonance

Much of the inner workings of atoms has been elucidated by employing resonance
techniques in conjunction with the use of external magnetic fields. The physics of the
atom is described in terms of a succession of contributions to the Hamiltonian. These
describe the kinetic energy, the electrostatic interaction between the electrons and the
nucleus, the electron–electron electrostatic interactions, the spin–orbit coupling, the
spin–spin interaction, the interaction of the electron orbital angular momentum L and
spin S with external magnetic fields, the hyperfine interaction, the nuclear Zeeman and
quadrupole couplings, and various relativistic and quantum-electrodynamic corrections.
If the atom is not free but is embedded in a crystal, one must, in addition, consider the
effect of the crystal electric field imposed by the neighboring ions and electrons, the
interaction of the atomic spin with the spins on nearby atoms, and the possibility of
losing electrons to or gaining electrons from other atoms of the solid. These effects are
often by no means small and lead to major perturbations of the energy levels and the
corresponding spectroscopy. To the extent that they can be understood, however, they
provide a powerful analytical tool for probing the solid. The field is called electron-spin
resonance (ESR) or sometimes electron paramagnetic resonance (EPR). For simple
electron-spin systems, ESR may be described in terms of the Bloch equations, although
the quantum-mechanical approach is used in this section.

ESR is a very rich field and cannot be summarized adequately in a short amount of
space. It can provide information concerning donor or acceptor impurities in semicon-
ductors. It can be used to study transition metal ions. It is useful for analyzing color
centers in insulators. It is sensitive to electron and hole traps. There are two simple
uses for it: determining the symmetry of the site where the spin sits and determining
the valence of the magnetic ion.

In atomic physics one is concerned with the coupling of the nuclear spin, I, to
the electronic spin, J D LC S, to form a total angular momentum F D IC J. In the
presence of a magnetic induction B D OkB0, the Hamiltonian for a given electronic term
is written as

H D (L · SC �BB · �LC gS�C AS · IC �NB · I, �W22.208�

where the first term is the spin–orbit coupling, the second term is the electronic Zeeman
effect, the third term represents the hyperfine coupling, and the last term is the nuclear
Zeeman effect (which is three orders of magnitude weaker). The parameter g is the
g factor of the electron and is approximately 2. One usually forms matrix elements
of this Hamiltonian in an appropriate basis, diagonalizes the matrix, and interprets the
eigenvalues as the energy levels. Resonance spectroscopy may then be used to drive
transitions between the energy levels and therefore to deduce the coupling constants,
( and A, as well as to determine L, S, and I.

The same basic idea is used in the solid, but the Hamiltonian becomes more compli-
cated. First, quenching of the orbital angular momentum may occur. This occurs in
the sp-bonded materials and transition metal ions (but not in the rare earths with f
electrons, which need to be considered separately). Since the crystal is not an isotropic
medium, the mean orbital angular momentum operator does not commute with the
potential energy function. On the other hand, to a first approximation, the electron and
nuclear spins are impervious to the presence of this anisotropy. In place of the full
rotational symmetry of the free atom, there is the point-group symmetry of the crystal.
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A fruitful approach is to try to write a Hamiltonian operator involving S, I, and B in
a form that will respect the symmetry operations of the crystal. This will often require
introducing more than two arbitrary constants. Resonance techniques are able to deter-
mine these parameters in the same way as they are determined for a free atom. The
size of the parameters often offers important clues to the nature of the chemical bonds
formed. Moreover, a study of the degeneracies and their lifting under the application
of a magnetic field allows valuable information concerning the valency and symmetry
of the paramagnetic ions to be obtained.

As an example, consider the case of a magnetic ion sitting on a site with octahedral
symmetry inside a cubic host crystal. The Hamiltonian may be written as

H D g�BB · SC AS · IC C�S4
x C S4

y C S4
z �C D�S6

x C S6
y C S6

z �C Ð Ð Ð , �W22.209�

where the higher-order terms are usually smaller than the lower-order terms and are
often neglected. This Hamiltonian respects the cubic symmetry of the crystal in that
the permutation x! y! z! x is a symmetry operation (rotations of 120° around
the main diagonal), as is x!�x (reflections in bisecting planes), �x, y�! �y,�x�
(90° rotations), and so on.

Now suppose that a tetragonal distortion is introduced in the crystal. The x and y
lattice constants are assumed to remain the same, but the z lattice constant is made
different. This introduces new parameters into the Hamiltonian:

H D gz�BSzBz C gxy�B[SxBx C SyBy]C AzSzIz
CC0S2

z C Axy[SxIx C SyIy]C P
[
I2
z � 1

3I�IC 1�
]
, �W22.210�

where higher-order terms have been dropped.
If the symmetry is lifted further, by creating an orthorhombic distortion, the Hamil-

tonian is expanded even further:

H D gz�BSzBz C gx�BSxBx C gy�BSyBy C AzSzIz C AxSxIx C AySyIy
C P[I2

z � 1
3I�IC 1�]C C0S2

z C C00�S2
x � S2

y�. �W22.211�

A typical lifting of the degeneracy is represented in Fig. W22.54 for the case of a
d-shell electron. The ten-fold degenerate level for the free ion is split in stages and
ultimately consists of five doubly degenerate levels.

In Fig. W22.55 results are presented for a Mn2C ion in a calcite host crystal, CaCO3.
In the presence of the magnetic field the S D 5/2 level is Zeeman-split into 2IC 1 D 6
lines. The widths of the lines are attributed mainly to random strains in the crystal.

W22.33 Mössbauer Spectroscopy

Consider the gamma decay of an isolated radioactive nucleus in an excited state I
resulting in a ground-state nucleus F. A gamma ray of energy h̄ω is emitted in one
direction and nucleus F recoils with momentum h̄ω/c in the opposite direction. The total
energy available in the transition is the sum of the photon energy and the recoil energy:
E D h̄ω C �h̄ω�2/2Mc2, whereM is the nuclear mass. The photon that is emitted cannot
be absorbed by another F nucleus, because it is shifted out of resonance (i.e., h̄ω < E�.
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Figure W22.54. Lifting of the degeneracy of the d-electron energy levels as the symmetry of
the crystal is lowered.

B

Figure W22.55. ESR spectrum of a Mn2C ion in a calcite host. [Reprinted from J. G. Angus
et al, Chem. Geol., 27, 181 (1979). Copyright 1979, with permission from Elsevier Science.]

The natural width of the emission line, determined by its radiative lifetime, is typically
on the order of several 10�9 eV, much smaller than the recoil energy. There are only
several nuclei that may be used in Mössbauer spectroscopy. Chief among them is 57Fe.
The parent nucleus is 57Co. The sequence of decays is 57Co!57 FeŁ C e�, with a half-
life of 271 days, followed by 57FeŁ !57 FeC 8 , with a half-life of 99.3 ns. The energy
of the gamma ray used in Mössbauer spectroscopy is 14.41 keV, although there are
two others emitted at 123 and 137 keV. Other useful emitters are 119Sn, 121Sb, 125Te,
129I, 151Eu, 190Os, and 197Au.

Gamma decay often involves a change in the nuclear spin. Due to the hyperfine
interaction there may be several possible values for h̄ω.

Next consider the nucleus embedded in a crystal, which will be called the source
crystal. In the discussion of the Debye–Waller factor, exp��2W�, the factor was inter-
preted as the probability for the crystal to be found in a periodic arrangement. If the
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crystal is periodic, when one atom moves, all atoms must move. Energy conservation
requires E D h̄ω C �h̄ω�2/2NMc2, where N is the number of atoms in the crystal. For
a macroscopic sample the second term is negligible and so it is safe to write E D h̄ω.

Suppose that an attempt is made to absorb the gamma ray using a second crystal. The
absorption process is one in which the inverse process takes place (i.e., FC h̄ω! I).
In general, this too will involve nucleus I recoiling upon absorption, and even if
E D h̄ω, it would not have sufficient energy to cause the transition. However, recoil-
less absorption is also possible. The probability for this is given by a Debye–Waller
factor for the absorbing crystal. The conclusion is that it is possible to have resonant
energy transfer from one crystal to the other. This is the Mössbauer effect.

By moving one crystal relative to the other, the gamma rays are Doppler
shifted. This may drive the crystals out of resonance again. Thus, if the
absorber is moved toward the source at velocity v, it sees a gamma ray at
frequency ω0 D ω[�1C v/c�/�1� v/c�]1/2 ³ ω�1C v/c�. By gradually increasing v
and monitoring the transmitted gamma rays through the absorbing crystal, it is possible
to carefully map out the line shape of the gamma ray and hyperfine structure of the
nucleus.

The utility of the Mössbauer effect is that the line shape and hyperfine splittings
provide information concerning the local electronic environment of the nucleus. One
compares the energy levels in the source with those of the absorber. Each is subject to
a chemical shift (also called an isomer shift) determined, for example, by its oxidation
state. The Mössbauer spectrum also provides information about the magnetic fields and
spins in the solid. Thus information is provided in a similar fashion to that obtained
from NMR or NQR studies. For example, one may obtain the quadrupole splitting, as in
NQR. In the case of 57Fe, with I D 3

2 , the quadrupole splitting is given by the formula

E D �e2qQ/2�
√

1C ?2/3 [see Eq. (W22.207)]. From a measurement of the Zeeman
splitting, one may determine the strength of the magnetic induction, B, at the nucleus.

An example of a Mössbauer spectrum is presented in Fig. W22.56. The gamma-ray
source is Mg125

3 TemO6 (with a 58-day half-life) and the absorber is ZnTe. The recoil-
less fraction depends on the Debye–Waller factor, exp[�2W�T�]. Equation (W5.13)
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Figure W22.56. Mössbauer spectrum produced with the metastable source Mg125
3 Tem-O6 and the

absorber ZnTe at T D 78 K. [From W. Bresser et al, Phys. Rev. B, 47, 11663 (1993). Copyright
1993 by the American Physical Society.]
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gives an expression for W�T� which may be evaluated using the Debye theory used
to calculate the specific heat of solids. Thus W will also depend parametrically on the
Debye temperature D. By studying the Mössbauer signal as a function of temperature,
it is possible to determine D. A value D D 188 K is found for the absorber.

ELEMENTARY PARTICLES

The final sections of the characterization chapter are concerned with two techniques
that rely on elementary particles other than the familiar ones of ordinary matter. They
are positron-annihilation spectroscopy and muon-precession spectroscopy.

W22.34 Positron-Annihilation Spectroscopy

The positron is the antiparticle of the electron, with the same mass and spin but opposite
charge and magnetic moment (relative to the spin). When positrons come together with
electrons, pair annihilation occurs. If the pair is in a spin-singlet state and is at rest,
two 0.511-MeV gamma rays are emitted in opposite directions. If the pair is in a triplet
state, three gamma rays are emitted, the sum of the energies adding up to the total rest
energy of 1.022 MeV. The rate for singlet decay is much faster than for triplet decay.

In positron-annihilation spectroscopy (PAS) a beam of positrons is directed at a solid
and the resulting gamma-ray distribution is analyzed. Three popular ways of analyzing
the data are to:

1. Measure the time decay of the gamma-ray signal
2. Measure the angular correlation of the gamma rays
3. Measure the energy distribution of the gamma rays

Typical positron sources include 22Na (:1/2 D 2.6 years, E D 0.54 MeV) and 68Ge
(:1/2 D 280 days, E D 1.89 MeV), where E is the energy of the positron. Accelerators
are also often used. The positrons are rapidly thermalized after entering the solid by
making frequent collisions with the electrons and sharing their energy and momentum
with them. The thermalization time is typically 25 ps. The penetration “depth” with 1%
survival against annihilation is ;d D 10 kg/m2 for a 2-MeV positron, which translates
into approximately 0.003 m for Al, where ; D 2700 kg/m3. A typical positron lifetime
in a metal (Mg) is 232 ps.

Positrons, being positively charged, avoid the regions of high positive potential
inside an atom and thus tend to settle as far from the nuclei as possible. If open-volume
defects such as voids or vacancies are present, the emitted positrons are likely to settle
there. Trapping can also occur in dislocations. PAS therefore provides a powerful
method for studying these defects in a crystal. The decay rate per unit volume is
proportional to the probability that both the electron and positron are to be found in
that volume. If the positron is in a vacancy instead of being inside a normal region
of the crystal, this joint probability can be expected to be lower than its normal value
and hence the decay rate will also be different. The decay of the gamma-ray signal in
time will also be modified. This effect may be modeled by simple kinetic equations,
as follows.
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Let nf be the number of free positrons per unit volume and nt be the corresponding
number of trapped positrons per unit volume. Let the decay rate for a free positron
be f and for a trapped positron be t. Let C be the concentration of traps, �t the
trapping cross section, and v the positron speed. The rate of change of the free-positron
density is given by

dnf
dt
D �fnf � C�tvnf. �W22.212�

The rate of change of the trapped-positron density is

dnt
dt
D C�tvnf � tnt. �W22.213�

Begin by injecting a pulse of free positrons at time t D 0, so

nf�0� D n0, nt�0� D 0. �W22.214�

The kinetic equations are readily integrated to give

nf�t� D n0 exp[��f CC�tv�t], �W22.215�

nt�t� D c�tvn0

f � t C c�tv fexp��tt�� exp[��f C c�tv�t]g. �W22.216�

The rate of gamma-ray production per unit volume is

dn8
dt
D ntt C nff

D n0
�f � t��f CC�tv�
f � t C C�tv exp[��f CCv�t�t]

C n0
C�tvt

f � t CC�tv exp��tt�. �W22.217�

The exponents and amplitudes multiplying the exponentials may be extracted by fitting
the time-resolved gamma-ray decay rate to a two-exponential fit.

PAS may be used to obtain information about the distribution of electrons in
momentum space. In a metal the electrons fill the Fermi sea and therefore have a
momentum distribution whose maximum value is determined by the Fermi energy and
the band structure. The wavefunction of the electron at the location of the positron
may be expanded in momentum eigenstates. The square of the expansion coefficient
gives the probability of finding the electron with that momentum at the positron. The
physics follows from elementary conservation laws.

Let the momentum of the electron be p, the wave vectors of the gamma rays be
k1 and k2, and the momentum of the thermalized positron be approximated by 0.
Momentum conservation gives

h̄[k1 C k2] D p. �W22.218�

Energy conservation gives

mc2 C E D mc2 C
√
m2c4 C c2p2 D h̄�ω1 C ω2�, �W22.219�
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where E is the energy of the electron. The gamma-ray dispersion formulas are essen-
tially those in vacuum,

ω1 D k1c, ω2 D k2c. �W22.220�

Eliminating ω1 and ω2 leads to

h̄�k1 C k2� D mc C
√
p2 C �mc�2, �W22.221�

h̄2�k2
1 C k2

2 C 2k1k2 cos �� D p2. �W22.222�

where � is the angle between k1 and k2. Solving for k1 yields

h̄k1 D 1

2c

∣∣∣∣∣∣mc2 C Eš
√
�mc2 C E�

(
EC mc2 � 4mc2

1� cos �

)∣∣∣∣∣∣ . �W22.223�

For the solution to be real, this formula must have a nonnegative argument for the
square root. This implies that

1� cos � ½ 4

1C√1C �p/mc�2 . �W22.224�

Let � D � � υ and assume that υ is small. Then this becomes

� p

mc
� υ � p

mc
. �W22.225�

If there is a distribution in p values this equation implies that there will be a distribution
in values of υ or, equivalently, of �. The momentum distribution of the electrons in
the solid may therefore be probed by measuring the angular-correlation function of the
gamma rays.

Another way to measure the momentum distribution is to keep � fixed at � and to
measure the energy distribution of the gamma rays. Thus

h̄k1 D 1

2

(
mcC E

c
š p

)
. �W22.226�

Taking the nonrelativistic limit gives

h̄ω1 D mc2 š pc
2
, �W22.227�

which shows that a momentum value determines two values for the energy. The distri-
bution of gamma-ray energies may be mapped into a distribution of electron momenta.

Thermalized positrons are emitted from the surfaces of metals as a result of
the negative work functions presented by these metals to positrons, WC. Some
examples are WC D �0.16 eV for Al(100); WC D �3.0 eV for W(100) and W(110);
WC D �0.14 eV for Cu(110); WC D �0.33 eV for Cu (111); and WC D �1.3 eV
for Ni(100). The origin of these negative work functions is largely due to the surface
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dipole layer that exists near the surfaces of metals. The positrons that are able to diffuse
close to the surface are ejected with a distribution of kinetic energies centered around
the negative of the work function. The width of the distribution is determined by the
temperature of the solid. The angular distribution of the emitted positrons is sharply
peaked around the surface normal when the surface is atomically flat and clean. For
example, the full width at half maximum for W(100) positrons is ³ 30°. Adsorbates
on the surface broaden the emission cone. The emitted positrons may also display
inelastic energy-loss peaks due to the excitation of surface adsorbates, much as is seen
in LEELS experiments involving electrons.

Trapping of positrons by vacancies alters their decay rate, and this can be used to
probe the thermal formation of vacancies in the interior of a solid. Positrons have also
found use in studying multilayer interfaces and in depth profiling.

In addition to positron emission it is also possible for positronium (Ps) to be emitted.
Positronium is a hydrogenic system consisting of a bound electron and positron. The
binding energy of the ground state is 6.8 eV. The presence of surface defects, such as
steps or vacancies, alters the emission rate for Ps.

Figure W22.57 gives an example of the electron momentum distribution obtained
from the angular correlation of annihilation radiation of positrons in Cu (lower curve).
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Figure W22.57. Momentum distribution of electrons obtained from studying the angular corre-
lation of annihilation of positrons in Cu (lower curve) and the annihilation of para-Ps in
single-crystal quartz (upper curve). [From P. J. Schultz and K. G. Lynn, Rev. Mod. Phys., 60,
701 (1988). Copyright 1988 by the American Physical Society.]
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Also shown is the electron momentum distribution in single-crystal quartz (upper curve)
obtained from the angular correlation of gamma rays from para-Ps. In Cu there is a high
Fermi energy, so there is a broad distribution of electron momenta. The momentum
distribution provides direct information concerning the wavefunction of the electrons
in solids.

W22.35 Muon-Precession Spectroscopy

Muon precession spectroscopy (�PS) permits one to measure the spatial inhomogeneity
of the magnetic field inside a material. Muons are created in an accelerator by colliding
energetic particles with nuclei. At first �C mesons are produced, but these decay into
�C mesons (muons) and 9� neutrinos. The muons are created in a state of negative
helicity (i.e., their spins point opposite to their momenta). In one type of experiment the
muons enter the sample perpendicular to an external magnetic field. The implantation
energy is typically 50 MeV. They rapidly slow down to an energy of 2 to 3 keV in
approximately 0.1 to 1 ns. At this point they capture an electron from the material
and form muonium. Muonium has the same properties as hydrogen, except the muon
replaces the proton. The muonium is rapidly deexcited, on a time scale of 0.5 ps,
achieving a kinetic energy of 15 eV. In another picosecond it thermalizes. Despite the
fact that the muon has undergone all this deceleration and capture, the spin direction
of the muon remains unchanged. The mean lifetime of the muon against decay, : D
2.22 µs, is long compared to the processes above.

The muons precess around the direction of the magnetic induction vector B0 at a
frequency

��r� D �BB0�r�
h̄

me
m�
g�. �W22.228�

Here �B is the Bohr magneton, m� the muon mass, and the g factor for the muon is
g� ³ 2. The local precession angle is ��r�t. When the muon finally does decay by the
process

�C ���! eC C 9� C 9e, �W22.229�

the positron eC is emitted preferentially along the direction of the muon-spin vector
(consistent with the nonconservation of parity). The fraction of muons that live to time
t is exp��t/:�. The product positrons are detected with sufficient angular resolution to
determine the direction in which the muon spin was pointing at the time of its decay.
The positron signal varies with angle and time as

S��, t� D N0 exp
(
� t
:

)
[1C A cos��t � ��]. �W22.230�

The penetration depth of the muons is large compared with the sample size, D, so
only a small fraction of the muons are actually captured, but they populate the sample
uniformly.

If there is a distribution of magnetic fields inside the material, there will be a distri-
bution of precession frequencies and the angular distribution of the signal will become
dephased. The time over which this occurs is a measure of the spatial inhomogeneity
of the magnetic field.
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Muon precession has been used to determine the local magnetic fields in anti-
ferromagnetic materials and in ferromagnetic transition metals. It has also provided
information concerning the penetration depth of magnetic fields into superconductors.

Appendix W22A: Quantum-Mechanical Description of NMR

In the development of the quantum theory of NMR in this section, the scope is limited
to the case of a nucleus with spin I D 1

2 . Choose the quantization axis along the
direction of the dc magnetic field and define it as the z direction. There are two states
for the system, spin up and spin down. The time-dependent Schrödinger equation is

H D ih̄ ∂ 
∂t
, �W22A.1�

where H is the Hamiltonian governing the system and  is a two-component vector
with time-dependent components:

 �t� D
[
u�t�
v�t�

]
. �W22A.2�

The components u�t� and v�t� give the amplitudes for being in the spin-up and spin-
down states, respectively. Introduce a two-dimensional matrix called the density matrix
;, defined by

; D h  Ci, �W22A.3�

where  C is a row vector whose elements are the complex conjugates uŁ�t� and vŁ�t�.
The average is taken over an ensemble of ways of preparing the same state, but with
different phases. Note that the density matrix is described by a Hermitian matrix (i.e.,
; D ;C). Also, the sum of the diagonal matrix elements of ; (the trace, abbreviated
Tr;) is 1, since juj2 C jvj2 D 1. It may be expanded in terms of the Pauli spin matrices,
which form a basis for expanding an arbitrary 2ð 2 Hermitian matrix:

; D 1
2 [I2 C Px�t��x C Py�t��y C Pz�t��z] D 1

2 [I2 C s · P�t�], �W22A.4�

where P�t� is a real polarization vector and where the matrices are

I2 D
[

1 0
0 1

]
, �x D

[
0, 1
1 0

]
, �y D

[
0 �i
i 0

]
, �z D

[
1 0
0 �1

]
. �W22A.5�

This form for ; is manifestly Hermitian and obeys the trace condition Tr; D 1. It
follows from the Schrödinger equation that the density matrix obeys the equation

H; � ;H D [H,;] D �ih̄ ∂;
∂t
. �W22A.6�

The square bracket in this equation is called the commutator.
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In a uniform magnetic field the Hamiltonian consists of the magnetic interaction of
the dipole with the magnetic field, that is, the Zeeman interaction

H0 D �m · B D �8
2
B�Z D � h̄

2
��z. �W22A.7�

There are two eigenfunctions of the time-independent Schrödinger equation H0 D
E :

 � D
[

1
0

]
,  D

[
0
1

]
, �W22A.8�

with the corresponding eigenvalues

E� D � h̄�2 , E D C h̄�
2
, �W22A.9�

where � D 8B/h̄. Suppose that the system is in thermal equilibrium at some temper-
ature T. The Boltzmann probability for occupying the states with energy EC and
E� are

PC D exp��ˇEC�
exp��ˇEC�C exp��ˇE�� , P� D exp��ˇE��

exp��ˇEC�C exp��ˇE�� , �W22A.10�

where ˇ D 1/kBT. The density matrix corresponding to this thermal distribution is

;0 D exp��ˇH0�

Tr[exp��ˇH0�]
. �W22A.11�

In terms of the polarization vector introduced in Eq. (W22A.4), the components are

P0
z D tanh

ˇh̄�

2
, P0

x D 0, P0
y D 0. �W22A.12�

Next introduce the rotating RF magnetic field B0, as before. The Hamiltonian is

H D �m · [BC B0�t�] D � h̄
2
��z � h̄

2
�0��x cosωt � �y sinωt�, �W22A.13�

where �0 D 8B0/h̄. Inserting this into the time-dependent Schrödinger equation leads
to the following three equations:

i PPz D ��
0

2
[PC exp�iωt�� P� exp��iωt�], �W22A.14a�

i PP� D ��P� C�0Pz exp�iωt�, �W22A.14b�

i PPC D �PC ��0Pz exp��iωt�, �W22A.14c�

where
PC D Px C iPy, P� D Px � iPy. �W22A.15�
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Next include the interaction with the other atoms of the system. The diagonal compo-
nents of the density matrix represent the probabilities for being in the upper or lower
state. These are taken to relax to the thermal values with a time constant called T1. In
place of Eq. (W22A.14a) is

PPz C Pz � P
0
z

T1
D i�

0

2
[PC exp�iωt�� P� exp��iωt�]. �W22A.16�

The x and y components of the density matrix represent what are called coherence
terms. These will also relax from their nonequilibrium values with a time constant
called the dephasing time, T2. Thus the following generalizations of Eqs. (W22A.14b)
and (W22A.14c), including relaxation, are

PP� C P�
T2
D i�P� � i�0Pz exp�iωt�, �W22A.17a�

PPC C PC
T2
D �i�PC C i�0Pz exp��iωt�. �W22A.17b�

These three formulas are called the Bloch equations. They are similar in form to the
classical equations derived earlier [see Eqs. (W22.181) and (W22.182)]. To find a
steady-state solution, let

PC D FC exp��iωt�, P� D F� exp�iωt� �W22A.18�

and obtain

FC D �0Pz
�� ω � i/T2

, F� D �0Pz
�� ω C i/T2

, �W22A.19�

where

Pz D P0
z

��� ω�2T2
2 C 1

��� ω�2T2
2 C �1C T1T2�02�

. �W22A.20�

This expression demonstrates that the probability of finding the system in the upper-
energy state is increased above that expected at thermal equilibrium. The probability
of finding the system in the lower-energy state is decreased correspondingly. The
maximum increase occurs at resonance, when ω D �. The full-width at half maximum
of the resonance is

ω D 2

T2

√
1C T1T2�02. �W22A.21�

By studying the behavior of ω as a function of �0 it is possible to extract the
parameters T1 and T2.

Since the populations of atoms in the upper and lower energy levels change as the
RF frequency is varied, the magnetic energy of nuclei must also change. This energy
must have come from somewhere. Since a dc magnetic field is incapable of supplying
energy, it must have come from the RF field. The RF oscillator supplying the RF field
experiences an added resistive and inductive component in the resonant circuit. This
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may be monitored electronically, and the location of the resonance frequency may be
determined.
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PROBLEMS

W22.1 A beam of x-rays impinges on the surface of a metal at a small angle of
incidence. Treat the metal as a plasma. Show that total-internal reflection
is possible when the angle is sufficiently small. Derive an expression for the
critical angle in terms of the plasma frequency of the metal and the frequency
of the x-rays.

W22.2 The Bragg description of x-ray scattering assumes that specular scattering
from the various lattice planes occurs. What happens when nonspecular scat-
tering occurs? Does one find additional peaks due to nonspecular scattering?

W22.3 Light is incident normally on a film of material of thickness D characterized
by the complex index of refraction Qn D nC i5. Derive expressions for the
reflection coefficient and the transmission coefficient. What fraction of the
radiation is absorbed inside the medium? Consider the multiple reflections
inside the slab.

W22.4 Given the dielectric function ��ω� D 1� ω2
p/ω�ω C i/:� for a plasma, verify

the following sum rules:

∫ 1
0
ω�2�ω�dω D �

2
ω2
p,∫ 1

0
[n�ω�� 1]dω D 0,

�1�ω� D 2

�
P

∫ 1
0

ω0�2�ω0�
ω02 � ω2

dω0,

�2�ω�� 4�

ω
��0� D � 2

�
ωP

∫ 1
0

�1�ω0�� 1

ω02 � ω2
dω0.

[The symbol P denotes taking the “principal part” (i.e., leaving out a small
region around the singularity when evaluating the integral and then making
the region smaller and smaller in such a way that the integral remains nonsin-
gular).] The last two equations are called the Kramers–Kronig relations. All
these formulas are general.

W22.5 Derive the Rutherford differential scattering cross section for a charge Z1e,
moving with kinetic energy E, scattering through an angle � off a stationary
charge Z2e:

d�

d�
D Z2

1Z
2
2e

4

16E2�4��0�2
1

sin4��/2�
.

W22.6 Derive the cross section for an ion of charge Ze scattering from a molecule
and vibrationally exciting it. To a first approximation, assume that the charge
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moves on a straight line with velocity v and impact parameter b. Model the
molecule as a simple harmonic oscillator with spring constant k, mass M, and
a charge Cq at one end of the spring and �q at the other end. Compute the
impulse delivered to the oscillator. Assume that the oscillator is excited when
the energy transferred exceeds the vibrational quantum of energy hf. Proceed
to calculate the cross section for low-energy electron loss spectroscopy from
a layer of molecules on the surface of a solid.

W22.7 Repeat the calculation in Problem. W22.6 using the Born approximation (i.e.,
representing the incident and outgoing wavefunctions as plane waves and
using first-order time-dependent perturbation theory). Assume that the moving
charge couples to the harmonic oscillator by the Coulomb interaction. You
may assume that the amplitude for molecular vibration is small compared
with other relevant distances.

W22.8 In the atomic-force microscope, as well as the scanning-tunneling microscope,
it is important to try to eliminate the effect of external vibrations as much as possible.
Model the cantilever and stylus as a spring–mass system, with resonant frequency ω0,
as shown in Fig PW22.8. Show that if the entire microscope is made to oscillate up
and down with frequency ω and amplitude A, the distance between the stylus and the
sample will oscillate with the same frequency but with an amplitude approximated by
�ω/ω0�2A, when ω − ω0.

Figure PW22.8

W22.9 K-shell electrons of Cl� ions in NaCl absorb x-rays of wavelength (. The
energy needed to ionize this electron from the K shell will be denoted by IK.
The NN distance is denoted by a. EXAFS oscillations are observed when (
is varied. Find the periods of these oscillations. Include the effect from NNs
and next-NNs.

W22.10 Electrons with 200 eV energy are incident on the (100) face of GaAs. Find
the angles at which the LEED beams will emerge. Repeat the calculation for
the (111) and (110) faces.

W22.11 Calculate the force between the stylus of the atomic-force microscope and a
solid material. Model the stylus as a sphere of radius R and the solid as a
half-space filled with material in the region z < 0. Let the minimum distance
between the sphere and plane be H. Assume a concentration ns of atoms per
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unit volume in the stylus and correspondingly nm in the material. Assume that
each stylus atom interacts with each material atom through the Lennard-Jones
potential given in Eq. (2.3):

u�r� D 4ε
[(�
r

)12
�
(�
r

)6
]
,

where ε and � are constants characterizing the interaction and the 1/r6 term
represents the van der Waals potential. (To obtain a precise answer, it will
probably be necessary to do a numerical integration. You may, instead, make
whatever reasonable assumptions are necessary to obtain an estimate.)

W22.12 A silver mirror is found to have a reflectivity R as a function of wavelength
( given by the following data:

(��m� 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
R (%) 20 12 85 91 93 95 97 98 98

Why is the reflectivity so high at long wavelengths? Use the data above to
estimate the plasma frequency, ωp, of Ag.

W22.13 An x-ray diffraction study of (Ca0.3Sr0.7)0.9CuO2 made with the Cu(K˛) line
(( D 0.1544 nm) reveals peaks at the following values of the angle  D 2�
(in degrees): 23.1, 26.7, 32.4, 35.3, 42.6, 46.5, 54.9, 59.8, 65.4, 68.2. The
crystal is believed to be orthorhombic. Find the reciprocal lattice vectors and
lattice constants.

W22.14 Indium, at room temperature, is a tetragonal crystal with a D 0.325 nm and
c D 0.495 nm. Find the 2� values for the first 16 x-ray diffraction peaks.
Assume that the Mo (K˛) line is used (( D 0.07136 nm).

W22.15 Six surfaces of a crystal are shown in Fig. PW22.15. The two leftmost figures
show the (100) and (111) faces of an FCC crystal. The remaining figures
show adsorbed atoms on these faces. In the primitive 2ð 2 [p�2ð 2�] struc-
tures and the centered 4ð 2 structure [c�4ð 2�] one-fourth of a monolayer is
adsorbed. In the centered 2ð 2 structure [c�2ð 2�], one-half of a monolayer
is adsorbed. Find the LEED pattern from each of the six surfaces.
(Note: Often, faces of pure crystals will reconstruct and substrate atoms will
occupy the sites occupied by adsorbate atoms, as in this example.)

FCC(100)

FCC(111)

p(2×2)

p(2×2)

c(2×2)

c(4×2)

Figure PW22.15
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W22.16 Ring patterns are formed when x-rays are diffracted from a crystalline powder.
Show that the radii of the rings vary with the integers N as rN /

p
N. What

are the allowable values for N for the following crystal structures: simple
cubic, BCC, FCC, and diamond?

W22.17 Given � D 0.05 rad for the (100) diffraction maximum from polycrystalline
Al, use Eq. (W22.4) to find the average crystallite size. Use ( D 0.1 nm.

Computer Problems

W22.18 To get a feeling for the design of an electron microscope, write a program to
determine the focal length for a beam of electrons directed toward a charged
ring at normal incidence. To do this, obtain an expression for the electric field
at an arbitrary point in space set up by a charged ring of unit radius. This
may be left as an integral over the length elements of the ring. Numerically
integrate Newton’s second law, taking as the initial condition the displacement
of the electron from the axis. Determine where this beam crosses the symmetry
axis. Show that to a first approximation, this focal length is independent of
the original distance from the axis. To the next approximation you may use
the program to study the spherical aberrations of this electrostatic lens.

W22.19 Repeat Problem W22.18 for an electron beam directed at a circular loop of
wire carrying an electric current. This time use the Biot–Savart formula to
calculate the magnetic field at an arbitrary point in space, and calculate the
magnetic force on a moving electron. Proceed as before to integrate Newton’s
equations of motion numerically.

W22.20 A commonly used device in SIMS is the electrostatic quadrupole mass
analyzer. It consists of four parallel cylinders whose projections form a square.
Two diagonally opposite wires are positively charged and the other two are
negatively charged. Show that to a first approximation, the angle of deflection
of an electron beam is independent of its distance from the plane of reflection
symmetry of the wires. To the next approximation, study the aberrations of
this device.



APPENDIX WA

Thermodynamics

Thermodynamic variables are classified as extensive if they scale as the volume of the
system, V. Thus U, the internal energy, N, the number of particles, and S, the entropy,
are extensive variables. (Here attention is restricted to a system in which there is only
one kind of particle.) Variables that do not scale as the size of the system are called
intensive. The internal energy of the system may be expressed as a function of the
extensive variables [i.e., U D U�V,N, S�]. Thus

dU D
(
∂U

∂V

)
N,S
dVC

(
∂U

∂N

)
V,S
dNC

(
∂U

∂S

)
N,V
dS

D �PdVC �dNC TdS.
�WA.1�

One sees by comparing the coefficients of dV, dN, and dS that P, the pressure, T, the
temperature, and �, the chemical potential, are intensive variables. Equation (WA.1) is
known as the first law of thermodynamics. It recognizes that energy is conserved and
that heat is a form of energy. The differential quantity TdS represents the heat input
to a system, PdV is the work done by the system, ��dN the energy transported by
particles leaving the system, and dU the increase of internal energy of the system.

Since one often has control over variables other than (V,N, S) it is convenient to
introduce thermodynamic potentials. The Helmholtz free energy, F, is defined as

F D U� TS. �WA.2�

Forming the differential and combining the result with Eq. (WA.1) leads to

dF D �PdVC �dN� S dT. �WA.3�

The Helmholtz free energy is useful in problems in which one controls the variables
(V,N,T). If (V,N,T) are constant, dF D 0 at equilibrium.

The enthalpy, H, is defined by

H D UC PV. �WA.4�

Its differential leads to the formula

dH D TdSC �dNC VdP. �WA.5�

515



516 THERMODYNAMICS

The enthalpy is used when one controls (S,N,P). If (S,N,P) are held constant, dH D 0
at equilibrium.

The Gibbs free energy is defined by

G D U� TSC PV D FC PV D H� TS. �WA.6�

Its differential results in

dG D �dN� S dTC VdP. �WA.7�

The Gibbs free energy is of use in problems where one controls (N,T,P). If (N,T,P)
are held constant, dG D 0 at equilibrium.

From Eqs. (WA.2), (WA.4), and (WA.6), one sees that F, H, and G are all extensive
variables. One may integrate Eq. (WA.1) to obtain the Euler relation

U D �PVC �NC TS, �WA.8�

from which it is seen that
G D N�. �WA.9�

The chemical potential for a one-component system is thus the Gibbs free energy per
particle. From Eqs. (WA.1) and (WA.8) one obtains the Gibbs–Duhem formula:

Nd� D VdP� S dT. �WA.10�

A number of thermodynamic relations follow from expressing Eqs. (WA.1), (WA.3),
(WA.5), and (WA.7) as partial derivatives. They are

T D
(
∂U

∂S

)
N,V
, P D �

(
∂U

∂V

)
N,S
, � D

(
∂U

∂N

)
V,S
, �WA.11a�

P D �
(
∂F

∂V

)
N,T
, S D �

(
∂F

∂T

)
N,V
, � D

(
∂F

∂N

)
V,T
, �WA.11b�

T D
(
∂H

∂S

)
N,P
, � D

(
∂H

∂N

)
P,S
, V D

(
∂H

∂P

)
N,S
, �WA.11c�

� D
(
∂G

∂N

)
T,P
, S D �

(
∂G

∂T

)
N,P
, V D

(
∂G

∂P

)
N,T
. �WA.11d�

A pair of useful mathematical identities follow from forming the differential of a
function z(u,v):

dz D
(
∂z

∂u

)
v

duC
(
∂z

∂v

)
u
dv, �WA.12�

and then forming u(z,v),

dz D
(
∂z

∂u

)
v

((
∂u

∂z

)
v

dz C
(
∂u

∂v

)
z
dv

)
C
(
∂z

∂v

)
u
dv, �WA.13�



THERMODYNAMICS 517

Matching coefficients of like differentials leads to

1 D
(
∂z

∂u

)
v

(
∂u

∂z

)
v

, �WA.14�

0 D
(
∂z

∂u

)
v

(
∂u

∂v

)
z
C
(
∂z

∂v

)
u
. �WA.15�

The Maxwell relations are a set of formulas that state that the order of differentiation
does not matter when a second derivative is formed. Thus, for z(u,v),

dz D
(
∂z

∂u

)
v

duC
(
∂z

∂v

)
u
dv � � duC � dv, �WA.120�

the Maxwell relation is (
∂�

∂v

)
u

D
(
∂�

∂u

)
v

. �WA.16�

Applying this to Eqs. (WA.1), (WA.3), (WA.5), and (WA.7) gives

�
(
∂P

∂N

)
V,T

D
(
∂�

∂V

)
N,T

,

(
∂P

∂T

)
V,N

D
(
∂S

∂V
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N,T

,

(
∂�

∂T

)
V,N

D �
(
∂S

∂N

)
V,T

�WA.17�
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, �
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∂T

∂V

)
N,S
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�WA.18�(
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∂N
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�WA.20�

The heat capacity at constant pressure and constant number of particles is

CP,N D T
(
∂S

∂T

)
P,N

D
(
∂H

∂T

)
P,N
. �WA.21a�

The heat capacity at constant volume and constant number is

CV,N D T
(
∂S

∂T

)
V,N

D
(
∂U

∂T

)
V,N
. �WA.21b�

The second law of thermodynamics states that the entropy of the universe (system
plus environment) never decreases [i.e., S ½ 0]. Of course, S can decrease locally,
as when a system orders, but this decrease must be matched by at least as large an
increase in the entropy of the environment. An idealized process in which S D 0 is
called a reversible process.

The third law of thermodynamics states that the entropy of a pure crystalline material
is zero at T D 0 K. At T D 0 K the system finds itself in the ground state. If g is the
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degeneracy of that state, g/N! 0 as N! 1. The third law implies that is impossible
for the system to attain the temperature T D 0 K.

For a multicomponent system, one generalizes Eq. (WA.1) to

dU D �PdVC
∑
i

�i dNi C TdS. �WA.1a�

One may simply regard the quantities �i and Ni as elements of vectors and interpret
terms like �dN in the previous formulas as being scalar products between these
vectors.

One may apply thermodynamics to a chemically reacting system. For such a system,
the set fNjg denotes the reactants or products. In a chemical reaction

∑
j

�jA[j] D 0, �WA.22�

where A[j] is the symbol for chemical j (e.g., A D Cu or A D SiO2). The stoichiometric
coefficients �j are positive integers for the reactants and negative integers for the
products. If dM is the number of times that this reaction occurs, dNj D �jdM. Inserting
this into Eq. (WA.7) gives, for equilibrium at constant P and T,

dG

dM
D
∑
j

�j�j D 0. �WA.23�

This is called the equation of reaction equilibrium and relates the different chemical
potentials of the products and reactants.

At equilibrium some extremal principles apply: For fixed (N,V,U), S will be maxi-
mized; for fixed (N,V,T), F will be minimized; for fixed (S,N,P),H will be minimized;
for fixed (N,T,P), G will be minimized.
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Statistical Mechanics

Statistical mechanics provides the theoretical link between the microscopic laws of
physics and the macroscopic laws of thermodynamics. Rather than attempt to solve
the microscopic laws in their entirety (which is presumably very difficult), one abstracts
some key concepts, such as conservation laws, and augments them with certain statis-
tical assumptions about the behavior of systems with large numbers of particles in
order to make the problem tractable.

The first goal will be to make contact with the first law of thermodynamics,
TdS D dU C PdV, as given in Eq. (WA.1) (for constant N). Consider a system of
N particles whose possible energy is Ei. One way to obtain statistical information is
to create an ensemble (i.e., one replicates this system a large number of times, M,
and imagines that the various systems can exchange energy with each other). Let Mi

denote the number of systems with energy Ei. The total number of systems must
be M, so ∑

i

Mi D M. �WB.1


Conservation of energy requires that

∑
i

MiEi D E, �WB.2


where E is the total energy of the ensemble.
The total number of ways in which M systems can be distributed into groups with

(M1,M2, . . .) members in each group, respectively, is

W D M!

M1!M2! . . .
. �WB.3


One wishes to find the most-probable set of values for the Mi. Therefore, one looks for
the set that maximizes W [or equivalently ln(W)] subject to the constraints imposed by
Eqs. (WB.1) and (WB.2). Thus, introducing Lagrange multipliers ˛ and ˇ to enforce
the constraints, one has

υ

[
lnW� ˛

(∑
i

Mi �N

)
� ˇ

(∑
i

MiEi � E

)]
D 0. �WB.4
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Use is made of Stirling’s approximation, ln M! ³ M ln M�M for M × 1, to write
this as

υ

[
M lnM�M�

∑
i

�Mi lnMi �Mi
� ˛

(∑
i

Mi �M

)
� ˇ

(∑
i

MiEi � E

)]
D 0.

�WB.5

One may now differentiate with respect to the individual Mi and set the derivatives
equal to zero. This leads to

Mi D e�˛�ˇEi. �WB.6


The probability of finding a particular state i in the most-likely probability distribution
is given by the formula

pi D Mi

M
D e�ˇEi∑

i e
�ˇEi , �WB.7


where, clearly,
∑
pi D 1. Equation (WB.7) indicates that it less probable to find high-

energy states than low-energy states.
Introduce the canonical partition function for the N-particle system

ZN D
∑
i

e�ˇEi . �WB.8


The function ZN is given by a sum of terms, each term representing the relative
probability for finding the system in the state i with energy Ei. The mean entropy of
a system is defined as

S D kB
M

lnW D �kB
∑
i

pi lnpi, �WB.9


where use has been made of Eq. (WB.7). The mean energy of the system, interpreted
as the internal energy, U, is given by

U D
∑
i

piEi. �WB.10


Note that if a small change were made in the fpig, the corresponding changes in
the entropy and internal energy would give rise to

υ

(
U� S

kBˇ

)
D
(∑

i

Eiυpi C 1

ˇ

∑
i

lnpiυpi C 1

ˇ

∑
i

υpi

)
�WB.11


since
∑

i υpi D 0. This is consistent with the first law of thermodynamics dU � TdS D
�PdV, when T and V (and N) are held constant. Thus one may interpret the parameter
ˇ D 1/kBT as being proportional to the inverse absolute temperature. The Helmholtz
free energy is F D U� TS and, from Eqs. (WB.7), (WB.8), and (WB.9), is simply
related to the partition function

ZN D e�ˇF. �WB.12
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Now consider an N-particle system of noninteracting identical particles. The
individual energies for a given particle will be denoted by �i. A state of the system is
defined by specifying the number of particles in each state (i.e., by a set of integers
fnig). Thus

N D
∑
i

ni, �WB.13


E�n1, n2, . . .
 D
∑
i

ni�i. �WB.14


From Eq. (WA.1) recall that the first law of thermodynamics for a system with a
variable number of particles may be written as TdS D dU � �dNC PdV, where �
is the chemical potential. The analysis proceeds much as before, with the exception
that one now will be measuring the energies of the particles relative to the chemical
potential. The average number of particles in a given state is given by

hnji D
∑

n1

∑
n2

Ð Ð Ðnje�ˇi��i��
ni∑
n1

∑
n2

Ð Ð Ð e�ˇi��i��
ni D
∑

nj nje
�ˇ��j��
nj∑

nj e
�ˇ��j��
nj . �WB.15


For particles with spin 1
2 , 3

2 , . . . obeying Fermi–Dirac statistics, such as electrons
(spin 1

2 ), the only possible values for nj are 0 or 1. This leads to the mean number of
particles in a given state:

f��j, T
 D hnji D 1

eˇ��j��
 C 1
. �WB.16


This is known as the Fermi–Dirac distribution function. For particles with spin 0,
1, 2,. . . obeying Bose–Einstein statistics, such as photons or phonons, any nonneg-
ative integer is acceptable for nj. Performing the sums in Eq. (WB.15) leads to the
Bose–Einstein distribution function:

hnji D 1

eˇ��j��
 � 1
. �WB.17


In the high-temperature limit, Eqs. (WB.16) and (WB.17) both reduce to the
Maxwell–Boltzmann distribution when �j � � × kBT:

hnji ���! e�ˇ��j��
. �WB.18




APPENDIX WC

Quantum Mechanics

In the short space of an appendix it is not possible to develop quantum mechanics.
However, it is possible to review some of the key concepts that are used in the textbook†

and at the Web site.
In the Schrödinger description of quantum mechanics a physical system such as an

atom or even a photon is described by a wavefunction  . The wavefunction depends
on the variables describing the degrees of freedom of the system and on time. Thus
for a particle moving in one dimension, the wavefunction is  (x, t); for a particle
moving in three dimensions, it is  (r, t); for a two-particle system in three dimen-
sions, it is  (r1, r2, t); and so on. In the Dirac notation an abstract state vector
j �t�i is introduced and is projected onto the appropriate space, according to the iden-
tification  �x, t� D hxj �t�i,  �r, t� D hrj �t�i, and so on. As will be seen shortly,
 �x, t� is a complex function (i.e., it has real and imaginary parts). The wavefunction
contains all the information that may be obtained about a physical system. Unfortu-
nately, it is now possible to write down the exact wavefunctions only for very simple
systems.

According to Born’s interpretation of the wavefunction, if a measurement of the
position of a particle is made at time t (in the one-dimensional case), the relative
probability of finding the particle between x and x C dx is given by dP D j �x, t�j2dx,
where the square of the absolute value of  is taken. When possible, it is useful to
normalize the probability density so that

h �t�j �t�i �
∫ 1

�1
j �x, t�j2 dx D 1. �WC.1�

This states that the particle must be found somewhere, with probability 1.
The wavefunction for a particle in one dimension satisfies the Schrödinger equation

� h̄2

2m

∂2 

∂x2
C V�x� D ih̄

∂ 

∂t
. �WC.2�

Here m is the mass of the particle, h̄ D h/2� D 1.0545887 ð 10�34 Js, i D p�1, and
V�x� is the potential energy influencing the particle’s motion as it moves through
space. In general, the wavefunction will be a complex function of its arguments. The
Schrödinger equation is linear in  . Thus, if  1 (x, t) and  2 (x, t) are solutions, the

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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superposition  D c1 1 C c2 2 is also a solution. This means that both constructive
and destructive interference are possible for matter waves, just as for light waves.

In quantum mechanics physical quantities are represented by operators. Examples
include the position, x, the momentum, px D �ih̄∂/∂x, and the energy (or Hamiltonian),
H D p2

x/2m C V�x�, which is the sum of the kinetic energy and the potential energy
operators. If a number of measurements of a physical quantity are made and the results
averaged, one obtains the expectation value of the quantity. The expectation value of
any physical operator, Q, is given in quantum mechanics by

hQi D h �t�jQj �t�i D
∫ 1

�1
 Ł�x, t�Q �x, t� dx. �WC.3�

To guarantee that the expectation value always be a real number, it is necessary for
Q to be a Hermitian operator. A Hermitian operator is one for which the following
identity holds for any two functions f and g:

hfjQgi D hQfjgi D
∫ 1

�1
fŁ�x�Qg�x� dx D

∫ 1

�1
�Qf�x��Łg�x� dx. �WC.4�

The operators x, px, and H are examples of Hermitian operators, as is the set of orbital
angular momentum operators:

Lx D ypz � zpy, Ly D zpx � xpz, Lz D xpy � ypx. �WC.5�

If a measurement is made of a physical variable Q, the result will be one of the
eigenvalues qi of the operator Q, and the act of measurement will reset the wave-
function to the corresponding eigenfunction of that operator, jqii. The eigenvalues and
eigenfunctions are defined through the relation

Qjqii D qijqii. �WC.6�

The eigenvalues of a Hermitian operator may be shown to be real numbers. Their
eigenfunctions may be chosen so that they form an orthogonal set, that is,

hqijqji D
∫
�Ł
qi �x��qj �x� dx D υi,j. �WC.7�

It is customary to normalize the eigenfunctions as well, when possible. For example,
the eigenfunctions of the momentum operator px are the plane waves �k�x� D exp�ikx�.
They are not normalizable since it is equally probable to find the particle anywhere on
the infinite domain �1 < x < 1. The corresponding momentum eigenvalue is h̄k.

It is assumed that the eigenfunctions of any physical operator form a complete set
(i.e., that the wavefunction may be expanded in terms of them). Thus

j �t�i D
∑
n

cn�t�jqni. �WC.8�

If a measurement of Q is made, the probability of finding the eigenvalue qn is given
by jcnj2. Obviously,

∑ jcnj2 D 1.



QUANTUM MECHANICS 525

A necessary and sufficient condition for a set of operators fQig to be observable
simultaneously is that they commute with each other (i.e., [Qi,Qj] D QiQj �
QjQi D 0). Examples of sets of commuting operators are fQ1, Q2, Q3g D fx, y, zg,
or fQ1, Q2, Q3g D fpx, py, pzg, or fQ1, Q2g D fL2, Lzg, where L2 D L2

x C L2
y C L2

z .
Noncommuting operators may not be measured simultaneously to arbitrary accuracy.
Examples include fQ1, Q2g D fx, pxg, since [x, px] D ih̄, or fQ1, Q2, Q3g D fLx, Ly, Lzg
[see Eq. (WC.22)]. When operators fail to commute, successive measurements of the
respective physical variables interfere with each other. Thus measurement of x affects
the outcome of a measurement of px. The result is summarized by the Heisenberg
uncertainty principle, which states that the product of the uncertainties in these variables
obeys the inequality xpx ½ h̄/2.

Stationary states of the Schrödinger equation are the analogs of standing waves in
classical wave physics. They are solutions that may be expressed in factored form [i.e.,
 �x, t� D ��x� exp��iEt/h̄�]. Such a state has a time-independent probability density,
j��x�j2 and an energy E. Insertion of this expression into Eq. (WC.2) results in the
time-independent Schrödinger equation,

H��x� D E��x�, �WC.9�

which shows that ��x� is an eigenfunction of H with energy eigenvalue E.
Examples of common quantum-mechanical systems include the one-dimensional

infinite square well, the simple harmonic oscillator, and the hydrogen atom. For the
one-dimensional infinite square well, the potential energy operator is given by V�x� D 0
for 0 < x < a and V�x� D 1 otherwise. The energy eigenfunctions are (see Table 11.5)

�n�x� D
√

2

a
sin

n�x

a
, �WC.10�

where n D 1, 2, 3, . . . . The energy eigenvalues are

En D h̄2

2m

(n�
a

)2
. �WC.11�

For the simple harmonic oscillator with frequency ω, the time-independent
Schrödinger equation is given by

H�n�x� D � h̄2

2m

∂2�n�x�

∂x2
C mω2x2

2
�n�x� D En�n�x�. �WC.12�

The energy eigenvalues are given by

En D (
nC 1

2

)
h̄ω, �WC.13�

where n D 0, 1, 2, . . . . The eigenfunctions may be expressed as products of Gaussians
multiplied by Hermite polynomials:

�n�x� D 1

2n/2
p
n!

(mω
�h̄

)1/4
exp

(
�mωx

2

2h̄

)
Hn

(√
mω

h̄
x

)
. �WC.14�

The first few Hermite polynomials are H0�x� D 1, H1�x� D 2x, and H2�x� D 4x2 � 2.
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The Schrödinger equation for the hydrogen atom is

� h̄2

2m
r2�nlm�r�� e2

4�'0r
�nlm�r� D En�nlm�r�. �WC.15�

The energy eigenvalues for the bound states are

En D � e2

8�'0a1n2
, �WC.16�

where the first Bohr radius is given by a1 D 4�'0h̄
2/me2 and n D 1, 2, 3, . . . . The

bound-state wavefunctions are of the form

�nlm�r� D NnlmRnl�r�Ylm�,, ��, �WC.17�

where Ylm�,, �� is a spherical harmonic (see the next paragraph). The quantum number
l assume the values 0, 1, 2, . . . , n� 1. The m quantum numbers take on the values
�l,�lC 1, . . . , l� 1, l. The ground state, with the quantum numbers �n, l, m� D
�1, 0, 0�, is

�100�r� D
√

1

�a3
1

exp
(

� r

a1

)
. �WC.18�

The hydrogen atom also possesses a continuum of states for E > 0, which describe
the Coulomb scattering of an electron from a proton.

The spherical harmonics are simultaneous eigenstates of the angular momentum
operators L2 and Lz, that is,

L2Ylm�,, �� D l�lC 1�h̄2Ylm�,, ��, �WC.19�

LzYlm�,, �� D mh̄Ylm�,, ��, �WC.20�

where , and � are spherical polar coordinates. The first few spherical harmonics are

Y00�,, �� D 1p
4�
, Y10 D

√
3

4�
cos ,,

Y11 D �
√

3

8�
sin , ei�, Y1�1 D

√
3

8�
sin , e�i�.

�WC.21�

The angular momentum commutation relations are

[Lx, Ly] D ih̄Lz, [Ly, Lz] D ih̄Lx, [Lz, Lx] D ih̄Ly. �WC.22�

The spin of the electron is incorporated by writing the wavefunction as a two-
component column vector. The upper and lower elements are the probability amplitudes
for the electron having spin up or spin down, respectively. The operators for spin-
angular momentum are written in terms of the Pauli spin matrices:

Sx D h̄

2
/x, Sy D h̄

2
/y, Sz D h̄

2
/z, �WC.23�
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where the Pauli spin matrices are given by

/x D
(

0 1
1 0

)
, /y D

(
0 �i
i 0

)
, /z D

(
1 0
0 �1

)
. �WC.24�

The Sx, Sy , and Sz matrices obey the angular momentum commutation rules given in
Eq. (WC.22).

Tunneling through a barrier is one of the dramatic quantum-mechanical effects.
Consider a potential barrier given by V�x� D V0 for 0 < x < a and V�x� D 0 otherwise.
Let a particle approach it with energy E < V0. The particle is able to tunnel through
the barrier with some finite probability. The transmission probability is given by

T D 1

1 C V2
0 sinh2 qa/4E�V0 � E�

, �WC.25�

where q D p
2m�V0 � E�/h̄.

Time-independent perturbation theory is used to calculate the effect of a small
interaction term added to the Hamiltonian. LetH D H0 C 1V and H0�n D E0

n�n define
the unperturbed eigenvalues and eigenfunctions. The quantity 1 is a small parameter.
Assume that the eigenvalues are nondegenerate (i.e., no two values of E0

n coincide).
Then an approximate expression for the eigenvalues of H�n D En�n is

En D E0
n C 1h�0

njVj�0
ni C 12

∑
j

0 jh�0
jjVj�0

nij2
E0
n � E0

j

C Ð Ð Ð , �WC.26�

where the term j D n is excluded from the sum.
The case in which there is degeneracy is usually handled by matrix techniques. A

finite set of eigenfunctions is chosen and the matrix elements of H are formed:

Hjn D h�0
jjHj�0

ni. �WC.27�

The eigenvalues and eigenvectors of the Hamiltonian matrix are computed. An example
of this is provided by the two-level system in which the unperturbed states are labeled
j1i and j2i. The Hamiltonian matrix is

H D
(
E1 V12

V21 E2

)
, �WC.28�

where V21 D VŁ
12. The eigenvalues are obtained as solutions of the secular equation

∣∣∣∣E1 � E V12

V21 E2 � E

∣∣∣∣ D �E1 � E��E2 � E�� jV12j2 D 0 �WC.29�

and are given by

Eš D E1 C E2

2
š
√(

E1 � E2

2

)2

C jV12j2. �WC.30�
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The variation principle permits one to obtain an approximate solution to the
Schrödinger equation and an upper bound on the energy of the ground state of a system.
An arbitrary function F�x� is chosen and the expectation value of the Hamiltonian is
computed using this function:

E[F�x�] D hFjHjFi
hFjFi . �WC.31�

Then it may be shown that the ground-state energy obeys the inequality E0 � E[F�x�].
The function F�x� depends on a set of parameters, f˛ig. The parameters are varied to
obtain the minimum value of E[F�x�]. The more parameters the function contains, the
more accurately F�x� will approximate the ground-state wavefunction and the closer
E[F�x�] will be to the ground-state energy.

In some problems there is a discrete state that is degenerate with a continuum of
states. Assuming that the system starts in the discrete state, one calculates the transition
rate, , to the final continuum of states. Again, take the Hamiltonian to be of the
form H D H0 C 1V. The initial state satisfies H0jii D Eijii and the final state satisfies
H0jfi D Efjfi. The Fermi golden rule states that

 D 2�

h̄

∑
f

jhfj1Vjiij2υ�Ef � Ei�. �WC.32�

In treating systems with more than one particle, the symmetry of the wavefunction
under interchange is important. For identical particles with half-integer spin, such
as electrons, protons, neutrons, and 3He, the wavefunction changes sign if any two
particles have their positions (and spins) interchanged, that is,

 �1, . . . , i, . . . , j, . . . , N� D � �1, . . . , j, . . . , i, . . . , N�. �WC.33�

The particles are said to obey Fermi–Dirac statistics. For identical particles with integer
spin, such as photons or 4He, the wavefunction is symmetric under interchange:

 �1, . . . , i, . . . , j, . . . , N� D  �1, . . . , j, . . . , i, . . . , N�. �WC.34�

Such particles obey Bose–Einstein statistics.
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NO 17, 309
NaCl 21, 26, 34, 70, 292, 342,

397, 512
Nb3Al 223
Nb3Ga 222–223
Nb3Ge 223, 249
NbMo 221
NbN 223
Nb3Sn 3, 222–223, 236, 239,

241, 246
NbTa 237–238
NbTi 222, 236, 239, 241
NbZr 221
NiAl 159–161
Ni3Al 383
NiCr 158
Ni50Fe50 278
NiMn 282
Ni3Mo 381
NiO 89, 282
Ni0.76P0.24 21
Ni3Ti 159, 381, 383
PH3 360
P2O5 367
PbBi 220
PbIn 220
PbO 17, 22

Pb2O 22
PbO2 22
PbS 17
PbSn 53
PbTe 145
PdD 223
PdH 165, 223
Pd0.8Si0.2 162
RhZr2 223
RuO2 204
Ru2O 210
SiC 20, 26, 53, 116, 122,

131–132, 158, 205, 372,
397, 419

SiCl4 396
a-SiFx 371
SiF4 25, 367, 370
SiGe 127, 142, 145, 350,

354–355
a-Si:H 362
SiH4 353, 360, 362, 370,

396–397
Si2H6 353
Si3N4 20, 158, 203, 205,

395–396, 474
SiO 53
SiO2 19–20, 23, 25, 33–34, 70,

94, 122, 131, 203, 205,
210–212, 217, 289, 292,
295, 341, 352, 364–370,
372–373, 396–397, 411,
443, 452, 468, 502

SmCo5 264, 266, 268–269, 271
Sm2Co17 264, 268–269
SmFe2 282–283
SnO2 116
Ta2H 164
Ta2O5 203
Tb1�xDyx 253–254, 282–283
TbFe2 264, 282–283
Th4H15 164–165
TiB2 158
TiC 158
TiN 157–158, 369–370, 390
Ti2N 390
TiO2 70, 203, 205, 292,

295–296
Ti2O3 378
TixSiy 370
UPt3 234
VC 380–381
V3Ga 593
V2O5 214–215
V3Si 25, 34, 223
WC 158, 381
W2C 158, 381
WF6 370
Y2O3 158, 216, 394, 396
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ZnMn 79, 83–84
ZnO 116, 461
ZnS 21, 26, 117, 284, 295
ZnSe 70, 111–112, 284, 292
ZnTe 498
ZrC 158
Zr3N4 158
ZrO2 158, 216, 445
ZrZn2 630

Ternary compounds and alloys
Al1�xBxAs 147
Al62Cu26Fe12 387
Al6Fe1�xMox 387
Al6Mn1�xFex 387
B3N3H6 360
a-BNH 360
BaBiO3 223–224
BaCO3 394
BaFe12O19 264, 266, 271,

274–275
BaPbO3 223
BaTiO3 203–204
BeSiN2 396
CH2Cl2 402
(CH)3Ga 359
CH3SiH3 397
(CH3)4Si 486
CaCO3 70, 496–497
Cd1�xMnxTe 284
Cd2SnO4 116
CeCu2Si2 234
CuNiZn 91
CuSO4 155
a-DyFeCo 277
a-Fe80B11Si9 162, 278, 281
Fe(CN)6 75
FeCoV 280
Fe83P10C7 162
Fe85Si10Al5 (Sendust) 264, 281
Ga1�xAlxAs 129–130, 132, 343
Ga1�xMnxAs 284
a-GdTbFe 277–278
H3PO4 216
Hg1�xMnxTe 284
InAs1�xSbx 439
InxGa1�xAs 126
InxSnyO2 (ITO) 116, 331, 406
KOH 372
La2CuO4 116, 224
LaMo6Se8 223
LiAsF6 214–215
LiNbO3 332
LiTaO3 332
LiTi2O4 223
Mg3(OH)6 (brucite) 177

Mg2SiO4 13
Mg3TeO6 498
MnFe2O4 281
Mn75P15C10 162
NH4Cl 396
Na3AlF6 70
Nd2Fe12B 264, 266, 270–271
Ni77Fe18Cu5 (Mumetal) 264, 278–279
Ni79Fe16Mo5

(Supermalloy) 264, 278–279
PbTiO3 443
Pd68Co12Si20 162
Pd78Si16Cu6 162
RM4Sb14 (R D La, Ce,

etc., M D Fe,Os,Ru) 145
a-SiCH 360
SiCl2H2 396
SiHCl3 353
a-SiNH 360–361
Si(NH)2 360, 396
SiO2�xH2x 360
Si2ON2 271
Sm2Fe17N3 268
SrFe12O19 271
SrTiO3 70, 204, 292, 394, 443
Tb2Al5O12 292
Tb0.3Dy0.7Fe2 264, 282–284
a-TbFeCo 277–278
Ti2AlN 390
URu2Si2 234
Y3Al2(AlO4)3 (YAG) 175, 297
Y3Fe5O12 264
YRh4B4 223
Y2SiO5 696
Zn25.75Al4.01Cu70.24 160
ZnFe2O4 281
Zn1�xMnxS 117, 284
ZnSO4 155

Quaternary compounds and alloys
Al2Si2O5(OH)4 (kaolinite) 178
Ba0.6K0.4BiO3 224, 249
BaPb1�xBixO3 223
Be3Al2Si6O6 (beryl) 175
Cu2CO3(OH)2 70
CuIn1�xGaxSe 140
DyBa2Cu3O7 231
a-FeBSiC (metglas) 264, 284
FeWMnC (tungsten steel) 266–267
KH2PO4 (KDP) 70, 292
La1�xCaxMnO3 256–257
La2�xSrxCuO4 116, 224, 229–230,

351, 459
Mn1�xZnxFe2O4 264, 281
Nd2�xCexCuO4 224
Pb(Mg1/3Nb2/3)O3 204
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PbxZryTizO3 (PZT) 209–210
Pb(Zn1/3Nb2/3)O3 (PZN) 204
RNi2B2C

(R D Y,Dy,Ho,Er,Tm,Lu) 223
Sm2Fe15Ga2C3 269
YBa2Cu3O7�x 34, 224–228, 230,

232, 235–237,
240–241, 246–248,
394, 470

Larger compounds, alloys, and
some minerals
BivSrwCaxCuyOz 236, 240–241
Cordeirite 205
FeCoCrWC (cobalt steel) 266–267
FeNiAlCoCu (Alnico) 264, 266–267
HgvBawCaxCuyOz 227, 233, 249
Mica 177–178, 203,

342
Mullite 205
Ni36Fe32Cr14P12B6 162
Pb1�xLax(ZryTi1�y)1�x/4O3

(PLZT) 204
Sm(CoFeCuZr)7 266, 269
Talc 99
Zeolites:

Linde A 398
ZSM5 397, 492

Polymers
Goretex 195
Polyacetylene (PA) 154, 196–200,

404

Polyaniline 116, 196, 404
Bisphenol-A polycarbonate (PC) 70, 402–403, 476
Polyethylene (PE) 289
Polyimide 205–206, 409
Polymethacrylonitrile (PMAN) 195
Polymethylmethacrylate 70, 366, 409

(PMMA)
Polypropylene (PP) 196
Polypyrrole 116, 196, 404
Polystyrene (PS) 70, 194, 403
Polytetrafluorethylene

(PTFE, Teflon) 206, 476
Poly(2,5-thiophene) 196, 404
Polyurethane (PUR) 194
Polyvinylene 289
Poly(N-vinylcarbazole) (PVK) 202, 406
Rubber 102

Some organic molecules

Ba(THD)2 395
Bisphenol-A 402
Cu(THD)2 395
DNA 17
Tetraethylorthosilicate (TEOS) 360, 369
Tetramethylammonium (TMA) bromide 398
Tetrapropylammonium (TPA) bromide 398
6FDA/TFDB 201
3-phenyl-5-isoxazolone 201
poly(2-methoxy-5-(20-ethyl-hexyloxy)-

1,4-phenylene vinylene) (MEH-PPP) 404
Tetrathiafulvalene-tetracyanoquino-

dimethane (TTF-TCNQ) 196
Y(THD)3 395
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Absorption coefficient, 366
AC Bridge, 483
Acceptor, 200

diffusion, 51
Accumulation layer, 461
Acheson process, 397
Activity, 48, 156, 327, 349
Adsorption, 302, 352, 356
Aging, 280

overaging, 385
Amorphous solid, 277, 355–356, 359–363, 385
Anelasticity, 89–91
Angular momentum

quenching of, 78, 85, 271, 283
Annealing, 347, 371–372, 382

rapid thermal, 368, 372
spheroidizing, 382

Anodization, 157, 388
Antibonding state, 110
Antiferroelectric, 204
Antiferromagnetism, 82, 223–224, 262
Atomic absorption spectroscopy, 429
Atomic emission spectroscopy, 429
Atomic force microscope (AFM), 340, 366, 471,

512
Atomic form factor, 27, 418
Atomic orbital, 7–9

s, 7–9, 228
p, 7–9, 228–229
d, 7–9, 75, 228–229

Auger emission spectroscopy (AES), 357, 462
Austenite, 159–160, 374–378, 389
Autodoping, 352

Bainite, 374–382
Baliga figure of merit, 122
Band bending, 327
Bandgap, see Electronic energy bandgap
Band structure, see Electronic energy band

structure
Battery, 155, 212, 215, 405

Daniell cell, 155–156
fuel cell, 214, 217
lithium ion, 212

Beer’s law, 409, 427, 461
Bingham stress yield, 180

Birefringence, 67
Bloch equations, 505–506
Bloch wavefunction, 229
Boltzmann equation, 55, 59

relaxation time approximation, 55
Bond

disorder, 35
energy, 20, 411

Bonding, 14–17, 88, 226, 359–361
covalent, 17, 89, 110, 226
hydrogen, 17–19
ionic, 17–18, 89, 110, 226
metallic, 89
mixed ionic-covalent, 110, 226, 228
van der Waals, 177

Bonding state, 110
Bonding unit, local atomic

A-B2, 365
A-B4, 364
A-A12(cub), 5
A-A12(hex), 5
A-A12(icos), 3, 5, 31–32
A-H...B, 18

Born solvation energy, 213
Bose-Einstein distribution, 37, 426, 521
Bragg diffraction, 414, 448
Bravais lattice, 41
Bridging oxygen, 175
Bright field imaging, 447
Brillouin function, 86
Brillouin zone, 229
Brittle material, 99, 377, 381
Bulk modulus, 88–89, 101
Burgers vector, 93, 381

Capacitor
electrolytic, 203
multilayer ceramic, 203

Carbon nanotube, 63
Catalyst, 215, 308–309
Ceiling temperature, 408
Cement, 179
Cementite, 374–376, 380–382, 389–390, 411
Ceramic, 271
Characterization, 413–511
Charge-transfer organic solid, 235

535
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Chemical potential, 53, 146, 325, 327–329, 334,
349–356, 455

Chemical shift, 498
Chemical vapor deposition, 158, 351–363,

368–369, 391–394, 397, 455
atmospheric pressure (APCVD), 352
metal-organic (MOCVD), 359
plasma-enhanced (PECVD), 359–363
reduced pressure (RPCVD), 352
UHV/CVD, 354–355

Chemisorption, 309, 358
Clausius-Mossotti formula, 330
Clay, 177
Cluster, 239, 256
Coating, 157
Coercive field, 209, 236–237, 251–252, 265–266,

268, 271, 277–278
Cohesive energy, 19–20, 155
Cold work, 379
Collision time, electronic, 60
Commutation relations, 40
Compensation point (temperature), 277
Compliant substrate, 340
Composite fermion, 137
Conductivity

electrical, see Electrical conductivity
thermal, see Thermal conductivity

Contact potential, 164, 311, 473
Continuous-cooling transformation (CCT) diagram,

377–378
Continuous random network, 32–33, 115, 359
Coordination number, 13
Corrosion, 154, 157

resistance, 383, 388, 390
Cottrell atmosphere, 379
Coulomb

blockade, 63
interaction, 17–18, 81–82, 88, 110, 229

Covalent bonding, see Bonding, covalent
Crack

extension force, critical, 101
propagation, 100–101

Creep, 95–96
Coble, 96
Nabarro, 96
primary, 96
rate, 95
secondary, 96
strength, 96
tertiary, 96

Critical thickness, 322, 324, 344
Crystal field, electric, 75–78, 82, 271, 273

splitting, 77, 85
stabilization energy (CFSE), 85
strong-field limit, 75
weak-field limit, 75

Crystal growth, 342
Crystal structure

beta-tungsten (beta-W), 3, 222, 249
body-centered tetragonal, 376
cesium chloride (CsCl), 17
hexagonal, 268–269
inverse spinel, 273, 281
magnetoplumbite, 274
oxide crystals, 22
perovskite, 203
sodium chloride (NaCl), 17, 222
spinel, 281
tetragonal, 270
trigonal (rhombohedral), 268–269
zincblende (cubic ZnS), 17

Crystallite, 275
Curie

constant, 78–79, 86
law, 78–79
temperature, 259, 266

Curie-Weiss
law, 79–81, 86
temperature, 79, 86

Cyclotron frequency, 145
Czochralski growth, liquid-encapsulated, 358

Dangling bond, 113, 115, 310, 347
Daniell cell, 155–156
Dark-field imaging, 447
Daumas-Herold domain, 333
Debye-Huckel theory, 326
Debye screening length, 326
Debye temperature, 499
Debye-Waller factor, 36–37, 418, 497
Defect 118, 354, 356. See also Dislocation,

Vacancy, etc.
Demagnetizing

curve, 264–265, 267
factor (magnetic material), 265, 286
field, 260, 264

Density
atomic, 5
mass, 5, 211

Density functional theory, 149–150
Density of states

electronic, 113, 221–222, 474
phonon, 35–36, 43

Dephasing time, 506
Deposition, 303

pulsed laser 395
sputtering, 158, 344–345

Desorption, 304, 354
Dichroism, 288
Dielectric, 364
Dielectric constant (or function), 72–73, 110,

113–114, 205, 207–208, 211, 213, 258, 361,
511

anisotropic, 67
nonlocal, 72
tensor, 67
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Dielectric strength, 203
Diffraction

amorphous solid, 31–32
Bragg, 414, 448
electron, 419, 422, 513
Laue, 415
powder, 415, 514
x-ray, 413–414, 418

Diffusion, 45–51, 53–54, 162, 164, 350, 352,
354–355, 357, 359, 364, 366–367, 374, 379,
381, 383, 389

barrier, 369
chemical, 46
coefficient, 45, 50, 367, 371
constant-source, 367
grain boundary, 369
length, 45, 124
oxidation-enhanced (OED), 367
self-, 48–51, 96
self-interstitial mechanism, 50
transient-enhanced (TED), 367
two-step, 367
vacancy mechanism, 51, 96
velocity, 386
zone, 390

Dislocation, 93, 95, 100, 322–323, 336, 348, 358,
376, 379, 381

density, 93–94, 99
edge, 94, 379
line tension, 381
loop, 381
misfit, 355
pinning, 94, 378–380
screw, 340, 379, 472
slip, 93

Disorder
amorphous, see Amorphous solid
nanocrystalline, 31

Dispersion strengthening, 94–95, 380–381, 383,
389

Distance, polymer end-to-end, 183–185
Distribution (segregation) coefficient, 349–351,

356, 387, 411
Domain wall, 199, 208, 210
Donor, 200

diffusion, 51
Doping and dopants, see Semiconductor, doping

and dopants
Ductility, 100, 374, 378, 381–383
Dupre formula, 321
Dynamical matrix, 42
Dynamical structure factor, 427

Eddy currents, 260, 262–263, 278–280
Edge state, 134
Effective magneton number, 77

Effective mass, 228, 231, 291
band curvature, 234

Elastic
aftereffect, 90–91
constant, 211
energy, 100–101
modulus, see Young’s modulus

Electret, 201
Electrical conductivity, 196

conductance, 63
tensor, 257
two-dimensional, 61

Electrical resistance of alloys, 478
Electrode half-reaction, 155
Electrode potential, see Standard electrode

potential
Electrolyte, 213–215
Electromigration, 50, 369
Electron affinity, 20–23

negative, 21
Electron configuration, valence, 10
Electron paramagnetic resonance, see Electron spin

resonance
Electron spin resonance, 495
Electronegativity, 23, 111, 228

Mulliken, 23
Pauling, 23–24, 26
Phillips, 24

Electronic device, 349, 351, 373
fabrication, 363–372
feature size, 371
figure of merit, 122–123
planar technology, 123

Electronic energy bandgap, 293, 438
Electronic energy band structure, 228. See also

Semiconductor, energy band structure
Electrons

itinerant, 81
d-, 22, 85

Electrooptic tensor, 442
Ellipsometry, 430, 433
Embedded atom method, 151–153
Energy band, 257
Energy, cohesive, see Cohesive energy
Energy distribution curve, 320, 455–456
Enthalpy, 360, 515

change, standard, 19
of formation, standard, 19, 52, 411
of melting (fusion), 349, 386
of migration, 50
of vaporization, 52

Entropy, 18, 325, 360, 515, 517,
520

of melting (fusion), 386
of vaporization, 52

Epitaxial
growth, 337, 351–359
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Epitaxial (Continued)
temperature, 356
thickness, 356

Equilibrium constant, thermodynamic, 33–34, 391,
411

Error function, 46–48
Etching, 363, 370–371, 391–392

chemical, 370, 373
dry, 371–373
inhibitor, 370
isotropic, 370
physical, 370
plasma, 396, 409
reactive-ion, 370, 372–373
selective, 370
wet, 371–373

Euler relation, 516
Euler theorem, 63
Eutectic

alloy, binary, 53
composition, 162–163
temperature, 167, 170, 172

Eutectoid, 374, 381, 389, 411
Ewald sphere, 448, 421
Exchange energy (integral), 81, 86, 229
Extended x-ray absorption fine structure (EXAFS),

461, 512

Failure, 96
Faraday balance, 483
Faraday effect, see Magneto-optical effect
Fatigue, 97–98

life, 97
strength, 98

Fermi
circle, 133
energy, 134, 455
level, 256, 371, 455, 473
sphere, 133
velocity, 60

Fermi-Dirac distribution, 65, 455, 473, 521
Fermi golden rule, 319, 455, 528
Fermi integrals, 64
Ferrimagnetism, 262, 271, 281
Ferrite

acicular, 374–375, 378
ceramic, 86, 271, 274–275, 281
phase of iron, 374–378, 381–382, 389–390, 411

Ferroelectric, 204, 332
nonvolatile random-access memory, 208
phase transitions, 206

Ferromagnetic resonance, 260–262
Fick’s laws, 45, 389
Field emission, 445
Float-zone purification, 348–351
Fluorescence, 438
Foner magnetometer, 481

Fourier transform infrared spectroscopy (FTIR),
433

Fowler-Nordheim tunneling, 314, 405, 445
Fractional charge, 137
Fracture

brittle, 100, 166
ductile, 100
stress, 96, 100–101
toughness, 100

Frank-Kasper phase, 3
Frank-van der Merwe growth, 341–342
Free-energy model, 360
Free volume, 191, 194
Friction, 310
Fuel cell, 214, 217
Fullerite, 234

g factor
Landé, 86, 261

Galvanomagnetic effect, see Magnetoresistance
Gaussian diffusion profile, 45–48
Geometric structure factor, 36, 418
Gettering, 51, 349, 372
Gibbs-Duhem formula, 516
Gibbs free energy, 156, 328, 375, 387, 516

of formation, standard, 391
Gibbs phase rule, 53, 169
Gibbs triangle, 169–170, 207–208
Ginzburg-Landau theory (of superconductivity),

236
Glass, metallic, 31, 162–164, 281–282, 284,

385–388
Glass transition temperature, 191, 194, 201, 387,

409
Grain boundary, 99, 235, 240, 246, 271, 275, 369,

374, 378, 380
barrier layer, 204
pinning, 380, 383

Grain size, 380
reduction, 380

Graphite intercalation compound, 233–234, 333
Griffith criterion, 100
Guinier-Preston zone, 384
Gyromagnetic ratio, 261

Haber process, 308–309
Hall

coefficient, 60, 146, 477
effect, 59, 132, 476
resistivity, 132, 136

Hall-Petch relation, 99–100, 380–381
Hardening

age, 381, 383
case-, 389
precipitation-, see Precipitation hardening
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secondary, 381
work-, see Work hardening

Hardness, 95, 98–99, 377, 382, 388, 390
Knoop, 99
Vickers, 89

Harker-Kasper inequality, 30
Harmonic oscillator, 39–40, 525
Heat capacity, 517
Heat treatment, 95, 267, 381–384, 389
Heavy fermion, 234–235
Heisenberg exchange interaction, see Magnetic

interaction
Helmholtz free energy, 324, 334, 515, 520
High-resolution transmission electron microscopy

(HRTEM), 449
Hohenberg-Kohn theorem, 149
Holes, 146
Hooke’s law, 87–89, 91
Hot carrier, 128
Hot isostatic pressing (HIP), 396–397
Hubbard model, 81–82, 229
Hume-Rothery rules, 268
Hund’s rules, 76, 85
Hybrid orbital, 9–13

dsp2, 12–13, 228–229
d2sp3, 12–13
d4sp, 13
sd3, 12
sp, 11–12, 21
sp2, 12–13
sp3, 12–13
sp3d3f, 13

Hydrophobic interaction, 301–302
Hydrophyllic interaction, 301
Hydrothermal synthesis, 399
Hysteresis, 91, 159, 208–209, 237

Icosahedra, see Bonding unit, local atomic
Impurity, 351, 379
Incommensurate lattice, 310
Index ellipsoid, 67–68, 441
Index of refraction, 70, 257, 293, 296, 427–428,

431
extraordinary, 69
ordinary, 69

Inert-gas solid, 21
Initiator, 194
Interface, 374–375, 386

energy, 386
Si/a-SiO2, 364, 367
solid-electrolyte, 326

Intermetallic compound, 166, 268
Internal energy, electronic, 515, 520
Internal friction, 90–92
Interstitial, 33, 367, 376

impurity, 379
self-, 50–51

Interstitial site, 164–165, 269, 281
BCT, 374, 376
FCC, 34

Invar anomaly (effect), 279–280
Ioffe-Regel criterion, 60–62
Ion beam processing, 344
Ion channeling, 344
Ion implantation, 158, 367–368, 411

intense-pulsed-ion beam (IPIB), 390
plasma-immersion (PIII), 367, 390
range, 367
SIMOX, 368

Ionic
bonding, See Bonding, ionic
solution, 324

Ionicity, 21, 24, 26, 111–112
Ionization energy, 20–21, 23
Ion slicing, 348
Isomer shift, see Chemical shift
Isotropic solid, 101

Jahn-Teller effect, 75
Jellium model, 152
Johnson figure of merit, 122
Johnson-Mehl equation, 381
Josephson effect, 241–245

ac, 243–244
current, 241, 243
dc, 243
frequency, 244
inverse ac, 244
junction, 241–242, 246
quantum interference, 244–245
relations, 241–243, 249

Kauzmann temperature, 191, 194
Kelvin probe technique, 473
Kelvin relation, 107
Kerr effect, see Magneto-optical effect
Keyes figure of merit. 122
Kikuchi line, 447
Kinetic effect, 391
Knight shift, 491
Kohn-Sham equation, 150
Kondo

effect, 79–80, 85
temperature, 80

Kramers doublet, 75
Kramers-Kronig relations, 511
Kronig-Penney model, 57–58

Landau level, 133–136, 145
Landau theory of phase transitions, 206
Langmuir adsorption isotherm, 305–306
Laser, 76
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Laser damage, 296
Latent heat of fusion, see Enthalpy, of melting
Lateral force microscope, 474
Lattice relaxation, 82
Laue diffraction, 415
Laves phase, 3, 283
Law of mass action, 33–34
Lely process, 397
Lever rule, 172
Light-emitting diode, 331, 405
Liquidus line, 170–173, 349, 411
Lithography, 365–366

LIGA process, 366
nano-, 366
photo-, 205, 364–365
photoresist, 365

Local density approximation, 150
Localization, 60

Anderson, 62
weak, 61, 134

Lone-pair orbital, see Molecular orbital,
nonbonding

Long-range order, see Order, long-range
Lorentz oscillator model, 70, 291
Loss coefficient, 90
Low-density microcellular material, 195
Low-energy electron diffraction (LEED), 419, 422
Low-energy electron loss spectroscopy (LEELS)

459, 512
Low-energy electron microscopy (LEEM), 452
Luminescence, 438

cathodoluminescence, 439

Madelung
constant, 17
energy, 17, 26

Magic-angle spinning, 489
Magnetic

aftereffect (relaxation), 262–263
energy, 251
energy-density product, 265–266, 286
field, effective internal (molecular), 82, 85, 260,

262
hardening, 282
microstructure, 262, 267, 271, 276, 278
permeability, 260, 278, 281
susceptibility, 78–79, 82–84
viscosity, 263

Magnetic anisotropy, 251–252, 259, 263, 267, 275,
281, 283

coefficient, 82, 253, 277, 279, 283
energy density, 275
field, 251, 260, 262, 284
magnetocrystalline, 82, 252, 268, 271–274, 279
magnetostrictive, 252, 263, 268, 277
pair model (Van Vleck), 82
pair-ordering, 277

shape, 252–253, 267, 272, 274
single-ion, 277
uniaxial, 268, 271

Magnetic domain, 251, 259–260
pinning of, 266, 271, 279
wall energy, 251
wall thickness, 279, 285

Magnetic interaction
double exchange, 256, 273
Heisenberg exchange, 82, 255
indirect, 270
RKKY (Ruderman-Kittel-Kasuya-Yosida),

79–80, 83–85
sp-d, 285
superexchange, 229, 256, 284–285

Magnetic materials
hard, 264, 269
magneto-optical recording, 277–278
magnetostrictive, 282–284
permanent magnet, 264–272, 286
read/write head, 281–282
recording media, 272–277
soft, 264, 278

Magnetic moment, 234, 253, 261, 280
formation, 81

Magnetization, 83–84, 253–254, 256–257, 261,
263, 286

curve, 259, 264
easy direction for, 251, 253, 272
loop, 259, 278
quantum tunneling of, 263
remanent, 236–237, 265–266
saturation, 86
spontaneous, 82, 253, 277–278, 280
sublattice, 273

Magnetoelastic energy, 283
Magnetomechanical damping, 263
Magneto-optical effect, 257–260

Faraday, 257–258, 285, 290
Kerr (MOKE), 258–260, 277–278
magnetic circular birefringence, 257
magnetic circular dichroism, 258
magnetic linear birefringence, 258
magnetic linear dichroism, 258
surface Kerr (SMOKE), 259

Magnetoresistance, 133, 255–257, 281, 285
colossal, 255
giant negative, 255, 281–282
longitudinal, 255

Magnetostriction, 253–254, 279, 281–284
giant, 282–283
isotropic, 253
linear, 253
strain, 254, 279
volume, 280

Magnon, see Spin wave
Manson-Coffin relation, 98
Martensite, 159–161, 374–381, 389, 411
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Martensitic transformation, 16, 268, 376
Mass spectrometry, 466–467, 514

modulated-beam, 357
Materials property chart, 100
Maxwell’s equations, 71
Mean free path

electron, 60, 221, 232
ferrite path (MFFP), 381

Mechanical damping, 284
Melting temperature, 50, 52, 214, 349–350
Metal hydride, 164
Metal-insulator transition, 229, 256
Metallic

bonding, see Bonding, metallic
radius, see Radius, metallic

Metallization, 369–370
Metal, transition, 266
Micelle, 301
Microelectromechanical system (MEMS), 372–373
Microporous film, 195–196
Microstructure, 240, 363, 374, 376–377, 381–386,

388–390
Microwave processing, 408
Mictomagnetism, 85
Mismatch function, 28
Mobility, 60, 115, 213

edge, 61, 115
minimum metallic, 60

Modulation doping, 129–130
Modulus of elasticity, see Young’s modulus
Molecular beam epitaxy (MBE), 356–359
Molecular field theory, Van Vleck

(antiferromagnetism), 86
Molecular geometry, 27
Molecular orbital, 13–17

antibonding (ABMO), 17, 228
bonding (BMO), 14
delta, 15–16
nonbonding (NBMO, lone-pair), 16–17, 116
pi, 15
sigma, 14, 228
theory, 75, 228

Molecular weight, 183
Mossbauer spectroscopy, 496
Mueller matrix, 289
Mulliken notation, 77
Multilayer material, 255, 281, 329
Muon-precession spectroscopy, 503

Near-field optical spectroscopy, 442
Necking, 348
Néel temperature, 86, 223–224, 229, 234
Nernst equation, 327
Neutron scattering, 424, 426
Noncrystalline solid, see Amorphous solid
Nonlinear chromophore, 201
Nonlinear optical coefficient, 200, 296, 440

Nonlinear optical material, 332
Nonlinear optical spectroscopy, 439
Nonstoichiometry, 34
Normal mode, 38
Nuclear magnetic resonance, 484, 504
Nuclear quadrupole resonance, 491
Nucleation, 342, 352, 356, 374, 378, 381,

386

Onsager formula, 133
Onsager relations, 56, 478
Optical absorption edge, 105
Optical band structure, 293
Optical spectroscopy, 427
Orbital, see Atomic orbital, Hybrid orbital,

Molecular orbital
Order

intermediate-range, 31
long-range, 112, 359
short-range, 112, 163, 359

Orowan expression, 95, 381, 385
Ostwald ripening, 398
Oxidation, 154, 156

of Si, 364–365, 411
Oxide

field, 364
gate, 364

Packing fraction, 191
BCC, 3
CsCl, 4

Paramagnetism, Pauli, 86, 234
Passivation, 122, 157, 364
Patterson

function, 28–29
map, 29

Pauli exclusion principle, 9
Pauli paramagnetism, see Paramagnetism, Pauli
Pearlite, 374–382, 389, 411

coarse, 381
fine, 381

Peierls instability, 153, 199
Peltier effect, 106–109, 140–143, 477, 480
Percolation, 256
Permittivity, 72

relative, 110
Persistence length, 189
Phase-contrast image, 454
Phase diagram, equilibrium

binary, 163, 167, 349–350, 383–384, 387,
411

CVD, 391–393
eutectic, 387
ternary, 169–170, 394

Phase matching, 69, 200, 330, 440–441
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Phase transition
athermal, 376
first order, 206

Phillips and Van Vechten model, 110–112, 147
Phonon

density of states, 35–36, 43
drag, 109
monatomic random lattice, 35
quantization, 38

Phosphorescence, 438
Photoemission, 317

angular-resolved spectroscopy (ARPES), 456
inverse, 454, 456
ultraviolet spectroscopy (UPS), 454
x-ray spectroscopy (XPS), 457
yield, 317

Photonic crystal, 296
Photorefraction, 202
Photoresist, 409
Photovoltaic solar cell, 137–140, 360

fill factor, 139
multicolor, 140
open-circuit voltage, 138
short-circuit current, 138

Physical vapor deposition, 368–369
Physisorption, 309
Piezoelectricity, 201, 210
Pilkington process, 400
Plasma

carburizing, 368
deposition, 359–363
electron cyclotron-resonance (ECR), 262
etching, 396, 409
frequency, 110, 291, 429, 513
nitriding, 368
processing, 409

Plasmon
surface, 461, 465
two-dimensional, 461

Plastic deformation, 93, 99, 379
pn junction, 137, 368

built-in voltage, 138
J-V characteristic, 138

Poisson-Boltzmann equation, 325
Poisson equation, 324–325, 458
Poisson ratio, 101, 322
Polariton, 68, 70
Polarization

remanent, 208
saturation, 209
spontaneous, 206–207

Polarizer, 287–290
Polyhedron

prism, triangular, 271
Voronoi, 27
CN14, CN15, CN16, 3

Polymer, 116
cross-linked, 194

electrical conductivity, 196, 404
foam, 194
linear, 183
nonlinear optical, 200
porous film, 195

Polymerization, 365
Porous metal, 166
Porous silicon, 117, 372–373
Positron-annihilation spectroscopy (PAS), 499
Potential energy, 87–88
Precipitate, 94–95, 267, 278, 369, 380–383, 389,

393
Precipitation hardening, 95, 266–267, 269,

383–385
Processing, 337–410
Pseudobinary compound, 282, 284
Pseudomorphic growth, 343
Pyrolysis, 354

Quadrupole coupling parameter, 493
Quadrupole mass spectrometer, 467, 514
Quadrupole moment, 494
Quadrupole tensor, 493
Quality factor, 91
Quantized magnetic flux, 135
Quantum confinement, 117
Quantum efficiency, 138
Quantum Hall effect, 132

fractional, 137
integer, 133

Quantum mechanics, 523
Quantum well, 146, 525
Quartz crystal

deposition monitor, 210, 212
microbalance, 476
oscillator, 210, 212

Quasiequilibrium model, 391–392
Quasiperiodicity, 332

Radial distribution function, 31
Radius, 24

covalent, 25, 110
ionic, 25
metallic, 25
van der Waals, 25

Radius of gyration, 186, 202
Radius ratio and polyhedral coordination, 181
Raman scattering, 176, 435
Random close-packing model, 31–32, 386
Random walk, 185–186

self-avoiding, 188–189
Range, 345–347
Rapid solidification (quenching), 162, 271,

385–388, 390
velocity, 386

Rayleigh resolution criterion, 442
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Rayleigh scattering, 436, 446
Reactive ion etching, 347
Reciprocal lattice vector, 36
Recombination, electron-hole, 118–122, 356

defect-mediated, 119–121
surface, 121–122

Reconstruction, 420
Recrystallization, 165, 347
Redox couple, 326, 328–329
Reflection high-energy electron diffraction

(RHEED), 357, 423–424
Reflectivity, 428, 513
Relaxation, 101

time, 89–92
Relaxor ferroelectric, 203–04
Resistivity, 104–105, 132, 205, 230–231, 260,

272, 279, 476–477
Resonance valence band model, 229
Reststrahlen band, 71
Rupture modulus, 205
Rutherford backscattering, 467–468, 511

Scaling law, 83
Scanning electron microscope (SEM), 433
Scanning tunneling microscope (STM), 366. 373,

472
Scattering

amplitude, 36, 418
Brillouin, 436
Raman, see Raman scattering
spin-dependent, 255

Schottky barrier, 139, 369
Schottky defect, see Vacancy
Schrodinger equation, 145, 242, 299, 314, 523, 526
Screening, Thomas-Fermi, 111, 346
Second-harmonic generation, 69, 330
Secondary ion mass spectrometry (SIMS), 466
Seebeck

coefficient, 106
effect, 106–107, 141

Segregation, 276
Semiconductor

amorphous, 112–116
carrier concentration, 103–105, 146–147
conductivity, 104–105
doping and dopants, 129–130, 355, 364, 366
energy gap, 139
group III–V, 359
group II–VI, 284, 359
magnetic, 117, 284–285
minority carrier lifetime, 118, 121
organic, 116–117
oxide, 116
thermoelectric effects, 106–110

Shape-memory alloy, 159–161
Shear modulus, 93, 95–96, 101, 163, 322, 381
Shockley state, 300

Short-range order, see Order, short-range
Shubnikov-deHaas effect, 133
Silicate, 174–176
Sintering, 94, 271, 396–397
Skin depth, 260
Skin effect, 260
Slip, 376

system, 93
Snoek effect, 262–263
Solder joint, 165
Sol-gel synthesis, 399
Solid-electrolyte interface, 326, 328
Solid solution, 383

strengthening, 95, 100, 379–380
Solidus line, 349, 411
Soliton, 199
Solvation energy, 213, 302, 328
Sommerfeld model, 317
Specific heat, 37, 480

electronic, 234
magnetic contribution, 83–84

Speed of sound, 210, 217
Spin, 86

free, 78
high-to-low transition, 77
majority, 256
minority, 256

Spin coating, 406
Spin-flop axis, 82
Spin glass, 79–80, 82–85, 263, 285
Spin-orbit interaction, 75–76, 82, 253, 271, 283
Spintronics, 285
Spin valve, 282
Spin wave (magnon), 261
Spinodal decomposition, 276
Sputtering 363, 370, 389, 430, 466. See also

Deposition, sputtering
SQUID, 245–246
Stacking fault, 352
Staging, 333
Standard electrode potential, 155–157, 327
Statistical mechanics, 519
Steel, 267–268, 278, 374–383, 389

high-strength low-alloy (HSLA), 380
maraging, 381
tool, 411

Sticking coefficient, 158, 303–304, 358, 369
Stokes parameters, 288
Stopping power, 347
Straggling distance, 346
Strain, 263, 385

aging, 379
energy, 375, 379
field, 379
nominal, 101
rate, 96–97
recovery, 161
shear, 94–95, 376
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Strain (Continued)
tensor, 211
true, 101

Stranski-Krastanov growth, 341, 343
Strength, 321, 374, 378–383
Stress, 263, 268

compressive, 389
flow, 381
intensity factor for plane stress (strain), critical,

100
shear, 93–94, 379
thermal, 352, 355

Stress-strain curve, 88, 92–94
Sublimation, see Vaporization
Substrate, 205
Sum rule, 511
Superconductor

coherence length, 249
condensation energy, 221, 248–249
Cooper pair, 241–244, 247
critical current, 232, 235–241, 249
critical field Hc, thermodynamic, 248–249
critical field Hc1, lower, 238
critical field Hc2, upper, 238
electron tunneling, 241, 249
energy gap, 232
flux creep, 237, 239–240
flux flow, 237
free energy, 219, 221, 248
gapless, 232
hard versus soft, 236
high-Tc, 223–233, 240–241, 246, 249
irreversibility field, 239
irreversibility temperature, 239
Josephson effect, see Josephson effect
magnetization, 236–237, 248
mixed state, 235, 238
penetration depth, 249
perfect conductivity, 248
quantized flux, 244, 249
specific heat, 228, 232, 248
SQUID, see SQUID
surface resistance, 246, 248
thermal conductivity, 219–220, 247
transition temperature, 223
trapped flux, 237, 239
two-fluid model, 219, 248
type II, 238
vortex, 232, 240
vortex fluid, 237–239
vortex glass, 238
vortex lattice, 238
vortex pinning, 235–239
wavefunction, 242

Supercooling, 386
Superelasticity, 161
Superexchange, see Magnetic interaction
Superlattice, 281

Supermagnet, 268
Superparamagnetism, 263, 275
Supersaturation ratio (SSR), 354
Surface, 258–259, 353

diffusion, 306–307, 356
energy, 100, 339, 342, 375, 382, 401
enhanced Raman scattering (SERS), 437
extended absorption fine structure (SEXAFS),

463
force apparatus, 475
net, 311, 420
plasmon, 461
reaction, 355, 362
reciprocal net, 422, 431
recombination velocity, 121
roughening, 356
state, 121, 299
step, 310
treatment (for metals), 388–390

Surfactant, 301
Symmetry

decagonal, 387
icosahedral, 387
rotational, 387

Synthesis, 337–410

Tail state, 113, 115
Tanabe-Sugano diagram, 76
Tauc law, 113–114
Tempering, 377, 379, 381–382
Tensile strength, 378, 382
Thermal conductivity, 310, 386, 397, 477–478, 480

ceramic, 203, 205
semiconductor, 295

Thermal diffusivity, 159, 386, 480
Thermal expansion, 166, 205

linear coefficient, 211, 275, 295–296
volume coefficient, 191, 194, 397

Thermistor, 212
Thermocouple, 140, 479
Thermodynamics, 515

first law, 477, 515, 518–520
second law, 517
third law, 517

Thermoelectric
device, 140–145
field, 478
figure of merit, 142
power (thermopower), 106–107, 140, 146, 477,

479–480
Third-harmonic generation, 69
Third-order susceptibility, 441
Thomson effect, 107
Tight-binding model, 62, 82, 152, 154, 229

random, 56–57
Time-temperature-transformation (TTT) diagram,

376, 378
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Torque, magnetic, 261
Toughness, 321, 374, 378, 381
Transistor, 112–132, 147, 364

bipolar junction, 123–127
DRAM, 363
field-effect (FET), 123, 127–129
gain, 124–125
HEMT, 130
heterojunction bipolar (HBT), 126–127
MESFET, 131–132
MODFET, 130
MOSFET, 132, 134, 364
thin film (TFT), 115, 130–131, 360

Transition element, 85
Transition metal, 266
Transmission electron microscope (TEM), 340,

356, 445
Traps, 121, 356, 369, 499
Tunneling, 527

energy, 81, 229
Twin, 376
Two-dimensional electron gas, 132

Ultraviolet photoemission spectroscopy (UPS), 454
Unit cell

body-centered tetragonal, 374
orthorhombic, 224
tetragonal, 270

Urbach edge (tail), 114

Vacancy, 51, 227, 367, 369, 499
concentration, 49
Frenkel defect, 34
Schottky defect, 33–34, 48

Valence, 22–23
electron, 10
mixed, 223–224, 253

van der Pauw method, 477
van der Waals bonding, see Bonding, van der

Waals
van Hove singularity, 42–43

Van Roosbroek-Shockley relation, 118
Vaporization, 52–53, 411
Vapor pressure, 52–53, 115, 354, 391, 411
Variable-range hopping, 115
Vegard’s law, 147
Velocity, thermal, 120
Verdet constant, 258, 290, 292
Vibrating-sample magnetometer, 481
Viscoelasticity, 180
Viscosity, 193–194, 213–214
Void, 113, 275, 369
Voigt effect, 259
Volmer-Weber growth, 341–342
Voronoi polyhedron, 27

Wear resistance, 388, 390
Weertman-Ashby map, 96–97
Welding, 383
Wigner crystal, 62
Wigner-Seitz cell, 41
Williams-Landel-Ferry equation, 193–194
Work function, 331, 454

negative, 501
Work hardening, 92–94, 96, 378–379

Taylor’s theory of, 94

X-ray diffraction
Laue, 415
powder, 415, 514
rotating crystal method, 415, 418

Yield
stress (strength), 95, 163, 379–383
stress, shear, 93, 95, 99

Young’s modulus, 87–91, 100–101, 339, 397

Zeeman effect, 493
Zener model, 89–91
Zero-point energy, 41


