Aravind Asthagiri
Michael J. Janik
著
目录Chapter 1 Computational Catalyst Screening 1
Lars C. Grabow
1.1 Introduction 1
1.1.1 A Walk through a Computational Catalyst
Design Process: Methanation 3
1.2 Starting from the Electronic Structure 4
1.2.1 Density Functional Theory 4
1.2.2 The d-Band Model 6
1.3 Identifying the Right Descriptor Set 8
1.3.1 Scaling Relations for Surface
Intermediates 9
1.3.2 Scaling Relations for Transition States:
The Br?nsted–Evans–Polanyi
Relationship 13
1.4 The Sabatier Principle and the Volcano Curve 17
1.4.1 Sabatier Analysis 18
1.5 Sabatier Analysis in Practice 20
1.5.1 First Example: Ammonia Synthesis 20
1.5.2 Second Example: CO Oxidation 25
1.6 Notes on Microkinetic Modeling 27
1.6.1 Numerical Solution Strategies 29
1.6.2 Entropy and Enthalpy Corrections 31
1.6.3 Microkinetic Model Analysis 32
1.7 CO Oxidation Catalyst Screening 35
1.7.1 Numerical Microkinetic Model 35
1.7.2 Degree of Rate and Catalyst Control 41
1.7.3 Two-dimensional CO Oxidation Volcano 44
1.7.4 Effect of Lateral Interactions 451.8 Conclusions 47
Appendix 48
References 55
Chapter 2 First-principles Thermodynamic Models in Heterogeneous
Catalysis 59
J. M. Bray and W. F. Schneider
2.1 Introduction 59
2.1.1 Background 59
2.1.2 Background on Oxygen Adsorption on
Platinum 62
2.2 Setting up the System 63
2.2.1 Developing a Slab Model 63
2.2.2 Identifying and Characterizing Adsorption
Sites 65
2.2.3 Increasing Coverage 69
2.3 Developing a Self-consistent Cluster Expansion Model 72
2.3.1 Cluster Expansion Fundamentals 72
2.3.2 Self-consistent Fitting Approach 74
2.4 Applying the Model to Obtain Physical Insight 80
2.4.1 Analysis of the DFT Fitting Database 80
2.4.2 Analysis of Ordered Ground States 83
2.4.3 Monte Carlo Simulations 93
2.4.4 Kinetic Properties from CE/GCMC Methods 109
2.5 Conclusions 112
Acknowledgments 112
References 113
Chapter 3 Density Functional Theory Methods for Electrocatalysis 116
Kuan-Yu Yeh and Michael J. Janik
3.1 Introduction 116
3.1.1 A Motivating Example: H2 Oxidation/H2
Evolution 117
3.1.2 Electrode Potential Effects on Reaction
Energies and Activation Barriers 121
3.1.3 Electrochemical Double-layer Theory 122
3.1.4 Overview of DFT Models for Electrocatalysis 124
3.2 Examples Applying DFT Methods to
Electrocatalysis 128
3.2.1 Simulating the Vacuum–Metal Interface 129
3.2.2 Simulating an Aqueous–Metal Interface 137
3.2.3 Linear Sweep Voltammetry Simulations 146
viii Contents
.
Published on 02 December 2013 on http://pubs.rsc.org | doi:10.1039/9781849734905-FP007
View Online
3.2.4 Calculation of Surface Reaction Free
Energies 147
3.2.5 Potential Dependent Activation Barriers 151
3.3 Conclusions 153
References 153
Chapter 4 Application of Computational Methods to Supported
Metal–Oxide Catalysis 157
Thomas P. Senftle, Adri C.T. van Duin and Michael J. Janik
4.1 Introduction 157
4.2 Computational Approaches to Supported
Metal–Oxide Catalysis 158
4.3 Selected Applications 159
4.3.1 Application of DFT to WGS 161
4.3.2 Ab Initio Thermodynamics 167
4.3.3 Classical Atomistic Modeling 174
4.3.4 Combined Application: Hydrocarbon
Activation over Pd/CeO2 178
4.4 Conclusions 185
References 186
Chapter 5 Computing Accurate Net Atomic Charges, Atomic Spin
Moments, and Effective Bond Orders in Complex
Materials 192
Thomas A. Manz and David S. Sholl
5.1 Introduction 192
5.2 Net Atomic Charges and Atomic Spin Moments 194
5.2.1 The Charge Partitioning Functional 194
5.2.2 The Spin Partitioning Functional 196
5.2.3 Example using VASP Software 198
5.2.4 Examples using GAUSSIAN Software 201
5.2.5 VASP Non-collinear Magnetism Example 205
5.3 Modeling the Electrostatic Potential Surrounding a
Material 209
5.3.1 Atom-centered Distributed Multipole
Expansion 209
5.3.2 Applications to Force-fields used in Atomistic
Simulations 211
5.4 Effective Bond Orders 212
5.5 Conclusions 219
Acknowledgments 219
References 220
Contents ix
(RSC_Catalysis_Series)_Aravind_Asthagiri,_Michael_J_Janik,_James_J_Spivey,_.pdf
(9.42 MB, 下载次数: 413287)
|
|