柔性传感器可穿戴或植入人体,并可检测周围环境信息,在医疗健康领域受到广泛关注。然而,作为用电器件的传感器自身并不能独立工作,需要电源为其供电。平面型微型超级电容器(MSC)作为新型的微型电化学储能器件易与传感器或其它电子器件进行有效集成。一般的方法是将传感器与电源通过外接导线连接,但在柔性可穿戴技术中引起不便。如何将柔性和无线电源与传感器集成到同一芯片,是当前研究所面临的挑战。 ▲ 纸基自供电传感器的集成示意图与实物图 纸质材料成本低、可即用即弃,并具有多孔和粗糙的纤维结构,可以增强其与电子器件的结合力。由于纤维素孔隙引起的毛细作用使通过印刷技术印刷的墨水材料在纸基表面扩散,导致形成的图案质量较差。中国科学院兰州化学物理研究所清洁能源化学与材料实验室研究员阎兴斌团队通过丝网印刷技术,在滤纸表面形成金属Ni叉指化集流体,并结合后续的电镀技术增强集流体的导电性,并抑制金属Ni在纸基表面的扩散,形成了分辨率较高的图案化集流体。在Ni表面通过电化学沉积MnO2或者聚吡咯(PPy)活性材料,并滴凃凝胶电解质,形成了基于MnO2的对称性超级电容器,以及基于MnO2和PPy的非对称超级电容器。经过测试,表明该纸基超级电容器具有较好的电化学特性和很强的耐机械形变特性(弯折1万次后容量几乎没有衰退),其能量密度和功率密度皆位于同类型超级电容器的前列。 基于在纸面印刷的金属集成电路,研究人员将MSC和紫外传感器或气体传感器集成到同一单片纸上,集成器件显示出良好的传感特性和自供电特性。未来有望将能量采集、能量存储和用电器件集成到同一纸基芯片。这种基于纸质基底的集成策略为便携式和可穿戴电子开拓了新的设计方法。 该研究在线发表在Advanced Functional Materials上,研究工作得到了国家自然科学基金和研究所“一三五”重点培育项目的资助和支持。 来源:兰州化物所
欢迎加入材料人高分子共享群,群号:298064863
|